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Abstract

Non-uniform rational B-splines (NURBS) are a convenient way to inte-

grate CAD software and analysis codes, saving time from the operator and

allowing efficient solution schemes that can be employed in the analysis of

complex mechanical problems. In this paper, the Isogeometric Boundary El-

ement Method coupled with Bézier extraction of NURBS and conventional

BEM are used for analysis of 2D contact problems under cyclic loads. A

node-pair approach is used for the analysis of the slip/stick state. Further-

more, the extent of the contact area is continuously updated to account for

the nonlinear geometrical behavior of the problem. The Newton-Raphson’s

method is used for solving the non-linear system. A comparison to analytical

results is presented to assess the performance and efficiency of the proposed

formulation. Both BEM and IGABEM show good agreement with the exact

solution when it is available. On most examples, they are equivalent with

some advantage for IGABEM, though the former is slightly more accurate

in some situations. This is probably due to the smoothness of NURBS not
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being able to describe sharp edges on tractions. As expected, IGABEM in-

curs in higher computational cost due to the basis being more complex than

conventional Lagrangian polynomials.

Keywords: Boundary Elements Method, Isogeometric, Bézier extraction,

Contact mechanics, Fretting fatigue

1. Introduction

Fretting fatigue [1, 2, 3] is a failure mechanism present in various me-

chanical systems such as wire cables, bio-mechanical implants and dovetail

joints of aeronautic turbines. It occurs at the contact interface of mechanical

parts under small amplitude relative motion (mostly due to cyclic loads or

vibrations). In this situation, if the ratio between the fretting (tangential)

load and the normal pressure is low enough to avoid total slip, a part of

the contact area remains in a stick state while the peripheral section of the

contact zone displays a slip motion. This regime, known as partial slip, often

induces cracks in the contact area leading to premature failure.

Fretting problems can be investigated using analytical, numerical and ex-

perimental procedures. The most common approach to the numerical analy-

sis of fretting problems is the Finite Element Method (FEM) [4, 5, 6]. How-

ever, contact is essentially a boundary phenomenon so it could be expected

that the Boundary Element Method (BEM) would be an interesting alter-

native to this kind of problems. Furthermore, the BEM has features that

can be explored to make it even more suitable [7, 8, 9]. For instance, since

only the boundary is discretised, the number of degrees of freedom is re-

duced, therefore decreasing the computational effort to solve the non-linear
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problem. This reduction also implies faster numerical model generation and

higher accuracy. The reduction in mesh dimensionality of the problem is an

advantage when compared to FEM.

Isogeometric analysis (IGA) [10, 11] uses the same functions for mod-

elling the geometry and for approximating the unknown fields in numerical

analysis. While it is possible to develop isogeometric methods based on T-

Splines [12, 13, 14] or others, it is most commonly based on Non-Uniform

Rational B-Splines (NURBS). NURBS are a standard for curve and surface

representation in Computer-Aided Design (CAD) systems and have features

such as representing exactly all conic sections and being refined by knot

insertion.

Bézier extraction has been successfully employed with FEM [15] and

BEM [16] schemes for the evaluation of crack propagation. Bézier extrac-

tion facilitates the incorporation of NURBS (or any other spline that admits

such representation) into existing codes based on traditional piecewise poly-

nomial shape functions.

Despite being used for the first time with FEM [10], isogeometric analysis

suits the use by Boundary Elements, given that CAD and boundary element

method require only boundary discretisation. The Isogeometric Boundary

Element Method (IGABEM) was first proposed by [17, 18] and its formula-

tion has the capability of integrating CAD and numerical analysis, enhanc-

ing the design process. It has been successfully applied in many instances:

[19] extended the formulation for three-dimensional analysis, [20] used hier-

archical matrix to reduce the computational cost of the method, [21] used

the IGABEM to analyse problems in automotive acoustics, [22] applied the
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isogeometric analysis accelerated by fast multipole method to analyse two-

dimensional potential problems, [23] applied IGABEM for topology optimi-

sation, [24] simulated inclusions and reinforcement bars, [25] extended the

method for thermo-elasticity, and [26] used IGABEM for modelling 3D rein-

forced structures. A comprehensive reference for IGABEM can be found in

[27].

Gutiérrez et al. [28] used IGABEM for contact of solids. They studied the

frictionless contact between two cylinders with normal load and compared

it to FEM and analytical solutions. The authors found that the variation

in contact area width with respect to the analytical solution was smaller in

IGABEM even with less degrees of freedom.

In this work, the IGABEM coupled with Bézier extraction of NURBS is

used to analyse two-dimensional elastic contact problems under a fretting

fatigue loading condition. Normal and shear stresses at contact region are

compared to analytical solutions in different moments of the cyclic load. Very

accurate results are obtained.

A comparison with conventional BEM [9], using Lagrangian polynomials

as basis function, shows that the IGABEM is more accurate if we consider

the same number of degrees of freedom. Furthermore, if we compare to com-

mercial finite element method [6], the necessary number of degrees of freedom

for reaching the same accuracy of IGABEM is thousands of times bigger for

the finite element method. This demonstrates that IGABEM is a very suit-

able method for calculating the stress distribution in contact problems with

cyclic loads that can cause material failure due to fretting fatigue. The main

contribution of this article is the implementation of isogeometric formulation
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with Bézier decomposition for analysis of problems under cyclic loads and its

comparison with conventional BEM and analytical solutions.

