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A Recipe for Disappointment: Policy, Effect Size, and the
Winner’s Curse

Adrian Simpsona

School of Education, Durham University, Durham, UK

ABSTRACT
Evidence-based education aims to support policy makers choosing
between potential interventions. This rarely involves considering
each in isolation; instead, sets of evidence regarding many potential
policy interventions are considered. Filtering a set on any quantity
measured with error risks the “winner’s curse”: conditional on select-
ing higher valued measures, the measurement likely overestimates
the latent value. This article explains the winner’s curse, illustrates it
for one constrained and complete set of educational trials—the UK’s
Education Endowment Foundation’s projects, where evidence is sum-
marized with standardized effect size—and shows the results of
adjusting for the curse on this set. This analysis suggests selecting
policies for higher effect size can result in substantial effect size infla-
tion and in some cases order reversals: one intervention ranking
above another on estimated effect size but below it when adjusted.
The issue has implications for evaluation programs, power analyses,
and policy decisions. For example, even in the absence of other
problems with interpreting effect size, it can help explain why poli-
cies tend to deliver less than promised.
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Effect Size as a Policy Driver

Effect size is the key metric of the “evidence-based education” (EBE) movement. While
not the only factor policy makers will use to drive decisions, it is a core element offered
to support policy making by organizations such as the Institute of Education Sciences
(IES) in the US and the Education Endowment Foundation (EEF) in the UK and by
influential researchers such as Hattie (2009). It is variously purported to measure the
importance (Prentice & Miller, 1992), practical significance (Kirk, 2001), or effectiveness
(Higgins, 2018) of an intervention. The implications of these interpretations are that
larger effect sizes indicate more important, practical, or effective interventions, and,
ceteris paribus, policy makers should expect to see a better result from policies chosen
on that basis.
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“Ceteris paribus” is doing much heavy lifting in these arguments. Given standardized
effect sizes dA, dB from studies of interventions A and B, dA > dB is a good warrant for
the argument that A was a better intervention than B only provided the underlying
studies used the same control group treatment, used the same outcome measure (or at
least linearly equatable ones, Hedges, 1982), used samples similarly representative of the
population, and so on (Simpson, 2017). Even when this holds, a study showing an
effective intervention in one context can be a poor warrant for the effectiveness of that
intervention as policy (Cartwright & Hardie, 2012). Relative effectiveness (where separ-
ate studies of intervention A and of intervention B suggest A is more effective than B)
may be still poorer warrants for relative effectiveness as policy (that is, for A being bet-
ter policy than B).

Nonetheless, assuming these issues can somehow be dealt with or adjusted for, it seems
reasonable to work on the assumption that, within a given domain, interventions with larger
effect size estimates will be better choices and that, if study samples are representative of the
policy population, study effect sizes are good estimates of policy effect sizes. Naturally, these
are not guaranteed: two randomized controlled trials (RCTs) might result in effect sizes dA >

dB because the realized random allocation in study A imbalanced groups in the same direc-
tion as any effect of the difference in treatments, while in study B random allocation imbal-
anced the groups in the opposite direction. However, given a study with latent effect size d, 1

the random allocation process ensures that the effect size estimate from the study, d, is
unbiased: repeated studies yield ds normally distributed around d: That argument might lead
to the conclusion that, while not guaranteed and subject to the ceteris paribus assumptions
above, the best bet is that larger effect sizes are associated with better interventions and that
the study effect size is the best estimate for the policy effect size.

This article shows that this conclusion is wrong: conditional on choosing interven-
tions with larger than average effect sizes, the effect estimates are likely to be overesti-
mates. That is, policies will appear to show disappointing results even when they are
based on systems with no publication bias, with samples representative of the policy
context and where all the conditions for using relative effect size as a proxy for relative
effectiveness are met. Moreover, there are situations in which the better bet for the
more effective policy has the smaller effect size estimate.

These are consequences of “the winner’s curse”: in a system with values measured
with noise, conditional on choosing an item because its value is above average, that
value is likely an overestimate. For some statisticians, this is an immediate consequence
of Jensen’s inequality, but it may not be widely understood in EBE. Moreover, it is not
clear how researchers or policy makers should adjust their estimates or expectations to
account for this phenomenon.

The aims of this article are to:

� explain and illustrate inflation which arises from “the winner’s curse,”
� outline recently developed techniques for adjusting effect size estimates,
� illustrate the technique on a widely available set of education studies,

1The effect size which would result from perfectly matched groups instead of randomly allocated ones (or, equivalently,
the limit as the sample size tends to infinity).
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� show that such adjusted estimates can lead to reversals—relative effect sizes for
two potential interventions can reverse when adjusted,

� suggest implications for this approach for both policy and replication researchers.

