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Department of Mathematical Sciences, Durham University, Durham, United Kingdom

We apply the magneto-frictional approach to investigate which quantity or quantities
can best predict the loss of equilibrium of a translationally-invariant magnetic flux rope.
The flux rope is produced self-consistently by flux cancellation combined with gradual
footpoint shearing of a coronal arcade which is open at the outer boundary. This models
the magnetic field in decaying active regions on the Sun. Such a model permits two
types of eruption: episodic small events caused by shearing and relaxation of the overlying
arcade, and major eruptions of the main low-lying coronal flux rope. Through a parameter
study, we find that the major eruptions are best predicted not by individual quantities
but by thresholds in the ratios of squared rope current to either magnetic energy or
relative magnetic helicity. We show how to appropriately define the latter quantity for
translationally-invariant magnetic fields, along with a related eruptivity index that has
recently been introduced for three-dimensional magnetic fields. In contrast to previous
configurations studied, we find that the eruptivity index has only a weak predictive skill,
and in fact is lower prior to eruption, rather than higher. This is because the overlying
background magnetic field has the same direction as the arcade itself. Thus we propose
that there are a whole class of solar eruptions that cannot be predicted by a high eruptivity
index.

Keywords: solar corona, magnetic fields, eruptions, helicity, sun—atmosphere

1 INTRODUCTION

Flux ropes are twisted bundles ofmagnetic flux in the solar corona (Liu, 2020). Accurately predicting
their behaviour is essential for reliable spaceweather predictions, as unstable flux ropes can erupt and
lead to large coronal mass ejections (Forbes et al., 2006; Chen, 2011). The causes of such eruptions
are not yet indisputably understood and a variety of mechanisms have been proposed. These have
been exploredwith approaches ranging fromanalytic two-dimensionalmodels to three-dimensional
full magnetohydrodynamic (MHD) simulations.

Analytic two-dimensional models of flux rope behaviour date back to Kuperus and Raadu (1974)
and van Tend and Kuperus (1978), who modelled a horizontal line current and its interaction with
a specified background magnetic field. They established conditions on the current that allow it to
be stable, and showed that, for an eruption to occur, the background magnetic field strength must
decrease rapidly with increasing height.

Further analytic approaches have introduced the torus instability (e.g., Kliem and Török, 2006)
where the flux rope is modelled as a current ring rather than a line current. Rather than a condition
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on the decay of the background field with altitude, it is instead
proposed that for instability to occur the background field
component orthogonal to the torus must decrease sufficiently
quickly. It has since been shown that the conditions for such
an instability are essentially the same as for instability of a line
current, and they are just two special cases of a continuous theory
of more general current paths (Kliem et al., 2014). Although
these works provide useful theoretical background as to the
nature of flux rope behaviour, they are difficult to relate to
physical ropes as these tend to be significantly more complex
and much of the physics is by necessity not taken into account.
There are indeed other conflicting explanations for instability,
such as that of Ishiguro and Kusano (2017), who propose
that fast magnetic reconnection can occur below a flux rope
even if the overlying magnetic field does not decay with
altitude.

Full 3D MHD simulations of flux rope formation
and behaviour are also now possible. Leake et al. (2013),
Leake et al. (2014) presented a series of such simulations,
based on magnetic flux emergence into a preexisting field.
Some ropes were found to be eruptive and others stable,
depending on the configuration of the background magnetic
field. Pariat et al. (2017) then analysed various properties of
the system for these simulations, looking for properties that
could predict whether or not the flux rope would erupt. Most
diagnostics, such as the magnetic free energy and relative
magnetic helicity, were shown not to have any strong correlation
to eruptivity. However, they identified an “eruptivity index”—the
fraction of the relative magnetic helicity that is in the current-
carrying component—which became large only in erupting cases.
In a different set of numerical simulations, where coronal flux
ropes are created by a variety of solar surface footpoint motions,
this eruptivity index again increased prior to eruption and the
eruption was found to occur for a fixed value of the index,
irrespective of the pattern of footpoint motions that injected
the energy (Zuccarello et al., 2018). However, while promising, a
complete theoretical understanding of this eruptivity index and
its generality remains lacking.

Our modeling approach is chosen as a compromise between
the simple analytic models of the past and the expensive full
MHD simulations now possible. We use the magneto-frictional
model, pioneered by Yang et al. (1986), whereby a fictional
velocity field is determined explicitly from the magnetic field
as opposed to using the fluid equations. For tracking the quasi-
static injection of magnetic energy into the corona through
solar surface motions, the model provides a viable alternative to
full MHD simulations, at a fraction of the computational cost.
Magneto-frictional models have previously been coupled with
time-dependent lower boundary conditions based on imposed
surface flux transport (e.g., Yeates et al., 2008) and realistic flux
rope formation, as well as loss of equilibrium, is observed in
such simulations (Mackay and van Ballegooijen, 2006; Yeates and
Mackay, 2009; Lowder and Yeates, 2017; Hoeksema et al., 2020).
Flux ropes are also formed on a smaller scale when the model
is driven by high-resolution observations within active regions
(e.g., Yardley et al., 2018). Since the magneto-frictional model
neglects the full equation of motion, it cannot accurately follow

the dynamics once a flux rope loses equilibrium and erupts.
Nevertheless, if ropes produced by magneto-friction are used to
initialise full MHD simulations, it is found that the magnetic
flux ropes do indeed lose equilibrium at the same point, and can
lead to CME eruptions (Kliem et al., 2013; Pagano et al., 2013).
Thus magneto-friction can act as an accurate model for the
pre-eruption evolution.

In our study, we use the magneto-frictional approach but
simplify it to a 2.5-dimensional (translationally invariant)
cartesian domain, which significantly increases computational
speed while still exhibiting the fundamental features of fully
3D models. In particular, both the flux rope and the (sheared)
overlying arcade are formed self-consistently by flux cancellation
and shearing motions on the photosphere. In our model these
shearing motions are purely large-scale, essentially modelling
the differential rotation. As such, we focus on the more gradual
evolution in decaying active regions—a potentially different
scenario to the active region eruptions where the eruptivity index
was previously studied, but nevertheless an important source of
solar eruptions.

