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SUMMARY

Monte Carlo methods are widespread in geophysics and have proved to be powerful in non-
linear inverse problems. However, they are associated with significant practical challenges,
including long calculation times, large output ensembles of Earth models, and difficulties in
the appraisal of the results. This paper addresses some of these challenges using generative
models, a family of tools that have recently attracted much attention in the machine learning
literature. Generative models can, in principle, learn a probability distribution from a set of
given samples and also provide a means for rapid generation of new samples which follow that
approximated distribution. These two features make them well suited for application to the
outputs of Monte Carlo algorithms. In particular, training a generative model on the posterior
distribution of a Bayesian inference problem provides two main possibilities. First, the number
of parameters in the generative model is much smaller than the number of values stored in the
ensemble, leading to large compression rates. Secondly, once trained, the generative model
can be used to draw any number of samples, thereby eliminating the dependence on an often
large and unwieldy ensemble. These advantages pave new pathways for the use of Monte
Carlo ensembles, including improved storage and communication of the results, enhanced
calculation of numerical integrals, and the potential for convergence assessment of the Monte
Carlo procedure. Here, these concepts are initially demonstrated using a simple synthetic
example that scales into higher dimensions. They are then applied to a large ensemble of shear
wave velocity models of the core—mantle boundary, recently produced in a Monte Carlo study.
These examples demonstrate the effectiveness of using generative models to approximate
posterior ensembles, and indicate directions to address various challenges in Monte Carlo
inversion.

Key words: Inverse theory; Neural networks, fuzzy logic; Probability distributions; Statisti-
cal methods; Machine learning.

Due to these common characteristics of non-uniqueness and
trade-offs it is often not meaningful to construct a single solu-
tion to an inverse problem, but a wide range of solutions should be
taken into account. One route to this comes from ensemble inver-

1 INTRODUCTION

In geophysics, we are primarily interested in the structure and pro-
cesses of Earth’s interior, from shallow ore deposits in the crust to

processes taking place in the mantle and the structure of Earth’s
core. However, almost all observations are made with instruments
at Earth’s surface, or satellites above it. As a consequence, avail-
able constraints on a particular study object are of indirect nature,
leading to challenges when building models of Earth’s interior from
sparse and incomplete surface observations. For a particular set of
observations, often a large number of possible Earth models are
equally well suited. Also, model parameters are often correlated so
that care has to be taken when exploring the parameter space, for ex-
ample to obtain statistically independent samples in a probabilistic
setting.

sion, where a large set of samples is built which together charac-
terize the uncertainty and non-uniqueness of the model properties.
A popular class of methods are Monte Carlo algorithms, and the
resulting ensemble is usually interpreted in terms of a probability
density function (for an overview see, e.g. Sambridge & Mosegaard
2002). Recent applications of Monte Carlo inverse methods in geo-
physics are diverse and include, among many others, the estimation
of Curie depth from different types of observations (Mather & Ful-
lea 2019), inversion for fault slip parameters (Hallo & Gallovi¢
2020), a framework to invert for mantle conditions from mafic rock
samples (Oliveira ef al. 2021), and the creation of a high-resolution
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shear-velocity map of the core—mantle boundary (Mousavi et al.
2021).

After constructing a solution to the inverse problem, a final en-
semble may contain of the order of 10 to 107 individual models,
and this may be only a subset of the total number of models tested.
The computational cost associated with each model may be high,
so that it is not uncommon for computations to take several months
(e.g. Mousavi ef al. 2021), making Monte Carlo methods infamous
for the high computational effort they require. The large number
of models in an ensemble, combined with a high-dimensional pa-
rameter space (model dimensions of order 10? to 10* are common)
leads to a huge volume of digital outputs that must be stored, inter-
rogated and manipulated. Despite this high volume, there are often
still applications where an even larger ensemble would be desir-
able. The employment of supercomputers can help to mitigate these
challenges, but the necessary amount of samples often scales expo-
nentially with model dimension so that new statistical approaches
seem to offer more sustainable solutions.

Another common issue involves the interpretation of the solu-
tion. Given the challenges of accessing and working with a large
ensemble, it can be difficult to fully appreciate the information it
contains. Furthermore, publishing the complete solution, or shar-
ing it with collaborators, may be infeasible. Many studies rely on a
detailed analysis, for example exploiting information contained in
covariance properties (Burdick & Leki¢ 2017; Rudolph et al. 2020)
or the analysis of multimodal structures in the model parameters
(Olugboji et al. 2017; Burdick & Leki¢ 2017). However, in many
other studies only mean and variance of a model ensemble are re-
ported, ignoring potentially important details of the higher-order
information contained in the ensemble. Later studies are then un-
able to fully exploit or contest earlier results, and there is potential
for misleading results.

In this study, we devise new pathways which can help overcome
some of the challenges inherent to Monte Carlo ensembles. We
leverage recent progress in the field of machine learning, and use
a class of models known as generative models (e.g. Kingma &
Welling 2014; Goodfellow ef al. 2014; Sohl-Dickstein ef al. 2015;
Rezende & Mohamed 2016). These are able to capture the intrinsic
distribution of a large collection of samples, and are therefore well-
suited for the use in combination with outputs from Monte Carlo
inversion. We focus on the situation where a model ensemble has
already been obtained, and outline different ways in which genera-
tive models may be applied to this ensemble in order to improve its
handling, interpretability and usage in subsequent studies.
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The methodology presented can be seen as an ‘add-on’ rather than
replacement of existing sampling strategies, and is compatible with
any Monte Carlo algorithm. It enables the information contained
within a model ensemble to be represented in an efficient form.
Rather than storing the individual realizations that comprise the en-
semble, a generative model aims to capture its underlying statistical
properties and enable the generation of new sets of samples that are
indistinguishable from the original. Storage requirements for this
are a fraction of those for the full ensemble, allowing easy sharing
with collaborators and the community. Subsequent studies can then
exploit the full information content of the ensemble, rather than re-
lying on low-order approximations, and the ability to generate new
samples can help to minimize sample size errors in evaluation of
integrals such as mean, marginals, and covariances. In addition, we
propose ways to analyse and interpret the results from Monte Carlo
inversion in a more meaningful manner, better-exploiting the vast
amount of information they contain.

We begin the paper in Section 2 with a motivating example, a
briefintroduction to generative models, and an overview on previous
applications in geophysics. Then, our main concepts are illustrated
with a synthetic example in Section 3, including a demonstration of
enhanced calculation of numerical integrals, which are common in
Monte Carlo inversion. In Section 4, we apply a generative model
to a real geophysical ensemble from a previous study, showing
the applicability to large ensembles. In Section 5, we discuss the
main contributions of our approach and outline potential future
directions. We conclude the study by summarizing our main findings
in Section 6.