The Disappointment of Auctions

The phrase “winner’s curse” derives from an examination of sealed bid auctions (Capen
et al., 1971). This context provides an instructive illustration. Consider an auction with
people submitting bids for tickets to a show. Some people might think a ticket is worth
$12 but bid in the range $11 to $13—some underbidding their estimate of worth in
search of a bargain, others overbidding to increase their chances of winning. Other peo-
ple might consider it worth $8 but bid in the range $7 to $9, and so on.

The winners will always likely be in the position that they could have bid less and still
won—an immediate consequence of the usual auction system—and many might be dis-
appointed to find other audience members paid less to see the show; but provided they
got a ticket for less than their own valuation they may still be content with the outcome.
However, Capen et al. (1971) shows that as well as bidding more than the losers, win-
ners are likely to have bid more than they themselves thought a ticket to the show was
worth. That is, winners are cursed to be disappointed in their purchase price.

The distribution of bids combines two factors: valuations (individuals’ estimates of the
show’s worth) and variation around each valuation representing the bidders’ strategy or risk.
In this example, tickets to a show have no pre-determined objective value: they are worth
only what the market will pay and the market is determined by the bidders. Consider a very
large number of bidders whose valuations vary around $11 (illustrated in Figure 1). Among
those who submit a bid of $13 there are some overbidding their valuation of $12.50 and some
underbidding their valuation of $13.50. Critically, those underbidding and overbidding are
not present in equal numbers among those submitting $13 bids.

Conditional on their valuation, bidders over- and under-bid in equal numbers. For
example, among those valuing the show at $13, bids are centered around $13 (see the
right-hand panel). But conditional on their submitted bid, bidders are not equally under
and over bidding (except those bidding the central value). In the example, among those
bidding $13 more valued the show below $13 than above $13 (see Figure 1, top panel:
overbidding:underbidding among those bidding $13 is around 2:1). Provided there were
enough tickets that those bidding $13 were successful, two thirds of that tranche of win-
ners overpaid what they thought the show was worth.2

While, given a particular bid of $13, the valuation held by the bidder cannot be iden-
tified from that information alone, the distribution of valuations which $13 bidders held
can be modeled and therefore a reasonable adjustment for the winner’s curse can be
made—in this example, the expected valuation is around $12.50. So, given some infor-
mation about the distributions involved, the bidders’ expected underlying valuation can
be estimated.

2There is a complementary phenomenon: those bidding below the mean valuation are more likely to have underbid
their own valuation. In the example, if there is enough supply that even those bidding $7 get tickets, two thirds of
them will underpay even what they felt the show was worth.
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The Winner’s Curse in RCTs

The winner’s curse arises wherever there is a set of measurements with error. For
example, a set of studies in which effect size estimates come from two distributions—a
set of latent effect sizes and error (coming from random allocation). Conditional on
estimates being above the mean of the distribution of estimated effects, they are likely
to be overestimates of their latent value.

If a stereotypical, large RCT is conducted where there is a latent effect size d, the
point estimate of the effect size d is the result of both the impact of the difference in
treatments and the effect of random allocation to groups.3 This is an unbiased estimate
in the sense that Eðd � d j dÞ ¼ 0 : if a large number of identical studies were con-
ducted, the mean point estimate d would be close to the latent effect size d:

However, considering d given d is rarely of direct policy or research value when look-
ing at a set of completed studies: if the latent effect size is known, it is not particularly
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Figure 1. Contour density plot of the joint distribution of valuations and bids for a simulated auction.
The right panel shows densities of bids given a valuation of $13. The top panel shows densities of
valuations given a bid of $13. The simulation illustrates bidders whose individual valuations v �
N 10, 2ð Þ with bid risks � U v � 1, v þ 1ð Þ:

3Some methods texts mistakenly describe random allocation as maximizing the likelihood of two matched groups,
balancing the groups or canceling out the effects of imbalanced features (e.g., Connolly et al., 2017; Hanley et al., 2016;
Haynes et al., 2012; Torgerson & Torgerson, 2008). Randomization determines a well-defined probability distribution for
the mean difference in outcomes from random allocation alone, and it is the addition of this distribution which leads to
the winner’s curse.
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useful to know what values the estimates might take. Of more value is estimating d
given d : i.e., when the estimates are known, what can be said about the latent
effect sizes?

The winner’s curse is a consequence of considering a set of RCTs in the same way as
in the auction. Consider a collection of RCTs with a distribution of ds, each a point
estimate of some latent effect size d, where the ds themselves are drawn from some dis-
tribution. For a given d, the underlying d might be larger than d if the realized random
allocation had an effect in the opposite direction, or smaller if it had an effect in the
same direction. In general d � Nðd, seÞ where se is the standard error associated with
the random allocation of the sample. Figure 2 simulates the situation and illustrates the
extent of the winner’s curse.

