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Abstract

The near-horizon region of magnetically charged black holes can have very strong mag-
netic fields. A useful low-energy effective theory for fluctuations of the fields, coupled
to electrically charged particles, is force-free electrodynamics. The low energy collective
excitations include a large number of Alfven wave modes, which have a massless disper-
sion relation along the field worldlines. We attempt to construct traversable wormhole
solutions using the negative Casimir energy of the Alfven wave modes, analogously to
the recent construction using charged massless fermions. The behaviour of massless
scalars in the near-horizon region implies that the size of the wormholes is strongly re-
stricted and cannot be made large, even though the force free description is valid in a
larger regime.
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1 Introduction

Near-extremal charged black holes have many interesting features. Recently a new one was
pointed out: in [1,2], it was observed that for an extensive range of values of the total magnetic
charge, the near-horizon region of a magnetically charged black hole has strong magnetic
fields. If we consider electrically charged particles moving in the near-horizon region, the
Landau levels of the charges moving along the strong magnetic fields give a large number of
light fields in the two-dimensional space along the field lines. In [1], it was argued that the
Casimir energy from these fields could lead to traversable wormhole geometries in a single
universe. [2] further explored the effects of these fields on radiation from the charged black
hole.

Those works used a microscopic treatment of charged particles interacting with electro-
magnetic fields; however, coarse-grained effective descriptions of this regime exist. In this
paper, we explore the use of the effective theory of force-free electrodynamics (FFE) to de-
scribe field fluctuations in the near-horizon region of magnetically charged black holes. As we
will briefly review below, FFE can be thought of as a hydrodynamic theory describing strongly
magnetized plasmas in a regime where the temperature may be neglected. A particularly in-
teresting fact is that this theory contains a large number of light collective modes, called Alfven
wave modes; these may be thought of as transverse oscillations of magnetic field lines, and in
our model will behave as light scalar fields in the two-dimensional space along the field lines.

One would hope that we could use the Casimir energy of the Alfven wave modes to con-
struct traversable wormholes, in analogy with the construction of [1]. Traversable wormholes
have been studied intensively in the last few years. They are interesting as theoretical objects,
offering a new insight into the role of entanglement in constructing spacetime geometry in
holographic theories [3–5]. Given that it is possible to make traversable wormholes in theory,
it is obviously interesting to see if they could actually exist in the real universe. The ini-
tial construction of [1] provides a mechanism for the existence of self-supporting traversable
wormholes in a single universe, but the wormholes realised there are quite small; essentially
they are required to be smaller than the length scale set by the mass of the charged particle in
question (i.e. the electron mass).

In this work we attempt to build larger wormholes using the low energy field content of
our universe. The main novelty is that the light fields we consider are not microscopic degrees
of freedom but rather collective Alfven modes. Naively, it would appear that using them as
the energy source could provide such a construction for larger wormholes; the lightness of
these collective modes comes from general principles of effective theory, and we are no longer
constrained by the microscopic length scale set by the electron. Indeed, the FFE description is
valid for black holes with horizon radii up to 107 m. (See also [6] for a different approach to
constructing larger wormholes, and [7–13] for other work on self-supporting wormholes.)

Unfortunately for our ambitions at interstellar construction, this proves difficult to imple-
ment in detail. Firstly, the answers depend sensitively on the UV completion to the effective
theory of FFE. We compute corrections to the relevant dispersion relation to the Alfven waves
subject to some conservative assumptions. Secondly, the different scaling dimensions for mass-
less scalars and fermions in the near-horizon region also imply significant differences in their
effects. This is seen most clearly if we consider just this near-horizon AdS2 region. We can
introduce an explicit coupling between the modes on the two boundaries of AdS2. In [14], the
theory with such a coupling for light fermions was found to have an eternal wormhole solu-
tion. But if we consider massless scalars instead, the potential for the length of the wormhole
does not have a minimum.

Following [1], we then look for wormhole solutions with two oppositely charged mouths
in an asymptotically flat space. The results from the pure AdS2 analysis suggests that con-
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structing wormholes from the Casimir energy of light scalars may be more difficult than in
the fermionic case. We indeed find that the potential for the length of the wormhole does not
have a minimum, in the regime where the wormhole is long enough that the effects of the
AdS2 region dominates. However, we can find a minimum at short wormhole lengths, where
the effects of the asymptotically flat region becomes relevant. We can thus construct worm-
hole solutions within the FFE effective theory. Unfortunately, these wormholes are small; the
maximum throat radius is of order 10−21 metres. The effective theory actually breaks down
before we get to such small scales, where we would need to take into account contributions
of additional standard model fields, as in [2].

In the next section, we will review the general theory of FFE and discuss the appearance
of the Alfven wave excitations, and the limitations of the effective field theory. In Section 3,
we set up the application to the near-extremal magnetically charged black holes, reviewing
the geometry and focusing on the near-horizon AdS2 region. In Section 4, we consider the
pure AdS2 geometry, introducing a boundary coupling for the operators dual to the Alfven
waves, and find that the Casimir energy for this boundary condition scales as 1/`2∆, where ∆
is the dimension of the boundary operator dual to the bulk field. This produces the essential
difference between massless fermions, with ∆ = 1

2 , and massless scalars, with ∆ = 1. In
Section 5, we consider the Casimir energy for massive fields with periodic boundary conditions
on AdS2, and find that it has the same scaling, except for fields sufficiently close to zero mass,
where it scales as 1/`. Finally in Section 6, we see that this restricts the number of Alfven wave
modes that contribute to the wormhole construction, giving a total Casimir energy which scales
as 1/`2 for large `. There is a cross-over to 1/` scaling at small `, allowing for the construction
of a traversable wormhole, but only for small wormholes which lie outside the range of validity
of our discussion.

2 Force-free electrodynamics

Force-free electrodynamics is an effective theory describing Maxwell electrodynamics coupled
to electrically charged matter, in a state where there is an extremely strong magnetic field [15–
17]. It is usually considered in situations with a plasma of charged particles which effectively
screens the component of the electric field along the magnetic field, for example in astrophysics
where it is thought to describe the magnetospheres of pulsars [18,19]. The equations of motion
of the theory are

Fσν∇µFµν = 0 , ∇[µFρσ] = 0 , εµνρσFµνFρσ = 0 . (1)

We will also use differential forms notation, in which the latter two equations can be rewritten
as dF = 0, F ∧ F = 0. The first equation is the force-free condition; the coupling of the
electromagnetic field to the current sourcing the field vanishes. The second is the usual Bianchi
identity, and the last is the Lorentz-invariant notion of the electric field being screened to zero
in the direction of the magnetic field, that is ~E · ~B = 0. An electromagnetic field satisfying this
last condition is said to be degenerate. A review of the traditional formulation of this theory
can be found in [17]; it can be thought of as a form of magnetohydrodynamics which is at
“zero temperature”, in that there is no preferred rest frame. In its conventional formulation,
it is usually understood that the stress-energy of the electromagnetic field is much higher than
that of the charged matter screening the electric field, which can thus be neglected.

