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ABSTRACT2

We apply the magneto-frictional approach to investigate which quantity or quantities can best3
predict the loss of equilibrium of a translationally-invariant magnetic flux rope. The flux rope is4
produced self-consistently by flux cancellation combined with gradual footpoint shearing of a5
coronal arcade which is open at the outer boundary. This models the magnetic field in decaying6
active regions on the Sun. Such a model permits two types of eruption: episodic small events7
caused by shearing and relaxation of the overlying arcade, and major eruptions of the main8
low-lying coronal flux rope. Through a parameter study, we find that the major eruptions are best9
predicted not by individual quantities but by thresholds in the ratios of squared rope current to10
either magnetic energy or relative magnetic helicity. We show how to appropriately define the11
latter quantity for translationally-invariant magnetic fields, along with a related eruptivity index12
that has recently been introduced for three-dimensional magnetic fields. In contrast to previous13
configurations studied, we find that the eruptivity index has only a weak predictive skill, and in fact14
is lower prior to eruption, rather than higher. This is because the overlying background magnetic15
field has the same direction as the arcade itself. Thus we propose that there are a whole class of16
solar eruptions that cannot be predicted by a high eruptivity index.17
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1 INTRODUCTION

Flux ropes are twisted bundles of magnetic flux in the solar corona (Liu, 2020). Accurately predicting19
their behaviour is essential for reliable space weather predictions, as unstable flux ropes can erupt and20
lead to large coronal mass ejections (CMEs; Forbes et al., 2006; Chen, 2011). The causes of such21
eruptions are not yet indisputably understood and a variety of mechanisms have been proposed. These have22
been explored with approaches ranging from analytic two-dimensional models to three-dimensional full23
magnetohydrodynamic (MHD) simulations.24

Analytic two-dimensional models of flux rope behaviour date back to Kuperus and Raadu (1974) and25
van Tend and Kuperus (1978), who modelled a horizontal line current and its interaction with a specified26
background magnetic field. They established conditions on the current that allow it to be stable, and showed27
that, for an eruption to occur, the background magnetic field strength must decrease rapidly with increasing28
height.29

Further analytic approaches have introduced the torus instability (e.g., Kliem and Török, 2006) where30
the flux rope is modelled as a current ring rather than a line current. Rather than a condition on the decay31
of the background field with altitude, it is instead proposed that for instability to occur the background32
field component orthogonal to the torus must decrease sufficiently quickly. It has since been shown that the33
conditions for such an instability are essentially the same as for instability of a line current, and they are34
just two special cases of a continuous theory of more general current paths (Kliem et al., 2014). Although35
these works provide useful theoretical background as to the nature of flux rope behaviour, they are difficult36
to relate to physical ropes as these tend to be significantly more complex and much of the physics is by37
necessity not taken into account. There are indeed other conflicting explanations for instability, such as that38
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of Ishiguro and Kusano (2017), who propose that fast magnetic reconnection can occur below a flux rope39
even if the overlying magnetic field does not decay with altitude.40

Full 3D MHD simulations of flux rope formation and behaviour are also now possible. Leake et al. (2013,41
2014) presented a series of such simulations, based on magnetic flux emergence into a preexisting field.42
Some ropes were found to be eruptive and others stable, depending on the configuration of the background43
magnetic field. Pariat et al. (2017) then analysed various properties of the system for these simulations,44
looking for properties that could predict whether or not the flux rope would erupt. Most diagnostics, such45
as the magnetic free energy and relative magnetic helicity, were shown not to have any strong correlation46
to eruptivity. However, they identified an “eruptivity index” – the fraction of the relative magnetic helicity47
that is in the current-carrying component – which became large only in erupting cases. In a different set of48
numerical simulations, where coronal flux ropes are created by a variety of solar surface footpoint motions,49
this eruptivity index again increased prior to eruption and the eruption was found to occur for a fixed value50
of the index, irrespective of the pattern of footpoint motions that injected the energy (Zuccarello et al.,51
2018). However, while promising, a complete theoretical understanding of this eruptivity index and its52
generality remains lacking.53

Our modeling approach is chosen as a compromise between the simple analytic models of the past and54
the expensive full MHD simulations now possible. We use the magneto-frictional model, pioneered by55
Yang et al. (1986), whereby a fictional velocity field is determined explicitly from the magnetic field as56
opposed to using the fluid equations. For tracking the quasi-static injection of magnetic energy into the57
corona through solar surface motions, the model provides a viable alternative to full MHD simulations,58
at a fraction of the computational cost. Magneto-frictional models have previously been coupled with59
time-dependent lower boundary conditions based on imposed surface flux transport (e.g., Yeates et al.,60
2008) and realistic flux rope formation, as well as loss of equilibrium, is observed in such simulations61
(Mackay and van Ballegooijen, 2006; Yeates and Mackay, 2009; Lowder and Yeates, 2017; Hoeksema62
et al., 2020). Flux ropes are also formed on a smaller scale when the model is driven by high-resolution63
observations within active regions (e.g., Yardley et al., 2018). Since the magneto-frictional model neglects64
the full equation of motion, it cannot accurately follow the dynamics once a flux rope loses equilibrium and65
erupts. Nevertheless, if ropes produced by magneto-friction are used to initialise full MHD simulations, it66
is found that the magnetic flux ropes do indeed lose equilibrium at the same point, and can lead to CME67
eruptions (Kliem et al., 2013; Pagano et al., 2013). Thus magneto-friction can act as an accurate model for68
the pre-eruption evolution.69

In our study, we use the magneto-frictional approach but simplify it to a 2.5-dimensional (translationally70
invariant) cartesian domain, which significantly increases computational speed while still exhibiting the71
fundamental features of fully 3D models. In particular, both the flux rope and the (sheared) overlying72
arcade are formed self-consistently by flux cancellation and shearing motions on the photosphere. In our73
model these shearing motions are purely large-scale, essentially modelling the differential rotation. As74
such, we focus on the more gradual evolution in decaying active regions – a potentially different scenario to75
the active region eruptions where the eruptivity index was previously studied, but nevertheless an important76
source of solar eruptions.77