2 METHODOLOGY

2.1 A motivating example

Consider the following situation: we have obtained samples from
a certain distribution, but for some reason, the number of samples
we could collect was limited. This is a common problem, especially
when the generation of each sample is expensive, for example rock
samples from a remote study area or outputs from a complex com-
puter code. This leads to a sparsely sampled distribution, which may
then create challenges for further analysis. An example is shown in
Fig. 1(a), where 30 samples have been obtained that are distributed
according to the displayed histogram.

It is common in such a situation to calculate mean, mode or
median along with the variance for an estimate of location and

(a) (b)
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Figure 1. A simplified Gaussian example showing the capabilities of generative models to compress and enhance ensembles. (a) A set of 30 observed samples;
(b) Gaussian approximation to observed samples; (c) 10000 samples drawn from the Gaussian distribution. Two values (mean and standard deviation) are
sufficient to store the original information and then generate any amount of samples with the same approximate characteristics.
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spread of the samples. Hence, we can reduce the information in our
30 samples down to only two numbers, which from a compression
perspective reduces the amount of data by 93 per cent. If we wished,
we could go a step further and approximate the data set with a
Gaussian distribution, which is shown in Fig. 1(b) together with its
mean and standard deviation.

This Gaussian approximation can not only be used to describe
the data, but also defines a probability distribution from which sam-
ples can be drawn. It can therefore be seen as a simple generative
model. In Fig. 1(c), 10 000 samples were drawn, yielding a smooth
histogram that approximates the statistical properties of the original
ensemble. The ability to generate such samples may be advanta-
geous: for example, subsequent modelling or analysis may depend
on a high sample density for stability.

This simple example demonstrates some of the most important
points that we aim to convey in this study: it is possible to find an
appropriately chosen parametric distribution that captures the sta-
tistical properties of interest of a given ensemble of observations.
This can then be used to generate more samples at low cost. In the
present example, the data structure is very simple, so that a Gaus-
sian approximation is sufficient. When the data are distributed in a
more complicated manner, we can make use of more sophisticated
generative models to achieve the same goal. This is the idea that the
remainder of this study explores.

2.2 Generative models

A generative model is a tool that can generate random samples,
used as a representation of some system or process. As we have
seen, simple data sets may be adequately represented as a Gaussian
distribution to capture the statistical properties of interest; more
complex situations require a more sophisticated approach. Just as
Gaussian-distributed random numbers can be generated by apply-
ing the Box—Muller transform (Box & Muller 1958) to uniform
random samples, we can represent arbitrary distributions as trans-
formations of simple ones. In particular, this suggests approaches
that borrow from the heritage of machine learning and neural net-
works, leading to many varieties of generative models such as vari-
ational autoencoders (Kingma & Welling 2014), generative adver-
sarial networks (GANs; Goodfellow et al. 2014), diffusion models
(Sohl-Dickstein et al. 2015) and flow-based models (Rezende &
Mohamed 2016).

GANSs are one of the most popular types of generative models,
and they consist of two neural networks, a ‘generator’ and a ‘dis-
criminator’. Each of these networks has its own task: the generator
aims to produce samples (‘fake data’) that look as similar as possible
to a given set of samples from the target distribution (‘real data’);
the discriminator’s goal is to distinguish real from fake data. The
optimization (‘training’) of the internal network parameters is done
in a competitive manner where each network seeks to outperform
the other. If training is successful, the output from the generator
is indistinguishable from the training data and samples from the
generator can be used as if they came from the target distribution.

In this study, we adopt GANs as our representative of generative
models and use different variants of them in the examples below.
However, nothing in our approach is specific to GANs, and other
classes of generative model could also be used. A more compre-
hensive introduction to GANs is given in Appendix A, and the
exact settings of all used GANs are summarized and discussed in
Appendix B.

2.2.1 Previous applications in geophysics

In geophysics, generative models have previously been used in a
variety of settings. Among the first is the study by Li ez al. (2018)
who used the discriminator of a GAN for earthquake detection in
an earthquake early warning context. Florez et al. (2020) trained a
Wasserstein GAN on a large data set of accelerograms, allowing for
generation of synthetic accelerograms in an engineering application.
Other applications include the generation of seismic signals from
volcanic eruptions (Grijalva et al. 2021), seismic data interpolation
(Oliveira et al. 2018), seismic data reconstruction (Siahkoohi et al.
2018) and first arrival picking (Zhang & Sheng 2020). Henriques
etal. (2021) used variational autoencoders and normalizing flows to
augment data in an application related to the imaging of salt bodies.

A number of previous studies have also used generative models
in a geophysical inversion context. Araya-Polo ez al. (2019) used
GANSs to augment existing seismic data, which was then used to
drive neural network-based tomography. Another example is the
application of a cycle-GAN to map between geological structure
and seismic wavefield, enabling fast forward modelling and fast
inversion (Mosser et al. 2018). Several studies have attempted to
perform an inversion in the low-dimensional latent space of a gener-
ative model rather than in the more complex physical model space,
both in deterministic, gradient-based inversion (Laloy et al. 2019;
Lopez-Alvis et al. 2021) and in probabilistic, sampling-based set-
tings (Laloy et al. 2018; Mosser et al. 2020). Zhang & Curtis (2021)
included a latent space into invertible neural networks which after
training allows probabilistic sampling from the posterior ensem-
ble, which can effectively be seen as a generative model. In active
seismics, normalizing flows have been used for imaging purposes
(Siahkoohi & Herrmann 2021). Moment tensor inversion has been
performed with an ensemble of Bayesian neural networks (Stein-
berg et al. 2021). From a viewpoint of variational inference, Zhao
et al. (2022) used normalizing flows in an attempt to replace McMC
algorithms by more efficient methods.

All these previous studies applied generative models to data anal-
ysis or directly in inversion applications. To our knowledge, this
study is the first that focuses on an application of generative models
to an existing ensemble of Earth models, for the purpose of making
its handling less cumbersome and analysis more practical.

3 SYNTHETIC EXAMPLE

3.1 A non-Gaussian example

In this section, we extend the motivating example from Section 2.1
to a non-Gaussian case. We adopt an example used by Kéufl ez al.
(2016), where the governing probability density function of an en-
semble has all samples at the same distance d = 0.7 from the origin,
with added Gaussian noise o = 0.1. This leads to an ensemble
forming a ring around the origin in two dimensions and a (hyper-
)sphere in three (or more) dimensions. We start with the 2-D case
in which the ensemble is distributed in the shape of a circle, and an
McMC-generated ensemble of 100 000 samples is shown in the top
right panel in Fig. 2, together with its marginals in each coordinate.