This theory has recently attracted attention in the context of higher-form symmetries. A
connection with higher-form symmetries was first made in [20]. It was recently reformulated
as an effective field theory in [21], and further work on the higher-form symmetry viewpoint
can be found in [22–25].
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The theory is often considered in situations with a plasma density, but the theory is still
useful for describing fluctuations around vacuum electromagnetic backgrounds satisfying the
degeneracy condition F∧F = 0, if the background magnetic field is strong enough; in response
to fluctuations, charges can be easily pair-produced, screening the electric field to zero over
long distance scales. We will consider the theory in this setting.

2.1 Alfven waves

A convenient formulation of FFE was introduced in [26]. Introduce a Lagrange multiplier Φ
enforcing the constraint that F ∧ F = 0, and write the action

S =

∫

d4 x
p

−g
�

−
1

4g2
F2 −

1
32π2

ΦεµνρσFµνFρσ

�

=

∫

�

−
1

4g2
F ∧ ?F −

1
32π2

ΦF ∧ F
�

, (2)

where the field strength F is the derivative of a vector potential as in ordinary electrodynamics,
F = dA, so the fundamental fields in this formulation are Aµ and Φ. Then the Bianchi identity
dF = 0 is trivially satisfied. The equations of motions from this action are

∇νFµν = −
g2

8π2
εµνρσ∇νΦFρσ , εµνρσFµνFρσ = 0 , (3)

or in differential forms notation

d ? F = −
g2

8π2
dΦ∧ F , F ∧ F = 0 . (4)

The second equation implies that F = α∧β for some one-formsα,β . Contracting the first equa-
tion with Fµγ and using this decomposition then implies the other FFE equation, Fµγ∇νFµν = 0.

This formulation has two advantages; it gives a straightforward description of the Alfven
wave mode, and Gralla has described a derivation of it in strong fields which includes a cor-
rection to this effective field theory description [27]. To see the first, consider the linearization
of these equations about some degenerate background field F0 with d ? F0 = 0, so F = F0+ f ,
Φ= φ in terms of the linear perturbations f = da, φ. The linearized equations of motion are

d ? f = −
g2

8π2
dφ ∧ F0 , F0 ∧ f = 0 . (5)

We will consider cases where the background field only has components in two of the
directions, so we split the coordinates xµ, µ = 0, . . . 3 into two subspaces xa and x i , i = 0,1,
a = 2, 3, and assume the non-zero components of F0 are F0

ab = Bεab. We also assume the
metric has a product structure, so

ds2 = gi j(x
i)d x id x j + gab(x

a)d xad x b . (6)

This ansatz encompasses a uniform magnetic field in flat space (where gi j and gab are flat
metrics), as well as the near-horizon AdS2 × S2 geometry of the black hole solutions we will
consider. The second equation of motion then implies that fi j = 0, and the non-trivial compo-
nents of the first equation are

(d ? f )i ja = 0 , (d ? f )iab = −
g2

8π2
∂iφBεab . (7)

Contracting the latter with εab gives εi j∇c f jc = − g2

8π2 B∂iφ, where ∇c is the covariant deriva-
tive with respect to gab. Taking a derivative, we have

∇i∇iφ = −
8π2

g2B
1
p
−g
∂i(
p

−gεi j∇c f c
j ) = −

8π2

g2B
εi j∂i∇c f c

j

= −
8π2

g2B
εi j(∂i∂ j∇ca

c −∇c∇c∂ia j) = 0 ,

(8)
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where ∇i is the covariant derivative with respect to gi j . In the last step the first term van-
ishes by the symmetry of the derivatives, and the second term vanishes as fi j = 0. Thus, the
perturbation field φ(x i , xa) satisfies a two-dimensional massless wave equation in the x i co-
ordinates, independent of the dependence on xa. These are the Alfven wave modes. As they
depend only on the x i , they can be thought of as waves propagating along the magnetic field
lines, where the speed of propagation is independent of their transverse momentum.

In this analysis, we have treated the gauge theory as progagating on a fixed background
geometry, but in the next section, we want to consider the FFE effective theory coupled to
gravity. The presence of the background field F0 implies that the perturbations will couple non-
trivially to metric perturbations at linear order, and we need to solve the coupled equations.
Nevertheless, we still obtain a decoupled set of Alfven wave modes. The differential forms
representation of the equations of motion makes it easy to see this, as they make it manifest
that the dependence on the metric is limited to the Hodge star, which involves the determinant
of the metric. Under a perturbation gµν = g0

µν+δgµν, the determinant g = g0(1− g0
µνδgµν),

so the linearized equations including a metric perturbation are

d ? f −
1
2

d(g0
µνδgµν)∧ F0 = −

g2

8π2
dφ ∧ F0 , F0 ∧ f = 0 , (9)

where the star is with respect to the background metric g0. There will also be a linearised
Einstein equation which determines δgµν, but we do not write it explicitly as it does not enter
into the argument for the Alfven wave mode. With the same assumptions as before that the
non-trivial components of F0 are F0

ab = Bεab and the metric has a product structure, the second
equation implies fi j = 0 and the non-trivial components of the first are

(d ? f )i ja =
1
2
∂a(g

0
µνδgµν)Bεi j , (d ? f )iab = −

g2

8π2
∂iφBεab . (10)

The metric perturbation only enters into the first equation, but it is the second that we needed
in the argument above, so it goes through as before, and φ satisfies a two-dimensional wave
equation ∇i∇iφ = 0.1

In this effective field theory description, there are an arbitrary number of two-dimensional
massless fields obtained from momentum eigenmodes of the scalar in the transverse space.
This divergent density of states is a peculiarity of the IR effective theory. Within this IR effec-
tive theory alone, it formally holds to all orders in the derivative expansion (see [20] for an
argument to this effect); this seems unphysical, and presumably it is cutoff in a microscopic
model. For our later purposes it will be essential to understand how many modes there actu-
ally are that contribute in the near-horizon region. We are thus led to examine the validity of
force-free electrodynamics.

To our knowledge, while one expects FFE to be valid at strong fields, the precise regime
of its validity (and how to systematically take into account corrections) is still not very well
understood. We will discuss one particular UV completion below, but here we discuss some
general principles. One might argue on dimensional grounds that the FFE effective theory is
valid only for transverse momenta k⊥ satisfying

k2
⊥ < B . (11)

Below we sketch a dynamical argument for this. We can take the perspective that we would
expect the FFE description to be good when the stress-energy of the charge carriers is negligible

1Our discussion will focus on the scalar φ, but note that the Alfven wave fluctuations involve perturbations of
the gauge field and metric as well, determined by solving the coupled Maxwell and Einstein equations taking φ as
a source.
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compared to the electromagnetic field (following e.g. the arguments of [17]). The stress-
energy of the electromagnetic field T F

µν ∼ g−2B2. Suppose the charge carrier was a complex
scalar field ϕ, with stress-energy

Tϕµν = ∂µϕ
∗∂νϕ −

1
2

gµν
�

|∂ ϕ|2 −m2|ϕ|2
�

(12)

and current
jϕν = ϕ

∗∂νϕ −ϕ∂νϕ∗ . (13)

In FFE, the current is related to the magnetic field through g2 j = d ∗ F , so if the fields are
varying on a scale k⊥, j ∼ g−2k⊥B ∼ k⊥|ϕ|2. In a relativistic regime, Tϕµν ∼ k2

⊥|ϕ|
2 ∼ g−2k2

⊥B,
so Tϕµν ∼ T F

µν at a cutoff scale k2
⊥ ∼ B.