In a similar manner to the work of Pariat et al. (2017), we attempt to find a scalar quantity that acts78
as a proxy for the eruptivity of our 2.5D flux rope. The large number simulations we are able to run (in79
the order of 500) allows for an extensive parameter study based on the variation of the magneto-friction80
coefficient and the rate of photospheric flux cancellation. Using a probabilistic approach, a large number81
of eruptive and non-eruptive ropes will be compared against diagnostic measurements of the system at82
various points of their evolution. We note that, in addition to the formation of flux ropes, our model exhibits83
“arcade eruptions” whereby we observe periodic reconnection at the top of a sheared magnetic arcade. It is84
possible that these represent streamer blowouts or even “stealth CMEs”, as coined by Webb and Howard85
(2012), since they are characterised by the lack of a detectable signature on the solar surface. The nature86
and period of these eruptions (around every 25-30 days) matches well between our 2.5D model, global87
magneto-frictional simulations and observations (Bhowmik et al., 2021). However, the main focus of this88
paper is not on arcade eruptions but “flux rope eruptions”, when we observe magnetic reconnection below89
a flux rope and the rope itself moves upwards out of the domain. Such eruptions are larger than arcade90
eruptions and it is likely that in reality a significant number of CMEs occur as a result of such a mechanism.91
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We begin in Section 2 by outlining the mathematical basis of our model, including the mechanism by92
which we represent surface shearing (influenced by the differential rotation of the sun at different latitudes),93
photospheric diffusion and the effect of the solar wind. We identify the variable parameters in the model94
and discuss which of these we can use to produce an array of differing flux rope behaviour. We then discuss95
the system diagnostics we have chosen to focus on, including a newly-defined measure of the relative96
helicity in two dimensions (Section 2.4.8). This measure allows us to compare our results against 3D97
equivalents and calculate the eruptivity index. The results of our parameter study are presented in Section98
3, and the findings discussed in Section 4.99

2 METHODS

2.1 Magneto-frictional model100

Rather than using full magnetohydrodynamics (MHD), we adopt a simplified approach that has been101
developed for global modelling of the solar coronal magnetic field: the magneto-frictional model (e.g.,102
Mackay and Yeates, 2012). On a global scale, this technique has been applied with time-dependent lower103
boundary conditions from surface flux transport models (e.g., Yeates et al., 2008; Yeates, 2014). We adopt104
a 2.5-dimensional (translationally invariant) version of this approach.105

In full MHD models, the velocity field, v, is determined by the momentum equation106

ρ
Dv

Dt
= j×B−∇p− ρ∇Ψ, (1)

where ρ is the fluid density, p is the fluid pressure, Ψ is the gravitational potential, and j = µ−10 ∇×B is107
the current density. This is coupled to the induction equation108

∂B

∂t
= ∇× (v ×B)− η∇× j, (2)

along with additional fluid equations to close the system. In the magneto-frictional method, equation (2) is109
retained, but the inertial terms, pressure gradients and gravity are neglected and instead a frictional velocity110
is imposed as111

νv = (∇×B)×B. (3)

Combined with the induction equation, this leads to monotonic relaxation towards a stationary force-free112
field with j×B = 0. The friction coefficient ν is typically given the form ν = ν0|B|2 (with some minimum113
value imposed) so that the overall evolution is independent of the magnitude of B and relaxation is not114
unduly slow near to magnetic null points (Yang et al., 1986).115

In the outer corona, the solar wind outflow prevents the magnetic field from being force-free, but this116
effect can be approximated in the magneto-frictional model by relaxing towards an equilibrium with a117
specified outflow vout, thus choosing v according to118

v =
(∇×B)×B)

ν
+ vout (4)

This ad hoc approach was introduced by Mackay and van Ballegooijen (2006), and has subsequently been119
used in global magneto-frictional models of solar and stellar coronae (e.g. Yeates, 2014; Gibb et al., 2016;120
Mackay et al., 2018; Meyer et al., 2020).121

2.2 Our 2.5-Dimensional Model122

In our model, we simplify the problem by using a Cartesian coordinate system, and removing any123
dependence of the solution on the y coordinate. The domain ratio is taken to be (x : z) = (2 : 1). The124
resulting 2.5-dimensional system captures many of the essential features of the evolution in the lower solar125
corona, while affording a vast reduction in computational expense. This has allowed us to run an extensive126
parameter study, comprising hundreds of simulations.127
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The state of the system can be described in terms of a vector potential A(x, z, t), such that128

B(x, z, t) = ∇×A(x, z, t). (5)

The vector field A is then evolved according to129

∂A

∂t
= −E, (6)

where E is the electric field, satisfying Ohm’s Law130

E = ηj− v ×B, (7)

in terms of the magnetic field B, current density j and frictional velocity v as given in equation (4). Here η131
is a constant representing coronal turbulent diffusivity, which is assumed to be much more significant than132
ohmic diffusivity in the highly-conducting corona, though still smaller than the other effects in the model.133
The outflow velocity used to represent the solar wind is taken to be134

vout = v1

(
z

z1

)10

ez, (8)

so the effect is minimal near the lower boundary and increases rapidly near the top boundary at z = z1 at135
which the parameter v1 gives the maximum speed.136

The simulations are initialised with an “outflow field” (Rice and Yeates, 2021), a variation on a potential137
arcade that takes into account the effect of vout, such that the system is initially in equilibrium. As seen in138
Figure 1 these fields are similar to potential arcades, except in the upper half of the domain where the field139
lines open out to become more vertical.140

The boundary conditions determine the overall behaviour of the system. On the top boundary (z = z1)141
we have the condition that B ⊥ n = 0, ensuring that the magnetic field lines are vertical/radial here.142
This condition is consistent with observations that the field lines in the real corona become almost radial143
above a certain altitude. The notable exception to this is during eruptions, but these last a relatively short144
time and occur in our model even with the radial condition imposed. On the sides of the domain we set145
B · n = 0, i.e. there is no magnetic flux through the sides. The lower boundary condition is more complex,146
and incorporates two effects: photospheric shearing and photospheric diffusion.147

In our model, the photospheric shearing is assumed to originate from the differential rotation of the solar148
surface, namely that the Sun rotates more quickly at the equator than the poles. A magnetic arcade that has149
footpoints at different latitudes will thus be sheared, stretching the field lines along the polarity inversion150
line (PIL). We represent this shearing by imposing a velocity in the out-of-plane (y) direction at the lower151
boundary, following the profile152

v(x, 0) = (0, Vy0, 0), Vy0 = sin(πx). (9)