As expected, this shows Eðd � d j dÞ ¼ 0 : d is an unbiased estimate of d for a given
d (Figure 2, right panel). In the simulation illustrated, the mean of the estimated effect
sizes of all the studies conducted where the underlying, latent effect size is known to be
0.6 is 0.6. However, Eðd � d j d, d > 0Þ > 0 — conditional on d positive, there is an
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Figure 2. The contour plot of the joint density of d and d for a set of simulated studies. The right
panel shows a density plot for pðdjd ¼ :6Þ; the top panel for pðdjd ¼ :6Þ, with the black area illus-
trating the probability that the estimate and latent effect size have opposite signs. This simulates a
large set of studies with underlying latent effect sizes d � Nð0, :5Þ and each study esti-
mate d � Nðd, :25Þ:
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inflation effect.4 In the simulation illustrated, among all the studies reporting d ¼ :6
(Figure 2, top panel), the expected underlying latent effect size d is .48. That is, the
expectation is the estimate is inflated 25% above the latent value. Moreover, around
1.5% of the latent effect sizes are negative (shaded in the top panel); that is, there is a
small chance that a study in the collection reporting an effect size of þ0.6 is a study of
a negative effect.

Type M and S Errors

Gelman and Carlin (2014) introduces “type S” (sign) and “type M” (magnitude) errors,
defined as the probability of a point estimate d having opposite sign to its latent effect
size d, and the mean ratio of d

jdj , respectively; both being conditional on d, on the
standard error of d and on d being significantly greater than zero. Gelman and Carlin
(2014) examines a study reporting a statistically significant effect size which appears
very large given the context (sex ratios of human births). The study had large standard
errors (or, equivalently, was underpowered for a small effect size) and from this, the
presence of large type S and M errors was inferred.

If the latent effect size is small and a study is underpowered for it (i.e., the study has
a relatively large standard error), statistical significance can only be achieved when the
effect of random allocation compounds the small latent effect size. Thus, the point esti-
mate will be an overestimate. That is, type M and S errors are inevitable consequences
of assumptions: to begin an analysis with the assumption that a study is underpowered
(or equivalently, that the latent effect size is much smaller than the reported estimate),
is to assume a magnitude error and an increased sign error.

For example, Gelman and Carlin (2014) argues previous studies on human sex ratios
had consistently shown effect sizes around 1

8 th of the estimate in the study being cri-
tiqued; therefore the example study’s type M error must be around 8.

Type M error analysis, then, is similar to studying the right-hand panel in Figure 2.
That is, addressing the values d might take if d is known—the value the estimated effect
size from the study might take if the latent, true effect size is known. In the illustrated
simulation, each study has .67 power to detect an effect size of .6 (with a ¼ :05); that is
among the set of studies for which the latent effect size d ¼ :6, 67% are expected to
report statistical significance. The mean of those significant point estimates is .74 sug-
gesting type M error around 1.23.5 However, it is not clear that saying something about
the estimate when the latent value is already known is of much practical consequence.

Often the more interesting policy question is, given a reported effect size within a set
of studies, what is the distribution of latent effect sizes from which it might have come.
In particular, how inflated might the estimate be and what is the chance that the
reported effect size estimate is in the opposite direction to the latent effect size? This
involves the equivalent of examining the top panel in Figure 2. To move from consider-
ing the right-hand panel to considering the top panel requires estimating the marginal

4And conditional on d negative, there is a deflation effect—the loser’s curse.
5In this case, the type S error is very small: the chance of a study reporting a statistically significant result is in the
opposite directions is around .008.
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distribution of d from the distribution of d and this can provide a mechanism for
adjusting for the winner’s curse.

Adjusting for the Winner’s Curse

In the two simulated examples above, it is possible to adjust for the winner’s curse since
we know the distributions involved. Recently, published techniques for adjusting esti-
mates of effect size to account for the winner’s curse more generally are detailed across
a trio of articles (van Zwet & Cator 2021; van Zwet & Gelman, 2022; van Zwet et al.,
2021). The approach bears many similarities to empirical Bayes meta-analysis
(Raudenbush & Bryk, 1985).

The simulation behind Figure 2 is a simplification to aid the illustration: all standard
errors are equal, as if each study has identical design including sample size. A real set of
studies would not generally have standard error independent of d and d— indeed, the
usual purpose of power analysis is to design studies with standard errors dependent on
d and d by, for example, recruiting to an appropriate sample size. It is for this reason
funnel plot diagnostics are poor evidence for the presence of publication bias in meta-
analyses, despite their prevalence in education research: they check for a relationship
between d and standard error. While publication bias might cause this, so would an
intelligent research community designing studies powered for estimated effect sizes
(Terrin et al., 2003).