In a similar manner to the work of Pariat et al. (2017), we
attempt to find a scalar quantity that acts as a proxy for the
eruptivity of our 2.5D flux rope. The large number simulations
we are able to run (in the order of 500) allows for an
extensive parameter study based on the variation of themagneto-
friction coefficient and the rate of photospheric flux cancellation.
Using a probabilistic approach, a large number of eruptive
and non-eruptive ropes will be compared against diagnostic
measurements of the system at various points of their evolution.
We note that, in addition to the formation of flux ropes, our
model exhibits “arcade eruptions” whereby we observe periodic
reconnection at the top of a shearedmagnetic arcade. It is possible
that these represent streamer blowouts or even “stealth CMEs,” as
coined byWebb and Howard (2012), since they are characterised
by the lack of a detectable signature on the solar surface. The
nature and period of these eruptions (around every 25–30 days)
matches well between our 2.5Dmodel, global magneto-frictional
simulations and observations (Bhowmik et al., 2021). However,
the main focus of this paper is not on arcade eruptions but “flux
rope eruptions,” when we observe magnetic reconnection below
a flux rope and the rope itself moves upwards out of the domain.
Such eruptions are larger than arcade eruptions and it is likely that
in reality a significant number of CMEs occur as a result of such a
mechanism.

We begin in Section 2 by outlining the mathematical basis
of our model, including the mechanism by which we represent
surface shearing (influenced by the differential rotation of the Sun
at different latitudes), photospheric diffusion and the effect of the
solar wind. We identify the variable parameters in the model and
discuss which of these we can use to produce an array of differing
flux rope behaviour. We then discuss the system diagnostics we
have chosen to focus on, including a newly-defined measure
of the relative helicity in two dimensions (Section 2.4.8). This
measure allows us to compare our results against 3D equivalents
and calculate the eruptivity index. The results of our parameter
study are presented in Section 3, and the findings discussed in
Section 4.
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2 METHODS

2.1 Magneto-Frictional Model
Rather than using full magnetohydrodynamics (MHD), we
adopt a simplified approach that has been developed for global
modelling of the solar coronal magnetic field: the magneto-
frictional model (e.g., Mackay and Yeates, 2012). On a global
scale, this technique has been applied with time-dependent lower
boundary conditions from surface flux transport models (e.g.,
Yeates et al., 2008; Yeates, 2014). We adopt a 2.5-dimensional
(translationally invariant) version of this approach.

In full MHDmodels, the velocity field, v, is determined by the
momentum equation

ρDv
Dt
= j×B−∇p− ρ∇Ψ, (1)

where ρ is the fluid density, p is the fluid pressure, Ψ is the
gravitational potential, and j = μ−10 ∇×B is the current density.
This is coupled to the induction equation

∂B
∂t
= ∇× (v×B) − η∇× j, (2)

along with additional fluid equations to close the system. In the
magneto-frictional method, Eq. 2 is retained, but the inertial
terms, pressure gradients and gravity are neglected and instead
a frictional velocity is imposed as

νv = (∇×B) ×B. (3)

Combined with the induction equation, this leads to
monotonic relaxation towards a stationary force-free field with
j×B = 0. The friction coefficient ν is typically given the form
ν = ν0|B|2 (with some minimum value imposed) so that the
overall evolution is independent of the magnitude of B and
relaxation is not unduly slow near to magnetic null points
(Yang et al., 1986).

In the outer corona, the solar wind outflow prevents the
magnetic field from being force-free, but this effect can be
approximated in the magneto-frictional model by relaxing
towards an equilibrium with a specified outflow vout, thus
choosing v according to

v =
((∇×B) ×B)

ν
+ vout. (4)

This ad hoc approach was introduced by Mackay and
van Ballegooijen (2006), and has subsequently been used
in global magneto-frictional models of solar and stellar
coronae (e.g., Yeates, 2014; Gibb et al., 2016; Mackay et al., 2018;
Meyer et al., 2020).

2.2 Our 2.5-Dimensional Model
In our model, we simplify the problem by using a Cartesian
coordinate system, and removing any dependence of the
solution on the y coordinate. The domain ratio is taken to be
(x ∶ z) = (2 ∶ 1). The resulting 2.5-dimensional system captures
many of the essential features of the evolution in the lower
solar corona, while affording a vast reduction in computational

expense.This has allowed us to run an extensive parameter study,
comprising hundreds of simulations.

The state of the system can be described in terms of a vector
potential A(x,z, t), such that

B (x,z, t) = ∇×A (x,z, t) . (5)

The vector field A is then evolved according to

∂A
∂t
= −E, (6)

where E is the electric field, satisfying Ohm’s Law

E = ηj− v×B, (7)

in terms of the magnetic field B, current density j and frictional
velocity v as given in Eq. 4. Here η is a constant representing
coronal turbulent diffusivity, which is assumed to be much
more significant than ohmic diffusivity in the highly-conducting
corona, though still smaller than the other effects in the
model. The outflow velocity used to represent the solar wind is
taken to be

vout = v1(
z
z1
)
10
ez , (8)

so the effect is minimal near the lower boundary and increases
rapidly near the top boundary at z = z1 at which the parameter v1
gives the maximum speed.

The simulations are initialised with an “outflow field” (Rice
and Yeates, 2021), a variation on a potential arcade that takes
into account the effect of vout, such that the system is initially
in equilibrium. As seen in Figure 1 these fields are similar to
potential arcades, except in the upper half of the domain where
the field lines open out to become more vertical.

The boundary conditions determine the overall behaviour
of the system. On the top boundary (z = z1) we have the
condition that B⊥n = 0, ensuring that the magnetic field
lines are vertical/radial here. This condition is consistent with
observations that the field lines in the real corona become almost
radial above a certain altitude. The notable exception to this is
during eruptions, but these last a relatively short time and occur
in our model even with the radial condition imposed. On the
sides of the domain we set B ⋅n = 0, i.e., there is no magnetic
flux through the sides. The lower boundary condition is more
complex, and incorporates two effects: photospheric shearing and
photospheric diffusion.