Due to its multimodality and the coupling between dimensions,
this distribution can not be approximated by a (multivariate) normal
distribution in Cartesian coordinates, but is well suited to use with a
generative model such as a GAN. With sufficient samples, training
a GAN on this ensemble gives a good representation of the circu-
lar distribution, including its marginals (see bottom right panel of
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Figure 2. A non-Gaussian example. Ensembles of different sizes (black) are used as training data for GANs which aim to reproduce them (purple). GANs are
able to reproduce arbitrary ensembles and to approximate the governing probability distribution from a finite number of samples.

Fig. 2). As the full ensemble has 100 000 2-D points, 200 000 num-
bers need to be stored for the full ensemble. After training the GAN,
the same information can be stored in 10252 trainable parameters
of the generator, leading to a compression rate of 95 per cent (refer
to Appendix B1 for details on the network architecture). While the
ring might be expressed by a smaller set of parameters in a suit-
able basis (e.g. a Gaussian in radius), we note that GANs do not
assume any particular parametric form for the distribution and are,
in principle, agnostic to the underlying structure of the data they
are trained on. They are therefore more generally applicable and the
example presented here might easily be exchanged by one without
a simple human interpretation.

Similar to the first example from Section 2.1, we can also use
the GAN to enhance an undersampled distribution. The first three
panels of Fig. 2 show reconstruction based on a small fraction of
the same ensemble. Large gaps are seen in the joint distribution and
the marginals are represented unsatisfactorily. Again, we can train a
GAN to generate new samples for each of these cases, leading to the
results shown in the first three panels of the second row of Fig. 2. In
all cases, the new samples are consistent with the larger ensemble
with some artefacts appearing for the smallest training set. In this
experiment, we added uncorrelated Gaussian noise with a standard
deviation of 0.1 to the training samples. While this leads to some
smoothing of the obtained circle, it is an effective and common
means to augment the training data and decrease the potential for
overfitting (e.g. Bishop 2006).

3.2 GAN-enhanced numerical integration

In many applications, samples are collected to be used for further
analysis. This often involves mapping the samples into a different
domain (e.g. by conducting numerical or physical testing on each),
and the accuracy or interpretability of results may depend on the
density of the original set of samples. For example, an ensemble
might be sufficient to represent the overall structure of a function,
but might need to be combined with another function of higher

complexity. A common example of this class of problem is the task
of numerical integration. To illustrate the problem, we investigate
numerical integrals of the general form

= / P00 f ()i, (1)

where f(x) is a function that should be integrated, weighted by a
probability distribution p(x). It is worth recalling that the calculation
of all properties of interest for Monte Carlo ensembles can be cast
in this form, for example mean, marginals and covariances (e.g.
Sambridge & Mosegaard 2002). We assume that the distribution
p(x) is known only in the form of an ensemble of samples. It is
therefore necessary to approximate integrals as in eq. (1) with Monte
Carlo integration. Typically, this involves a sum

1% 5 Y ) @

xieX

where X is a set of N random samples that are distributed according
to p(x). The accuracy of this approximation improves as /N increases,
and is governed by the complexity of both p and f. One can therefore
readily envisage situations where the structure of p can be captured
using a modest number of samples, which proves insufficient for
accurate evaluation of the integral.

In this case, we propose that a generative model can be con-
structed to mimic the distribution p(x). This can then be used to
generate the ensemble X', with as many samples as are required
to adequately capture the features of f{x). In cases where sampling
from p is expensive or otherwise difficult, this may be a highly
effective approach.

In the following example, the probability distribution from the
previous section acts as p(x), and the function to be integrated is
defined as
f(p) = sin(wep), w=0.5,15,2.5,.., 3)

where ¢ = arctan(?) is the azimuth of'a sample on the circle and w is
a frequency of the sine curve. The upper three panels in Fig. 3 show
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Figure 3. Example for improved solution of numerical integration with generative models. Top row: three examples with different frequencies of the function
that is integrated. Bottom left-hand panel: relative error of the integral for the ensembles from Fig. 2. Bottom right-hand panel: relative error when training a

GAN on each ensemble and then drawing a large amount of samples.

three examples of f(x) with different angular frequencies of 3.5,
10.5 and 24.5. The complexity of the function increases for higher
frequencies, where it becomes increasingly important to perform
the integration with a larger ensemble.

The lower left-hand panel in Fig. 3 shows the results when
performing the integration with the original Monte Carlo ensembles
0200, 600, 1000 and 100 000 samples that were investigated in the
previous section. The integral of p(x)f{¢) is then computed for each
frequency between 0.5 and 99.5, and the relative error with respect
to the analytical solution

=2 @

is calculated. This is repeated for 10 different independent chains,
and the standard deviation of the relative error across the chains is
calculated for each frequency.

The results show that for the limited ensembles (200, 600, 1000
samples) the error increases rapidly with the complexity of the func-
tion (i.e. the sine frequency). A similar tendency can be observed
for a large, densely sampled ensemble of 100 000 samples, but the
overall accuracy is much better.

Next, a GAN was trained on each representation of the circular
distribution, leading to 40 GANSs in total (four ensemble sizes with
10 chains each). From each of these GANs, 100 000 samples were
drawn and used to compute the value of the integrals across frequen-
cies. As the lower right-hand panel in Fig. 3 shows, the accuracy of
all these experiments is comparable to the large original ensemble.
This means that even the ensemble with only 200 samples can give
excellent results in numerical integration for the highest frequency
case by training a GAN on it. In this case, 100 000 samples were

drawn from the GANS, and the cost of GAN samples are much lower
than obtaining them from Monte Carlo sampling of the distribution

P(x) or pXf(x).

3.3 The curse of dimensionality

Extending the example problem to higher dimensions, we obtain
hyperspheres, which are shown in the first row of Fig. 4 for 2, 3, 4,
7 and 10 dimensions, projected into the x;—x, plane. While in two
dimensions this gives the ring from the previous example, for higher
dimensions the samples are increasingly focused in the centre. This
effect is a consequence of the well-known curse of dimensionality
(e.g. Curtis & Lomax 2001).

The challenges that come with the curse of dimensionality are
clearly visible in the second row of Fig. 4, which shows only those
samples that are close (d < 0.15) to the x;—x, plane. The number
of points contained in this plane rapidly decreases in higher dimen-
sions. If we wish to densely sample this plane of a high-dimensional
hypersphere, it quickly becomes infeasible, and practitioners are of-
ten limited to sparse ensembles.