This paper is divided in eight sections. Firstly, a brief description of the

main concepts related to B-splines and NURBS is presented. Secondly, the

required steps to perform a Bézier extraction for NURBS are shown alongside

with an example for clarification. Three sections follow: describing the main

aspects of BEM, IGABEM, and Contact Mechanics. Next, a section related

to the Numerical implementation of the proposed solution scheme and a

section describing the numerical results. Lastly, final remarks regarding the

overall performance of the proposed scheme and future work opportunities.

2. NURBS and B-splines

In general, a conventional BEM analysis is characterized by the use of La-

grangian polynomials as basis functions [29]. In contrast, the Isogeometric

Boundary Element Method (IGABEM) is often coupled with more complex

interpolation basis such as NURBS and T-splines [30, 31]. NURBS are widely

used as the standard method for geometry description in Computer Aided

Design (CAD) programs. Thus, its choice as basis leads to a consistent inte-

gration of modelling and numerical aspects which provide additional benefits

such as avoidance of geometrical errors and saving time during the discreti-

sation of solids before analysis.

The essential concepts required to understand B-splines and NURBS are

presented next. For a detailed description of these methods, the interested

reader is referred to [32].
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2.1. B-splines

Defining a knot vector is an important step for understanding B-splines

and NURBS. Let Ξ = {ξ0, ξ, · · · , ξn+p+1} be a non-decreasing sequence of

coordinates defined in the parameterised space, i.e., ξi ≤ ξi+1, where ξi is

called knot, Ξ is the knot vector and n is the number of basis functions. B-

spline basis functions of degree p are recursively defined using Cox-de Boor

recursive formula [33, 34, 32], starting with basis of order p = 0:

Ni,0(ξ) =

 1 if ξi ≤ ξ < ξi+1

0 otherwise
(1)

and for higher p degrees as:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2)

Using the previously defined basis functions, a B-spline curve P (ξ) is

defined as:

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi (3)

where Ni,p is the i-th basis function of degree p and Pi are the control points.

2.2. NURBS

B-splines can be regarded as a special case of NURBS and can be recov-

ered from the latter by setting all weights equal to one. Probably the most

evident gain of using NURBS instead of B-splines is the exact modelling of

circles and ellipsoids, which can be only approximated when using B-splines.

One can interpolate a set of control points, Pi, using NURBS, as follows,

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi (4)
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where Ri,p are defined as

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

. (5)

NURBS basis functions are a paramount aspect of the proposed IGABEM

implementation, since their derivatives (required for approximating the un-

known fields) can be easily obtained. The derivative of (5) is defined as,

dRi,p(ξ)

dξ
= wi

W (ξ)N ′
i,p −W ′(ξ)Ni,p(ξ)

W (ξ)2
, (6)

where

W (ξ) =
n∑

j=1

Nj,p(ξ)wj, (7)

N ′
i,p ≡

dNi,p

dξ
, (8)

and

W ′(ξ) =
n∑

j=1

N ′
i,p(ξ)wi. (9)

3. Bézier extraction

Bézier extraction, firstly described in [15], is a process that facilitates

the implementation of IGA in an existing FEM or BEM code. Although

the option for its implementation coupled with NURBS has been favoured

here, IGA can also be used with T-splines [13]. The main idea of Bézier

decomposition is to perform repeated knot insertions on all interior knots of
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a knot vector until they have a multiplicity of p, such that the so-called Bézier

extraction operator maps the Bernstein basis functions onto a B-spline.

The original knot vector, Ξ, and its set of control points P = {Pi}ni=1 are

modified by inserting {ξ̄1, ξ̄2, . . . , ξ̄m}. Then the number of knots is updated

to n+m+ p+ 1 and the number of control points becomes n+m. For each

additional knot ξ̄j, an element αj
i is defined in order to compute the Bézier

extraction operator Cj:

Cj =



α1 1− α2 0 · · · 0

0 α2 1− α3 · · · 0

0 0 α3 · · · 0
...

...

0 · · · α(n+j−1) 1− α(n+j)


. (10)

Assuming P̄1 = P, new control points corresponding to the inserted knots

are:

P̄j+1 = CT
j P̄j (11)

Hence, the final set of control points Pb is:

Pb = CTP (12)

Importantly, a knot insertion does not cause geometric nor parametric

change to a curve, thus:

C(ξ) = PTN(ξ) = (Pb)TB(ξ) = (CTP)T = PTCB(ξ) (13)

where B(ξ) is the set of Bernstein polynomials basis functions defined by the

final knot vector Ξb. So, this new operator C can be used to relate B-splines
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N(ξ) and Bernstein B(ξ) basis functions:

N(ξ) = CB(ξ). (14)

The required input for computing C is only the knot vector, so neither

control points nor basis functions are necessary.

For a better understanding of the process, Fig. 1 illustrates, on the left

side, every newly added control point due to a knot insertion in the knot

vector and, on the right, the corresponding effect on the basis functions.

The first knot vector is Ξ1 = {0, 0, 0, 1
4
, 1
2
, 3
4
, 1, 1, 1} and its corresponding

set of control points can be seen in Table 1. Knots Ξ′ = {1
4
, 1
2
, 3
4
} are added

one at a time, reaching the final knot vectorΞ4 = {0, 0, 0, 1
4
, 1
4
, 1
2
, 1
2
, 3
4
, 3
4
, 1, 1, 1}.

Table 1: Coordinates and weights of the first set of control points.