The number of Alfven wave modes that we can reliably consider in effective field theory
is thus limited by this bound on k2

⊥; in a transverse volume L2, there are k2
⊥L2 < BL2 modes,

which is just the total number of units of magnetic flux in the transverse space.
However, in the context of the applications we consider later, this is not the most im-

portant limitation on the number of Alfven wave modes. Instead, we get a more important
limitation from considering departures from the exact massless dispersion relation in the two-
dimensional subspace coming from corrections to the low energy effective theory. We want
light fields; if the corrections give the Alfven waves a small mass depending on k2

⊥, then bound-
ing the mass will bound k2

⊥ and hence the number of modes we consider.

2.2 Correction to Alfven wave dispersion relation

In principle the Alfven wave dispersion relation will receive corrections arising from the UV
completion. Here we discuss one such microscopic model which reduced to FFE in a certain
limit. In [27], FFE was derived from an analysis of QED+Maxwell in a strong field coherent
plasma regime. The action obtained there included a correction to the above FFE action,

S =

∫

d4 x
p

−g
�

−
1

4g2
F2 −

1
32π2

ΦεµνρσFµνFρσ +
B0

8π2
(
1
2

hµν∇µΦ∇νΦ−m2(1− cosΦ))
�

, (14)

where B0 is the magnetic field strength and hµν is a projector along the field sheets. Φ – which
previously in (2) was a Lagrange multiplier enforcing degeneracy of the fields – here arises
microscopically as a bosonization of microscopic electrons moving along the magnetic field
lines. For degenerate fields, B2

0 =
1
2 F2 and hµν = B−2

0 FµαFαν + gµν. The mass m is formally
a free parameter in this analysis, but it is argued [27] that it should presumably be identified
with the mass of the electron. To understand this, note that the winding of Φ sources the
electric charge, and the energy cost of such winding is suppressed by m2, which we can thus
associate with the electric charge gap2.

The correction terms are small compared to the FFE action for strong magnetic fields, as
the first two terms scale quadratically with the field, while the other terms only scale linearly.
To understand when these corrections are important, let us first note that in a solution to FFE
without the correction terms, balancing the first two terms in the action leads to Φ ∼ g−2. If
we assume that derivatives of Φ are on the same order as the microscopic scale m, then we
have that the correction is small provided that B > B?, where3

B? ≡ m2 g−2 . (15)
2This interpretation is somewhat clouded by the very anisotropic treatment of the directions parallel and per-

pendicular to the magnetic field, but we will simply assume m can be related to the electron mass.
3It is worth noting that this is actually much larger than the usual critical field in plasma physics, which in our

units is Bc = m2; the different scaling with the dimensionless EM coupling appears to arise from the precise UV
completion studied here. Throughout we will make the more conservative assumption that B� B?. It is possible
that a different UV completion would allow an extension of the regime of the validity; our work may thus be
thought of as the most pessimistic estimate.
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We would like to consider the effect of this correction on the dispersion relation for the
Alfven wave mode, so we consider again the linearization F = F0+ f , Φ= φ. As these fluctu-
ations are small, we may replace cosΦ with its quadratic approximation. Since the correction
term is now quadratic in Φ, the correction will only affect the φ equation of motion, which
becomes

B0

8π2
(∇µhµν∇νφ −m2φ) +

1
16π2

εµνρσF0
µν fρσ = 0 . (16)

With the assumption that F0
ab = Bεab and the metric has a product structure, we have B0 = B

and hµν has components only in the first two-dimensional subspace, hi j = g i j , so this equation
is

B
8π2
(∇i∇iφ −m2φ) = −

1
16π2

Bεi j fi j . (17)

As before, the a equation of motion implies ∇i∇iφ = −8π2

g2B∇c∇cεi j fi j , so we have

∇i∇iφ =
16π2

g2B
∇c∇c(∇i∇iφ −m2φ) . (18)

The first term on the RHS is a higher-derivative correction, suppressed by k2
⊥/B, so this is

small in the regime k2
⊥ � B. The new effect is the second term, which we can regard as an

effective mass for the two-dimensional fields,

m2
eff =

16π2

g2B
k2
⊥m2 =

16π2B?
B

k2
⊥ . (19)

We see that indeed the Alfven wave mode is approximately massless in the two-dimensional
field sheet; the mass is suppressed for strong magnetic fields by B?/B. Similarly, the stress
energy of each Alfven wave mode can be understood as that of an approximately massless
collective scalar field moving in the AdS2 directions; microscopically however this stress energy
comes both from the electromagnetic degrees of freedom and from the fermion degrees of
freedom bosonized into the field Φ.

Note however that this correction is not a higher derivative effect in the linearised theory;
this arises from the fact that FFE is not an IR limit of the theory described by (14), but rather a
strong-field limit. In particular, the effective mass in the two-dimensional theory scales as k2

⊥,
just as an ordinary Kaluza-Klein mass would. We will see that this mass correction is significant
enough in our applications that constraints on m2

eff will imply stronger bounds on k2
⊥ than the

general condition k2
⊥� B. 4

3 Black holes and wormholes

We are interested in applying these FFE ideas to magnetically charged black holes. We will
consider a four-dimensional asymptotically flat black hole for definiteness, although some of
the ideas will extend naturally to other contexts.

We consider the Reissner-Nordström black hole, with metric

ds2 = −
�

1−
2GM

r
+

R2

r2

�

d t2 +

�

1−
2GM

r
+

R2

r2

�−1

dr2 + r2(dθ2 + sin2 θdφ2) (20)

4It is interesting to note that if we consider modes with k2
⊥ ∼ B, then meff ∼ m. It would be interesting to

understand better the relation of these Alfven wave modes to the Landau levels of the microscopic QED+Maxwell
theory.
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and Maxwell field A= Q
2 cosθdφ, where

R2 =
πGQ2

g2
. (21)

If we work in conventions where the fundamental unit of electric charge is one, the magnetic
charge Q carried by the black hole is integer quantized.

We will be interested in considering near-extremal black holes, which develop a long ap-
proximately AdS2×S2 throat. In the extremal limit GM = R, the near-horizon limit r −R� R
of the charged black hole is an AdS2×S2 space where both AdS2 and S2 have radius R. Defin-
ing µ2 = (GM)2 − R2, and making the coordinate transformation t̃ = µ

R2 t, r = R+ µ coshρ,
the near-horizon geometry is

ds2 = R2
�

− sinh2ρd t̃2 + dρ2 +
�

dθ2 + sin2 θdφ2
��

. (22)

We will later discuss the AdS2 in the global coordinates

ds2 =
R2

cos2σ
(−dτ2 + dσ2) , (23)

which are related to the near-horizon coordinates by sinhρ sinh t̃ = sinτ
cosσ , coshρ = cosτ

cosσ . In
these coordinates the AdS2 boundaries are at σ = ±π2 .

For a substantial range of values of Q the magnetic field in this near-horizon region is
strong. The Maxwell field strength is F = Q

2 sinθdθdφ. To determine the strength of the
field, it is more appropriate to rewrite this in terms of the proper volume form on the sphere;

F =
Q

2R2
εS2 , (24)

so the magnetic field is

B =
Q

2R2
=

g2

2πGQ
, (25)

and the strength of the field is inversely proportional to the charge. Reducing the charge
reduces the total amount of flux through the throat, but it shrinks the size of the throat more
quickly, and hence the local field density is increasing.