Applying the upscaling approach, we train a GAN on each of the
ensembles (for details see Appendix B1). From this, GAN samples
can be drawn at limited cost, improving the ability to obtain a densely
sampled ensemble, as shown in the third row of Fig. 4. In the 10-D
case, 2 billion samples had to be drawn to obtain 300 000 samples
close to the plane. This took around 46 min once the network was
trained, a dramatic reduction compared to the 120 hr that would
be required to obtain the same amount of samples from McMC
sampling (all calculations were performed on a 3.7 GHz Intel Core
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Figure 4. First row: samples on hyperspheres of different dimensionalities. Second row: only those samples that are close (d < 0.15) to the x;—x, plane. Third
row: GAN samples in the x;—x, plane. A GAN can significantly increase the sample density based on a sparse ensemble.

i5 processor with 16 GB 2667 MHz DDR4 RAM). Therefore, our
approach offers a strategy to deal with the curse of dimensionality
and enhance an ensemble if the available samples represent the
structure of the underlying distribution well, and if the GAN is able
to represent that structure in terms of the statistical properties of
interest.

3.4 Discussion

These experiments on a synthetic example illustrate all the major
concepts we aim to convey in this study, and it is worth summarizing
them before moving on to a real geophysical example. The tests in
Section 3.1 have demonstrated that it is possible to use generative
models to (i) compress a large and complex ensemble into a neural
network of much smaller size; and (ii) to enhance a small ensemble
to a larger size in cases where the available samples contain all
significant information on the ensemble structure. While (i) can be
useful in storing and communicating the results without depending
on the original large and static ensemble, (ii) leads to the possibility
of obtaining larger ensembles without additional sampling, at low
cost once the network is trained.

This larger ensemble can then be used for subsequent calcula-
tions, a common example of which is the calculation of numerical
integrals which may depend strongly on the number of available
samples. This example has been demonstrated successfully in Sec-
tion 3.2, where training a generative model on an available sparse
collection of samples improved the quality of the resulting integrals
significantly. Another related aspect that might be useful to prac-
titioners is shown in Section 3.3, where it was demonstrated that
some challenges associated with the curse of dimensionality can

be overcome by enhancing the ensemble size of an original, sparse
ensemble.

These concepts are further examined and discussed in the follow-
ing sections, where a real ensemble from a geophysical inversion
study is learned with a generative model. This example comes with
further challenges: it has a much higher dimensionality, the distri-
bution is more irregular, the digital volume of the ensemble is larger,
and consequently training the generative model becomes more chal-
lenging and cost-intensive. Nevertheless, the results show that all
the concepts introduced in the synthetic example can also be applied
to this larger example, qualitatively demonstrating its applicability
to real geophysical inversion studies.

4 GEOPHYSICAL EXAMPLE

4.1 A shear velocity model from the core-mantle
boundary

To demonstrate these concepts on a high-dimensional geophysical
problem, we apply the same methodology to an ensemble of a 2-D
shear wave velocities at the core—mantle boundary, generated by
a trans-dimensional Bayesian sampling algorithm (Mousavi ef al.
2021). The full ensemble consists of 54 million models across 45
chains, each of which is comprised of on average 600 spherical
Voronoi cells. The Voronoi cells each have three unknowns, latitude
and longitude of its defining nucleus together with the shear wave
velocity, leading to about 97 billion parameter values in the full
ensemble (for details, see Mousavi et al. 2021). This huge digital
volume occupies approximately 2 TB of disk space. In practice, this
volume is reduced through burn-in and thinning, leaving 180 000
models, with a total of 325 million parameter values in the final
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Figure 5. Comparison between the original McMC samples and an equal number sampled from the GAN. Displayed are the first four moments of the
distribution. Overall, the GAN learns and then reproduces the original ensemble in great detail.

ensemble for analysis. Maps of mean and standard deviation of this
ensemble can be seen in Fig. 9. In the study of Mousavi ez al. (2021),
the calculation of each chain took 28 000 CPU hours, amounting to
a total of 1.3 million CPU hours for all 45 chains. This is equivalent
to 150 yr computation on a single CPU, although parallelization
reduces the computational cost to 110 d. This situation is typical,
and illustrates the considerable computational effort required to
create, store and analyse the outputs of McMC algorithms.

4.2 Reconstruction of a regional subset

In a first experiment, we select a subset of the global model ensemble
covering the area around Australia. This consists of 23 x 23 points
on regular grid of 50° x 50° (latitude x longitude), leading to a
529-dimensional ensemble with 180 000 models from the thinned
chains. We train a deep convolutional GAN (DCGAN; Radford
et al. 2015) on this ensemble. A discussion regarding the choice of
a DCGAN can be found in Appendix B, and details of architecture
and training are summarized in Appendix B1.

After training, we sample 180 000 models from the generator and
compare it to the original ensemble of the same size. Fig. 5 compares
the McMC (i.e. original) and GAN-generated ensembles, showing
the first four moments: mean, standard deviation, skewness, and
kurtosis. The mean maps correspond to the average shear wave
velocity structure at the core-mantle boundary beneath Australia,
and the McMC and GAN versions are very close to each other.
The same holds for the standard deviation which is traditionally
associated with the uncertainty of the velocity.

Often, studies indicate these first two moments as their main
results in terms of velocity value and its uncertainty, implicitly
making the assumption that the models are distributed in a Gaussian

manner. We show that the GAN is able to incorporate information
on the model ensemble beyond this Gaussian approximation, as can
be seen in the maps of skewness and kurtosis, i.e. the third and
fourth moment of the distribution, which are accurately reproduced
by the GAN. The skewness indicates the shift towards the left or
the right of a distribution with respect to a normal distribution, and
the kurtosis is a measure of the ‘bulkiness’ or ‘pointiness’ of a
distribution.

The trends seen in the plots for skewness and kurtosis can be
further examined when looking at the marginals directly. Fig. 6(c)
compares the marginals for McMC and GAN at 20 locations as
indicated in the map in Fig. 6(a). It becomes clear from the intri-
cate shapes of the marginals that the GAN is able to incorporate
the most important features, more than would be possible with a
Gaussian approximation. In terms of multimodalities, our results
suggest that the GAN might in some cases not be able to cap-
ture them sufficiently. However, it is by no means clear that all
multimodalities in the McMC ensemble are significant and physi-
cally meaningful. The GAN does not incorporate very small-scale
(and likely noisy) variations in the histograms, which can be seen
as an indication that it has been trained robustly against overfit-
ting. Hence, there is a trade-off between over- and underfitting
which needs to be carefully addressed when training the generative
model.