However, we can consider two quantities which factor out the standard error:

f ¼ d
se
, z ¼ d

se
:

Here f can be thought of as the latent signal-to-noise ratio with z as its estimate
from the RCT (or as the z score of the effect size, scaled by the standard error). They
capture much that is of interest in the usual analysis of such a trial.6 For example, a
study is statistically significant (with a ¼ :05) if jzj > 1:96 and the (two-sided) power of
the study is determined by

Uð�1:96� fÞ þ 1� Uð1:96� fÞ (1)

where U is the standard normal cumulative distribution.
Given a set of studies with some appropriate properties, the distribution of f can be

estimated from the empirical distribution of z and, from that, the extent of the winner’s
curse calculated and used to adjust the estimates. Such a set of studies needs to be
unaffected by publication bias, file drawer problems or p-hacking. It needs to have some
basic distributional assumptions: the standard error and z independent, the distribution
of z symmetric around zero and a known distribution of z given f:

With these assumptions, if z can be modeled by a mixture of normal distributions,
the distribution of f can be obtained from the deconvolution of that mixture with the
unit normal distribution. That is, as with the simulations above, one can adjust for the
winner’s curse.

6Assuming large enough sample size that the t distribution is close to normal.
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This process is best illustrated using a particular set of studies in which these assump-
tions appear to hold.

An Illustrative Example in Education

The EEF is an independent charity in the UK established in 2011 with the aim of elimi-
nating links between income and academic achievement. It has spent over £350m
(around $470m, the majority from UK government sources) to run a number of initia-
tives including a toolkit7 and guidance reports. Most of the funding is used for
“projects”—evaluations of educational interventions, normally with large scale RCTs, in
realistic educational contexts with “business as usual” comparison treatments. While the
EEF requests outcome measures are national tests, some evaluations use other standar-
dized tests, but in general the measure is a relatively distal one (in the sense of
Ruiz-Primo et al., 2002). These studies are often very expensive; for example, the imple-
mentation and evaluation of a program for parents aimed at improving student literacy
cost over £500,000 (around $670,000; Husain et al., 2018). These properties—active
comparisons, distal measures, and often heterogenous samples—will tend to result in
relatively small effect sizes (Simpson, 2017).

The EEF sets clear standards for research groups conducting evaluations. Protocols
and statistical analysis plans are normally produced in advance of the study; there is a
standard template for final evaluation reports and, crucially, all reports (and protocols
etc.) are lodged on a publicly available website (educationendowmentfoundation.org.uk).

As of March 2021, the EEF had published 106 study reports of randomized controlled
trials in education. For this analysis, the effect size (d) of the main result (taken to be
the first result reported in the executive summary), the standard error (se), and the
researcher’s claimed minimum detectable effect size (MDES) indicated in the protocol8

was obtained. From the first two, the value for z for each study was calculated. The
EEF’s approach to transparency means the set of reports has no file drawer or publica-
tion bias problems and the statistical analysis plans mitigate against p-hacking or the
“garden of forking paths” (Gelman & Loken, 2014).

The assumptions required to adjust effect sizes using van Zwet’s method are that
standard error and z are independent, the distribution of z is symmetric around zero
and distribution of z given f is known. As expected from the argument above, there is a
strong relationship between absolute effect size and standard error (r2 ¼ :27, p < :0001)
despite the EEF’s publication policy ensuring no publication bias; however, there is no
such relationship between z and standard error (r2 ¼ :0001, p ¼ :91Þ:

While the distribution of signed z-scores in the EEF data set is already close to sym-
metric around zero, this may only be evidence of the problem of finding effects when
conducting large scale evaluation studies in realistic settings with distal measures and
active comparison treatments.

7A widely used but unfortunately highly misleading set of meta-analyses which ignores the issues outlined above of
effect size comparability, so that unsurprisingly types of intervention for which clear studies are easy to design (such as
feedback) are misleadingly rated as more effective than interventions where clear studies are hard to conduct (such as
extending school time) (Simpson, 2017).
8If this was not clear in the protocol, the relevant reference to MDES in the full report was used.
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In general, the analysis of RCTs is symmetrical—a trial of treatment A against treat-
ment B is also a trial of B against A. While researchers tend to label the treatment they
believe will result in better outcomes as the “intervention” and the other “control,” the
labels could as easily be assigned by the flip of a coin. So, while the mean effect size
from a set of RCTs would be expected to be positive as a result of the researchers’
choice of labels (provided their beliefs are generally borne out), there is no problem
with relabeling. Indeed, since most of the analysis involves jzj and jfj, the discussion
follows van Zwet et al. (2021) in using the symmetrized distribution9 (illustrated in
Figure 3).

Finally, given the studies are all RCTs and result are scaled by the standard error, the
distribution of the study estimates z given the latent signal-to-noise ratio f is known:
z � Nðf, 1Þ: So, the EEF set of project studies fits the assumptions required for estimat-
ing and adjusting for the winner’s curse.

Estimating the Extent of the Winner’s Curse in the EEF Studies

To easily estimate the distribution of f, the distribution of zs is modeled as a mixture
of normal distributions centered at zero, with standard deviation greater than 1. The
mixture model ensures that the important effect of fatter tails in a set of studies is cap-
tured (Azevedo et al., 2020). For the EEF set of studies, the best fit is a mixture con-
structed of two normal components centered at zero.10 Table 1 shows the proportions
of those two components in the mixture model of z (column 1) and their standard devi-
ations (column 2). The standard deviations of the components of the modeled

0.0

0.1

0.2

0.3

−4 40
z

de
ns

ity

Figure 3. Histogram of symmetrized observed z scores for studies in the EEF set with the fitted mix-
ture model (solid black line) and its two components (dashed).