In our model, the photospheric shearing is assumed to
originate from the differential rotation of the solar surface,
namely that the Sun rotates more quickly at the equator than the
poles. A magnetic arcade that has footpoints at different latitudes
will thus be sheared, stretching the field lines along the polarity
inversion line (PIL). We represent this shearing by imposing a
velocity in the out-of-plane (y) direction at the lower boundary,
following the profile

v (x,0) = (0,Vy0,0) , Vy0 = sin (πx) . (9)

This profile is chosen as it ensures symmetry and simplicity
while approximating the qualitative effect of differential rotation.
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FIGURE 1 | Examples of initial conditions for the 2.5D magneto-frictional code in a cartesian domain. Here (A) is a potential field and (B) is an equivalent outflow
field, with the same lower boundary condition. The black lines represent magnetic field lines.

The photospheric diffusion, η0 represents the large-scale effect of
supergranular flows, and is also imposed on the lower boundary
(Mackay and van Ballegooijen, 2006). The combined effect of
both shearing and diffusion results in the lower boundary
condition

E (x,0) = −Vy0 (x,0)Bz (x,0)ex −
η0
μ0

∂Bz (x,0)
∂x

ey. (10)

The effect of this is to bring the arcade footpoints closer
together, eventually reconnecting to form a twisted flux rope
(van Ballegooijen and Martens, 1989). Thus the ropes form self-
consistently, without the need for any imposed flux emergence.

Numerically, Eq. 6 is solved on a finite-difference staggered
grid (Yee, 1966) similarly to Cheung and DeRosa, 2012, with
typical resolutions of 256× 128 cells. The code is initialised
with Python but runs using Fortran 90, making use of MPI
parallelisation.

2.3 Parameters and Units
There are a number of free parameters in our model that can be
easily varied.The aim is to produce a set of simulations thatmodel
realistic behaviour well, but provide enough variation to be able
to make predictions of future behaviour. The parameters in the
model are:

• η: The coronal diffusion.
• ν0: The magneto-frictional friction coefficient.
• v1: The imposed solar wind outflow speed.
• η0: The photospheric diffusion.
• Vy0: The photospheric shearing velocity.

However, in our analysis we fix some of these parameters.
Firstly, we take the coronal diffusion to be very small, η ≈ 1× 10−6,
so that its effect on short-term flux rope behaviour is negligible.
(The corresponding diffusion time across the height of the
domain would be 106 time units.) Secondly, we effectively set the
time unit by fixing the maximum shearing velocity Vy0 to unity.
Finally, we fix the outflow speed v1 = 50. This is reasonable since
the outflow velocity has little effect on flux rope behaviour; the
solar wind mainly serves to induce currents in the upper corona,

at the top of the domain and far from the flux rope formation
region. The only notable effect of an increased outflow velocity is
a slight increase in the frequency of arcade eruptions. We choose
v1 = 50 to reflect the fact that the solar wind outflow is faster than
the shearing velocity from differential rotation.

This leaves two remaining parameters: ν0 and η0. These
can be varied considerably (between certain bounds) and still
exhibit realistic behaviour. By running simulations with different
combinations of these parameters we observe different flux
rope behaviours, with a good mix of eruptive and non-eruptive
simulations. The results from this parameter study are described
in Section 3.

Note that we adopt dimensionless units throughout this
paper, with a maximum photospheric shearing velocity of
unity according to Eq. 9. For comparison to the real corona,
one would choose the length unit—equivalently the height
of the domain, z1—and specify an observed shearing velocity
caused by the differential rotation of the coronal arcade.
These would then fix the time that corresponds to one
dimensionless time unit in our paper. For example, if we take
the angular velocity of differential rotation at latitude λ on the
Sun to be Ω(λ) = 0.18–2.396 sin2λ− 1.787 sin4λ degrees per day
(Snodgrass, 1983) and choose the latitudinal limits of our domain
to be 10°–40°, this results in a maximum shearing velocity
|vϕ| ≈ 0.086kms−1. Taking z1 = 1.8× 105km (half of the latitudinal
extent) would then imply that a code time unit is of the order
≈25 days.

2.4 System Diagnostics
In this section we briefly describe the diagnostic measurements
of the system used to identify events and ultimately try to make
predictions of future behaviour such as eruptions. There are
innumerable measurements that could theoretically be taken of
the state of the magnetic field, but for practical purposes we have
selected nine, which are as follows:

2.4.1 Open Flux
The open flux is the sum of the unsigned magnetic flux through
the top boundary of the domain. (Due to the symmetry of the
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system, the sumof the signed flux is zero.)The open flux increases
due to the effect of the solar wind, as the field lines become more
vertical near the top of the domain and fewer of them loop back
down in the arcade.

2.4.2 Maximum Current
For practical computation we set μ0 = 1 and define the current
density as the curl of themagnetic field: j = ∇×B. As a diagnostic,
we take the maximum value that this attains in the domain. A
potential field has zero current and an outflow field only has
current concentrated near the top boundary, due to the effect of
the solar wind.

2.4.3 Rope Current
We also measure the integral of the current within the rope,
in the direction of the rope axis (the y direction). In our two-
dimensional model the rope is easily identifiable as it consists
of the infinitely-long field lines that never reach either the
photospheric or outer boundary. As the rope is in general in
the lower half of the domain, this current is unaffected by the
behaviour at the top boundary.

2.4.4 Magnetic Energy
The magnetic energy is defined in our unitless system as EM =
∫1
0 ∫1
−1

1
2
|B|2 dxdz. A potential arcade corresponds to a minimum

energy solution for given normal-field boundary conditions, and
an outflow field has only a slightly increased energy (less than
1%).There is a large increase inmagnetic energy during flux rope
formation as the system evolves far from potentiality.

2.4.5 Free Magnetic Energy
In addition to the overall magnetic energy, we can calculate the
“free magnetic energy,” defined as EF = EM −∫1

0 ∫1
−1

1
2
|BP|2 dxdz,

where BP is a potential magnetic field as calculated in
Section 2.4.8 below. This quantity has the advantage that the
contribution to the overall energy from the backgroundmagnetic
field is lessened, such that the contribution from the non-
potential flux rope is more significant.

2.4.6 Poloidal Rope Flux
This is a measure of the poloidal (in-plane) magnetic flux
contained within the flux rope (the region with infinitely-long
field lines), defined as the flux intersecting a chord between the
centre of the rope and the edge of the rope (usually the lower edge
of the domain).

2.4.7 Axial Rope Flux
This is defined as the integral of themagnetic flux in the rope (the
region with infinitely-long field lines) in the y direction, parallel
to the axis of the rope itself.This appears to be roughly correlated
to the rope current.