This profile is chosen as it ensures symmetry and simplicity while approximating the qualitative effect of153
differential rotation. The photospheric diffusion, η0 represents the large-scale effect of supergranular flows,154
and is also imposed on the lower boundary (Mackay and van Ballegooijen, 2006). The combined effect of155
both shearing and diffusion results in the lower boundary condition156

E(x, 0) = −Vy0(x, 0)Bz(x, 0)ex −
η0
µ0

∂Bz(x, 0)

∂x
ey. (10)

The effect of this is to bring the arcade footpoints closer together, eventually reconnecting to form a twisted157
flux rope (van Ballegooijen and Martens, 1989). Thus the ropes form self-consistently, without the need for158
any imposed flux emergence.159

Numerically, equation (6) is solved on a finite-difference staggered grid (Yee, 1966) similarly to (Cheung160
and DeRosa, 2012), with typical resolutions of 256× 128 cells. The code is initialised with Python but161
runs using Fortran 90, making use of MPI parallelisation.162
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2.3 Parameters and Units163

There are a number of free parameters in our model that can be easily varied. The aim is to produce a164
set of simulations that model realistic behaviour well, but provide enough variation to be able to make165
predictions of future behaviour. The parameters in the model are:166

• η : The coronal diffusion.167
• ν0 : The magneto-frictional friction coefficient.168
• v1 : The imposed solar wind outflow speed.169
• η0: The photospheric diffusion.170
• Vy0: The photospheric shearing velocity.171

However, in our analysis we fix some of these parameters. Firstly, we take the coronal diffusion to be very172
small, η ≈ 1× 10−6, so that its effect on short-term flux rope behaviour is negligible. (The corresponding173
diffusion time across the height of the domain would be 106 time units.) Secondly, we effectively set174
the time unit by fixing the maximum shearing velocity Vy0 to unity. Finally, we fix the outflow speed175
v1 = 50. This is reasonable since the outflow velocity has little effect on flux rope behaviour; the solar176
wind mainly serves to induce currents in the upper corona, at the top of the domain and far from the flux177
rope formation region. The only notable effect of an increased outflow velocity is a slight increase in the178
frequency of arcade eruptions. We choose v1 = 50 to reflect the fact that the solar wind outflow is faster179
than the shearing velocity from differential rotation.180

This leaves two remaining parameters: ν0 and η0. These can be varied considerably (between certain181
bounds) and still exhibit realistic behaviour. By running simulations with different combinations of these182
parameters we observe different flux rope behaviours, with a good mix of eruptive and non-eruptive183
simulations. The results from this parameter study are described in Section 3.184

Note that we adopt dimensionless units throughout this paper, with a maximum photospheric shearing185
velocity of unity according to equation (9). For comparison to the real corona, one would choose the186
length unit – equivalently the height of the domain, z1 – and specify an observed shearing velocity caused187
by the differential rotation of the coronal arcade. These would then fix the time that corresponds to one188
dimensionless time unit in our paper. For example, if we take the angular velocity of differential rotation at189
latitude λ on the Sun to be Ω(λ) = 0.18− 2.396 sin2 λ− 1.787 sin4 λ degrees per day (Snodgrass, 1983)190
and choose the latitudinal limits of our domain to be 10◦ to 40◦, this results in a maximum shearing velocity191
|vφ| ≈ 0.086 km s−1. Taking z1 = 1.8× 105 km (half of the the latitudinal extent) would then imply that a192
code time unit is of the order ≈ 25 days.193

2.4 System Diagnostics194

In this section we briefly describe the diagnostic measurements of the system used to identify events195
and ultimately try to make predictions of future behaviour such as eruptions. There are innumerable196
measurements that could theoretically be taken of the state of the magnetic field, but for practical purposes197
we have selected nine, which are as follows:198

2.4.1 Open Flux199

The open flux is the sum of the unsigned magnetic flux through the top boundary of the domain. (Due to200
the symmetry of the system, the sum of the signed flux is zero.) The open flux increases due to the effect of201
the solar wind, as the field lines become more vertical near the top of the domain and fewer of them loop202
back down in the arcade.203

2.4.2 Maximum Current204

For practical computation we set µ0 = 1 and define the current density as the curl of the magnetic field:205
j = ∇×B. As a diagnostic, we take the maximum value that this attains in the domain. A potential field206
has zero current and an outflow field only has current concentrated near the top boundary, due to the effect207
of the solar wind.208
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2.4.3 Rope Current209

We also measure the integral of the current within the rope, in the direction of the rope axis (the y210
direction). In our two-dimensional model the rope is easily identifiable as it consists of the infinitely-long211
field lines that never reach either the photospheric or outer boundary. As the rope is in general in the lower212
half of the domain, this current is unaffected by the behaviour at the top boundary.213

2.4.4 Magnetic Energy214

The magnetic energy is defined in our unitless system as EM =
∫ 1
0

∫ 1
−1

1
2 |B|2 dxdz. A potential arcade215

corresponds to a minimum energy solution for given normal-field boundary conditions, and an outflow field216
has only a slightly increased energy (less than 1%). There is a large increase in magnetic energy during217
flux rope formation as the system evolves far from potentiality.218

2.4.5 Free Magnetic Energy219

In addition to the overall magnetic energy, we can calculate the “free magnetic energy”, defined as f220

EF = EM −
∫ 1
0

∫ 1
−1

1
2 |BP |2 dxdz, where BP is a potential magnetic field as calculated in Section 2.4.8221

below. This quantity has the advantage that the contribution to the overall energy from the background222
magnetic field is lessened, such that the contribution from the non-potential flux rope is more significant.223

2.4.6 Poloidal Rope Flux224

This is a measure of the poloidal (in-plane) magnetic flux contained within the flux rope (the region with225
infinitely-long field lines), defined as the flux intersecting a chord between the centre of the rope and the226
edge of the rope (usually the lower edge of the domain).227

2.4.7 Axial Rope Flux228

This is defined as the integral of the magnetic flux in the rope (the region with infinitely-long field lines)229
in the y direction, parallel to the axis of the rope itself. This appears to be roughly correlated to the rope230
current.231

2.4.8 Relative Helicity232

The classical helicity within a volume V would be defined as h(V ) =
∫
V A ·B dV, where A is the vector233

potential of B. This quantity is dependent in general on the gauge of A, and so we use the alternative234
relative helicity instead (Berger and Field, 1984). In a 3D domain, this would be calculated by finding235
a potential field BP matching the original magnetic field on the boundary, and a corresponding vector236
potential, AP . The relative helicity would then be237