Control Point x y w

1 0.5 3.0 1.0

2 1.5 5.5 1.0

3 4.5 5.5 1.0

4 3.0 1.5 1.0

5 7.5 2.5 1.0

6 6.0 4.0 1.0

As previously mentioned, a B-spline is a special case of NURBS when

all weights equal the unity value. If they are not, we have to take into

consideration the weights when performing the Bézier extraction. This can

be done by inserting Eq. (14) into Eq. (5):

R(ξ) =
1

wTCB(ξ)
WCB(ξ), (15)

9



(a) 6 control points.

(b) 7 control points.

(c) 8 control points.

(d) 9 control points.

Figure 1: Bézier extraction process: second order curves (left) and NURBS basis functions

(right) for various number of control points.
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Table 2: New control points.

Control Point x y w

7 3.00 5.5 1.0

8 3.75 3.5 1.0

9 5.25 2.0 1.0

where W is the diagonal matrix of weights as defined in [15]. Hence, the

NURBS curve can be represented in terms of Bézier element as:

C(ξ) = PTR(ξ) (16)

=
1

wTCB(ξ)
PTWCB(ξ) (17)

=
1

wTCB(ξ)
(CTWP)TB(ξ). (18)

4. Boundary Element Method

As this work uses both conventional BEM (as reference) and IGABEM

(as proposed formulation), the main concepts of the former are presented.

The purpose is to facilitate the understanding of the following sections which

are devised for the comparison of these two methods. A comprehensive ex-

planation of BEM can be found in [29, 35, 36].
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4.1. Conventional BEM

Assuming linear elastic material behaviour and neglecting body forces,

the displacement boundary integral equation (DBIE) can be written as:

Cij(x
′)uj(x

′) +−
∫
Γ

Tij(x
′, x)uj(x)dΓ =∫

Γ

Uij(x
′, x)tj(x)dΓ,

(19)

where Cij is a jump term that arises from the limiting process and depends

on the geometry at the source point (usually Cij =
1
2
for smooth geometries,

when i = j); uj and tj are the components of displacements and tractions on

the boundary while Uij, as described in Eq. (20), and Tij, denoted in Eq. (21),

are displacements and tractions fundamental solutions for 2D plane strain,

respectively.

Uij(X
′, x) =

1

8πµ(1− ν)
{(3− 4ν) ln(1/r)δij + r,ir,j} (20)

Tij(X
′, x) =

−1

4π(1− ν)r{
[(1− 2ν)δij + 2r,ir,j]

∂r

∂n
− (1− 2ν)(r,inj − rjni)

}
.

(21)

Since uj and tj are in a continuous form, it is not possible to implement the

numerical method yet. Discretisation is needed to proceed, so the boundary

is split in elements with local coordinates ξ ∈ [−1, 1]. Then, geometry and

unknown fields can be approximated such that,

xj(ξ) =

nb∑
1

Ni,p(ξ)xc, (22)
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uj(ξ) =

nb∑
1

Ni,p(ξ)uc, (23)

tj(ξ) =

nb∑
1

Ni,p(ξ)tc, (24)

where nb is the number of basis functions, Ni,p(ξ) are the set of Lagrangian

polynomials basis functions and xc, uc and tc are vectors of nodal coordinates,

displacements, and tractions.

After discretisation, DBIE can be rewritten as Eq. (25) and considering

the collocation point x′ to lie at each nodal point:

Cij(x
′)uj(x

′) +
Ne∑
j=1

∫ 1

−1

Tikui dΓj =
Ne∑
j=1

∫ 1

−1

Uiktj dΓj (25)

A set of linear equations representing all displacements and traction com-

ponents can be written in the form of matrix equation as:

Hu = Gt (26)

One can see similarities between a Bézier element in Fig. 1d and a La-

grangian polynomial for a quadratic element, Fig. 2. For instance, they are

more alike than a NURBS (or B-spline). For this reason, if a pre-existing

Lagrangian polynomial BEM code (conventional BEM code) is used, Bézier

decomposition can be implemented with few changes in the code, saving a lot

of the programmer’s time. Considering the existence of many of these codes

in the literature, for example, in [29], Bézier decomposition becomes an even

more interesting alternative when someone decides for the implementation

of the IGABEM.

13



−1.0 −0.5 0.0 0.5 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

N1 =
1
2
ξ(ξ− 1)

N2 =1− ξ 2
N3 =

1
2
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Figure 2: Parameterised continuous second order shape functions.

4.1.1. Integration

It is usual to split evaluation of BEM kernels in regular, nearly singular,

and singular. In this implementation, integration of regular kernels is made

using Gauss-Legendre. When it comes to singular kernels, weakly singular

kernels are carried out by using Gauss-logarithmic quadrature, while strongly

singular ones are dealt with rigid body motion considerations.

4.2. IGABEM

Now we focus on the isogeometric formulation and its differences from

conventional BEM. Approaches for collocation and integration are presented

as well. As previously mentioned, the main difference between IGABEM

and the conventional BEM is that the former uses NURBS basis functions

to approximate the geometry and unknown boundary fields. In IGABEM,

the definition of element is not as straightforward as in the conventional

formulation. Thus, after discretising the boundary, the physical domain is
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mapped to a parameter element [ξi, ξj] which is the interval between two

consecutive unique knots.

Writing geometry and unknown fields in the isoparametric fashion, it is

possible to approximate them as:

xj(ξ) =
n∑
1

Ri,p(ξ)xc, (27)

uj(ξ) =
n∑
1

Ri,p(ξ)uc, (28)

tj(ξ) =
n∑
1

Ri,p(ξ)tc, (29)

where xc is the coordinate of a control point and uc and tc are displacements

and tractions coefficients, respectively. Each one of the previous coefficients

is associated with a control point. Attention is needed because those values

do not have a physical meaning as the control point might lie outside of the

boundary. To recover displacements and tractions associated with collocation

points over the boundary we can do the following:

u = Euc (30)

t = Etc (31)

where E is a transformation matrix defined in [37, 38].

