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1. Assessing the accuracy of RS BA products 26 

1.1. Method 27 

Unlike boreal forests in North America and Scandinavia, the Russian boreal forest has a well-documented lack of site-28 

level burn scar mapping that can be used to validate BA products (Burrell et al., 2021). This is especially true in parts 29 

of the former Soviet Union where, in some locations, the memory of individual foresters constitutes the only records 30 

of fires.  31 

To assess the BA products, we estimated site-level fire histories at 50 existing field sites located in southern Siberia 32 

(Barrett et al., 2020) using Google Earth Engine to identify available Landsat images. For each site a time lapse video 33 

was built showing the R-G-B scenes as well as near infrared (NIR)-R-G and shortwave infrared (SIR)-NIR-R false colour 34 

composites. We used these videos to record every fire or disturbance event at the site, as well as within a 1 km-by-1 35 

km bounding box around each site. To reduce the risk of user-error, every site was assessed by at least two people 36 

independently. Examples of a burn in these images are included in Supplementary Figure 1. We compared this user 37 

generated fire history with the BA products and scored the products using the following criteria: Correct Detection 38 

(CD) is a burn that is apparent in both the user generated and BA product (±1 year to account for gaps in the Landsat 39 

record). A Spatial Underestimation (SU) is when the BA product detects a fire in the 1 km x 1 km, but not in the pixel 40 

that includes the site, whilst the user generated fire history has the fire impacting the site. A Spatial Overestimation 41 

(SO) is the opposite of a Spatial Underestimation, with the manual fire history recording a fire in the box but not 42 

impacting the site, whilst the BA product detects a fire disturbance at the site. A False Negative (FN) represents a fire 43 

in the manual fire history but not in the BA data. A False Positive (FP) represents a fire in the BA that could not be 44 

observed in the manual fire history. A similar approach was used to assess HansenGFC, though all stand loss 45 

disturbances were considered, and for HansenGFC-MAF, in which case only stand loss driven by fire events, was 46 

included. GFED4 was not assessed because its spatial resolution is too coarse for site-level accuracy assessments.  47 

The main limitation to our time-series based approach to identifying burned areas is that, whilst it is easy to detect 48 

stand-replacing fires in the Landsat images because the impacts are apparent for years after the actual burn, gaps in 49 

the Landsat record mean it is easy to miss low severity understory or grassland fires. This is a potential problem 50 

because forests that are regenerating after a stand-replacing fire are dominated by grasses (Kukavskaya et al., 2014) 51 

and are spectrally similar to grasslands. As such, our ability to assess Correct Detections (CD) of burned area and 52 

False Negatives (FN) is much higher than our ability to assess False Positives (FP), with a portion of the FP’s we 53 

observe likely being correct detections that could not be seen in the available Landsat images due to low fire 54 

severity.  55 
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1.2. Results and Discussion  57 

 We find that all three BA products have low accuracy, with the most accurate dataset (FireCCI51) only correctly 58 

detecting fires ca. 34 % of the time (Supplementary Figure 2). This is in line with previous assessments of the 59 

accuracy of BA products that have shown that, whilst performance in boreal forest is better than other ecozones 60 

(Humber et al., 2019), the rates of both omission (False Negative) and commission (False Positive) errors are 61 

generally high, and omissions exceed commissions in most studies (Brennan et al., 2019; Giglio et al., 2018; Humber 62 

et al., 2019; Lizundia-Loiola et al., 2020). 63 

While the low accuracy of BA products is a problem that requires further research (Humber et al., 2019), it only 64 

impacts our ability to use FRI to infer the risk of permanent forest loss if the BA datasets have a significant positive 65 

bias. We find that all the BA products tend to underestimate the spatial extent of burns. MCD64A1 and CGLS-BA also 66 

have a net omission bias which suggests that the FRI’s calculated using these datasets underestimate the risk of FRI-67 

driven forest loss. While we could not assess the accuracy of GFED4 directly, it detects less burnt area in the Eurasian 68 

forest than MCD64A1. Because our results and previous studies have shown MCD64A1 to have a net omission bias 69 

(Humber et al., 2019), we therefore assume GFED4 also has a net omission bias and thereby overestimates FRI. This 70 

is in line with previous assessments of the accuracy of BA products that have shown that, whilst performance in 71 

boreal forest is better than other ecozones (Humber et al., 2019), the rates of both omission (False Negative) and 72 

commission (False Positive) errors are generally high, and omissions exceed commissions in most studies (Brennan et 73 

al., 2019; Giglio et al., 2018; Humber et al., 2019; Lizundia-Loiola et al., 2020). 74 

In contrast to MCD64A1 and CGLS-BA, the false positive rate of FireCCI51 exceeds the false negative rate. Although 75 

this does suggest that the FRI calculated from FireCCI51 may overestimate the risk of permanent forest loss, our 76 

method used to assess the accuracy of the datasets is likely to overestimate the rate of False Positives. The same 77 

limitation in our assessment method may also explain why HansenGFC and HansenGFC-MAF have unexpectedly high 78 

rates of commission error (Krylov et al., 2014). Previous studies have shown that MCD64A1 underestimates BA in 79 

boreal Eurasia and that FireCCI51 corrects for this bias whilst still retaining a net omission bias (Humber et al., 2019; 80 

Lizundia-Loiola et al., 2020). Taken together, our results suggest that the FRI is a useful proxy for assessing RF risk in 81 

boreal forests. They also suggest that FRI calculated using MCD64A1 and FireCCI51 are likely the most accurate, with 82 

MCD64A1 representing a lower bound on burnt area and FireCCI51 likely closest to the actual FRI.  83 