Fig. 6(a) shows the earth mover distance (e.g. Monge 1781; Rub-
ner et al. 2000) between the two distributions as a function of
spatial position. This is a qualitative measure of misfit between the
marginals of McMC and GAN, and shows an overall uniformly
small difference confirming a reasonably accurate representation.
Only at the margins does the quality drop, which could be expected
as those locations are more weakly constrained in the DCGAN than
points in the centre of the domain. Note that here we are comparing
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Figure 6. (a) Earth mover distance for individual points on the Australian subset, comparing the deviation of GAN marginals from the original McMC
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McMC marginals; purple: GAN marginals; blue: earth mover distance at locations. The great majority of marginals are well recovered by the GAN.
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Figure 7. Covariance matrices for McMC and GAN ensembles together with point spread functions of four selected locations (shown as yellow markers).

relative values of the earth mover distances contained in our re-
sults, with values below 0.01 indicating a close-to-perfect recovery
without overfitting (see marginals in Fig. 6).

Additionally, the earth mover distances of all locations are shown
in the histogram in Fig. 6(b), with most values being at the smaller
end of the range and only few locations having higher values. The
fact that the median is low and the histogram decays in a convex
manner towards higher values is an indication of good convergence
of the GAN. It can be expected that in initial training stages the
histogram has a more concave shape, but as GAN training proceeds
it becomes increasingly difficult to further minimize the bulk of
earth mover distances.

The covariance matrix represents the statistical correlations be-
tween different locations in the model ensemble, and we compare
the McMC and GAN versions in Fig. 7. The GAN covariance matrix
is an excellent reproduction of that produced by McMC, leading to
the ability to sample models that not only follow the correct pattern
across the ensemble, but also include spatial relationships within
one particular model. This is also the case for local covariance
structures as can be appreciated in the point-spread functions in
Fig. 7 which show selected individual rows of the covariance ma-
trix as a map. The good reproduction of these maps by the GAN
suggests that models drawn from it have the ability to recover corre-
lation structure over the model domain with respect to one specific
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mover distance.

point (shown as a yellow stars in the maps). Maps such as these
have previously been used to interpret ensemble-based inversion
results (e.g. Burdick & Leki¢ 2017), and our results suggest that
such analyses could also be performed with an approximation from
a generative model.

These comparisons indicate that it is not sufficient to simply
store the mean and standard deviation of an McMC ensemble, as
important structures both within and across models may get lost. A
generative model such as a GAN is able to approximate a distribu-
tion with many of its intricacies and details. In this case, a generator

defined by around 3.6 million parameters is able to capture an en-
semble that otherwise would be described by 95 million values,
which from a compression perspective is a reduction of 96 per cent.

4.3 Guiding the convergence assessment of McMC

The results in the previous section have shown that a GAN is able to
learn the structure of a high-dimensional model ensemble in some
detail. In this context, a relevant question is what happens if we train
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Std. Dev.

Figure 9. Maps of mean and standard deviation for the full model ensemble; comparison between McMC samples and GAN samples. The GANs can recreate

the full velocity model ensemble from Mousavi ef al. (2021) in high resolution.

the GAN on a reduced-sized ensemble, i.e. is it possible to obtain
similar results from a fraction of the McMC ensemble?

To investigate this, we trained a GAN on the first 40 per cent and
then the first 50 per cent of each of the 45 chains and compared
the outputs to the full McMC ensemble. The earth mover distance
between marginals is shown in the upper part of Fig. 8, comparable
to Fig. 6(a). The left-hand panel is for the 40 per cent case and
shows significant differences, indicating that the GAN trained on
this number of samples may not contain sufficient information on the
full ensemble to train a GAN. However, by taking another 10 per cent
ofthe samples into account (right-hand panel), the situation changes
significantly and is comparable to the one obtained when training
the GAN with the full ensemble (see Fig. 6). The lower row of Fig. 8
shows the covariance matrices computed for the GAN ensembles,
comparing them to that of the full McMC ensemble. Here, we
see similar trends as when comparing the marginals: with the first
40 per cent of samples the covariance structures can not be fully
recovered, whereas the version for 50 per cent of samples mimics
well the covariance matrix of the full McMC ensemble.

This seems to suggest that there is a certain point where the
McMC ensemble contains enough information so that more sam-
pling does not change the quality of the GAN training. An-
other interpretation is that in the McMC procedure of Mousavi
et al. (2021) the chains had reached equilibrium after around
50 per cent of the samples and additional sampling did not yield
much significant information. This value of 50 per cent is highly
likely to be problem-dependent only and may differ in other
settings.

A practical outcome of these findings is the possibility that such
an analysis might give ‘on-the-fly” indications on when to stop the
McMC sampling. By training a GAN, say, continuously alongside
a McMC algorithm, it may be possible to decide precisely when to
halt the Markov chain, which would be a significant improvement
to existing practices of deciding on a fixed number of samples
in advance. Such a judgement may be possible based on several

indicators such as the marginals or the covariance properties of an
ensemble.

4.4 Reconstruction of the global model ensemble

The results shown in the previous sections were only made for a
subset of the global model ensemble. Here, we scale the approach
to the global core—mantle boundary shear velocity model ensem-
ble of Mousavi et al. (2021). First, we extract 8000 points that
are approximately uniformly distributed on a sphere according to
a deterministic spiral scheme (Koay 2011). The average distance
between each pair of adjacent points is roughly 250 km, which is
sufficient to capture structures up to a spherical harmonic degree of
around 80 according to the Jeans relation (e.g. Wieczorek & Simons
2005).

To avoid having to handle 8000-dimensional vectors in the GAN
training set, we divide the globe into 16 patches of approximately
500 points each, with areas similar to the region shown in Fig. 5
(50° x 50°). On each of these patches, a Wasserstein GAN (WGAN;
Arjovsky et al. 2017) is trained to reproduce the velocity models
(see Appendix B1 for details). WGANs have better convergence
characteristics than standard GANs, which becomes especially im-
portant in higher-dimensional settings.

From each WGAN, 180000 samples are drawn for each patch
and combined to obtain a global map shown in Fig. 9. The structure
of both mean and standard deviation is well represented. The only
drawback are inconsistencies along the boundaries of the patches,
meaning that velocity correlations in these areas are not recovered.
However, we are able to downscale the whole ensemble, described
by 1.5 billion values, into 16 WGAN generators which together
have 3.2 million parameters. This is equivalent to a compression
rate of over 99 per cent, enabling straightforward sharing of the
results and rapid sampling for subsequent applications for global
models of this type.
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5 DISCUSSION

5.1 Upscaling and downscaling model ensembles

The main contributions of our study fall in two categories of dealing
with geophysical model ensembles: upscaling and downscaling. We
have demonstrated approaches which address several well-known
practical problems related to Monte Carlo inversion and in particular
have shown how generative models can be useful. In this study,
GANSs have been used as our example of a generative model, but we
note that all the discussed concepts hold for any type of generative
model (see Appendix B for a technical discussion).