Hence, Eq.(26) can be rewritten as:

Huc = Gtc (32)

then applying the transformation matrix yields:
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HE−1u = GE−1t (33)

The computational cost of inverting a matrix is high and has complexity

O(n3). So, in Eq. 33, terms containing E−1 become costlier as the problem’s

dimension grows. It can represent an issue for large problems, but it is not

a concern in this case as we are dealing with two-dimensional problems.

4.2.1. Collocation

In conventional BEM, it is usual to collocate at the nodes. This is not

possible in IGABEM, though, given that the equivalent of nodes would be

control points and, as already mentioned, they may not lie on the boundary.

To overcome this, some collocation strategies are available. Among them,

Greville abscissae are the most used as seen in [18], [21]. In this study, we

choose to use a modified version of Greville abscissae, as in [20]. Collocation

points in parameter space are given by:

ξ′i =
ξi+1 + ξi+2 + · · ·+ ξi+p

p
. (34)

The modification previously stated is in the first and last collocation

points, which are offset to the inner part of the element and now respectively

defined as:

ξ′1 = ξ1 + β(ξ2 − ξ1) (35)

ξ′n = ξn + β(ξn − ξn−1) (36)

where β is a shift coefficient defined in [19] and adopted as β = 0.5. The

reason to modify the position of first and last collocation point is to avoid
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collocation points at corners. Collocation points at corners provide more

difficulties in singularities treatment.

4.2.2. Integration

As seen in [18], a key feature of any BEM implementation is the evaluation

of the boundary integrals containing the kernels over element domains. Both

regular and singular integrands are found depending on the position of the

collocation point relative to the field element. Essentially, the evaluation of

BEM integrals is split into three different types - regular, nearly singular and

singular. The latter can be strongly or weakly singular. This work deals

with both regular and nearly singular integrals in the same way, treating

weak singularities with Telles scheme [39] and strong ones with Guiggiani’s

singularity subtraction technique (SST) [40].

5. Contact formulation

A classical depiction of a contact process is shown in Fig. 3. It encom-

passes two basic stages: 1) the evaluation of the normal gap, g, between

the contacting surfaces; and 2) the calculation of the contact pressure, λn,

whenever the normal gap is closed.

This relationship is often denoted as the Kuhn-Karush-Tucker condition,

g ≥ 0,

λn ≤ 0,

λng = 0. (37)

Moreover, the contact conditions can be thought as constraints that must be
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g

λn

n

tλt

Figure 3: Bodies separated by an initial gap (left) and establishment of a contact condition

(right).

satisfied for each node-pair within the contact zone. Therefore, they can be

divided into three states:

• Separated is when both nodes are within a positive and non-zero

distance from each other.

• Stick bodies are in contact while not displaying tangential motion.

• Slip bodies are in contact and without restriction in the tangential

direction.

Table 3 lists the relationships that represent the three modes of contact

previously stated, where tn and tt are the normal and tangential tractions,

and un and ut are the normal and tangential displacements (expressed in

local coordinates), respectively. Importantly, the state of the node-pairs is

continuously updated within the iterative procedure.

The proposed formulation addresses frictional contact in a two-dimensional

setting. The solids are regarded as homogeneous isotropic linear elastic bod-
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Table 3: Set of traction/displacement relations for the contact conditions.

Separated Stick Slip

tat − tbt = 0 tat − tbt = 0 tat − tbt = 0

tan − tbn = 0 tan − tbn = 0 tan − tbn = 0

tat = 0 ua
t − ub

t = 0 tat ± µtan = 0

tan = 0 ua
n − ub

n = gab ua
n − ub

n = gab

ies. For instance, let us consider the bodies A and B so that their deforma-

tions can be described by two coupled integral equations, one for each body,

as follows,

cAiju
A
j +

NA∑
n=1

HA
iju

A
j =

NA∑
n=1

GA
ijt

A
j (38)

cBiju
B
j +

NB∑
n=1

HB
iju

B
j =

NB∑
n=1

GB
ijt

B
j (39)

where NA and NB are the number of collocation points of bodies A and B,

respectively. Therefore, two sets of linear equations are obtained and their

matrix form, can be written such that,

[H]γ {u}γ = [G]γ {t}γ , γ = A,B (40)

As noted by [41, 42], for linear problems, once this system of equations

has been solved, the final solution for displacements and tractions everywhere

on the boundaries can be obtained. This is not the case for this study, as

it deals with a non-linear problem. This non-linearity comes from the fact

that the contact region is not known a priori and it must be determined as

part of the solution. In order to overcome this, the same approach used in
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[9, 43, 44] is reproduced here. It consists of an iterative method known as

generalised Newton’s method.

6. Numerical implementation

This section presents the approaches used for modelling and solving the

problem, such as the assembly of the constraint equation system and the

enforcement of contact conditions. In addition, the algorithm for solving the

non-linear system is described and a detailed depiction of the flow process is

given in Fig. 4.