HR =

∫
V

(A + AP ) · (B−BP ) dV. (11)

Care is required to define the relative helicity for our 2.5D field. A two-dimensional helicity measure238
for h(V ) has been proposed before (Hu et al., 1997), but we are not aware of a previously published239
two-dimensional analogue for the relative helicity.240

We start by considering the 3D formula (11) on a finite volume Vy1 , where −1 < x < 1, −y1 < y < y1241
and 0 < z < 1. Although B(x, z) in our 2.5D field is independent of y, the corresponding potential242
reference field BP will, in general, vary in the y direction. This arises from the fact that it is potential,243
coupled with the need to match BPy(x,±y1, z) = By(x, z) on y = ±y1. We define the relative helicity244
per unit length to be245

H
(2.5D)
R = lim

y1→∞
1

2y1

∫
Vy1

(A + AP ) · (B−BP ) dV, (12)

where BP and its vector potential AP are calculated on Vy1 . However, a physically meaningful helicity246

measure for our 2.5D field cannot possibly require integration in y. We will show that H(2.5D)
R not only247

converges as y1 →∞ but can indeed be calculated by a two-dimensional integral in x and z.248
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To do this, we decompose BP into three components,249

BP = ∇φ0(y) +∇φ1(x, z) +∇φ2(x, y, z), (13)

where the first component is a uniform field accounting for the net flux in the y direction,250

φ0 = Φ0y, Φ0 =
1

2

∫ 1

0

∫ 1

−1
By(x, z) dxdz, (14)

and the other two components are both potential fields satisfying ∆φ1 = ∆φ2 = 0, with corresponding
boundary conditions

∂φ1
∂x

(±1, z) = 0,
∂φ1
∂z

(x, 0) = Bz(x, 0),
∂φ1
∂z

(x, 1) = Bz(x, 1), (15)

∂φ2
∂x

(±1, y, z) =
∂φ2
∂z

(x, y, 0) =
∂φ2
∂z

(x, y, 1) = 0,
∂φ2
∂y

(x,±y1, z) = By(x, z)− Φ0. (16)

Notice that ∇φ0 and ∇φ1 are independent of both y and y1. The y dependence is concentrated only in251
∇φ2.252

The potential φ2 has the important property that, as y1 increases, it becomes more and more concentrated253
near to the end boundaries y = ±y1, irrespective of By(x, z). To see this, note that in the Cartesian domain254
Vy1 , the solution for φ2 may be written as a Fourier series255

φ2(x, y, z) =
∑
m,n6=0

cm,n cos

(
mπ(x+ 1)

2

)
cos (nπz) sinh(kπy), (17)

where m, n are integers, k2 = (m/2)2 + n2, and the sum includes all terms except m = n = 0 (which has256
been separated as the φ0 component). The coefficients are then determined by the boundary condition on257
∂φ2/∂y, which gives258

cm,n =
2

kπ cosh(kπy1)

∫ 1

0

∫ 1

−1
By(x, z) cos

(
mπ(x+ 1)

2

)
cos (nπz) dxdz. (18)

Now consider the value of φ2(x, ay1, z) for some fixed fraction |a| < 1. Then259

φ2(x, ay1, z) =
∑
m,n

2 sinh(kπay1)

kπ cosh(kπy1)
F (x, z), (19)

where F (x, z) contains the x and z dependence from (17) and (18). Noting that260

lim
y1→∞

sinh(kπay1)

cosh(kπy1)
= lim

y1→∞
cosh(kπay1)

cosh(kπy1)
= 0, (20)

we see that the non-zero part of ∇φ2 becomes an increasingly smaller fraction of the domain length as261

y1 →∞. This is illustrated in Figure 2. It follows that the contribution from ∇φ2 to H(2.5D)
R in equation262

(12) vanishes in the limit, so that263

H
(2.5D)
R =

∫ 1

0

∫ 1

−1
(A + A

(2.5D)
P ) · (B−B

(2.5D)
P ) dxdz, (21)

where B
(2.5D)
P (x, z) = ∇φ1(x, z) + Φ0ey. The gauge of A(2.5D)

P does not affect the integral (as usual for264

HR), so one is free to choose an A
(2.5D)
P that is independent of y and hence evaluate H(2.5D)

R with a purely265
2D integral. This is our approach in this paper.266
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2.4.9 Eruptivity Index267

The 3D expression that has been proposed (Pariat et al., 2017) as an eruptivity index is |HJ/HR|, where268

HJ =

∫
V

(A−AP ) · (B−BP ) dV (22)

is the helicity of the current-carrying part of the field (Berger, 1999) and HR is the relative helicity as above.269

We define the 2.5D version of HJ analogously to H(2.5D)
R , thus we consider the ratio |H(2.5D)

J /H
(2.5D)
R |270

with271

H
(2.5D)
J =

∫ 1

0

∫ 1

−1
(A−A

(2.5D)
P ) · (B−B

(2.5D)
P ) dxdz. (23)

2.4.10 Ratios272

We also consider the ratios between the above quantities, generally defined such that the ratios are273
independent of the magnetic field strength.274

3 RESULTS

3.1 Qualitative Behaviour275

We first illustrate the two types of eruption that can occur in the system.276

3.1.1 Zero Photospheric Diffusion277

When we have no photospheric diffusion (η0 = 0), the effect of the shearing causes the arcade footpoints278
to move only in the y direction. The magnetic energy increases as the system is no longer in a relaxed279
state, but it is not possible for flux ropes to form in the low corona as the footpoints are not brought closer280
together and there is no flux cancellation. In this case, the only free parameter is the friction coefficient ν0.281

We choose ν0 of the order unity, in our code units. In general, the equivalent friction coefficents used in282
3D global magneto-frictional simulations (e.g., Yeates and Hornig, 2016) are slightly smaller than this if283
directly compared, but this is by no means a precise measurement. There is thus a compromise between284
these more realistic values and the significant improvements in computational speed gained from increasing285
ν0. Altering the domain shape also has a significant effect on the ideal ν0, but for our (x, z) = (2 : 1) ratio286
setting ν0 ≈ 0.5 produces realistic behaviour. For ν0 significantly larger than this, the frictional relaxation287
is unrealistically slow relative to the footpoint shearing.288