2.4.8 Relative Helicity
The classical helicity within a volume V would be defined as
h(V) = ∫VA ⋅BdV, where A is the vector potential of B. This
quantity is dependent in general on the gauge ofA, and so we use
the alternative relative helicity instead (Berger and Field, 1984).

In a 3D domain, this would be calculated by finding a potential
field BP matching the original magnetic field on the boundary,
and a corresponding vector potential, AP. The relative helicity
would then be

HR =∫V
(A+AP) ⋅ (B−BP) dV . (11)

Care is required to define the relative helicity for our 2.5Dfield.
A two-dimensional helicity measure for h(V) has been proposed
before (Hu et al., 1997), but we are not aware of a previously
published two-dimensional analogue for the relative helicity.

We start by considering the 3D formula (Eq. 11) on a
finite volume Vy1, where −1 < x < 1, −y1 < y < y1 and 0 < z < 1.
Although B(x,z) in our 2.5D field is independent of y, the
corresponding potential reference field BP will, in general, vary
in the y direction. This arises from the fact that it is potential,
coupled with the need to match BPy(x,±y1,z) = By(x,z) on
y = ±y1. We define the relative helicity per unit length to be

H(2.5D)R = lim
y1→∞

1
2y1 ∫Vy1

(A+AP) ⋅ (B−BP) dV , (12)

where BP and its vector potential AP are calculated on Vy1.
However, a physically meaningful helicity measure for our 2.5D
field cannot possibly require integration in y. We will show that
H(2.5D)R not only converges as y1→∞ but can indeed be calculated
by a two-dimensional integral in x and z.

To do this, we decompose BP into three components,

BP = ∇ϕ0 (y) +∇ϕ1 (x,z) +∇ϕ2 (x,y,z) , (13)

where the first component is a uniform field accounting for the
net flux in the y direction,

ϕ0 =Φ0y, Φ0 =
1
2∫

1

0 ∫
1

−1
By (x,z) dxdz, (14)

and the other two components are both potential fields satisfying
Δϕ1 = Δϕ2 = 0, with corresponding boundary conditions

∂ϕ1

∂x
(±1,z) = 0,

∂ϕ1

∂z
(x,0) = Bz (x,0) ,

∂ϕ1

∂z
(x,1) = Bz (x,1) ,

(15)

∂ϕ2

∂x
(±1,y,z) =

∂ϕ2

∂z
(x,y,0) =

∂ϕ2

∂z
(x,y,1) = 0,

∂ϕ2

∂y
(x,±y1,z) = By (x,z) −Φ0.

(16)

Notice that∇ϕ0 and∇ϕ1 are independent of both y and y1.The
y dependence is concentrated only in ∇ϕ2.

The potential ϕ2 has the important property that, as y1
increases, it becomesmore andmore concentrated near to the end
boundaries y = ±y1, irrespective of By(x,z). To see this, note that
in the Cartesian domain Vy1, the solution for ϕ2 may be written
as a Fourier series

ϕ2 (x,y,z) = ∑
m,n≠0

cm,n cos(
mπ (x + 1)

2
)cos (nπz) sinh (kπy) ,

(17)
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FIGURE 2 | Plot of the function f (a) = cosh(kπay1)
cosh(kπy1)

for k = 1 and various values of y1.

where m, n are integers, k2 = (m/2)2 + n2, and the sum includes
all terms except m = n = 0 (which has been separated as the
ϕ0 component). The coefficients are then determined by the
boundary condition on ∂ϕ2/∂y, which gives

cm,n =
2

kπ cosh (kπy1)∫
1

0 ∫
1

−1
By (x,z)cos(

mπ (x + 1)
2
)

× cos (nπz) dxdz. (18)

Now consider the value of ϕ2(x,ay1,z) for some fixed fraction
|a| < 1. Then

ϕ2 (x,ay1,z) = ∑
m,n

2sinh (kπay1)
kπ cosh (kπy1)

F (x,z) , (19)

where F(x,z) contains the x and z dependence from (Eqs 17, 18).
Noting that

lim
y1→∞

sinh (kπay1)
cosh (kπy1)

= lim
y1→∞

cosh (kπay1)
cosh (kπy1)

= 0, (20)

we see that the non-zero part of ∇ϕ2 becomes an increasingly
smaller fraction of the domain length as y1→∞. This is
illustrated in Figure 2. It follows that the contribution from
∇ϕ2 to H

(2.5D)
R in Eq. 12 vanishes in the limit, so that

H(2.5D)R =∫
1

0 ∫
1

−1
(A+A(2.5D)P ) ⋅ (B−B

(2.5D)
P ) dxdz, (21)

whereB(2.5D)P (x,z) = ∇ϕ1(x,z) +Φ0ey.The gauge ofA(2.5D)P does not
affect the integral (as usual for HR), so one is free to choose an
A(2.5D)P that is independent of y and hence evaluate H(2.5D)R with a
purely 2D integral. This is our approach in this paper.

2.4.9 Eruptivity Index
The 3D expression that has been proposed (Pariat et al., 2017) as
an eruptivity index is |HJ/HR|, where

HJ =∫V
(A−AP) ⋅ (B−BP) dV (22)

is the helicity of the current-carrying part of the field
(Berger, 1999) and HR is the relative helicity as above. We define
the 2.5D version of HJ analogously to H(2.5D)R , thus we consider
the ratio |H(2.5D)J /H

(2.5D)
R | with

H(2.5D)J =∫
1

0 ∫
1

−1
(A−A(2.5D)P ) ⋅ (B−B

(2.5D)
P ) dxdz. (23)

2.4.10 Ratios
We also consider the ratios between the above quantities,
generally defined such that the ratios are independent of the
magnetic field strength.

3 RESULTS

3.1 Qualitative Behaviour
We first illustrate the two types of eruption that can occur in the
system.

3.1.1 Zero Photospheric Diffusion
When we have no photospheric diffusion (η0 = 0), the effect of
the shearing causes the arcade footpoints to move only in the
y direction. The magnetic energy increases as the system is no
longer in a relaxed state, but it is not possible for flux ropes to
form in the low corona as the footpoints are not brought closer
together and there is no flux cancellation. In this case, the only
free parameter is the friction coefficient ν0.