At this point the contact width is unknown. To identify a matrix equation

for the residue, values of displacements and tractions are guessed and the

residue {R} for the current step is computed by:

{R} = [A] {x} − {b} (41)

where

[A] =


A1

nc 0 H1
c 0 −G1

c 0

0 A2
nc 0 H2

c 0 −G2
c

0 0 C1
u C2

u C1
t C2

t

 (42)

{x} =



x1
nc

x2
nc

u1
c

u2
c

t1c

t2c


(43)
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{b} =


b1

b2

v1,2

 (44)

The third row in matrix (42) represents the contact constraints. These con-

straints C1,2
u and C1,2

t are respectively, displacement and traction constraints

for each node-pair. They can be one of the following three:

Slip:

cu =


0 0 0 0

0 0 0 0

El 0 El 0

0 0 0 0





ua
t

ua
n

ub
t

ub
n



ct =


El 0 −El 0

±(µ× El) El 0 0

0 0 0 0

0 0 ±(µ× El) El





tat

tan

tbt

tbn


Stick:

cu =


0 0 0 0

0 0 0 0

El 0 El 0

0 El 0 El





ua
t

ua
n

ub
t

ub
n



ct =


El 0 −El 0

0 El 0 −El

0 0 0 0

0 0 0 0





tat

tan

tbt

tbn
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Separated:

cu =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





ua
t

ua
n

ub
t

ub
n



ct =


El 0 0 0

0 El 0 0

0 0 El 0

0 0 0 El





tat

tan

tbt

tbn


where El are the entries of matrix E corresponding to the local segment

(curves of the contact surfaces). The ± sign in the slip matrices is decided

depending on the sign of the tangential displacement. The shear traction tt

presents an opposite sign of the tangential displacement ut.

7. Non-linear equation solution

If the computed residue is greater than a tolerance, a new guess in com-

puted. For this, the Newton-Raphson’s method is used. It is an iterative

technique that requires an initial guess xk−1 to find an approximated solu-

tion of x as follows. Given an initial value for the vector (say x0), we need to

find a ∆x0 such that R(x0 + ∆x0) = 0. Using the first-order Taylor series,

it can be approximated as:

R(x0 +∆x0) ≈ R(x0) + J∆x0 (45)

where J is the n × n Jacobian (in our case J = A). We are looking for

R(x0 +∆x0) = 0, so the increment ∆x0 is computed as:
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∆x0 ≈ − [J]−1 f(x0). (46)

Vector x is updated as:

xk = xk−1 +∆xk−1 (47)

xk = xk−1 − JR (48)

As displacements and tractions should obey the contact mechanics re-

strictions, after each step, the vector x is checked to see if restrictions are

violated. If yes, changes in vector x and matrix A are made so that all

restrictions are valid.

The process continues until the residue is smaller than a specified tolerance

ϵ, defined as:

ϵ =
√

(xk − xk−1)T (xk − xk−1) (49)

Next, algorithms for the main code and for the Newton-Raphson’s method

are shown.
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Algorithm 1 Main code

Input Geometry, load, material properties

1: for i = 1 to 2 do ▷ Assemble matrices for bodies 1 and 2

2: Assemble Gi and Hi

3: Apply BC on non-contact region

4: Insert matrices Ci
u and Ci

t in A

5: for i = 1 to number of load steps do

6: Compute the gap g0 between node-pairs in contact zone.

7: Apply Newton-Raphson’s method for solving R = Ax − b = 0 and

find x

8: Vector ∆u and ∆t are obtained based on BCs and unknowns x.

9: ui = ui−1 +∆u

10: ti = ti−1 +∆t
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Algorithm 2 Newton-Raphson’s method

Input A, b, x0

x = x0

1: Initialize x0

2: repeat

3: Assemble matrix A and vector b

4: Check and change values of vector x and matrix A with respect to

contact mechanics restrictions.

5: R = Ax− b

6: d = −A−1R

7: x = x0 + d

8: δ =
√

(xk − xk−1)T (xk − xk−1)

9: x0 = x

10: until δ < ϵ

11: return x

A summary of the necessary steps to reproduce the proposed scheme is

shown in Fig. 4.

Although similar to a conventional BEM analysis, the main differences

comprise:

1. The definition of elements is given by unique knot vector values.

2. NURBS basis functions are used instead of polynomial shape functions.

3. Collocation occurs at points defined by the modified Greville’s abscis-

sae.
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Figure 4: Flowchart of the proposed IGABEM formulation.
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8. Numerical analysis

A comprehensive numerical analysis of the Cattaneo-Mindlin problem and

a fretting setup are presented to assess the efficiency and accuracy of the pro-

posed IGABEM formulation. It encompasses a code validation via analytical

solutions [1, 2, 45, 46] and a comparison to an isoparametric formulation with

conventional BEM using continuous quadratic elements.

For each example, two comparisons are made. First, tx and ty tractions

are presented for BEM and IGABEM. Then, a mesh convergence for peak

pressure p0 and contact half-width a is made for analysing the influence of

refinement on those parameters.

All examples were carried out on an AMD Ryzen 5 4600h (6 cores, 12

threads with base clock of 3.0 GHz) laptop with 8 GB of ram running Win-

dows 10 64 bits.

8.1. Cattaneo-Mindlin problem

The chosen configuration for the Cattaneo-Mindlin problem is depicted in

Fig. 5. It consists of two elastically-similar bodies in frictional contact. The

body is loaded with a normal force and a tangential force while restricted at

its central node in the x− direction in order to avoid gross slip and the system

turning into a mechanism. The body 2 is fully restrained on its bottom.

Firstly, a normal load is applied. Then, this load is maintained constant

while a tangential load is cyclically applied. A depiction of the loading scheme

is shown in Fig. 6.
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Figure 5: Cattaneo-Mindlin - problem configuration.

As the two bodies have similar geometries, they are discretised in the

same fashion and can be thought as mirrored along the x−axis. Equivalent

segments have the same number of elements, for example, the segments in

28



contact are discretised in the same way.