Consequently, our parameter study is confined to 0.5 < ν0 < 2. For these ν0 values, the magnetic arcade289
becomes more sheared in the y direction, as expected. After a certain period during which the magnetic290
energy and open flux increase gradually, we observe fast magnetic reconnection at the top of the domain291
accompanied by a sharp decrease in these diagnostics. This is what we refer to as an “arcade eruption”292
(Linker and Mikic, 1995). A sequence of snapshots of one of these eruptions is shown in Figure 3. The first293
eruption is shown in the centre pane at time t = 2.92.294

In general this process then repeats, leading to periodic eruptions occuring every time unit or so, as shown295
clearly by the oscillation of the diagnostic measures in Figure 4. We observe that the arcade becomes more296
sheared up to time t = 2.76, at which point there is an eruption, denoted by a blue circle. The process then297
repeats, building up to another eruption at t = 4 and so on, with the times of eruptions (as determined by298
the mid-point of the drop in open flux) shown by blue circles.299

During an arcade eruption there is a rapid decrease in open flux as the reconnection at the top of the300
domain results in the closing down of field lines at the top of the arcade. The corresponding decrease in301
magnetic energy occurs as these newly closed field lines are in a more potential state immediately after the302
eruption, although the free energy has a non-zero “floor” because the background field is non-potential due303
to the outflow velocity. The peaks in current during an eruption occur at the top boundary at the current304
sheet that temporarily forms above the PIL. The relative helicity does not follow the same pattern as the305
other diagnostics and instead increases during an eruption. This increase results from the fact that the306
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newly-closed potential field lines at the top of the arcade now have a mutual “linkage” with the still sheared307
field lines beneath.308

3.1.2 Nonzero Photospheric Diffusion309

When the photospheric diffusion η0 is nonzero, we observe the formation of flux ropes. These are310
characterised by twisted bundles of magnetic field lines that do not meet the boundary of the domain. As a311
result, the flux ropes are effectively infinitely long as there is no variation in the y direction. At the same312
time, we observe similar periodic buildups and releases in magnetic energy to the case with no photospheric313
diffusion. These overlying arcade eruptions do not affect the amount of poloidal magnetic flux within the314
flux rope, but they do cause the rope to oscillate vertically.315

However, in addition to these eruptions, we also observe more significant events whereby the flux rope316
itself erupts, which in a 2D setting causes it to move rapidly upward out of the domain. Unlike with arcade317
eruptions, we observe magnetic reconnection below the flux rope, between it and the polarity inversion318
line on the lower boundary. There is a significant decrease in free magnetic energy, open flux and relative319
helicity, and in most cases there is no longer any flux contained within the rope after an eruption (although320
this is not always the case).321

Snapshots showing a flux rope eruption are shown in Figure 5, and diagnostics corresponding to the322
same simulation in Figure 6. Here the red circles denote the flux rope eruptions, shown at the time323
when the poloidal rope flux drops. In most cases, after a flux rope eruption a new rope will form and324
the process will repeat, although depending on the specific parameters the system may just relax into325
a steady state. Compared to Figure 4, Figure 6 includes new plots of the rope flux and current as well326

as the current-carrying helicity H(2.5D)
J and eruptivity index |H(2.5D)

J /H
(2.5D)
R |. The figure shows both327

the poloidal/in-plane flux and the axial/out-of-plane flux, contained within the region of infinitely-long328
magnetic field lines. In our model, prior to eruption, there is no null point beneath the rope. So the poloidal329
rope flux is simply the difference in the vector potential, max(Ay(x, z))− Ay(0, 0).330

The effect of a flux rope eruption on the diagnostic measurements is more significant than an arcade331
eruption. We still observe rapid decreases in open flux and magnetic energy, but unlike with arcade332
eruptions there is now a significant decrease in the relative helicity during the eruption, rather than an333
increase. Arcade eruptions do not affect the poloidal flux in the rope at all as can be seen in Figure 6, but334
naturally as the rope no longer exists after a flux rope eruption these fluxes – as well as the axial rope335
current – immediately fall to zero, before increasing again if flux cancellation is ongoing. The axial rope336
current and axial rope flux are affected by arcade eruptions, but not significantly. The eruptivity index will337
be discussed below.338

3.2 Dependence on Photospheric Diffusion339

In the parameter study we primarily focus on the effect of changing the photospheric diffusion parameter340
η0. For very small η0 the system exhibits periodic arcade eruptions as described above, and the flux341
ropes form too slowly to erupt within the timeframe of the simulation, which we set at 50 time units342
(corresponding to several years on the real Sun). It is likely, however, that these ropes will eventually erupt.343

When the photospheric diffusion is in the range 2× 10−3 < η0 < 1× 10−1 we observe both arcade and344
flux rope eruptions before t = 50. For runs where η0 is not too large, there are several arcade eruptions345
between each flux rope eruption that cause the rope to oscillate. At some point, seemingly arbitrarily, one of346
these arcade eruptions coincides with reconnection below the rope and causes the flux rope to move rapidly347
upwards and out of the top of the domain. Usually after one of these eruptions the system returns to a348
potential-like state and the process repeats, although the out-of plane magnetic strength usually diminishes349
after each eruption. This repeats until the system relaxes to a steady state, with no rope present.350

Varying the value of the photospheric diffusion (η0) produces a wide range of flux rope behaviours. Figure351
7 shows 100 simulations with ν0 = 0.5 and varying η0. For low η0 (the left side of the figure), we observe352
regular arcade eruptions (indicated by the blue circles) similarly to the cases with no flux ropes. Small353
ropes do form in this region (indicated by the red lines), and it is likely that they would erupt completely354
given a sufficiently long integration time.355
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In the region η0 > 2× 10−3 we observe flux rope eruptions before t = 50 (the end of the simulations). In356
general, these eruptions occur sooner as η0 increases, although there is not a simple, continuous dependence357
of the eruption time on η0 for all η0. They are usually preceded by a number of arcade eruptions, varying358
in magnitude. In most cases, after a flux rope eruption a second flux rope forms, and we observe further359
eruptions of both types.360

We observe that the time of the first flux rope eruption, if any, is negatively correlated to the diffusion361
η0. This is visible in the pattern of red squares in Figure 7, which roughly follow a curve from the top-left362
of the diagram, flattening out as η0 increases. We are unsure whether this curve tends to an asymptote at363
η0 = 0 or at a finite, minimum value of η0 below which flux rope eruptions do not occur. The time period364
between successive flux rope eruptions is also roughly negatively correlated to η0.365