In a downscaling context, we have shown that it is possible to
learn ensembles with a generative model which can then reproduce
an ensemble in great detail. This has several advantages. First, it
enables the user to compress a large model ensemble and store it
in significantly less storage space. In our examples, the compres-
sion rates are around 95-99 per cent, suggesting that storage space
can be reduced by at least two orders of magnitude with these tech-
niques. While these compression rates are similar to those of typical
video compression algorithms (e.g. Westwater & Furht 1997), our
approach should not simply be regarded from a compression per-
spective, but in combination with its other benefits. If the goal is
solely to compress a data set, established methods may be more
suitable. In this context, it is worth mentioning that the emerging
field of ‘neural data compression’ is strongly driven by generative
models, providing potential alternatives to standard compression
algorithms (e.g. Yang et al. 2022).

Secondly, the trained generative model can then be used as a
generator of new samples that approximately follow the underlying
distribution. This has particular advantages compared to distribut-
ing the original fixed ensemble. Our method facilitates the exchange
and regeneration of a complete model ensemble at limited cost. In
inversion studies with strong and significant multimodal distribu-
tions, for example near the boundaries of structures (e.g. Olugboji
etal. 2017; Burdick & Leki¢ 2017), other types of generative models
such as normalizing flows (e.g. Rezende & Mohamed 2016; Dinh
et al. 2017) might be better able to reproduce these than GANSs.
This is because their objective function derived from variational
inference is more directly targeted at the concrete shape of the dis-
tribution than the adversarial training of GANs which primarily
aims at an equilibrium between the two networks.

The trained generative model has the capability to efficiently
simulate new ensembles of any size. Of course, the samples drawn
from the generative model will not be exactly the same ones as in
the original ensemble, but, in the presented case, their statistical
properties closely follow the original statistics (see Figs 5, 6, 7 and
9). This enables the use of our approach for studies that are interested
in analysing the model ensemble in some detail (e.g. Olugboji et al.
2017; Burdick & Leki¢ 2017; Rudolph et al. 2020). The creation
of these approximate ensembles takes in the order of hours to train
the GANSs (see Tables A1-A4) and in the order of minutes to draw
samples. These times are insignificant compared to the build up
times of Monte Carlo ensembles which typically are in the order of
months (e.g. Mousavi et al. 2021). The concepts presented in this
study are therefore available at negligible additional computational
cost in the context of any large-scale Monte Carlo procedure.

Thirdly, the compressed version of the ensemble can be transmit-
ted to collaborators in a straightforward way, as it is significantly
smaller than the original ensemble. The recipient of the model en-
semble can then explore and analyse it, and use it for their own sub-
sequent studies. This will improve the ability for a clean processing

pipeline, as it challenges the wide-spread habits of only sharing
low-order versions of a model ensemble. As shown in Figs 5-7,
there can be much more detail in the model ensemble which may
get lost without such a generator. In this way one can better capture
and exploit the huge effort that was necessary to build the model
ensemble in the first place through Monte Carlo sampling.

The other main aspect is upscaling, which takes advantage of
the fact that an effectively unlimited amount of samples can be
drawn from a trained generative model. It is therefore possible to go
beyond the ensemble size from the original Monte Carlo ensemble,
which has significant implications. One of them is shown in Fig. 4,
an example for cases where it might be computationally infeasible
to draw sufficient samples from a high-dimensional distribution to
obtain a smooth and dense ensemble. This direct consequence of the
curse of dimensionality can be overcome by training a generative
model, leading to a satisfactory sample density at a fraction of
the computational time that would otherwise be required. In terms
of error rate quantification between the original ensemble and the
one drawn from the generative model, Figs 6 and 8 suggest that a
measure such as the earth mover distance of marginals can give an
indication of how well the original ensemble is approximated.

Another application of the upscaling aspect is when secondary
analyses need to be performed based on an ensemble representing
a probability distribution, for example moment calculation. Even if
the probability distribution is well approximated by a given set of
samples, the size of the ensemble might be insufficient if a moment-
defining function has higher complexity and hence requires more
samples. Generative models can help to enhance an ensemble in
cases where the existing samples already cover the most significant
aspects of the probability distribution. As shown with a generative
model trained on only few samples, it is then possible in some cases
to draw an effectively unlimited amount of samples, improving the
accuracy of integrals estimated with limited computational expense.

The ability to draw a large amount of samples can also have ben-
eficial consequences during the process of Monte Carlo sampling
itself. The results presented in Fig. 8 suggest that in this specific
case the first 50 per cent of the samples of each chain contain suf-
ficient information to train a generative model whose outputs are
very similar to the one trained on the full ensemble, whereas for
40 per cent of the samples the results are insufficient. This feature
could be exploited to give an indication of a point in the sampling
process where the Markov chain sampling should be stopped, which
might significantly reduce computational costs. These costs could
then be invested, for example in running more chains, which would
improve the overall exploration of the model domain.

The exact point of convergence will depend on the specific en-
semble and the 50 per cent obtained in this example should not be
generalized. In the presented case, our results indicate that such a
convergence criterion may be found based on different indicators
from the ensembles such as information contained in the marginals
or the covariance matrix. A convergence assessment based on the
eigenvalues of the covariance matrix has previously been tested
by Rudolph er al. (2020), which might also be possible with a
GAN-based version of the ensemble. It is important to note that
our proposed method is speculative in its current form, and further
studies will need to address several questions which are beyond the
scope of this paper. If further developed, the method seems to have
some potential to become a viable alternative to one of the many
existing diagnostics for McMC convergence (e.g. Gelman & Rubin
1992; Cowles & Carlin 1996; Roy 2020), with significant benefits
from the nature of generative models as discussed in this study.
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All concepts discussed here are not limited to geophysics, but
have potential applications in other fields of the geosciences and
beyond. Essentially, any situation where data are collected and in-
terpreted in terms of a probability distribution can benefit from our
methodology. It is a standard approach to make a Gaussian approxi-
mation (see Fig. 1), but the sampling aspect is not often considered.
It might be helpful in order to provide a clean histogram or in cases
where sampling for further applications is needed. When the struc-
ture in the data becomes non-Gaussian and higher-dimensional, a
generative model may be useful. Potential applications include sit-
uations where sampling is expensive, carried out in remote places
or time-consuming.