CGLS-BA has the lowest accuracy (Supplementary Figure 2) and has significant spatial differences in estimated FRI 84 

(Figure 2). The differences in the south-eastern portion of the study are unsurprising because CGLS-BA has a much 85 

shorter record and cannot capture fires during spring or autumn north of 51oN (Smets et al., 2017). This is 86 

problematic because in south-eastern Siberia the fire season starts as early as March (Feurdean et al., 2020; 87 

Hayasaka et al., 2020; Shvetsov et al., 2019). However, this cannot explain why CGLS-BA has much shorter FRI’s in 88 

north-western Siberia. Previous assessments of BA accuracy noted the tendency for CGLS-BA to overestimates burns 89 

in this region (Humber et al., 2019). These same issues also impact the ML model. Whilst there is generally good 90 

agreement between different models regarding feature importance, the CGLS-BA based model diverges from the 91 

other models with much lower permutation importance for winter and spring temperature (Figure 7). This is 92 

particularly interesting because winter and early spring climate is strongly tied to spring fire events (Feurdean et al., 93 



2020; Kim et al., 2020), which CGLS-BA cannot detect.  This supports the idea that permutation importance is more 94 

accurately capturing the real variable importance, a result which is expected given previous studies that have 95 

compared the methods (Wei et al., 2015). 96 

 97 
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 103 
Figure S1 - Example of a 2015 burn at a test site. NGR is a Near Infrared, Red, Green false-104 

colour image. RGB is the true colour image and SNR is the Shortwave Infrared, Near Infrared, red 105 

false-colour image. The blue box is a 1 kmx1 km area around the site that matches the exact grid 106 

of the BA datasets and the blue dot in the box is the location of the site. The top row of images are 107 

from 2015-03-18 and the bottom row are from 2015-09-08.   108 
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 110 

Figure S2 Accuracy of BA and forest loss products at sites in the Zabaikal region. The BA 111 

products are compared to a manually generated fire history constructed at each site using the 112 

entire Landsat archive.  An event is a burn that is observed in the Landsat record and/or the BA 113 

product.   114 

 115 

 116 

 117 
Figure S3 – Disturbance return interval. The DRI sans fires (DRISF) calculated by removing the 118 

forest attributable to fire (HansenGFC-AFM) from the DRI (HansenGFC).  119 



 120 

Figure S4 Stand-replacing fire fraction.  Binned probabilty distribution histogram of the stand-121 

replacing fire fraction (FireCCI5.1 mean annual burn fraction / HansenGFC-MAF mean annual 122 

burn fraction) for the dominant tree species.  Areas where tree species data were unavilable, or 123 

where FireCCI5.1 FRI> 10,000 yrs, were excluded.   124 

 125 
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 127 
Figure S5 - Climate change driven trends in seasonal accumulated Precipitation and mean 128 

Temperature for the period 1985 to 2015. This figure uses the meteorological seasons December 129 

January February (DJF), March April May (MAM), June July August (JJA) and September October 130 

November (SON).  Non-boreal forest ecosystems are masked in grey and the stippling indicates 131 

statistical significance (αFDR = 0.10). Data: TerraClimate (Abatzoglou et al., 2018) 132 



 133 
Figure S6 - Mean seasonal climatology for the period 1985 to 2015. This figure uses the 134 

meteorological seasons December January February (DJF), March April May (MAM), June July 135 

August (JJA) and September October November (SON).  Non-boreal forest ecosystems are 136 

masked in grey. Data: TerraClimate (Abatzoglou et al., 2018) 137 
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Figure S7 - Maps of the predicted FRI based on current climate trend, XGBoost ML and 143 

MCD64A1 FRI data. TCpred is the Terraclimate prediction for a 40C warmer world which is 144 

approximately SSP3-7.0 2085 – 2115. Non-boreal forest ecosystems are masked in grey. 145 



 146 
Figure S8 -Maps of the predicted FRI based on current climate trend, XGBoost ML and GFED 147 

FRI data. TCpred is the Terraclimate prediction for a 40C warmer world which is approximately 148 

SSP3-7.0 2085 – 2115. Non-boreal forest ecosystems are masked in grey. 149 
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 151 
Figure S9 - Maps of the predicted FRI based on current climate trend, XGBoost ML and CGLS-152 

BA FRI data. TCpred is the Terraclimate prediction for a 40C warmer world which is approximately 153 

SSP3-7.0 2085 – 2115. Non-boreal forest ecosystems are masked in grey. 154 
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 157 
Figure S10 - Maps of the predicted FRI based on current climate trend, OLS and FireCCI51 FRI 158 

data. TCpred is the Terraclimate prediction for a 40C warmer world which is approximately SSP3-159 

7.0 2085 – 2115. Non-boreal forest ecosystems are masked in grey. 160 

 161 
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 163 
Figure S11 - Maps of the predicted FRI based on current climate trend, OLS and MCD64A1 FRI 164 

data. TCpred is the Terraclimate prediction for a 40C warmer world which is approximately SSP3-165 

7.0 2085 – 2115. Non-boreal forest ecosystems are masked in grey. 166 
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 168 
Figure S12 - Maps of the predicted FRI based on current climate trend, OLS and GFED4 FRI 169 

data. TCpred is the Terraclimate prediction for a 40C warmer world which is approximately SSP3-170 

7.0 2085 – 2115. Non-boreal forest ecosystems are masked in grey. 171 
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 173 
Figure S13 - Maps of the predicted FRI based on current climate trend, OLS and CGLS-BA FRI 174 

data. TCpred is the Terraclimate prediction for a 40C warmer world which is approximately SSP3-175 

7.0 2085 – 2115. Non-boreal forest ecosystems are masked in grey. 176 
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