For η0 ' 0.1 the flux ropes form and erupt very quickly, and there is no time for arcade eruptions366
(which have a frequency roughly independent of η0). The flux ropes are small but have a high poloidal flux367
(resulting in the thicker vertical lines on Figure 7).368

3.3 Diagnostic Measurements as Predictors of Eruptivity369

Here we aim to quantify which, if any, of the considered diagnostic measurements in Section 2.4 can370
be used as a proxy for the eruptivity of a flux rope. In this section we only consider flux rope eruptions371
and not arcade eruptions, which are present at almost all times. We calculate the usefulness of each of the372
diagnostic measures using a probabilistic approach.373

The data used here are from 500 simulation runs up to time t = 50, covering the parameter space374
5× 10−4 < η0 < 0.5 and 0.5 < ν0 < 2.0. For reference, a realistic value for ν0 is likely of order unity. For375
ν0 > 2, the relaxation is unrealistically slow relative to the driving, and eruptions become very frequent376
and less well-defined, with flux ropes not having time to form properly. Each simulation logs 5000 data377
points, for a total of 2.5 × 106 measurements for each diagnostic. We separate each point according to378
whether it precedes a flux rope eruption, within a certain specified time cutoff.379

With multiple flux rope eruptions observed within each simulation, we are able to observe a large380
distribution of eruption magnitudes and rope sizes/strengths. None of the diagnostics alone are enough to381
reliably predict imminent eruptions. The magnetic energy, helicity, and open flux all decrease significantly382
during flux rope eruptions, but in the preceding time interval there is no significant indication of an383
imminent eruption, and in fact most of the variation in these quantities is due to arcade eruptions. In384
contrast, the rope fluxes and currents build up from zero with each new rope, until they reach a threshold at385
which there is an eruption, making them more promising predictors. However, this threshold does not have386
a constant value, as we can see by observing in Figure 7 that there is large variation in the size of flux rope387
eruptions. Figure 6 also shows that the peak levels of the rope fluxes and currents tend to reduce for each388
successive eruption, even in a single simulation.389

However, by calculating the ratios of (squared) rope fluxes and current to the other diagnostics, we390
observe that some of these ratios do indeed appear to have an eruptivity threshold with a roughly constant391
value. To motivate this observation, Figure 8 shows scatter plots of the points immediately preceding392
eruptions, with the appropriate diagnostics plotted against one other. The diagnostics on each axis are393
weighted to be proportional to the square of the magnetic field strength.394

In particular, we observe good linear correlations between the square of the axial rope current immediately395
prior to eruption, and both the magnetic energy and relative helicity of the system. This suggests that the396
ratios I2y/HR, I2y/HJ , I2y/EM and I2y/EF , where Iy is the axial rope current and EM , EF are the total and397
free magnetic energies respectively, should be good indicators of an imminent flux rope eruption. These398
particular ratios seem to work because the denominators are relatively steady between each successive399
flux rope eruption, but have a different level each time (this is visible in Figure 6). Since I2y increases400
prior to a flux rope eruption, the ratios also increase but reach a common, normalized threshold between401
different eruptions. Note that HR, HJ , EM and EF all include important contributions from the sheared402
background field surrounding the rope. Quantities derived only from the rope itself are not found to be403
successful denominators.404

The distributions of eruptive and non-eruptive points for these ratios and a selection of the diagnostics are405
shown in Figure 9. At any point in the simulations when a flux rope is present, we check whether the rope406
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will erupt within a time cutoff t = 0.3 (roughly equivalent to 8 days). If so, the diagnostics at that time are407
added to the histograms coloured red. The points corresponding to ropes that will not erupt are coloured408
blue. The areas under the histograms are corrected for an equal weighting of eruptive and non-eruptive409
ropes, but in principle this could be altered if the overall prior/uninformed probability of eruption were410
known. Thus the diagnostics with least red/blue overlap are better predictors of eruptivity than those with a411
large overlap.412

This can be quantified by assigning a “probability” of eruption to each value of each diagnostic. This413
is essentially the height of the red histogram curve on Figure 9 divided by the combined height of both414
curves, and is output as a number 0 < Pe < 1 for each data point. The probability Pe can then be compared415
against whether the rope will actually erupt or not to produce a skill score, defined as416

E =

∑
Eruptive
Points

Pe +
∑

Non−
Eruptive
Points

(1− Pe)

Total Number of Points
. (24)

If a diagnostic is a perfect indicator of eruptivity then it would have a skill score E = 1. If the diagnostic417
is a no better predictor than random chance then it would have skill score E = 0.5. The values of E for418
each diagnostic are given in the headings on Figure 9. We observe that the free energy and open flux are419
not suitable predictors, as they are little better than chance. The relative helicity and eruptivity index are420
slightly better, correctly predicting around 60% of eruptions within the time frame. We note, however, that421
these diagnostics are inversely correlated to the probability of eruption. This is likely because eruptions are422
more frequent for lower values of the helicity, open flux and energy, as smaller ropes tend to erupt more423
frequently in our model.424

In contrast, the ratios of the squared axial current to the helicities and energies are excellent predictors in425
this time frame, all with skill scores aboveE = 0.86 and significantly better than the constituent diagnostics426
on their own. The correlations are also all positive, indicating that these ratios increase until they reach a427
given threshold – represented by the peaks in the red curves on Figure 9. The best predictor for t = 0.3428
before an eruption (the time at which the predictors are best) is I2y/HR, with a skill score of E = 0.93, or a429
predictive accuracy of 93.0%.430

If we disregard the effect of arcade eruptions, the free energy and helicity are roughly constant during the431
periods between successive flux rope eruptions. However, the ratio between these quantities has also been432
identified as a suitable predictor, as seen in Figure 9. Immediately before an eruption the relative helicity433
decreases significantly, before the corresponding decrease in free energy, and thus there is a brief peak in434
the ratio between the two quantities.435

The chosen time cutoff naturally has an effect on the skill scores of each of these quantities. This is436
illustrated in Figure 10, where the skill scores for each of the quantities are plotted against the time cutoff,437
up to t = 1.0 before the eruption. Of the raw diagnostics, the relative helicity is consistently the best438
predictor, with skill scores higher than E = 0.65 at all times. At almost all times the eruptivity index does439
not perform as well, and indeed becomes little better than chance for time cutoffs approaching t = 1.0.440
The free energy and open flux fare little better, with skill scores around E = 0.6.441