9jzj matched pairwise on size and assigned opposite signs randomly within each pair.
10Based on minimum BIC. A sensitivity analysis showed no substantial change of results with three components, with a
random sample of 90% of the set or a different pattern of symmetrization.
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distribution of f, the latent signal-to-noise ratios, are calculated from deconvolutions of
the components for the model of the distribution of z with Nð0, 1Þ (column 3). Figure
3 shows the components and mixture model for the distribution of z:

Having constructed a model for the distribution of f one can calculate the exagger-
ation ratio (the proportion by which an observed value z might be expected to overesti-
mate the latent signal-to-noise ratio f), the probability of a sign error (latent and
observed effect sizes being in opposite directions) and estimated power across the set
of studies.

Exaggeration Ratios
As noted above, the f associated with a particular z cannot be fully identified, but the
argument allows the construction of a model of the marginal distribution of z as mix-
tures of normal distributions and, as z � N f, 1ð Þ, the conditional distribution of latent
signal-to-noise ratios f given the observed estimates z can be constructed and thence
the distribution of jzj

jfj for a given z can be calculated. The quartiles of the conditional
distribution of this ratio, for given z is illustrated in Figure 4.

The expected latent signal-to-noise ratio f given z can be estimated from the model.
This is illustrated in Figure 5a and shows that for a barely significant result (z¼ 1.96),
the mean f is .79; that is, barely significant results can be adjusted for the winner’s curse
by shrinking estimates by a factor of 2.47. Figure 5b illustrates the probability that f <

Table 1. Components of models of distribution of z and f:
Proportions z f

Component 1 0.28 2.40 2.19
Component 2 0.72 1.06 0.37

25%

Median

75%

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4
z

D
is

tr
ib

ut
io

n 
le

ve
ls

 o
f |z

|

|ζ
| g

iv
en

 z

Figure 4. Median, 25th, and 75th percentiles of the distribution of the exaggeration ratio jzj
jfj condi-

tional on z:

10 A. SIMPSON



z for different values of z, suggesting that for barely significant results, there is over an
85% chance the estimated value is higher than the latent value.

Sign Errors
Recall Figure 2 showed that conditional on a given z > 0, there is a chance f < 0: That
is, the estimated value from the study has opposite sign to the latent signal-to-noise
ratio (and hence that the estimated effect size has opposite sign to the latent effect size).
Clearly, when z is close to zero, the chance of a sign error is close to .5, but even for
statistically significant studies there is a chance of a sign error. Figure 6 shows that, for
the EEF studies, the risk of sign error tails off as z increases, but given a study which is
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Figure 6. The probability that the latent effect is in the opposite direction conditional on z:
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barely statistically significant, the estimated risk of a sign error is not negligible
(around .16).

While this may appear to conflict with the intuition from the standard analysis of
RCTs with type I and II errors where (if a ¼ 0:05) there is a 5% chance of a sign error,
such intuition comes from treating a study in isolation. In this analysis, a study is con-
sidered as a member of a set: “we must view the … trial as a “typical” RCT in the sense
that its signal-to-noise ratio is exchangeable with that of the other RCTs in the … data-
base” (van Zwet et al., 2021, p. 6124). Conditional on it being a positive member of that
set and being barely significant, there is a much higher risk of a sign error.

Power
In planning their studies, EEF researchers usually determine a MDES and design their
study accordingly, normally aiming for a power of .8 to detect that MDES. The MDES
can be considered as the researchers’ lower estimate of the latent effect size in the con-
text of their study.

In the EEF reports there are different approaches to determining MDES. In some
cases, sample size is beyond researchers’ control: power calculations work from a pre-
determined sample size to assess study sensitivity, estimating the MDES for that sample
size (given type I and II error rates a and b).11 For example, the EEF project evaluating
a mathematics mastery program (Vignoles et al., 2015) required schools prepared to
convert to using a new curriculum (and also to risk their conversion being delayed if
they were assigned to the RCT’s comparison arm) so sample size was set by the curricu-
lum provider’s recruitment.

Generally, however, researchers work in the other direction if they can. Rather than
using a pre-set sample size to estimate MDES, they decide on a MDES to determine
sample size. Cohen (1988) argues this a priori approach “must be at the core of any
rational basis for deciding on the sample size to be used in an investigation” (p. 14).
There are different approaches to determining MDES, including using a pre-set stand-
ard, converting the (raw) smallest effect of interest to standardized effect size or consid-
ering effect sizes from previous studies.

For example, EEF findings are accompanied by a “security” rating. One criterion for
the highest rating is MDES no higher than .2 (EEF, 2019). Many EEF researchers thus
power their study using MDES ¼ .2 (e.g., Husain et al., 2018). Alternatively, a small
number of studies make reference in their power calculations to whether an effect is
large enough to be educationally relevant: for example, Speckesser et al. (2018) notes
“the sample size was chosen in relation to … an improvement of approximately 1/3 of
a GCSE12 grade” (p. 11).