We choose ν0 of the order unity, in our code units. In general,
the equivalent friction coefficents used in 3D global magneto-
frictional simulations (e.g., Yeates and Hornig, 2016) are slightly
smaller than this if directly compared, but this is by no means
a precise measurement. There is thus a compromise between
these more realistic values and the significant improvements in
computational speed gained from increasing ν0. Altering the
domain shape also has a significant effect on the ideal ν0, but
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for our (x,z) = (2 ∶ 1) ratio setting ν0 ≈ 0.5 produces realistic
behaviour. For ν0 significantly larger than this, the frictional
relaxation is unrealistically slow relative to the footpoint shearing.

Consequently, our parameter study is confined to 0.5 < ν0 < 2.
For these ν0 values, the magnetic arcade becomes more sheared
in the y direction, as expected. After a certain period during
which the magnetic energy and open flux increase gradually,
we observe fast magnetic reconnection at the top of the
domain accompanied by a sharp decrease in these diagnostics.
This is what we refer to as an “arcade eruption” (Linker
and Mikic, 1995). A sequence of snapshots of one of these
eruptions is shown in Figure 3. The first eruption is shown at
t = 2.92.

In general this process then repeats, leading to periodic
eruptions occuring every time unit or so, as shown clearly by the
oscillation of the diagnostic measures in Figure 4. We observe
that the arcade becomes more sheared up to time t = 2.76, at
which point there is an eruption, denoted by a blue circle. The
process then repeats, building up to another eruption at t = 4
and so on, with the times of eruptions (as determined by the
mid-point of the drop in open flux) shown by blue circles.

During an arcade eruption there is a rapid decrease in open
flux as the reconnection at the top of the domain results in
the closing down of field lines at the top of the arcade. The
corresponding decrease inmagnetic energy occurs as these newly
closed field lines are in a more potential state immediately after
the eruption, although the free energy has a non-zero “floor”

because the background field is non-potential due to the outflow
velocity.The peaks in current during an eruption occur at the top
boundary at the current sheet that temporarily forms above the
PIL. The relative helicity does not follow the same pattern as the
other diagnostics and instead increases during an eruption. This
increase results from the fact that the newly-closed potential field
lines at the top of the arcade now have a mutual “linkage” with
the still sheared field lines beneath.

3.1.2 Nonzero Photospheric Diffusion
When the photospheric diffusion η0 is nonzero, we observe
the formation of flux ropes. These are characterised by twisted
bundles of magnetic field lines that do not meet the boundary of
the domain. As a result, the flux ropes are effectively infinitely
long as there is no variation in the y direction. At the same
time, we observe similar periodic buildups and releases in
magnetic energy to the case with no photospheric diffusion.
These overlying arcade eruptions do not affect the amount of
poloidal magnetic flux within the flux rope, but they do cause the
rope to oscillate vertically.

However, in addition to these eruptions, we also observe more
significant events whereby the flux rope itself erupts, which in a
2D setting causes it to move rapidly upward out of the domain.
Unlike with arcade eruptions, we observe magnetic reconnection
below the flux rope, between it and the polarity inversion line
on the lower boundary. There is a significant decrease in free
magnetic energy, open flux and relative helicity, and inmost cases

FIGURE 3 | Snapshots showing the shearing of the potential arcade resulting in an arcade eruption and subsequent reformation preceding another eruption at t = 4.
The black lines are magnetic field lines projected onto the (x,z) plane, and the heatmap represents the magnetic field strength into the page (in the y direction). In this
simulation, η0 = 0 and ν0 = 0.5.
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FIGURE 4 | A selection of diagnostics for a simulation exhibiting repeated arcade eruptions, which are represented by blue circles. In this simulation, η0 = 0 and
ν0 = 0.5. The time of an eruption is taken to be the midpoint in time between the maximum and minimum open flux values either side of the eruption.

there is no longer any flux contained within the rope after an
eruption (although this is not always the case).

Snapshots showing a flux rope eruption are shown in
Figure 5, and diagnostics corresponding to the same simulation
in Figure 6. Here the red circles denote the flux rope eruptions,

shown at the time when the poloidal rope flux drops. In most
cases, after a flux rope eruption a new rope will form and
the process will repeat, although depending on the specific
parameters the system may just relax into a steady state.
Compared to Figure 4, Figure 6 includes new plots of the rope

FIGURE 5 | Snapshots showing the formation of a flux rope and its subsequent eruption at time t = 8. This is followed by the formation of a second flux rope, which
experiences an arcade eruption at t = 15.8, before the process repeats. The black lines are magnetic field lines projected onto the (x,z) plane, and the heatmap
represents the magnetic field strength into the page (in the y direction). In this simulation, η0 = 7 × 10−3 and ν0 = 0.6.
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FIGURE 6 | A selection of diagnostics for a simulation exhibiting flux rope eruptions (red circles) interspersed with multiple arcade eruptions (blue circles). In this
simulation, η0 = 7 × 10−3 and ν0 = 0.6. The time of a flux rope eruption is taken to be the time of the maximum poloidal rope flux before this rapidly decreases.

FIGURE 7 | Overview of 100 flux rope simulations, for ν0 = 0.5 and varying η0. Each simulation (for a given η0) is represented by a vertical red line, and the thickness
of this line is proportional to the poloidal flux in the rope at that time. Arcade eruptions are represented by blue circles and flux rope eruptions are represented by red
squares. The size of these points is proportional to the decrease in open flux and poloidal rope flux during the eruption, respectively.
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flux and current as well as the current-carrying helicity H(2.5D)J

and eruptivity index |H(2.5D)J /H
(2.5D)
R |. The figure shows both the

poloidal/in-plane flux and the axial/out-of-plane flux, contained
within the region of infinitely-long magnetic field lines. In our
model, prior to eruption, there is no null point beneath the rope.
So the poloidal rope flux is simply the difference in the vector
potential, max(Ay(x,z)) −Ay(0,0).