In contrast, the ratios of the axial current to the chosen diagnostics perform consistently well, although442
their skill score decreases as the time cutoff increases. The quantities EF /HR and I2y/HR perform best at443
small time cutoffs, with maximum skill scores of E = 0.938 and E = 0.937 respectively. The ratios of444
the axial current to magnetic energy also perform well, and indeed for time cutoffs greater than t = 0.5445
these ratios perform equally well or better than the other ratios. The maximum skill scores for most of the446
ratios occurs at a time cutoff of around t = 0.3, which corresponds to several days in reality. As such these447
predictors have potential for predicting solar eruptions a useful time before they occur.448

4 DISCUSSION

In an extensive parameter study, we have analysed the behaviour of two-dimensional magnetic flux ropes449
to examine which, if any, properties of the system can be used to predict whether or not the rope will erupt,450
an event which in reality is likely to cause a CME. For our simulations we used the magneto-frictional451

Frontiers 11



Rice and Yeates Eruptivity Criteria for Two-dimensional Magnetic Flux Ropes

model rather than full MHD, reducing computational complexity further and allowing us to run thousands452
of simulations over a wide parameter space. We observe repeated arcade eruptions as in equivalent 3D453
simulations, as well as the formation of flux ropes. The main focus of our results is the prediction of the454
eruption of the flux ropes, rather than eruptions within the overlying arcade.455

We have observed that the behaviour depends greatly on the values of the magneto-friction coefficient456
ν0 and the photospheric diffusion η0. In particular, flux ropes form and erupt more quickly for higher η0,457
whereas the frequency of arcade eruptions within the overlying field is roughly independent of η0. By458
comparing the probability of a rope erupting within a certain time to a number of diagnostic measurements,459
we have assigned a “skill-score” to each of them and the ratios between them. Of particular interest are the460
relative helicity (which we have newly defined for 2.5D systems) and its current-carrying component, HJ .461
The ratio of HJ to the total relative helicity constitutes the eruptivity index of Pariat et al. (2017).462

We found that none of the diagnostics considered were by themselves good predictors of eruptivity, with463
skill scores not significantly greater than random chance. Of note, the eruptivity index has similar predictive464
skill to the other diagnostics, and is in fact negatively correlated to the likelihood of a flux rope eruption,465
unlike in the previous MHD simulations (Pariat et al., 2017; Zuccarello et al., 2018). However, when we466
consider the ratios between the diagnostics, weighted so as to be independent of the overall magnetic field467
strength, we find that certain of these can be good predictors.468

Of particular note are the ratios with the axial current as the numerator, and either a helicity or energy469
measure as a denominator. The axial current indicates the “strength” of the rope, and the helicity/energy470
is in effect a measure of the strength of the background field. These denominator are roughly constant in471
between eruptions, whereas the axial current steadily increases as the rope becomes larger. Upon the ratio472
reaching a certain threshold, the rope will erupt. Notably, this threshold appears to be independent of both473
η0 and ν0. The ratio of free energy to relative helicity is also a very good predictor for eruptions in the474
immediate future, as a rapid decrease in relative helicity is often followed by an eruption.475

4.1 Effect of Background Magnetic Field on the Eruptivity Index476

In this section we propose a straightforward explanation for why Pariat et al. (2017) observed a high477
eruptivity index prior to the flux rope eruption, whereas we do not. We propose that this difference is due478
to the direction of the overlying magnetic field. We will consider a simple analytical model, which shows479
that the eruptivity index will naturally be higher when the background/overlying horizontal field direction480
is opposite to that of the arcade.481

Two magnetic field configurations are presented in Figure 11. The left pane shows a configuration similar482
to the fields we generate naturally by shearing a potential field, where the background magnetic field is483
orientated in the same direction as the arcade. The right pane has the background field in the opposite484
direction, leading to a magnetic null point above the arcade. When flux ropes emerge into the second485
type of field, they are more likely to erupt. This was shown clearly by Pariat et al. (2017), who compared486
simulations with both orientations of the overlying field. We endeavour to show here that the right-hand487
field configuration fundamentally results in a higher eruptivity index, for a given sheared field component.488
By contrast, our simulations correspond to the left-hand field configuration, so even though they do erupt,489
this is not accompanied by a high eruptivity index.490

The model magnetic field plotted in Figure 11 comes from the analytical expression B = B̃ + B0ex,
where

B̃x = 4ze−ξ (25)

B̃y = 2(1− ξ)e−2ξ (26)

B̃z = −4xe−ξ, (27)

with ξ = 4(x2 + z2). The sheared, out-of-plane component, By, is fixed, and the only parameter is the491
strength of the background magnetic field, given by the (constant) parameter B0. The left pane in Figure492

11 has B0 = 0.25, the right B0 = −0.25. We proceed to observe the dependence on B0 of H(2.5D)
R and493

H
(2.5D)
J , as defined in Section 2.4.8, and the resultant effect on the eruptivity index |H(2.5D)

J /H
(2.5D)
R |.494
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Following Section 2.4.8, in order to calculate the relative helicity we choose a vector potential A =495
Ã(x, z) − B0zey, where ∇ × Ã = B̃ and Ã is independent of B0. Since the B0ex component of B is496

a potential field, we can similarly choose A
(2.5D)
P = ÃP (x, z)− B0zey. It follows that, for these fields,497

the “current-carrying” helicity H(2.5D)
J =

∫∫
(A−A

(2.5D)
P ) · (B−B

(2.5D)
P ) dxdz has no dependence on498

the background field B0, because the B0 terms from A and A
(2.5D)
P will cancel. For the relative helicity,499

however, H(2.5D)
R =

∫
V (A + A

(2.5D)
P ) · (B−B

(2.5D)
P ) dV , so the two terms add together and it does500

depend on B0. Thus we can write501

H
(2.5D)
R = H

(2.5D)
0 −B0

∫∫
(2zey) · (B−B

(2.5D)
P ) dxdz, (28)

where H(2.5D)
0 is the relative helicity with B0 = 0. Since H(2.5D)

0 and H(2.5D)
J have no dependence on B0,502

the eruptivity index can simply be expressed as503

|H(2.5D)
J /H

(2.5D)
R | =

∣∣∣∣∣ H
(2.5D)
J

H
(2.5D)
0 −B0

∫∫
(2zey) · (B−B

(2.5D)
P ) dxdz

∣∣∣∣∣ . (29)