In other cases, researchers make explicit use of previously reported effect sizes to jus-
tify MDES. This might come from widely drawn evidence; for example, in the
evaluation of a social and emotional learning program, Sloan et al. (2018) refers to

11In some cases, EEF evaluations note that this leads to poorly powered studies. For example, McNally (2014) were
constrained on the number of schools they could work with, leading to a larger than expected MDES and the concern
that the “trial is thus potentially underpowered for the small effects we are likely to obtain” which raises the question
of value for money of the trial.
12General Certificates of Secondary Education, national examinations for 16-year-olds in England.
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meta-analyses of the impact of previous social and emotional learning programs on aca-
demic performance. MDES may derive from previous studies of the same intervention,
perhaps at a previous stage of the evaluation process. For example, Robinson-Smith
et al. (n.d.) notes “At the piloting stage … the positive effect sizes of parents’ self-effi-
cacy regarding discipline and boundaries and child cognitive self-regulation were .51
and .44, respectively” (p. 16).

Inevitably the practicalities of implementation affect power of the evaluation: studies
under- or over-recruit, or parameters estimated prior to the study (such as intra-cluster
correlation coefficient) are discovered to be different in the data. Thus, the power of the
study at analysis might differ from that planned, but MDES

se is a reasonable approximation
for the researchers’ beliefs about latent signal-to-noise ratios; applying equation (1)
above gives the distribution of the researchers’ belief in the power of their studies. For
the EEF studies, the estimated power based on the researchers’ choice of MDES is illus-
trated in Figure 7a.

The calculations above model the distribution of f, the latent signal-to-noise ratios,
determined from the actual study results. Figure 7b shows the achieved power from a
sample of 10,000 simulated studies from the modeled f— that is, what power would
have been achieved if the signal-to-noise ratios are the latent ones calculated here, rather
than the researchers’ beliefs. The median power from the EEF researchers’ beliefs was
.83, the median power of simulated studies for the modeled latent signal-to-noise ratios
is .06 with only around 6% of the simulated studies having power above .8.

The Impact on Effect Sizes
Since

jdj
jdj ¼

jdj=se
jdj=se ¼

jzj
jfj

the exaggeration ratio for effect sizes is the same as that for signal-to-noise ratios. That
is, it is possible to estimate the latent effect size d for each study, by multiplying d by
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Figure 7. Comparison of predicted power and estimated actual power.
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the mean exaggeration ratio associated with the study’s z value. Figure 8 shows the out-
come of this adjustment for the 106 studies in the EEF project set.

A number of features are of interest: statistically significant studies, and most of those
with larger estimated effect size, grossly overestimate the latent effect size and that over-
estimate is not a simple scaling across the set, because the studies vary in levels of preci-
sion. As shown in Figure 5a, more precise estimates of effect size are likely to be less
inflated than less precise ones.

As a result, in some cases the order of the effect sizes can be reversed. For example,
while the evaluation of Butterfly Phonics (Merrell & Kasim, 2015) reports a larger point
estimate of effect size ðd ¼ :43Þ than Graduate Coaching Program (d ¼ :36, Lord
et al., 2015), the less precise estimate of the former means it is likely to be more
inflated. The analysis suggests the expected latent effect sizes are in the reverse order
(.19 against .30 respectively). What is less clear from Figure 8 is the extent of the sign
error. Among those studies which are statistically significant, the mean sign error is .14
and there is around a 50% chance that there are more than 3 sign errors among the 20
significant findings.

These inflation rates are considerably higher than those calculated by van Zwet and
Gelman (2022) for a set of psychology studies and a set of phase III medical trials,
where estimated mean exaggeration ratios for barely significant results were 1.7 and
1.15, respectively, reflecting that these sets probably consist of studies with much higher
power to detect their latent effects.

Limitations

This analysis naturally has limitations. First, it may not currently be widely applicable:
the EEF data set may be rather unusual in education in coming with strong evidence
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Figure 8. Effect sizes in the set of EEF studies, against their adjusted size.
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that it is free from publication bias and has statistical analysis plans that mitigate against
p-hacking and other research practices which might undermine the distributional
assumptions.

The exaggeration ratio and hence the extent to which an estimated effect size should
be shrunk depends on the choice of set to which the study is deemed to belong. A par-
ticular study’s adjustment depends on assuming it would have latent effect size drawn
from the same distribution as the set as a whole (in van Zwet & Gelman’s [2022] terms,
they need to be exchangeable on the basis of the set inclusion criteria). The narrow vari-
ance of MDES among the EEF studies suggests the research community expects similar
latent effect sizes; the nature of the EEF’s strategy ensures the set is complete and self-
contained; and the designs, context, and study populations in the set are similar, so the
EEF studies form a reasonable context for analysis.