The black hole is a solution of Einstein gravity coupled to a Maxwell field, but the mag-
netically charged black holes also satisfy the FFE equations of motion, and can be thought
of as solutions of FFE coupled to gravity. As mentioned in the previous section, FFE is usu-
ally thought of as a theory of plasmas, but it includes as solutions any degenerate vacuum
Maxwell field, and an FFE description is useful if the field is strong enough that fluctuations
about this background that would produce electric fields violating the FFE equation are ef-
ficiently screened by charges produced by vacuum fluctuations; in this case we expect the
low-energy fluctuations to be collective plasma modes (such as Alfven waves) rather than free
photon excitations.

The strong field condition is B > B?, where the critical field strength B? = g−2m2. The

field in the AdS2 × S2 solution satisfies B > B? if Q < Qc =
g4

2πGm2 . Putting in the mass of the
electron and the strength of the real-life couplings, the critical magnetic charge is Qc ∼ 1039

times the minimum Dirac monopole. At this maximum charge, the size of the throat is R∼ 107

m, so this strong field regime includes quite large black holes.
In the naive FFE theory, the Alfven wave modes give exactly massless two-dimensional

fields on the AdS2 spacetime. Expanding in spherical harmonics, φ =
∑

φ lm(x i)Ylm(θ ,φ),

8
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the φ lm are massless scalars on AdS2. Taking into account the correction term in (14), these
fields get a small mass. Plugging k2

⊥ =
l(l+1)

R2 into (19) we have

m2
eff =

32π2

g2Q
l(l + 1)m2 . (26)

A key question is what kind of bound we should place on this mass for it to be important for
the dynamics. A natural constraint arises from holography in the AdS2×S2 region: we should
take m2

effR
2 ≤ 1, so that the dimension of the dual operators is of order one. The resulting

bound on the number of modes on the S2 is

N ∼ l2
max ∼

g2Q
32π2m2R2

=
g4

32π3Gm2Q
=

g2Qc

16π2Q
. (27)

It is perhaps surprising that this bound is inversely proportional to Q, whereas the intuition
from the Landau levels might have led us to expect a result proportional to Q. The reason for
this behaviour is that as we increase Q, R gets larger, so the curvature of the space goes down
and the bound we are imposing on m2

eff gets tighter.
If we had just considered the bound k2

⊥ < B discussed around (11) we would have had
N ∼ l2

max ∼ BR2 ∼ Q. Thus, the bound from requiring that m2
effR

2 ≤ 1 is stronger so long as
Q > g

4π

p

Qc ∼ 1020.
At Q ∼Qc , the number of Alfven wave modes this bound would permit is of order one (in

fact, smaller than one because of the numerical factors, but the l = 0 mode is always allowed
as it has m2

eff = 0). It only becomes large when Q is significantly smaller than Qc; there is
still however a large range of possible values of Q where we get large values of N . We saw
before that Q ∼ Qc corresponded to R ∼ 107m; if we are interested in wormholes big enough
for a human to pass through, so say R ∼ 1m, this corresponds to Q ∼ 10−8Qc ∼ 1033, which
gives N ∼ 104. The maximum number of “light” Alfven waves is at the cross-over to the bound
k2
⊥ < B, where N ∼Q ∼ 1020.

This looks encouraging. Sadly, we will see that there are stronger restrictions on m2
eff,

which lead to smaller values of N , restricting us to smaller values of the charge.

3.1 Wormhole in a single universe

Our aim is to modify the black hole solution with the quantum stress tensor of the Alfven wave
modes to obtain a traversable wormhole geometry. As in [1], our target is a solution with a
wormhole with two mouths in a single asymptotically flat spacetime. We will summarize the
desired geometry here, following [1], and discuss the extent to which we can obtain it in a
construction based on the Alfven wave modes in Section 6.

The geometry is composed of three regions, as shown in Figure 1, with overlapping ranges
of validity: a wormhole throat, described by a nearly AdS2 × S2 geometry in the global coor-
dinates (23), a throat region at each wormhole mouth, described by the black hole solution
(20) (with opposite charges ±Q at each mouth, as the magnetic field lines flowing into one
end of the wormhole flow out at the other) and a flat region with a dipole magnetic field

A=
Q
2
(cosθ1 − cosθ2)dφ , (28)

where φ is the angle around an axis through the two charges, and θ1,2 is the angle between
the axis and the line from the point we measure the field at to the plus or minus charge. The
two wormhole mouths are separated by a distance d in this approximately flat region; to have
a flat space approximation between the wormhole mouths we need d � R, the separation is
larger than the size of the mouths. We assume that the AdS2 throat geometry is valid up to
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÷i÷÷÷÷/
.

Figure 1: The wormhole geometry: R denotes the radius of the wormhole throat, d
denotes the distance between the two wormhole mouths in the ambient space, and
` is the “length” (or more properly the time taken for a signal to go through) of the
wormhole.

some cutoff σ = ±σc = ±(
π
2 − ε), where we match to the black hole solution at r ≈ R. We

assume that at this matching point gt t ≈ 1 in the black hole solution, so the time coordinate t
in the black hole and asymptotically flat regimes is t = Rτ

cosσc
≈ R
ετ = `τ, where we introduce

the parameter ` to measure the “length” of the wormhole. This is more precisely related to the
travel time through the wormhole; if an observer jumps in one mouth at t = t0, they emerge
from the other mouth at t = t0 + π`. We assume that this length of the wormhole is larger
than the separation, `� d.

This geometry is not a solution to the equations of motion. The first issue is that the two
wormhole mouths would attract each other in the asymptotically flat region, so we would not
have a time-independent solution. As in [1], we assume this issue is resolved by having the
wormhole mouths slowly orbit a common center or by some other force acting on them, and
will not address it further. The second issue, which is the focus of our attention, is that the near-
horizon limit of a black hole solution is AdS2 in the Rindler coordinates (22); this describes
a solution with an Einstein-Rosen bridge connecting the two wormhole mouths, which is not
traversable. To have instead a solution where the asymptotically flat geometry is patched on
the AdS2 in global coordinates to obtain a traversable wormhole, we need to add some source
of negative energy. Our aim is to obtain this negative energy from the quantum fluctuations
of the Alfven wave modes.

The idea of [1] is to consider a field which satisfies the massless wave equation in the two-
dimensional space along the field lines of the magnetic field. These field lines form closed
loops, threading through the wormhole and then connecting back between the wormhole
mouths in the dipole region. The Casimir energy of the two-dimensional fields along these
field lines will then provide a source of negative energy. In the regime where ` � d, the
Casimir energy can be approximately calculated by treating the evolution in the dipole region
as essentially trivial. We model this by imposing periodic boundary conditions on the fields in
the AdS2 throat region.