The effect of a flux rope eruption on the diagnostic
measurements is more significant than an arcade eruption. We
still observe rapid decreases in openflux andmagnetic energy, but
unlike with arcade eruptions there is now a significant decrease in
the relative helicity during the eruption, rather than an increase.
Arcade eruptions do not affect the poloidal flux in the rope at all
as can be seen in Figure 6, but naturally as the rope no longer
exists after a flux rope eruption these fluxes—as well as the axial
rope current—immediately fall to zero, before increasing again
if flux cancellation is ongoing. The axial rope current and axial
rope flux are affected by arcade eruptions, but not significantly.
The eruptivity index will be discussed below.

3.2 Dependence on Photospheric Diffusion
In the parameter study we primarily focus on the effect of
changing the photospheric diffusion parameter η0. For very small
η0 the system exhibits periodic arcade eruptions as described
above, and the flux ropes form too slowly to erupt within the
timeframe of the simulation, which we set at 50 time units
(corresponding to several years on the real Sun). It is likely,
however, that these ropes will eventually erupt.

When the photospheric diffusion is in the range
2× 10−3 < η0 < 1× 10−1 we observe both arcade and flux rope
eruptions before t = 50. For runs where η0 is not too large, there
are several arcade eruptions between each flux rope eruption that
cause the rope to oscillate. At some point, seemingly arbitrarily,
one of these arcade eruptions coincides with reconnection below
the rope and causes the flux rope tomove rapidly upwards and out
of the top of the domain. Usually after one of these eruptions the
system returns to a potential-like state and the process repeats,
although the out-of plane magnetic strength usually diminishes
after each eruption. This repeats until the system relaxes to a
steady state, with no rope present.

Varying the value of the photospheric diffusion (η0) produces
a wide range of flux rope behaviours. Figure 7 shows 100
simulations with ν0 = 0.5 and varying η0. For low η0 (the left side
of the figure), we observe regular arcade eruptions (indicated by
the blue circles) similarly to the cases with no flux ropes. Small
ropes do form in this region (indicated by the red lines), and it is
likely that they would erupt completely given a sufficiently long
integration time.

In the region η0 > 2× 10−3 we observe flux rope eruptions
before t = 50 (the end of the simulations). In general, these
eruptions occur sooner as η0 increases, although there is not a
simple, continuous dependence of the eruption time on η0 for all
η0. They are usually preceded by a number of arcade eruptions,
varying in magnitude. In most cases, after a flux rope eruption a
second flux rope forms, and we observe further eruptions of both
types.

We observe that the time of the first flux rope eruption, if any,
is negatively correlated to the diffusion η0. This is visible in the
pattern of red squares in Figure 7, which roughly follow a curve
from the top-left of the diagram, flattening out as η0 increases.We
are unsurewhether this curve tends to an asymptote at η0 = 0 or at
a finite, minimum value of η0 below which flux rope eruptions do
not occur.The timeperiod between successive flux rope eruptions
is also roughly negatively correlated to η0.

For η0 ⪆ 0.1 the flux ropes form and erupt very quickly, and
there is no time for arcade eruptions (which have a frequency
roughly independent of η0). The flux ropes are small but have
a high poloidal flux (resulting in the thicker vertical lines on
Figure 7).

3.3 Diagnostic Measurements as
Predictors of Eruptivity
Here we aim to quantify which, if any, of the considered
diagnostic measurements in Section 2.4 can be used as a proxy
for the eruptivity of a flux rope. In this section we only consider
flux rope eruptions and not arcade eruptions, which are present
at almost all times. We calculate the usefulness of each of the
diagnostic measures using a probabilistic approach.

The data used here are from 500 simulation runs up to
time t = 50, covering the parameter space 5× 10−4 < η0 < 0.5 and
0.5 < ν0 < 2.0. For reference, a realistic value for ν0 is likely of
order unity. For ν0 > 2, the relaxation is unrealistically slow
relative to the driving, and eruptions become very frequent
and less well-defined, with flux ropes not having time to form
properly. Each simulation logs 5000 data points, for a total of
2.5× 106 measurements for each diagnostic. We separate each
point according to whether it precedes a flux rope eruption,
within a certain specified time cutoff.

With multiple flux rope eruptions observed within each
simulation, we are able to observe a large distribution of eruption
magnitudes and rope sizes/strengths. None of the diagnostics
alone are enough to reliably predict imminent eruptions. The
magnetic energy, helicity, and open flux all decrease significantly
during flux rope eruptions, but in the preceding time interval
there is no significant indication of an imminent eruption, and
in fact most of the variation in these quantities is due to arcade
eruptions. In contrast, the rope fluxes and currents build up from
zero with each new rope, until they reach a threshold at which
there is an eruption, making them more promising predictors.
However, this threshold does not have a constant value, as we can
see by observing inFigure 7 that there is large variation in the size
of flux rope eruptions. Figure 6 also shows that the peak levels of
the rope fluxes and currents tend to reduce for each successive
eruption, even in a single simulation.

However, by calculating the ratios of (squared) rope fluxes
and current to the other diagnostics, we observe that some of
these ratios do indeed appear to have an eruptivity threshold
with a roughly constant value. To motivate this observation,
Figure 8 shows scatter plots of the points immediately preceding
eruptions, with the appropriate diagnostics plotted against
one other. The diagnostics on each axis are weighted to be
proportional to the square of the magnetic field strength.
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In particular, we observe good linear correlations between the
square of the axial rope current immediately prior to eruption,
and both the magnetic energy and relative helicity of the system.
This suggests that the ratios I2y /HR, I2y /HJ , I2y /EM and I2y /EF , where
Iy is the axial rope current and EM ,EF are the total and free

magnetic energies respectively, should be good indicators of an
imminent flux rope eruption. These particular ratios seem to
work because the denominators are relatively steady between
each successive flux rope eruption, but have a different level each
time (this is visible in Figure 6). Since I2y increases prior to a

FIGURE 8 | Pairwise scatter plots of the diagnostic values for all snapshots with later flux rope eruptions, in order to establish whether the ratios of the diagnostics
are good predictors. The sizes of the points are weighted based on proximity to the eruption, such that the larger points are close to eruptions and vice versa.
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flux rope eruption, the ratios also increase but reach a common,
normalized threshold between different eruptions. Note that
HR, HJ , EM and EF all include important contributions from
the sheared background field surrounding the rope. Quantities
derived only from the rope itself are not found to be successful
denominators.