However, if a particular study was considered as part of a different set, a different
adjustment might arise. The adjustment comes from thinking of the evidence in the set
as a whole, not of the information in each study separately. The high inflation factor in
this analysis appears to be the result of the EEF projects having many studies with very
small latent effect sizes, partly due to the decision to choose distal measures, active con-
trols and often heterogenous samples. A different set, using different inclusion criteria
and particularly with cherry-picked studies, or pre-filtered by publication bias could give
smaller inflation factors, but might also be a less justifiable basis for adjustment.

Discussion

One aim of the “evidence-based education” movement is to act as a filter, primarily for
policy but also for further research. On the basis of promise shown within a set of stud-
ies, further studies are commissioned, or policy is recommended. Such promise is often
at least partly based on having higher effect sizes: that is, by appearing to be “winners.”
Even if the set of studies from which winners are chosen is free from publication bias
and p-hacking, above average results are likely overestimates and noisy above average
results are likely gross overestimates. The mechanism developed by van Zwet and col-
leagues (van Zwet & Cator 2021; van Zwet & Gelman, 2022; van Zwet et al., 2021) gives
a basis for adjusting effect sizes in a set of studies and, when applied to a well-known
and highly respected set of RCTs, suggests that barely significant results should be
shrunk by 60%. Moreover, even if ceteris paribus arguments do all of the heavy lifting
required of them to allow effect size to be used as a measure of relative effectiveness,
some interventions with higher, but noisier, effect sizes could rationally be judged as
less effective than others with smaller, more precise, effect sizes.

The Winner’s Curse and Power Analysis

Effect size plays a key role in study design through power analysis. The evidence here
can be read as suggesting the set of EEF projects is a collection of very underpowered
studies: the median MDES predicted by the researchers was .2 but among modeled
latent effect sizes only around 4% have magnitude above .2. However, one’s reading of
this can be mediated by the approach to determining MDES.
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A study primarily designed to detect the presence of an effect with the smallest edu-
cational value (in the context of the study) are somewhat immune from the winner’s
curse, since the emphasis is on detection rather than estimation. Few EEF studies appear
to have been designed this way, but in such cases, a study is perhaps not best described
as “underpowered,” since failure to detect an effect for which it was properly powered
provides some warrant for the absence of an effect of educational value. To describe
such a study as underpowered is tantamount to arguing the designers were wrong: that
smaller effects should be considered of educational value. For example, one might argue
that an impact below 1/3 of a GCSE grade (used by Speckesser et al., 2018) would be of
considerable educational value but it is harder to maintain this study was
“underpowered” simply because it failed to detect a signal weaker than the one it was
intended to detect.13

Similarly, for studies designed around MDES set to a standard effect size (such as the
EEF’s .2), where MDES is determined by external constraints or where MDES is chosen
from previous research, one might also argue that failure to reach statistical significance
is not necessarily a sign that they are “underpowered” but instead as some level of evi-
dence that any effect was not likely to be of the size intended by the researchers.14

However, if inference of the presence of an effect is based on relative effect size across
a set, the winner’s curse will have an impact. For example, when many studies are car-
ried out powered for a particular effect size and filtered for further phases of research
on the basis of statistical significance,15 some will get through the filter even though the
latent effect size was below the MDES (and some may even get through the filter with
the wrong sign).

Power analyses which use previous research to determine MDES need to be particu-
larly aware of this. If the set of that previous research is self-contained and complete,
then the mean will be unbiased (the winner’s curse and the loser’s curse balance out). If
attention is disproportionately given to a higher part of the set—perhaps publication
bias filtered some studies out, or the MDES is chosen at the upper quartile—then the
winner’s curse will apply: the latent effect size will be less than the MDES and the study
will likely be underpowered. In particular, if an intervention is chosen for further study
from among a number of possible candidates on the basis of a previous effect size, then
that effect size is likely inflated.

Again, choice of set matters. For example, seen against the background of phonics
interventions, Butterfly Phonics’ effect size may not seem particularly large (Merrell &
Kasim, 2015). But many phonics interventions are studied with more specifically chosen
participants from homogenous populations, with highly proximal measures. Once the

13In designing such detection studies, however, one needs to be careful to decide on the smallest effect of interest
relevant to the study’s particular design and context: it is not enough to say that .2 is “educationally significant” in
some absolute sense (Jerrim, n.d.). Identical interventions will have latent effect size well above or well below .2
depending on design choices and contextual features such as the outcome measure, the comparison treatment and the
group’s heterogeneity.
14Lortie-Forgues and Inglis (2019) argue that there is generally rather poor evidence in the EEF studies either in favor
of, or against the presence of an effect. However, the argument centers on the assumption that the EEF researchers
ought to have been looking for effect sizes much smaller than those the researchers themselves claimed they were
looking for. So, the lack of “informativeness” suggested in Lortie-Forgues and Inglis’s analysis was an inevitable
consequence of the odd way the authors defined “informative” without reference to researchers’ aims.
15The EEF has flagged some projects as promising or for further funding which are far from statistically significant (e.g.,
Stokes et al., 2018), but normally interventions are flagged as promising if they are statistically significant.
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notion that effect size is somehow a property of the intervention—rather than the study
as a whole—is abandoned, one can see why an EEF evaluation of Butterfly Phonics
should not be read solely in the context of a set of phonics studies, but in the context
of the EEF studies. As an EEF study, the use of active comparisons, more heterogenous
samples and particularly distal measures means latent effect sizes will be expected to be
much smaller, and so significant effect sizes more exaggerated.