The resulting wormhole solution can be determined by extremizing the energy from the
perspective of the asymptotic region [1]. The wormhole geometry with a throat of “length”
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` has the same geometry as a constant-time slice of a non-extremal black hole, with energy
above extremality E = R3

8GN `2 .5 Taking into account the negative Casimir energy from the bulk
fields gives a total energy

E =
R3

8GN`2
+ EC(`) . (29)

We expect to have a traversable wormhole solution at the value of ` that extremizes this energy,
if EC is sufficiently negative to make this total energy negative at the extremum. In [1] this
analysis was applied to the Landau levels of a massless fermion. This does not help us make
large wormholes in our own universe, as there is no exactly massless fermion to work with.
We thus want to apply it instead to the Alfven waves.

4 Double-trace coupling in AdS2

As a warm-up for considering the effects of the Alfven wave modes in the full asymptotically
flat wormhole geometry, let’s consider the effects in a pure AdS2 geometry. We will consider
introducing a double-trace coupling for the Alfven wave modes in AdS2, following [3,14].

We consider a JT gravity theory

S =
φ0

2
χ +

1
2

∫

d2 xφ(R+ 2) +φb

∫

∂

duK + Smatter , (30)

where χ is the Euler character of the two-dimensional spacetime, and the matter contribution
we focus on is the Alfven wave modes, which we describe by a set of N light scalar fields. This
theory can be obtained by dimensional reduction of the higher-dimensional theory in the throat
region of the black hole. (See [5, 28] for more discussion of the motivation for considering
this theory.) The equation of motion of the φ field sets R+ 2= 0, so the geometry is constant
negative curvature, implying that the metric is locally AdS2. We consider a geometry with two
boundaries, with boundary conditions

ds2
bd y =

du
ε

, φbd y = φb =
φr

ε
, (31)

where ε is a cutoff we will take to zero at the end of the calculation. The dynamical mode
in the dilaton-gravity sector is a boundary degree of freedom, specifying how the boundaries
are embedded in the global AdS2 geometry (23), given by specifying the global coordinates
τL(u), τR(u) as functions of the boundary proper time u. The action reduces to [5]

S =

∫

du
h

−φr

n

tan
τL

2
, u
o

−φr

n

tan
τR

2
, u
oi

+ Smatter , (32)

where the Schwarzian derivative is { f (u), u}= −1
2

�

f ′′

f ′

�2
+
�

f ′′

f ′

�′
. In the absence of the matter

contribution, this action has a solution where the boundaries follow hyperbolic trajectories,
tan τR

2 = tanh u, tan τR
2 = − coth u, which corresponds to the boundaries lying at constant ρ in

the Rindler-like coordinates of (22); that is, this is the near-horizon version of the black hole
solution.

We consider adding to this a coupling between the two boundaries. From the holographic
perspective, we want to add a double-trace coupling

Sint = λ
N
∑

i=1

∫

duOi
L(u)O

i
R(u) , (33)

5This is actually twice the energy of the non-extremal black holes, to account for the two mouths of the wormhole
in the asymptotic region.
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where L, R denote the two AdS2 boundaries, and Oi
L,R are the operators dual to the Alfven

wave modes, which have dimension ∆ = 1
2 +

1
2

q

1+ 4m2
effR

2 . We are summing over the N
modes, where N is bounded by (27). From the bulk perspective, this implies that we introduce
a boundary condition for the bulk fields φ i which relates the slow fall-off part of the field at
one boundary to the fast fall-off part at the other boundary. For a massless scalar, this boundary
condition is simply6

φ
�

�

σ=−π2
= λ∂σφ

�

�

σ=π2
φ
�

�

σ=+π2
= −λ∂σφ

�

�

σ=−π2
. (34)

As argued in [14], the effect of this interaction on the dynamics of the boundaries is summa-
rized by the effective action

S =

∫

du



−φr

n

tan
τL

2
, u
o

−φr

n

tan
τR

2
, u
o

+
λN
22∆

�

τ′R(u)τ
′
L(u)

cos2 τL(u)−τR(u)
2

�2∆


 . (35)

We look for a solution where τL , τR are linear functions of u, τL(u) = τR(u) = τ′u. This
is a solution of the equations of motion from (35) for any τ′; τ′ is then fixed by a global
SL(2) constraint. This constraint arises because writing the theory in terms of the effective
coordinate locationsτL(u),τR(u) of the boundaries in the global coordinates of (23) introduces
a redundancy in our description: changes in the values of the coordinate locations of the
boundary under global SL(2) transformations do not change the physical solution. We should
treat this redundancy in the variables in our effective action as an emergent gauge symmetry.
The associated constraint sets the global SL(2) charges of the solution to zero. The non-trivial
constraint in the present situation is

Q0 = −2τ′ + 2∆ητ
′2∆−1 = 0 , (36)

where η is a dimensionless version of the coupling λ, η= λN2∆−1/(22∆φ2∆−1
r ).

In [14], fermionic operators with ∆ = 1
2 were considered, corresponding to massless

fermions in the AdS2 bulk. Then (36) is easily solved to give τ′ = η. The analysis is simi-

lar for ∆ < 1, where τ′ ∝ η
1

2(1−∆) . But we are interested in massless and massive scalars,
corresponding to ∆≥ 1. For ∆= 1, both terms in (36) are linear in τ′, so there is no solution
for τ′; instead the vanishing of the charge appears to fix the coupling η! As discussed in the
previous section, the Alfven wave modes are not precisely massless once we take into account
corrections to the effective action, so in fact it is more relevant to consider modes in AdS2 with
∆> 1. There is then a solution to (36), but its character has changed; instead of being directly
proportional to the coupling η, τ′ is inversely proportional to η.

To better understand the physics of this constraint and to clarify the connection to our
later discussion for periodic boundary conditions, we would like to re-derive this behaviour
from the simple energy extremization argument mentioned in the previous section. For the
double-trace boundary conditions, a scalar field on AdS2 will have a Casimir energy linear in
λ for small λ, EC ∼ λ. Now for operators of dimension ∆, λ is a dimensionful coupling, of
dimension 2∆−1. Thus, it is natural to write λ= η′/`2∆−1. The Casimir energy defined with

respect to the AdS2 time coordinate can then be written as EC = −
R3η

G`2∆−1 (we choose η′(η) such
that the energy takes this form, where the additional factors are introduced for convenience).
In the asymptotically flat space, we are interested in the Casimir energy defined with respect

6The minus sign in the second relation can be understood by requiring that the equation be invariant under the
discrete AdS isometry σ → π−σ that swaps the two boundaries, or by demanding that the resulting boundary
value problem be self-adjoint.

12

https://scipost.org
https://scipost.org/SciPostPhys.12.3.086


SciPost Phys. 12, 086 (2022)

to the asymptotically flat coordinate, which is EC = Ec/`. Thus, the total energy as a function
of ` will be

E =
R3

G`2
−

R3η

G`2∆
. (37)

We want to set
dE
d`
=

R3

G`2

�

−2
1
`
+

2∆η
`2∆−1

�

= 0 . (38)

The factor in the bracket matches the constraint (36), with `−1 playing the role of τ′, which
is natural, as τ′ represents the scaling between the AdS2 coordinate and the boundary proper
time coordinate, while `−1 is the scaling between the AdS2 time coordinate and the asymptot-
ically flat time coordinate when we paste the AdS2 near-horizon region into the full asymptot-
ically flat solution.