5.2 A way forward

In this study, we have focused on using generative models following
application of Monte Carlo sampling. Therefore, our procedure does
not include interactions between generative models and the McMC
sampling process. We envision that such interactions can be possible
in a multitude of ways, with both generative models and sampling
process informing each other. The approach presented here might be
viewed as an end-member case where the generative model is purely
informed by McMC and does not feed back to the sampling process.
Another end-member are studies such as that of Zhao et al. (2022)
who replaced McMC entirely by normalizing flows. In between,
there might be many possibilities to use generative models to aid
the sampling procedure.

One scenario where a generative model can be trained to inform
a Monte Carlo algorithm was briefly tested in Section 4.3. An ex-
tension to this approach might be to train a generative model after
every certain amount of steps, and determine through some con-
vergence criterion whether significant information has been added
or if the new samples are redundant. Once the chains are deemed
to have converged, the Monte Carlo sampling could be stopped
and the generative model directly be used to provide the desired
amount of samples. This scenario would therefore enable McMC
early-stopping whilst making use of all concepts discussed in this
study.

6 CONCLUSIONS

In this study, we used generative models to help overcome some
of the main drawbacks of Monte Carlo methods in geophysical
inversion. We showed that generative models can be used to ap-
proximately learn a density function consistent with the ensemble
produced by a Monte Carlo algorithm (or more generally, any sam-
pling approach). We suggest that this offers myriad practical bene-
fits, allowing better use to be made of Monte Carlo results. Specific
examples discussed include easier sharing and dissemination of
results, and enhanced accuracy in calculations such as numerical
integrals. Of course, the generative model is inherently an approx-
imation to the target distribution, and in some circumstances this
may be seen as a drawback. However, we suggest that even when
analysis is ultimately to be performed using the original ensemble,
it may be convenient to have access to a lightweight, portable rep-
resentation that can be used during exploratory and development
work. In addition, generative models show potential for assessing
the convergence of McMC, and we expect these and other machine
learning algorithms to have a significant impact on the way that
probabilistic Monte Carlo inversion in geophysics is performed in
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the future. The methods proposed in this paper suggest some possi-
bilities for how generative models and McMC can interact, and we
hope that this work can stimulate further research in the area.
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APPENDIX A: GENERATIVE
ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) were first described by
Goodfellow et al. (2014) and have since then become a popular
and powerful machine learning technique. GANs consist of two
neural networks, the generator and the discriminator, both of which
have a particular task (Fig. A1). The generator takes a set of random
numbers as input and aims to produce samples (‘fake data’) with the
same characteristics as those drawn from a given distribution (‘real
data’), while the discriminator learns to distinguish between both
distributions and assigns a probability that describes its estimate of a
sample being drawn from the real data distribution. Both are trained
at the same time in a competitive manner until reaching a Nash
equilibrium, which in game theory describes the optimal strategy
of both players in a two-player minimax game (Nash 1950).

The loss functions that the networks minimize during the training
process are

|
Lp= - Z [log D(x;) + log(1 — D(G(z;)))] (AT)
i=1

for the discriminator D, and

1 N
Lg === log D(G(z) (A2)

i=1

for the generator G. Here, x; are samples from the real data distri-
bution, and z; are samples drawn from the noise prior. N denotes
the batch size, that is how many samples from each distribution
are drawn in each iteration. Consequently, the generator minimizes
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Figure Al. Architecture of a generative adversarial network. A generator learns to mimic samples from a given distribution, and a discriminator learns to
identify samples from the distribution. Both networks are trained at the same time in competition with each other.

the negative average output of the samples it creates, that is tries to
push the discriminator to evaluate its samples as real samples with
probability as close to 1 as possible. The discriminator attempts
to maximize two values (minimize the corresponding negative val-
ues): its evaluation of real samples and the distance between 1 and
its evaluation of fake samples (i.e. it minimizes its evaluation of
fake samples).

Based on the original GAN idea, many different architectures,
loss functions, and training procedures have been proposed. Among
the most important GAN variants are deep convolutional GANs
(DCGANSs) which use convolutional layers, making them more
suitable for computer vision tasks and higher-dimensional data
sets (Radford et al. 2015). Another variant are Wasserstein GANs
(WGANS) which use metrics from the theory of optimal transport
and lead to a significant improvement of stability during training
(Arjovsky et al. 2017). Both these variants and the original formu-
lation were used in different parts in this study, as described in the
main text and Appendix B.

APPENDIX B: TECHNICAL
CONSIDERATIONS

Generative models, and especially GANSs, have become increasingly
popular in the machine learning literature and beyond, and many
thousands of different architectures and training procedures have
been proposed. This vast amount of literature puts the interested
user into the dilemma of having to choose between all these options.
In this study, we have made use of three different GAN types,
each with its own characteristics. In the following, we explain our
heuristics for each of these choices, hoping to provide a guide
for new potential users. We note that these observations are based
on personal experience and thus inherently subjective. Details on
architecture and training of all GANs used in this study can be found
in Appendix B1.

In the synthetic example in Sections 3.1 and 3.3, we used a
standard GAN after Goodfellow ez al. (2014) with relatively few and
thin layers, and therefore a comparably small amount of trainable
parameters (see Table Al for details). This example shows that
small networks might be a suitable choice when the structure in the
training data is not too complex and the problem is low-dimensional.
Our experiments suggest that a standard GAN can lead to good
performance up to dimensions of around 50-100, from where the
well-known GAN issues of ‘non-convergence’ and ‘mode collapse’
start to make training more challenging (e.g. Salimans et al. 2016).
Mode collapse is a well-known problem in the GAN literature,
referring to an ill-trained GAN whose outputs only cover a very
limited region (and often only a single point) of the underlying
distribution, failing to recover the full diversity of samples contained
in the training data set.

The example of the regional reconstruction of shear wave veloc-
ity beneath Australia (Section 4.2) deals with a higher-dimensional
model ensemble with 529 parameters. Here, we use a deep convo-
lutional GAN (DCGAN; Radford et al. 2015) with five layers and a
larger amount of trainable parameters, leading to a higher capacity
of the networks to store information (see Table A3 for full details).
While training these networks takes significantly longer, the Monte
Carlo ensemble is recovered with a high quality (Figs 5 and 6). This
makes DCGANSs a good choice in cases where an accurate ver-
sion of the model ensemble is required for sampling in subsequent
studies.

When learning the global velocity model ensemble (Section 4.4),
we use the training procedure from Wasserstein GANs (WGAN;
Arjovsky et al. 2017) with larger layers than in the initial synthetic
example (Table A4). Our experiments confirm the general notion
that WGANSs have better convergence performance than standard
GAN:S. To further increase performance, we split the model ensem-
ble across 16 different WGANs with around 500 model parameters
each. Due to the spherical geometry and the fact that DCGANs
require inputs in rectangular form, DCGANSs are less appropriate
in this case. Compared to DCGANs, WGANSs recover less details,
but are preferable in terms of both training time and compression
rate.