As well as attending to the set, using effect size in planning future studies needs to
account for the nature of the study. If a replication is not exact, designers also have
to account for the study differences when estimating MDES. An aim of the EEF is to
evaluate programs in the most realistic contexts with widely drawn populations, active
comparisons and national tests (which are likely to be less well related to the impact of
the difference in treatments): ideal conditions for small latent effect sizes. So, the transi-
tion from pilot to efficacy to effectiveness studies would be expected to come with sub-
stantially reduced latent effect sizes at each stage, even if all interventions were taken
forward without filtering. Given that the transition does also involve filtering, it will suf-
fer the winner’s curse where latent effect sizes might be expected to be very much
smaller again than those previously reported.

The analysis above suggests that expected latent effect sizes in the EEF studies are
well below the effect sizes the researchers intended to detect. A way of minimizing the
impact of the winner’s curse is to be more realistic about the power of studies. This
might mean accepting that simple RCT designs with relatively heterogenous popula-
tions, active comparison treatments and weakly aligned measures will tend to have
much smaller effects than the EEF’s standard .2 and valuable research resource may con-
tinue to be wasted if researchers continue to search for effect sizes too large to be justi-
fied. Increasing sample sizes to have a good chance of detecting small latent effect sizes
will often be impractical. Redesigning studies to increase the latent effect size by target-
ing interventions on more homogenous groups or using more proximal outcome meas-
ures might allow for studies with acceptable sample sizes to be well powered, even if
this comes at the expense of the realistic contexts EBE researchers would prefer.

Policy

While the winner’s curse has implications for designing future studies, it also impacts
the filtering of studies for policy, whether that filter is statistical significance or any
similar mechanism which disproportionately draws attention to a set of studies with
higher values. Young et al. (2002) outlines a number of models of the process by which
policy makers and knowledge generators interact. Their “knowledge driven model,” in
which the role of policy makers is to implement whatever research findings are passed
to them, is unlikely to be common in education. The relationship is more likely to be in
the other direction: policy makers seeking to solve a problem either surveying existing
research on potential solutions for the best outcome, or commissioning studies of vari-
ous interventions, from among which the best are chosen. This is arguably the reason
for the existence of the EEF in the UK, the Investing in Innovation (i3) and Education
Innovation and Research (EIR) grants in the US and similar organizations.
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This approach again results in a set of evidence which is filtered on the basis of an out-
come measured with noise—prime conditions for the winner’s curse. Seemingly more suc-
cessful interventions might be the result of lucky randomization and thus have inflated effect
sizes, with noisier studies which get through the filter being likely to suffer more inflation-
ary effects.

The approach taken by Gelman and Carlin (2014)—type M and S errors—considers
how we can adjust for one particular study in the context of a prior understanding con-
cerning the “true” value of the parameter. That may be useful to policy makers in helping
them avoid overreacting to one surprisingly successful study and perhaps encouraging
them to be a little bit Bayesian, but policy makers seeking evidence for good interventions
are unlikely to already know the true values. Indeed, policy makers are often faced with a
wide array of evidence from which to select a set of policies, rather than deciding whether
or not to implement a particular isolated policy. In this case, they may naturally look to
relevant interventions which seem to score highest on the metrics they value. While policy
making is likely to be more involved than choosing on highest effect size, it is a driver
behind key documents such as high profile practice guides (e.g., Fuchs et al., 2021;
Hodgen et al., 2018). Even if all that involves is drawing attention away from interventions
whose evaluations resulted in lower or middle effect sizes, the winner’s curse will arise.
The analysis here not only reinforces that, when selections on higher size are made, meas-
ures of those chosen are likely overestimates, but shows that one can adjust for the exag-
geration in the context of the set of potential policies and can identify circumstances in
which an intervention with a lower, less noisy value might be preferred.

Of course, when the metric that is valued is effect size, these arguments can only
come after accounting for the complexities in reasoning that an apparent positive causal
role played by an intervention in the context of a study will transport to policy and
practice (Cartwright & Hardie, 2012) and somehow convincingly showing that all the
ceteris paribus arguments needed to make effect size a reasonable measure of relative
effectiveness do really hold (Simpson, 2017). Once all that is done, knowledge of the
winner’s curse and mechanisms for adjusting estimates may help policy makers avoid
apparently successful studies becoming a recipe for disappointment.
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