Thus, we see that for the double-trace boundary condition for∆= 1, the physical problem
with the wormhole solution is that we can’t balance the Casimir energy contribution against
the gravitational contribution, because they scale in the same way with `. For ∆ 6= 1, the
extremum is at `= `c , where `2(∆−1)

c =∆η. Then

d2E
d`2

�

�

�

�

`=`c

= −
4R3(∆− 1)

G`4
c

, (39)

so for ∆ > 1, there is an extremum of the energy, but this is now a maximum of the energy
rather than a minimum. There is a solution, but it’s unstable.

5 Casimir for massive scalar field on AdS

In the previous section, we saw that for a double-trace coupling, the physics for bulk scalar
fields is quite different from fermions, because of the difference in conformal dimensions.
While the latter provides a good energy source to produce a traversable wormhole, massless
and massive scalars do not. From the energy extremization perspective, this is because the
Casimir energy for the double-trace deformation scales as 1/`2∆, and is not relevant enough
to balance the gravitational contribution, which dominates in the IR. .

For periodic boundary conditions, one would expect the Casimir energy for massless scalars
to scale as 1/`, just as for fermions, so the relevance of this discussion to the case of most
interest to us may not yet be very apparent. However, in this section, we will conduct a careful
analysis of the Casimir energy for massless and massive scalars on AdS2, and we will find
similar features to the discussion above in the massive case.

We consider AdS2 in global coordinates,

ds2 =
R2

cos2σ
(−dτ2 + dσ2) . (40)

The two boundaries are at σ = ±π2 . Consider a massive scalar field φ(t,σ) with mass m.
Writing the field as φ(t,σ) = e−iωτ f (σ), the wave equation is

f ′′(σ) +

�

−
m2R2

cos2σ
+ω2

�

f (σ) = 0 . (41)

We cut off the AdS boundary at some scale ε, so we have boundaries at σ+ =
π
2 − ε and

σ− = −
π
2 + ε. The “length” of the wormhole is `= R/ε.
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5.1 Massless scalar field on AdS2

Let us first consider the massless case. We will calculate the Casimir energy for periodic bound-
ary conditions by comparing the spectrum for the standard Dirichlet boundary conditions to
that for periodic boundary conditions. Dirichlet boundary conditions for a massless scalar im-
pose f (π2 ) = f (−π2 ) = 0. In this case, the spectrum is ω = n ∈ 1, 2,3, · · ·, i.e. all positive
integers. For even ω the solution is

f (σ) = sin(nσ) , n ∈ 2, 4, · · · (42)

and for odd ω the solution is

f (σ) = cos(nσ) , n ∈ 1,3, 5, · · · (43)

Note the putative zero mode with n = 0 is a constant and is thus killed by the boundary
conditions. Note also that there is no degeneracy; in particular flipping the momentum n→−n
does not result in a linearly independent solution.

Periodic boundary conditions for a massless scalar require

f
�π

2

�

= f
�

−
π

2

�

, f ′
�π

2

�

= f ′
�

−
π

2

�

. (44)

The allowed energies are now ωn = n ∈ 0,2, 4, · · · (i.e. only even integers). For all nonzero n
there are two linearly independent solutions:

fn,1(σ) = cos(nσ) , fn,2(σ) = sin(nσ) . (45)

Thus all modes but the zero mode have a 2-fold degeneracy.
It is straightforward to compute the sum over all the zero point energies and compute the

Casimir energies. As in [1], we begin by computing these energies on the flat strip defined by
σ ∈ [−π2 ,+π2 ], and will then conformally map the resulting answers to AdS2. For the Dirichlet
case,

E =
1
2

∞
∑

n=1

n exp (−εn) =
1

2ε2
−

1
24
+O(ε) , (46)

where ε−1 is a UV cutoff. Here the finite part is the usual Casimir energy for a CFT on a strip
of length π, i.e. − c

24 with c = 1. For the periodic spectrum

Eperiodic =
1
2
· 2

∑

n even

n exp(−εn) =
1

2ε2
−

1
6

. (47)

The universal part of this should be compared to the CFT formula − c
12

2π
L for the energy on

a circle of length L, where here L = π. As in [1], when conformally mapped to AdS2, the
Dirichlet boundary condition is SL(2) invariant, so the energy vanishes. Thus, we can calculate
the Casimir of interest by taking the difference of the periodic and Dirichlet results, which gives

Eperiodic = −
1
8

, (48)

where we denote the Casimir energy in the AdS2 frame by E . As before, there is a scaling by
1/` to relate this to the Casimir energy with respect to the asymptotically flat time coordinate,
so we have EC = −

1
8` , as expected.
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5.2 Massive scalar field on AdS2

However, the Alfven waves are not exactly massless scalar fields; as we saw earlier in (19), they
get a small but non-zero mass from corrections to the effective field theory. Let us therefore
consider the computation for a massive scalar field. In the massive case, the solutions of the
wave equation are hypergeometric functions. Two linearly independent solutions are

f±(σ) = cosα±(σ) 2F1

�

−
ω

2
+
α±
2

,
ω

2
+
α±
2

;α± +
1
2

; cos2(σ)
�

, (49)

where

α± =
1
2
±

√

√1
4
+m2

effR
2 . (50)

Note that α+ = ∆, α− = 1 − ∆ , and α+ > α−. These solutions are useful for describing
the behaviour near the boundaries at σ = ±π2 ; the solutions f± fall off as cosα±(σ), so f+
corresponds to the normalizable mode and f− corresponds to the non-normalizable mode.
However, these solutions are generically not smooth at σ = 0. Using standard identities [29],
the hypergeometric function can be rewritten as

2F1

�

−
ω

2
+
α±
2

,
ω

2
+
α±
2

;α± +
1
2

; cos2(σ)
�

=
Γ (α± +

1
2)Γ (

1
2)

Γ (1
2 +

α±
2 −

ω
2 )Γ (

1
2 +

α±
2 +

ω
2 )

2F1

�

−
ω

2
+
α±
2

,
ω

2
+
α±
2

;
1
2

; sin2(σ)
�

+ | sinσ|
Γ (α± +

1
2)Γ (−

1
2)

Γ (α±2 −
ω
2 )Γ (

α±
2 +

ω
2 )

2F1

�

−
ω

2
+
α±
2
+

1
2

,
ω

2
+
α±
2
+

1
2

;
3
2

; sin2(σ)
�

,

(51)

which is continuous but not smooth at σ = 0 because of the second term.
We obtain the Casimir energy by comparing the spectrum for Dirichlet and periodic bound-

ary conditions. By Dirichlet, we mean that we want a solution which has only the f+ falloff
near the boundary. If we consider the solution f+(σ) given above, we then need to choose the
energy ω such that f+(σ) is smooth at σ = 0. This can be achieved by taking

ω= α+ + 2r , r = 0,1, 2, . . . , (52)

so that the Gamma function Γ (α+2 −
ω
2 ) in the denominator in the second term in (51) has a pole,

and we have just the first term, which is smooth at σ = 0. In the massless limit m→ 0, this
reproduces the part of the spectrum with odd n= 2r + 1 and even solutions f (σ) = cos(nσ),
corresponding to the fact that f+ is an even function. To get the other half of the spectrum, we
need to consider a solution f+(σ)sgn(σ) (note that this satisfies the equation of motion, and
like f+(σ), it is generically not smooth at σ = 0). This is an odd function, and the solution is
smooth if

ω= α+ + 2r + 1 , r = 0,1, 2, . . . , (53)

so that the Gamma function Γ (1
2 +

α+
2 −

ω
2 ) in the denominator in the first term in (51) has

a pole, and we have just the second term, which is smooth at σ = 0 when multiplied by
sgn(σ). In the massless limit, this reproduces the part of the spectrum with even n = 2r + 2
and odd solutions f (σ) = sin(nσ). The Dirichlet spectrum for the massive field thus consists
of (52,53).