These trade-offs make the choice of the best suitable architecture
a non-trivial endeavour, and it needs to be decided on a case-to-
case basis. There is no ‘perfect architecture’ that suits all possible
requirements. When deciding on an architecture, different options
need to be tested. While the above heuristics are suitable for our
needs, they are likely particular to this study and care must be taken
in translating them to other applications. In any case, the architecture
should merely be seen as a tool that helps achieving the intended
goals in the best possible manner.

The issues of network architecture also hold for the other hyper-
parameters. An extensive search of the hyperparameter space may
be necessary in order to find the best set of values. However, we
note that from our perspective the most important choices seem to
be with regards to the optimizer and its parameters such as learning
rate and momentum parameters. Also the length of training needs to
be chosen with care, as GANs are prone to diverge again after pre-
vious convergence. It is therefore essential to find the right moment
to stop training.

In this study, we tested three different GAN architectures that
are suitable for different needs. However, these options are by no
means an exhaustive list, and many other architectures might work.
The same holds for other generative models such as variational
autoencoders, diffusion models, and flow-based models, which have
not been investigated in this study. Almost certainly, there will be
cases where these models outperform GANSs, not least because of
more stable training. Consequently, other generative models may
be good alternatives in order to make use of the concepts that were
presented and discussed here.
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Table Al. Network architectures for the GANs used in the synthetic example in Sections 3.1 and 3.3.
Dropout is used in both training and evaluation stages. FC: fully connected layer.

Generator Discriminator

Nin Rout Activation Dropout  nj, Rout Activation

Layer 1 (FC) 100 50 LeakyReLU(0.1) 0.4 2.10 50 LeakyReLU(0.1)
Layer 2 (FC) 50 50 LeakyReLU(0.1) 0.4 50 50 LeakyReLU(0.1)
Layer 3 (FC) 50 50 LeakyReLU(0.1) 0.4 50 50 LeakyReLU(0.1)
Layer 4 (FC) 50 2..10 - - 50 1 Sigmoid

No. parameters 10252 (2-D) to 10660 (10-D) 5301 (2-D) to 5701 (10-D)

Table A2. Training settings for the GANs used in the synthetic example in Sections 3.1 and 3.3.
Original GAN: Goodfellow et al. (2014); Adam: Kingma & Ba (2017). Training time is indicated
in CPU minutes on a 3.7 GHz Intel Core i5 processor with 16 GB 2667 MHz DDR4 RAM.

Section 3.1 Section 3.3
GAN type Original GAN Original GAN
Optimizer Adam (81 = 0.5, B2 = 0.999) Adam (B = 0.9, B2 = 0.999)
Learning rate 1074 1074
Batch size 50 100
Data dimension 2 2-10
No. samples 200/600/1000/100 000 300000
No. epochs 100000/33 333/20 000/200 500
Gen./Disc. updates 1/1 1/1
Training time ~ 15 min ~ 60 min

Table A3. Network architectures and training settings for the DCGANSs used in the reconstruction of the Australian patch in
Sections 4.2 and 4.3. DCGAN: Radford et al. (2015); Adam: Kingma & Ba (2017); 2-D Conv. = 2-D convolutional layer;
Transp. 2-D Conv. = Transposed 2-D convolutional layer; in = no. input channels; out = no. output channels; k = kernel
size; s = stride; p = padding. In both networks, all weights were initialized according to a normal distribution of mean 0 and
standard deviation 0.02, and all biases were set to zero. Training time is indicated in CPU hours on a 3.7 GHz Intel Core i5
processor with 16 GB 2667 MHz DDR4 RAM.

Generator nin Hout k s ¥4 BatchNorm Activation
Layer 1 (Transp. 2D Conv.) 100 512 4 2 1 yes ReLU
Layer 2 (Transp. 2D Conv.) 512 256 4 2 1 yes ReLU
Layer 3 (Transp. 2D Conv.) 256 128 4 2 1 yes ReLU
Layer 4 (Transp. 2D Conv.) 128 64 4 2 1 yes ReLU
Layer 5 (Transp. 2D Conv.) 64 1 3 2 5 no Tanh

No. parameters 3574208

Discriminator Nin Nout k S p BatchNorm Activation
Layer 1 (2D Conv.) 1 64 6 1 0 no LeakyReLU(0.2)
Layer 2 (2D Conv.) 64 128 4 2 1 yes LeakyReLU(0.2)
Layer 3 (2D Conv.) 128 256 4 2 1 yes LeakyReLU(0.2)
Layer 4 (2D Conv.) 256 512 4 2 1 yes LeakyReLU(0.2)
Layer 5 (2D Conv.) 512 1 4 2 1 no Sigmoid
No. parameters 2764800

Training settings

GAN type Deep convolutional GAN (DCGAN)

Optimizer Adam (B; = 0.5, B2 = 0.999)

Learning rate 104

Batch size 128

Data dimension 529 (23x23)

No. samples 180000 (100%); 90 000 (50%); 72 000 (40%)

No. epochs 5 (100%); 10 (50%); 13 (40%)

Gen./Disc. updates 1/1

Training time ~5hr
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Table A4. Network architectures and training settings for the 16 GANs used in the global recon-
struction in Section 4.4. Dropout is used in both training and evaluation stages. WGAN: Arjovsky
et al. (2017); RMSProp: Tieleman & Hinton (2012); FC = fully connected layer. Training time is
indicated in CPU hours on a 3.7 GHz Intel Core i5 processor with 16 GB 2667 MHz DDR4 RAM.

Generator Nin Nout Activation Dropout
Layer 1 (FC) 100 200 LeakyReLU(0.1) 0.4
Layer 2 (FC) 200 200 LeakyReLU(0.1) 0.4
Layer 3 (FC) 200 200 LeakyReLU(0.1) 0.4
Layer 4 (FC) 200 ~500 - -
No. parameters ~201100

Discriminator Nin Nout Activation Dropout
Layer 1 (FC) ~500 200 LeakyReLU(0.1) -
Layer 2 (FC) 200 200 LeakyReLU(0.1) -
Layer 3 (FC) 200 200 LeakyReLU(0.1) -
Layer 4 (FC) 200 1 - -
No. parameters ~180801

Training settings

GAN type Wasserstein GAN (WGAN)

Clip value 0.01

Optimizer RMSProp

Learning rate 1074

Batch size 100

Data dimension 469-532

No. samples 180000

No. epochs 200

Gen./Disc. updates 1/1

Training time ~ 1 hr

B1 Network architectures and training settings

Tables A1-A4 show details of architecture and training settings of

all GANs used in this study.
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