To easily compare results from conventional BEM and IGABEM, the

mesh is discretised in a way that both have the same number of node-pairs

in the contact zone, i.e., NPc = 61.

Time

Qmax

−Qmax

Load

P

A

B

C

D

E

Normal Load (P )

Tangential Load (Q)

Figure 6: Cattaneo-Mindlin - loading scheme containing five steps (A-E).

In Figure 6, point A is when the normal load P reaches its final value,

whereas point B is the moment when the maximum tangential load is applied.

Afterwards, tangential load starts to decrease, passing through zero at point

C and decreasing further. Point D is when the tangential load is in its

minimum value and, finally, point E is when the tangential load reaches zero

again. Geometric and material properties can be seen in Table 4.
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Table 4: Cattaneo-Mindlin - Dimensions and material properties.

Property Symbol Value

Radius R 70 mm

Length w 6.5 mm

Young’s Modulus E 73.4 GPa

Poisson’s ratio ν 0.33

Pressure P 100 N/mm

Friction coefficient f 0.3

In this problem, both BEM and IGABEM have a finer mesh in segments

that may be in contact. Figures 7a and 7b show the meshes for BEM and

IGABEM.
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Figure 7: Cattaneo-Mindlin - meshes for 61 node-pairs.

8.1.1. Tractions

Fig’s. 8a- 8d compare the tractions of conventional BEM and IGABEM

with the analytical solution for four out of five loading steps, B to E. Both

normal and tangential tractions for BEM (tBEM
n and tBEM

t ), IGABEM (tIGA
n
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and tIGA
t ) and analytical solutions (tAn and tAt ) are shown.

The vertical dimension of the two bodies is large enough (2.5w) to provide

no tangential load in the first step as demanded by the analytical solution.

So tt ≈ 0 in the first step.

8.1.2. Displacements

Displacements fields in normal and tangential directions were measured

and their results are presented in this section. Figures (9a-9d) compare the

displacements for BEM and IGABEM for load steps 2 to 5.

Only the displacements of node-pairs within the contact zone are shown.

A good agreement between the two methods is evident.
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(c) Load step D.
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(d) Load step E.

Figure 8: Cattaneo-Mindlin - normal (tn) and tangential (tt) tractions comparison of

IGABEM, BEM and analytical results at four load steps (B-E).
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Figure 9: Cattaneo-Mindlin - IGABEM and BEM normal (un) and tangential (ut) dis-

placements fields over contact surface for load steps (B-E).

The results are in good agreement. The maximum error is 4.104 % for

shear tractions localised in the frontier of the slip-stick region. In all other

points, all curves are very close. Normal tractions remain the same during
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the load steps while tangential tractions change.

8.1.3. Peak pressure p0 and contact half-width a comparison for different

meshes

In this part, contact half-width (a) and peak pressure (p0) are compared

for five different meshes. For both BEM and IGABEM, the mesh remains

the same in all but the contact surfaces. The first mesh has 21 node-pairs,

the second has 41 and they get more refined up to 101 node-pairs.

Starting with the peak pressure comparison, Table 5 shows data for

the first time step, for each mesh. Analytical value for peak pressure is

p0 = 698 MPa. Using the coarsest mesh, IGABEM outperforms BEM when

describing the maximum normal pressure. For other meshes, BEM and IGA-

BEM have almost similar errors and can be considered as equivalent. Also,

the error does not seem to decrease with mesh refinement over the contact

area, fluctuating around 0.2%.

As observed in Table 6 and Figure 11, the half-width (a) error is more

affected by mesh refinement, as it starts around 45% and 42% with the coarse

mesh and decreases to 1.21% and 0.14% for BEM and IGABEM, respectively.

This behaviour reveals an advantage of IGABEM over BEM for the con-

tact half-width even with fewer degrees of freedom. Both are equivalent for

modelling the maximum normal pressure.

Since Lagrange functions form polynomials, they cannot represent conic

sections such as circular arcs, for example. NURBS, on the other hand, can

exactly represent circular arcs. In the two examples, circular arcs are used

for modelling the geometry. This fact makes IGABEM more accurate when

describing the geometry.
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Figure 10: Cattaneo-Mindlin - load step (A) normal pressure error comparison for different

meshes.
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Figure 11: Cattaneo-Mindlin - contact half-width (a) error comparison for different meshes.

BEM reaches 4.1037% error for peak pressure even with coarsest mesh,

while IGABEM reaches 0.5338% for the same number of degrees of freedom.
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Table 5: Cattaneo-Mindlin - peak pressure (p0) comparison of IGABEM, BEM and ana-

lytical results for different number of node-pairs.

Node-
DOFs DOFs

pairs BEM |ϵBEM(%)| BEM IGA |ϵIGA(%)| IGA

21 669.167 4.104 152 694.078 0.534 132

41 696.462 0.192 232 699.121 0.189 212

61 698.958 0.166 312 699.453 0.237 292

81 700.332 0.363 392 700.127 0.333 372

101 701.197 0.487 472 700.603 0.401 452

Analytical

p0 = 697.8025 MPa

Table 6: Cattaneo-Mindlin - contact half-width (a) comparison of IGABEM, BEM and

analytical results for different number of node-pairs.