Now consider periodic boundary conditions,

f (σ+) = f (σ−) , f ′(σ+) = f ′(σ−) , (54)

with some cutoff ε, such that the two edges are at σ+ =
π
2 − ε or σ− = −

π
2 + ε. Here we

will proceed by constructing solutions which are smooth at σ = 0, and then imposing the
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boundary conditions. The analysis above encourages us to consider separately the even and
odd functions of σ. An even function is obtained in general by considering

f (σ) = C+ f+(σ) + C− f−(σ) . (55)

Smoothness at σ = 0 then requires that the coefficient of the second term in (51) vanishes,
that is

C+
Γ (α+ +

1
2)Γ (−

1
2)

Γ (α+2 −
ω
2 )Γ (

α+
2 +

ω
2 )
+ C−

Γ (α− +
1
2)Γ (−

1
2)

Γ (α−2 −
ω
2 )Γ (

α−
2 +

ω
2 )
= 0 . (56)

For even functions, we automatically have f (σ+) = f (σ−), and the non-trivial boundary con-
dition is f ′(σ+) = f ′(σ−) = 0. For small ε,

f ′(σ+)≈ α+C+ε
α+ +α−C−ε

α− = 0 . (57)

Combining these two equations, we have a condition for ω,

Γ (α+ +
1
2)

Γ (α+2 −
ω
2 )Γ (

α+
2 +

ω
2 )
−
α+
α−
ε2∆−1 Γ (α− +

1
2)

Γ (α−2 −
ω
2 )Γ (

α−
2 +

ω
2 )
= 0 , even sector (58)

where the power of ε is α+ −α− = 2∆− 1. Similarly, odd functions are

f (σ) = (C+ f+(σ) + C− f−(σ))sgn(σ) . (59)

Smoothness at σ = 0 then requires that the coefficient of the first term in (51) vanishes, that
is

C+
Γ (α+ +

1
2)Γ (

1
2)

Γ (1
2 +

α+
2 −

ω
2 )Γ (

1
2 +

α+
2 +

ω
2 )
+ C−

Γ (α− +
1
2)Γ (

1
2)

Γ (1
2 +

α−
2 −

ω
2 )Γ (

1
2 +

α−
2 +

ω
2 )
= 0 . (60)

For odd functions, the non-trivial boundary condition is f (σ+) = f (σ−) = 0. For small ε,

f (σ+)≈ C+ε
α+ + C−ε

α− = 0 . (61)

Combining these two equations, we have a condition for ω,

Γ (α+ +
1
2)

Γ (1
2 +

α+
2 −

ω
2 )Γ (

1
2 +

α+
2 +

ω
2 )
− ε2∆−1 Γ (α− +

1
2)

Γ (1
2 +

α−
2 −

ω
2 )Γ (

1
2 +

α−
2 +

ω
2 )
= 0 . odd sector (62)

Taking ε→ 0 at fixed meff, (57,61) set C− = 0 in both the even and odd sectors, and the pe-
riodic case reduces to the Dirichlet case. Physically, this happens because the non-normalizable
mode blows up near the boundary, so to satisfy a periodic boundary condition in the limit as
we extend our box to the boundary of the spacetime we must set the coefficient of the non-
normalizable mode to zero. However, if we take the mass m→ 0 at fixed ε, the factor of α−
in (57) goes to zero as we take m → 0, and we must set C+ to zero for even modes. That
is consistent with the analysis of the massless case in the previous section, where we found
that the periodic spectrum included odd functions which vanished at the boundary and even
functions which were finite at the boundary.

Thus, at fixed small meff, ε, the odd part of the periodic spectrum is always close to the
Dirichlet spectrum (as in the massless case, where the odd parts of the periodic and Dirichlet
spectra coincided), but whether the even part is close to the Dirichlet spectrum or the massless
periodic spectrum depends on the order of limits with which we take ε → 0 or meff → 0, or
equivalently the size of the coefficient α+α− ε

2∆−1 in (58). To see this explicitly, let’s substitute

ω= α++2r+1+δωodd in (62). If ε is small, we may expand in δωodd to find to first order:

δωodd ≈ −2ε2∆−1 (−1)rΓ (α− +
1
2)Γ (1+α+ + r)

r!Γ (α+ +
1
2)Γ (−

1
2(α+ −α−)− r)Γ (3

2 + r)
, (63)
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so the spectrum indeed agrees with the Dirichlet one up to corrections vanishing as ε2∆−1.
For the even case, if α+α− ε

2∆−1 is small, then setting ω = α+ + 2r + δωeven and expanding
the gamma function on the first term in (58) gives

δωeven ≈ −2
α+
α−
ε2∆−1 (−1)rΓ (α− +

1
2)Γ (α+ + r)

r!Γ (α+ +
1
2)Γ (−

1
2(α+ −α−)− r)Γ (1

2 + r)
, (64)

a small correction to the Dirichlet spectrum. Alternatively, if α+α− ε
2∆−1 is large, for r 6= 0 we

can set ω= α−+2r+δωeven′ and expand the gamma function in the second term of (58) , to
give

δωeven′ ≈ −2
α−
α+
ε1−2∆ (−1)rΓ (α+ +

1
2)Γ (α− + r)

r!Γ (α− +
1
2)Γ (

1
2(α+ −α−)− r)Γ (1

2 + r)
, (65)

a small correction to the massless periodic spectrum.7

Thus, for massive fields of fixed mass, at small ε (which is large ` = R/ε), the spec-
trum for periodic boundary conditions differs from Dirichlet by an amount that scales as
δω ∼ ε2∆−1 ∼ 1/`2∆−1. As explained above, we measure the Casimir energy for the pe-
riodic boundary condition relative to that with the Dirichlet boundary condition; thus we
will find an effective Casimir energy only when the spectra differ, i.e. it will be of order:
Eperiodic ∼ 1/`2∆−1. Hence the Casimir energy with respect to the asymptotically flat time co-
ordinate is EC ∼ 1/`2∆. Interestingly, this gives the same behaviour as for the double-trace
boundary condition we considered in the previous section. Massless fields are a special case,
as the factor of α− vanishes, so the spectrum remains different from the Dirichlet one in the
limit as ε→ 0, giving the finite answer exhibited in (48).