The distributions of eruptive and non-eruptive points for
these ratios and a selection of the diagnostics are shown in
Figure 9. At any point in the simulations when a flux rope is
present, we check whether the rope will erupt within a time
cutoff t = 0.3 (roughly equivalent to 8 days). If so, the diagnostics
at that time are added to the histograms coloured red. The
points corresponding to ropes that will not erupt are coloured
blue. The areas under the histograms are corrected for an equal
weighting of eruptive and non-eruptive ropes, but in principle
this could be altered if the overall prior/uninformed probability
of eruption were known.Thus the diagnostics with least red/blue
overlap are better predictors of eruptivity than those with a large
overlap.

This can be quantified by assigning a “probability” of eruption
to each value of each diagnostic. This is essentially the height of
the red histogram curve on Figure 9 divided by the combined
height of both curves, and is output as a number 0 < Pe < 1 for
each data point. The probability Pe can then be compared against
whether the ropewill actually erupt or not to produce a skill score,
defined as

E =

∑Eruptive
Points

Pe +∑ Non −
Eruptive
Points

(1− Pe)

Total Number of Points
. (24)

If a diagnostic is a perfect indicator of eruptivity then it would
have a skill score E = 1. If the diagnostic is a no better predictor
than random chance then it would have skill score E = 0.5. The
values of E for each diagnostic are given in the headings on
Figure 9. We observe that the free energy and open flux are
not suitable predictors, as they are little better than chance.The

FIGURE 9 | Histograms of five of the diagnostic parameters, and five of the ratios between them. The points that precede an eruption within t = 0.3 time units are
shown in red, and those that do not are shown in blue. The diagnostics with less red/blue overlap are better predictors of eruptions and vice versa. The eruptivity skill
score E is given for each diagnostic. The curves are normalised to have an area of unity.
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FIGURE 10 | Variation of the skill scores for each of the measured quantities, depending on the time cutoff within which an eruption must occur. The raw diagnostics
and eruptivity index are plotted as solid lines, and the ratios are plotted as dashed lines.

relative helicity and eruptivity index are slightly better, correctly
predicting around 60% of eruptions within the time frame. We
note, however, that these diagnostics are inversely correlated to
the probability of eruption. This is likely because eruptions are
more frequent for lower values of the helicity, open flux and
energy, as smaller ropes tend to erupt more frequently in our
model.

In contrast, the ratios of the squared axial current to the
helicities and energies are excellent predictors in this time frame,
all with skill scores above E = 0.86 and significantly better than
the constituent diagnostics on their own.The correlations are also
all positive, indicating that these ratios increase until they reach
a given threshold—represented by the peaks in the red curves on
Figure 9. The best predictor for t = 0.3 before an eruption (the
time at which the predictors are best) is I2y /HR, with a skill score
of E = 0.93, or a predictive accuracy of 93.0%.

If we disregard the effect of arcade eruptions, the free energy
and helicity are roughly constant during the periods between
successive flux rope eruptions. However, the ratio between these
quantities has also been identified as a suitable predictor, as seen
in Figure 9. Immediately before an eruption the relative helicity
decreases significantly, before the corresponding decrease in free
energy, and thus there is a brief peak in the ratio between the two
quantities.

The chosen time cutoff naturally has an effect on the skill
scores of each of these quantities. This is illustrated in Figure 10,

where the skill scores for each of the quantities are plotted against
the time cutoff, up to t = 1.0 before the eruption. Of the raw
diagnostics, the relative helicity is consistently the best predictor,
with skill scores higher than E = 0.65 at all times. At almost all
times the eruptivity index does not perform as well, and indeed
becomes little better than chance for time cutoffs approaching
t = 1.0. The free energy and open flux fare little better, with skill
scores around E = 0.6.

In contrast, the ratios of the axial current to the chosen
diagnostics perform consistently well, although their skill score
decreases as the time cutoff increases. The quantities EF/HR and
I2y /HR perform best at small time cutoffs, with maximum skill
scores of E = 0.938 and E = 0.937 respectively. The ratios of the
axial current to magnetic energy also perform well, and indeed
for time cutoffs greater than t = 0.5 these ratios perform equally
well or better than the other ratios.Themaximum skill scores for
most of the ratios occurs at a time cutoff of around t = 0.3, which
corresponds to several days in reality. As such these predictors
have potential for predicting solar eruptions a useful time before
they occur.

4 DISCUSSION

In an extensive parameter study, we have analysed the behaviour
of two-dimensional magnetic flux ropes to examine which, if
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any, properties of the system can be used to predict whether
or not the rope will erupt, an event which in reality is likely to
cause a CME. For our simulationswe used themagneto-frictional
model rather than fullMHD, reducing computational complexity
further and allowing us to run thousands of simulations over a
wide parameter space.Weobserve repeated arcade eruptions as in
equivalent 3D simulations, as well as the formation of flux ropes.
The main focus of our results is the prediction of the eruption
of the flux ropes, rather than eruptions within the overlying
arcade.

We have observed that the behaviour depends greatly on the
values of themagneto-friction coefficient ν0 and the photospheric
diffusion η0. In particular, flux ropes form and eruptmore quickly
for higher η0, whereas the frequency of arcade eruptions within
the overlying field is roughly independent of η0. By comparing the
probability of a rope erupting within a certain time to a number
of diagnostic measurements, we have assigned a “skill-score” to
each of them and the ratios between them. Of particular interest
are the relative helicity (which we have newly defined for 2.5D
systems) and its current-carrying component, HJ . The ratio of
HJ to the total relative helicity constitutes the eruptivity index of
Pariat et al. (2017).

We found that none of the diagnostics considered were by
themselves good predictors of eruptivity, with skill scores not
significantly greater than random chance. Of note, the eruptivity
index has similar predictive skill to the other diagnostics, and is in
fact negatively correlated to the likelihood of a flux rope eruption,
unlike in the previous MHD simulations (Pariat et al., 2017;
Zuccarello et al., 2018). However, when we consider the ratios
between the diagnostics, weighted so as to be independent of the
overall magnetic field strength, we find that certain of these can
be good predictors.