Node-pairs BEM |ϵBEM(%)| IGABEM |ϵIGABEM(%)|

21 0.651 45.116 0.686 42.186

41 0.976 17.675 1.002 15.505

61 1.085 8.525 1.104 6.913

81 1.139 3.954 1.154 2.672

101 1.172 1.214 1.184 0.143

Analytical

a = 1.1860 mm
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This shows how accurate the IGABEM is for coarse mesh. The length of

the contact area, on the other hand, seems to be highly affected by the

number of node-pairs over the contact segments. This was expected as we

are considering a node-to-node contact algorithm. With fewer node-pairs

over the segment, the distance between them increases, making it difficult

to accurately determine the contact area. To improve the accuracy for the

length of contact area with coarse mesh, the implementation of segment-to-

segment contact algorithm is strongly recommended.

8.1.4. Newton-Raphson’s Method error evolution

The generalised Newton method was successfully used for solving contact

problems [8, 9]. In this problem, it converged with less than 10 iterations for

conventional and isogeometric BEM on all steps, considering ε = 10−9.

Figures 13 and 12 present the error evolution for conventional BEM and

IGABEM, respectively. As expected, the first load step demands more itera-

tions to converge. IGABEM needed 8 iterations for convergence, while BEM

needed 7.
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Figure 12: Cattaneo-Mindlin - Newton Method error evolution for conventional BEM.

2 4 6 8
10−11

10−7

10−3

101

105

Iterations

R
es
id
u
e

Load step 1 Load step 2 Load step 3 Load step 4 Load step 5

Figure 13: Cattaneo-Mindlin - Newton Method error evolution for IGABEM.
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8.1.5. CPU time comparison

CPU time data presented in Table 7 shows that IGABEM incurs in higher

computational cost, as expected. This is due to the basis functions being

more complex than conventional Lagrangian polynomials. The data can be

used to compare the amount of time needed for running the entire problem

and for solving all Newton’s method iterations as well.

BEM was faster and the ratio between BEM and IGABEM range from

41.17% for 21 node-pairs to 53.08% for 101 node-pairs. Nonetheless, the most

time-consuming problem to run was solved in less than 9 seconds.

Table 7: Cattaneo-Mindlin - CPU time comparison.

Newton Method Entire problem

Node pairs BEM IGABEM BEM IGABEM

21 0.0246 3.0479 2.1057 5.1151

41 0.0942 3.0593 2.7981 5.3816

61 0.2111 3.1950 3.2974 6.0469

81 0.2780 3.4878 3.8804 6.9831

101 0.4967 3.9759 4.4349 8.3559

8.2. Bulk stress problem

The bulk stress problem geometry is shown in Fig. 14. In this problem,

tangential and bulk loads are in phase with each other. Geometry, material

and load properties are in Tab. 8.
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Table 8: Bulk stress problem - geometric and material properties.

Property Symbol Value

Radius R 70 mm

Width w 6.5 mm

Young’s Modulus E 73.4 GPa

Poisson’s ratio ν 0.33

Friction coefficient f 0.3

Pressure P 100 N/mm

Tangential load Q 15 N/mm

Bulk load B 15 N/mm
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Figure 14: Bulk stress problem geometry.

This configuration has been chosen because it is commonly used for fret-

ting fatigue experiments [6] , as shown in Fig. 15.
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Figure 15: Detailed view of a fretting fatigue experimental setup. 1) roller, 2) dog-bone

specimen, 3) cylindrical pad and 4) pad holder.

In this problem, both BEM and IGABEM have a finer mesh in segments

that may be in contact and where the bulk load is applied. Figures (16a)

and (16b) show meshes for BEM and IGABEM.
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Figure 16: Bulk stress problem - meshes for 61 node-pairs.

8.2.1. Tractions

Figures (17a-17d) show the normal and tangential tractions for BEM,

IGABEM and analytical results for steps B to E. There are 61 node-pairs

over the contact segments but only those within the contact are shown. Both

normal and tangential tractions for BEM (tBEM
n and tBEM

t ), IGABEM (tIGA
n

and tIGA
t ) and analytical solutions (tAn and tAt ) are shown.

Although BEM and IGABEM perform similarly, it is difficult for IGA-

BEM to accurately represent the sharp edges on tangential traction tx. This

is because the NURBS used as basis functions for IGABEM are smooth as

in Fig. 18.
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(b) Load step C.
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(c) Step load D.
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(d) Load step E.

Figure 17: Bulk stress problem - normal (tn) and tangential (tt) tractions comparison of

IGABEM, BEM and analytical results at four load steps (B-E).
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Figure 18: Bulk stress problem - NURBS basis functions for 21 contact node-pairs.

8.2.2. Displacements

Similarly to the previous example, figures (19a-19d) compare the displace-

ments for BEM and IGABEM for load steps 2 to 5.

Only the displacements of node-pairs within the contact zone are shown.

Both methods provide similar results.
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(d) Step 5.

Figure 19: Bulk stress problem - IGABEM and BEM normal (un) and tangential (ut)

displacements fields over contact surface for load steps (B-E).
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8.2.3. Peak pressure p0 and contact half-width a comparison for different

meshes.

Similarly to the previous example, peak pressure (p0) and contact half-

width (a) are compared for different meshes. Table 9 shows maximum normal

pressure data for the first time step, for each mesh. The exact value of peak

pressure is p0 = 486.92 MPa. Error versus DOFs are depicted in Figure

20. Noticeably, the errors for both methods are small (less than 1%) for all

meshes. Except for the coarsest mesh, further refinement does not seem to

have much influence on errors, as they start around 0.8 %, decrease and then

fluctuate near 0.25 %.