In the situation we are interested in, we have a large number of fields with a range of
masses, and we consider some large but finite value of `. The fields then split roughly into
two groups: for masses small enough that α−α+ ε

1−2∆ is small, we have essentially the massless
spectrum, and a finite Casimir EC approximately independent of `, while for larger masses
we have the situation above with E ∼ 1/`2∆−1. The crossover is when the m2

eff → 0 limit of
α−
α+
ε1−2∆ is of O(1); using ε= `

R , this happens when:

m2
eff ∼ m2

c =
1
`R

. (66)

For long wormholes, this is a much smaller mass than the simple holographic bound we
had previously, m2

eff <
1
R2 , and it will lead to an `-dependent restriction on the number of

modes contributing non-trivially to the Casimir energy.
This slightly lengthy computation simply shows that for sufficiently long length scales ` a

very small mass makes a large difference, and the calculation shows that the relevant mass
scale is the geometric mean of ` and R.

7For r = 0, the analysis is slightly more subtle; the size of δωeven′ is still controlled by α+
α−
ε2∆−1, but the power

is different. Setting ω= α− +δωeven′ in (58), we have approximately

Γ (α+ +
1
2 )

Γ ( α+2 )2
−
α+
α−
ε2∆−1

Γ (α− +
1
2 )

Γ (− δωeven′

2 )Γ (α− +
δωeven′

2 )
= 0.

From the analysis for r 6= 0, we guess that δωeven′ is large compared to α−; then we should neglect α− relative to
δωeven′ in the second gamma function, to get (δωeven′)2 ≈ − 1

2πα−ε
1−2∆ ≈ 1

2πm2R2ε1−2∆. This is large compared
to α2

− so the approximation is consistent. For our argument, this power is not important; what matters is that the
spectrum is close to Dirichlet for small α+α− ε

2∆−1, and close to the massless for large α+
α−
ε2∆−1.
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6 Wormhole with periodic boundary conditions

In the full wormhole geometry, assuming an FFE description is valid in both the AdS2 and
the dipole regions, the Alfven waves behave as two-dimensional fields propagating along the
field lines of the magnetic field. These field lines form closed loops, threading through the
wormhole and then connecting back between the wormhole mouths in the dipole region. If
the length ` of the wormhole in the AdS2 region is long compared to the separation d in the
dipole regione, we can think of this as simply giving a periodic boundary condition for the
fields in the AdS2 region.

In the previous section, we saw that massive fields with such a periodic boundary condition
give a non-trivial Casimir energy only for m2

eff <
1
`R . This implies a strong restriction on the

number of modes for which we have an appreciable Casimir energy. Using (26), we have:

N ∼ l2
max =

g2Q
32π2m2

1
`R
=

g3

32π5/2
p

Gm2

1
`

. (67)

Note that this is independent of Q; the number of modes that satisfy this bound does not
scale at all with the flux. More importantly, it also goes down as we make the wormhole
longer. Thus, even though individual fields have a Casimir energy which scales as 1/`, the
total Casimir energy from these fields in the asymptotically flat frame is

EC = −
N
8`
∼ −

1
`2

, (68)

showing the same scaling as in the double-trace analysis for massless scalars. The further
contributions from Alfven wave modes with m2

eff >
1
`R give a Casimir energy scaling as 1/`2∆,

so they are negligible at large ` relative to the contributions we keep here.
Thus, we have the same problem as in the double-trace case: the total energy that we want

to extremise is

E =
R3

G`2
−

g3

256π5/2m2lp`2
, (69)

and both terms have the same scaling with `. Thus, we have not succeeded in stabilizing a
wormhole at large values of `.

Fortunately, this is not the end of the story; there is a difference between this case and the
double-trace case, which is that the 1/`2 scaling of the Casimir here came from counting the
number of modes with small enough mass. Now N ∼ 1/` only if m2

eff <
1
`R is the strongest

bound on the effective mass of the Alfven wave modes. But if we can choose the parameters so
that the energy in (69) is negative, the wormhole will reduce its energy by becoming shorter,
and the bound m2

eff <
1
`R becomes weaker at smaller `, so we can expect that eventually some

other physics could take over and stabilise the wormhole.
Indeed, in our analysis above, we treated the dipole regime as simply imposing a periodic

boundary condition, identifying the fields at the two wormhole mouths. This will be a good
approximation if the field does not vary significantly across the dipole regime, propagating
over a distance of order d in flat space. This requires m2

eff � 1/d2. If ` becomes sufficiently
small, this could become a stronger bound on N .8 Let’s suppose ` does become sufficiently
small that this dipole bound matters. Then

E =
R3

G`2
−

g2Q
256π2m2d2`

. (70)

8Note that this bound is also always stronger than the simple bound m2
eff <

1
R2 , as we assume d > R. The number

of Alfven wave modes allowed by the dipole bound is linear in Q, N = g2Q
32π2m2d2 , so this bound will also be stronger

than the restriction N <Q so long as the separation d is bigger than the Compton wavelength of the electron. Also
note that the crossover to the dipole bound can happen in the regime where `� d, if d is sufficiently large.
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This has a minimum at

`min =
512π7/2m2d2lpQ2

g5
. (71)

This is in the regime where the dipole bound matters if `minR< d2, which implies

Q3 <
g6

512π4m2G
. (72)

For such values of Q, we have E < 0 in (69). Thus, there is a self-consistent story: if
Q is small enough, E is given by (69) at large `, and is negative. The dynamics then drives
` to decrease, increasing the number of Alfven wave modes contributing to the Casimir. At
sufficiently small ` this increase is cut off by the requirement that m2

eff < 1/d2, and the energy
is given by (70). This has a minimum at `min, giving a stable traversable wormhole solution,
supported by the negative Casimir energy of the Alfven wave modes.

Unfortunately, the values of Q satisfying (72) are pretty small: Q < 1012, which corre-
spond to a wormhole of size R < 10−21m, or about (1000 TeV)−1. This mechanism is thus
only possible for very small wormholes indeed. Even though we have argued that FFE is a
good description for much larger values of R, the tight bound on the effective mass means
that only a small number of Alfven wave modes contribute to the Casimir energy, and we need
to be at small Q for the second term in (69) to overcome the first term9. We have thus not
succeeded in building significantly larger wormholes than in [1]. Furthermore, at such short
scales, our analysis, which is based ultimately on considering QED+Maxwell, will break down
disastrously, not only because FFE is clearly not a good description, but because of the con-
tribution of other standard model and possibly beyond-the-standard-model fields; we need to
take into account the effects discussed in [2].

Our simplest attempt at using these collective modes to stabilize the wormhole was not
successful; nevertheless it would be very interesting indeed to see if some variant thereof
could allow the existence of a large stable traversable wormhole using the low-energy field
content of our universe. Our results hinge delicately on the structure of higher-derivative
corrections to FFE, which to our knowledge are not very well-understood. Indeed if the Alfven
wave density of states differs significantly from the (conservative) assumptions that led to
(19), our conclusions may be modified. Interesting directions for future work are to explore
further such higher-derivative corrections, and in a more general sense the relation between
the FFE description and the underlying QED+Maxwell theory10, particularly in the regime of
very strong fields relevant to the small values of the charge we consider above. It would also
be interesting to explore other effects of the Alfven wave modes and more generally the strong
magnetic fields in black holes in the FFE regime.
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9Demanding that the field B ∼ Q
d2 in the dipole region be strong enough for FFE to be valid, and using Q ∼ 1012

from above, we further find that d < 105 m−1, with m the mass of the electron. Though there is a large hierarchy
between d and R, this is still rather small in everyday terms.

10See [25] for a recent investigation of the validity of FFE using holography.
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