Of particular note are the ratios with the axial current as
the numerator, and either a helicity or energy measure as a
denominator. The axial current indicates the “strength” of the
rope, and the helicity/energy is in effect a measure of the strength
of the backgroundfield.These denominators are roughly constant
in between eruptions, whereas the axial current steadily increases
as the rope becomes larger. Upon the ratio reaching a certain
threshold, the rope will erupt. Notably, this threshold appears to

be independent of both η0 and ν0. The ratio of free energy to
relative helicity is also a very good predictor for eruptions in the
immediate future, as a rapid decrease in relative helicity is often
followed by an eruption.

4.1 Effect of Background Magnetic Field
on the Eruptivity Index
In this section we propose a straightforward explanation for
why Pariat et al. (2017) observed a high eruptivity index prior
to the flux rope eruption, whereas we do not. We propose that
this difference is due to the direction of the overlying magnetic
field. We will consider a simple analytical model, which shows
that the eruptivity index will naturally be higher when the
background/overlying horizontal field direction is opposite to
that of the arcade.

Two magnetic field configurations are presented in Figure 11.
The left pane shows a configuration similar to the fields we
generate naturally by shearing a potential field, where the
background magnetic field is orientated in the same direction
as the arcade. The right pane has the background field in
the opposite direction, leading to a magnetic null point above
the arcade. When flux ropes emerge into the second type of
field, they are more likely to erupt. This was shown clearly
by Pariat et al. (2017), who compared simulations with both
orientations of the overlying field. We endeavour to show
here that the right-hand field configuration fundamentally
results in a higher eruptivity index, for a given sheared
field component. By contrast, our simulations correspond
to the left-hand field configuration, so even though they
do erupt, this is not accompanied by a high eruptivity
index.

Themodel magnetic field plotted in Figure 11 comes from the
analytical expression B = B̃+B0ex, where

̃Bx = 4ze−ξ (25)

B̃y = 2 (1− ξ)e
−2ξ (26)

̃Bz = −4xe
−ξ , (27)

FIGURE 11 | Comparison between two magnetic arcades with overlying magnetic fields in opposite directions. The black lines represent the magnetic field
projected into the (x,z) plane and the heatmap represents the magnetic field strength out of this plane.
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with ξ = 4(x2 + z2). The sheared, out-of-plane component, By, is
fixed, and the only parameter is the strength of the background
magnetic field, given by the (constant) parameterB0.The left pane
in Figure 11 has B0 = 0.25, the right B0 = −0.25. We proceed to
observe the dependence on B0 of H

(2.5D)
R and H(2.5D)J , as defined

in Section 2.4.8, and the resultant effect on the eruptivity index
|H(2.5D)J /H

(2.5D)
R |.

Following Section 2.4.8, in order to calculate the relative
helicity we choose a vector potential A = Ã(x,z) −B0zey, where
∇× Ã = B̃ and Ã is independent of B0. Since the B0ex component
of B is a potential field, we can similarly choose A(2.5D)P =
ÃP(x,z) −B0zey. It follows that, for these fields, the “current-
carrying” helicity H(2.5D)J =∬(A−A

(2.5D)
P ) ⋅ (B−B

(2.5D)
P ) dxdz has

no dependence on the background field B0, because the B0 terms
from A and A(2.5D)P will cancel. For the relative helicity, however,
H(2.5D)R = ∫V (A+A

(2.5D)
P ) ⋅ (B−B

(2.5D)
P ) dV , so the two terms add

together and it does depend on B0. Thus we can write

H(2.5D)R =H
(2.5D)
0 −B0∬(2zey) ⋅ (B−B

(2.5D)
P ) dxdz, (28)

where H(2.5D)0 is the relative helicity with B0 = 0. Since H
(2.5D)
0 and

H(2.5D)J have no dependence on B0, the eruptivity index can simply
be expressed as

|H(2.5D)J /H
(2.5D)
R | =
|||

|

H(2.5D)J

H(2.5D)0 −B0∬(2zey) ⋅ (B−B
(2.5D)
P ) dxdz

|||

|

.

(29)

For a sheared field with By non-zero (and non-uniform), we
can clearly see that there will be a particular background field
strength B0 where the eruptivity index will become infinite as
the denominator vanishes. For the magnetic field specified in
Eqs 25–27 the constants take the values

H(2.5D)J ≈ −0.0109 (30)

H(2.5D)0 ≈ 0.0307 (31)

∫V
(2zey) ⋅ (B−B

(2.5D)
P ) dV ≈ −0.2026, (32)

which results in a peak in the eruptivity index atB0 ≈ −0.15, when
in particular the overlyingmagnetic field is oppositely directed to
the magnetic field in the upper part of the arcade (as in the right
pane of Figure 11). By contrast, if the overlying magnetic field
has the same direction as that in the arcade, so that B0 > 0 (as in
the left pane of Figure 11), then the denominator of (Eq. 29) will
not become very small so the eruptivity index will not become
large.

In all of our simulations—where the flux rope is formed by
shearing of a pre-existing potential arcade—the background field
has the same direction as that of the arcade, whether or not the
flux rope erupts. Generalising from the analytical model with
B0 > 0, this explains why our eruptions are not preceded by a high
eruptivity index.

The simulations of (Pariat et al., 2017), which were driven
by flux emergence, included cases with both directions of
background field. The eruptivity index behaved as predicted
by the simple model in this section, but in that case only the
cases with oppositely-directed field (and high eruptivity index)
erupted. Our work shows that there is a whole class of eruptions
that will not have high eruptivity index owing to the fact
that they occur despite having the same direction of overlying
field.

4.2 Implications for Space Weather
Forecasting
The simplified nature of our 2.5D system means that any
quantitative predictions will not be valid in 3D or indeed for
any differing domain size or shape. However, the qualitative
patterns of behaviour that we observe (such as those of
the ratios of axial rope current to overall helicity/energy)
should be equally valid in all systems, including global coronal
models, where flux ropes are formed by footpoint shearing
from differential rotation. Moreover, since these flux ropes
are formed by gradual shearing over days to weeks, and are
located in the magnetically-dominated low corona, we do not
expect that the general conclusions would change significantly
if we were to move from the magneto-frictional model to full
MHD. For example, it has been shown that the linear stability
criteria in magneto-frictional and MHD systems are the same
(Craig and Sneyd, 1986). Nevertheless, to make quantitative
predictions about specific 3D magnetic configurations on the
Sun will require further work to understand how the behaviour
of the diagnostics depends on the local coronal magnetic
stucture.
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