The values of contact half-width, a, and the relative errors, ϵ, using the

analytical solution as reference are listed in Tab. 10 and show that the rela-

tive error is quite similar for both methods. The largest difference of 4.086%

happens in the coarsest mesh, with IGABEM being more accurate. IGA-

BEM outperforms BEM for all but the last case, when BEM is 0.201% more

accurate.

Figure 21 presents the error for contact half-width (a) as being high-

est with the coarsest mesh (21 node-pairs) and then decreasing, increasing

at 61 node-pairs and then decreasing even further. This behaviour, also

observed by [9], is due to the node-to-node approach where the contact

half-width is highly dependent on mesh refinement and on the location of

the collocation points. In this study, for 41 node-pairs, a collocation point

(at x = 1.6700 mm) gets closer to the exact value for the contact edge

(a = 1.6997 mm) and still is inside the contact zone. When refined to 61

node-pairs, collocation points change and the closest collocation point (at
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1.5455 mm) to the contact edge within the contact zone is not as close as

with 41 node-pairs.
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Figure 20: Bulk stress problem - load step 1 normal pressure error comparison for different

meshes.
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Table 9: Bulk stress problem - maximum normal pressure (tY ) and peak pressure (p0)

comparison for different number of node-pairs.

Node-
DOFs DOFs

pairs BEM |ϵBEM(%)| BEM IGA |ϵIGA(%)| IGA

21 490.876 0.812 204 483.394 0.724 182

41 487.104 0.038 324 488.021 0.226 302

61 487.988 0.219 444 488.204 0.264 422

81 488.240 0.271 564 487.869 0.195 542

101 488.317 0.287 684 488.218 0.267 662

Analytical

p0 = 486.9200 MPa
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Figure 21: Bulk stress problem - contact half-width (a) error comparison for different

meshes.

A similar scenario happens for this example. Both BEM and IGABEM
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Table 10: Bulk stress problem - contact half-width (a) for different number of node-pairs.

Node-pairs BEM |ϵBEM(%)| IGABEM |ϵIGABEM(%)|

21 1.302 23.410 1.371 19.324

41 1.627 4.266 1.670 1.745

61 1.518 10.649 1.546 9.071

81 1.627 4.266 1.649 2.989

101 1.692 0.435 1.711 0.636

Analytical

a = 1.6997 mm

show accurate results for peak pressure even with coarse meshes, with errors

ranging from 0.812% to 0.038%.

8.2.4. Newton-Raphson’s Method error

Figures 23 and 22 present the error evolution for conventional BEM and

IGABEM, respectively. In this example, IGABEM converges in 8 iterations

for the first step, while BEM converges in 11. This is not seen in example 1,

where both needed the same number of iterations. After all steps, IGABEM

needed 23 iterations, while BEM needed 29.
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Figure 22: Bulk - Newton Method error evolution for conventional BEM.
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Figure 23: Bulk - Newton Method error evolution for IGABEM.

52



8.2.5. CPU time comparison

Similarly to the previous example, CPU time data presented in 11 shows

that IGABEM has higher computational cost. Times for the Newton method

iterations and for the entire problem are presented.

For this problem BEM was again faster and the ratio between BEM and

IGABEM ranged from 33.05% for 21 node-pairs to 47.71% for 101 node-pairs.

BEM and IGABEM codes took only 7.51 and 15.75 seconds, respectively, for

running the entire problem.

Table 11: Bulk - CPU time comparison.

Newton Method Entire problem

Node pairs BEM IGABEM BEM IGABEM

21 0.0635 2.9879 2.5296 7.6540

41 0.1614 3.1440 3.6625 8.2275

61 0.3188 3.5693 4.6125 10.4082

81 0.5772 3.9489 5.6883 11.9495

101 1.1958 4.8743 7.5147 15.7519

9. Conclusion

In this article, conventional BEM and IGABEM are compared in elastic

contact problems. Both methods are compared to the analytical solution

when available.

According to the results, IGABEM performs equivalently to conventional

BEM regarding normal traction results, the former being a bit more accurate

even with fewer degrees of freedom. This is more noticeable for the bulk stress
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problem. In terms of tangential traction, BEM presents a small advantage

over IGABEM because the smoothness of the NURBS basis do not represent

the sharp edges of tx in contact problems very well.

Analysing contact half-width on the second example, IGABEM shows

slightly better agreement with the exact solution when compared to BEM.

This behaviour is more noticeable as fewer node-pairs are employed.

As far as displacements are concerned, the two methods have similar

results. Despite having no analytical solution to compare with, these codes

show accurate displacement results for non-contact elastic problems.

CPU time is compared for different meshes and BEM is faster than IGA-

BEM in all scenarios. This was expected as IGABEM basis functions are

more costly to compute than Lagrangian polynomials. For the most refined

meshes, BEM’s running time is 53.08% and 47.71% of IGABEM’s for the

same problem. Although IGABEM’s time and memory use can be improved

by using Adaptive Cross Approximation (ACA) [20, 47] or Fast Multipole

[48, 49], the authors did not implement these because the required amount of

time for running the proposed problems is considered small. IGABEM can

use CAD files for generating meshes, thus demanding less time for modelling.

While this is not considered in Tables 7 and 11, this is an essential aspect in

the decision-making process of choosing the most efficient method overall.

In conclusion, BEM and IGABEM are fitting for modelling elastic contact

problems and fretting fatigue specimens. Both methods are suitable alterna-

tives to commercial finite element software. They provide simpler modelling,

given that only the boundary is discretised, and demand coarser meshes to

obtain accurate results. IGABEM offers a significant advantage over BEM
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as it models exact geometries, thus providing better accuracy with coarser

meshes as shown in this work.
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