For a sheared field with By non-zero (and non-uniform), we can clearly see that there will be a particular
background field strength B0 where the eruptivity index will become infinite as the denominator vanishes.
For the magnetic field specified in Equations (25) to (27) the constants take the values

H
(2.5D)
J ≈ −0.0109 (30)

H
(2.5D)
0 ≈ 0.0307 (31)∫

V
(2zey) · (B−B

(2.5D)
P ) dV ≈ −0.2026, (32)

which results in a peak in the eruptivity index at B0 ≈ −0.15, when in particular the overlying magnetic504
field is oppositely directed to the magnetic field in the upper part of the arcade (as in the right pane of505
Figure 11). By contrast, if the overlying magnetic field has the same direction as that in the arcade, so that506
B0 > 0 (as in the left pane of Figure 11), then the denominator of (29) will not become very small so the507
eruptivity index will not become large.508

In all of our simulations – where the flux rope is formed by shearing of a pre-existing potential arcade509
– the background field has the same direction as that of the arcade, whether or not the flux rope erupts.510
Generalising from the analytical model with B0 > 0, this explains why our eruptions are not preceded by a511
high eruptivity index.512

The simulations of (Pariat et al., 2017), which were driven by flux emergence, included cases with both513
directions of background field. The eruptivity index behaved as predicted by the simple model in this514
section, but in that case only the cases with oppositely-directed field (and high eruptivity index) erupted.515
Our work shows that there is a whole class of eruptions that will not have high eruptivity index owing to516
the fact that they occur despite having the same direction of overlying field.517

4.2 Implications for space weather forecasting518

The simplified nature of our 2.5D system means that any quantitative predictions will not be valid in519
3D or indeed for any differing domain size or shape. However, the qualitative patterns of behaviour that520
we observe (such as those of the ratios of axial rope current to overall helicity/energy) should be equally521
valid in all systems, including global coronal models, where flux ropes are formed by footpoint shearing522
from differential rotation. Moreover, since these flux ropes are formed by gradual shearing over days523
to weeks, and are located in the magnetically-dominated low corona, we do not expect that the general524
conclusions would change significantly if we were to move from the magneto-frictional model to full MHD.525
For example, it has been shown that the linear stability criteria in magneto-frictional and MHD systems526
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are the same (Craig and Sneyd, 1986). Nevertheless, to make quantitative predictions about specific 3D527
magnetic configurations on the Sun will require further work to understand how the behaviour of the528
diagnostics depends on the local coronal magnetic stucture.529
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Figure 1. Examples of initial conditions for the 2.5D magneto-frictional code in a cartesian domain. The
left pane is a potential field and the right pane is an equivalent outflow field, with the same lower boundary
condition. The black lines represent magnetic field lines.
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Figure 2. Plot of the function f(a) = cosh(kπay1)
cosh(kπy1)

for k = 1 and various values of y1.
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Figure 3. Snapshots showing the shearing of the potential arcade resulting in an arcade eruption and
subsequent reformation preceding another eruption at t = 4. The black lines are magnetic field lines
projected onto the (x, z) plane, and the heatmap represents the magnetic field strength into the page (in the
y direction). In this simulation, η0 = 0 and ν0 = 0.5.
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Figure 4. A selection of diagnostics for a simulation exhibiting repeated arcade eruptions, which are
represented by blue circles. In this simulation, η0 = 0 and ν0 = 0.5. The time of an eruption is taken to be
the midpoint in time between the maximum and minimum open flux values either side of the eruption.
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Figure 5. Snapshots showing the formation of a flux rope and its subsequent eruption at time t = 8. This
is followed by the formation of a second flux rope, which experiences an arcade eruption at t = 15.8,
before the process repeats. The black lines are magnetic field lines projected onto the (x, z) plane, and
the heatmap represents the magnetic field strength into the page (in the y direction). In this simulation,
η0 = 7× 10−3 and ν0 = 0.6.

Frontiers 19



Rice and Yeates Eruptivity Criteria for Two-dimensional Magnetic Flux Ropes

0 10 20 30

t

0.00

0.25

E
n
er
g
y

Free Magnetic Energy

0 10 20 30

t

1

2

F
lu
x

Open Flux

0 10 20 30

t

0.0

0.2

H
el
ic
it
y

Relative Helicity

0 10 20 30

t

0.0

0.2

H
el
ic
it
y

Current-Carrying Helicity

0 10 20 30

t

0.5

1.0
Eruptivity Index

0 10 20 30

t

0.0

0.1
F
lu
x

Poloidal Rope Flux

0 10 20 30

t

0.0

0.2

F
lu
x

Axial Rope Flux

0 10 20 30

t

0

2

C
u
rr
en
t

Axial Rope Current

Figure 6. A selection of diagnostics for a simulation exhibiting flux rope eruptions (red circles) interspersed
with multiple arcade eruptions (blue circles). In this simulation, η0 = 7× 10−3 and ν0 = 0.6. The time of a
flux rope eruption is taken to be the time of the maximum poloidal rope flux before this rapidly decreases.
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Figure 7. Overview of 100 flux rope simulations, for ν0 = 0.5 and varying η0. Each simulation (for a
given η0) is represented by a vertical red line, and the thickness of this line is proportional to the poloidal
flux in the rope at that time. Arcade eruptions are represented by blue circles and flux rope eruptions are
represented by red squares. The size of these points is proportional to the decrease in open flux and poloidal
rope flux during the eruption, respectively.
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Figure 8. Pairwise scatter plots of the diagnostic values for all snapshots with later flux rope eruptions,
in order to establish whether the ratios of the diagnostics are good predictors. The sizes of the points are
weighted based on proximity to the eruption, such that the larger points are close to eruptions and vice
versa.
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Figure 9. Histograms of five of the diagnostic parameters, and five of the ratios between them. The points
that precede an eruption within t = 0.3 time units are shown in red, and those that do not are shown in blue.
The diagnostics with less red/blue overlap are better predictors of eruptions and vice versa. The eruptivity
skill score E is given for each diagnostic. The curves are normalised to have an area of unity.
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Figure 10. Variation of the skill scores for each of the measured quantities, depending on the time cutoff
within which an eruption must occur. The raw diagnostics and eruptivity index are plotted as solid lines,
and the ratios are plotted as dashed lines.

Figure 11. Comparison between two magnetic arcades with overlying magnetic fields in opposite
directions. The black lines represent the magnetic field projected into the (x, z) plane and the heatmap
represents the magnetic field strength out of this plane.
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