

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. A2121--A2149

A MULTIRESOLUTION DISCRETE ELEMENT METHOD FOR
TRIANGULATED OBJECTS WITH IMPLICIT TIME STEPPING\ast

PETER J. NOBLE\dagger AND TOBIAS WEINZIERL\dagger

Abstract. Simulations of many rigid bodies colliding with each other sometimes yield particu-
larly interesting results if the colliding objects differ significantly in size and are nonspherical. The
most expensive part within such a simulation code is the collision detection. We propose a family
of novel multiscale collision detection algorithms that can be applied to triangulated objects within
explicit and implicit time stepping methods. They are well suited to handle objects that cannot be
represented by analytical shapes or assemblies of analytical objects. Inspired by multigrid methods
and adaptive mesh refinement, we determine collision points iteratively over a resolution hierarchy
and combine a functional minimization plus penalty parameters with the actual comparision-based
geometric distance calculation. Coarse surrogate geometry representations identify ``no collision""
scenarios early on and otherwise yield an educated guess which triangle subsets of the next finer
level might yield collisions. They prune the search tree and furthermore feed conservative contact
force estimates into the iterative solve behind an implicit time stepping. Implicit time stepping and
nonanalytical shapes often yield prohibitive high compute cost for rigid body simulations. Our ap-
proach reduces the object-object comparison cost algorithmically by one to two orders of magnitude.
It also exhibits high vectorization efficiency due to its iterative nature.

Key words. discrete element method, triangle collision checks, implicit time stepping, multiscale
methods, surrogate geometries

MSC codes. 70E55, 70F35, 68U05, 51P05, 37N15

DOI. 10.1137/21M1421842

1. Introduction. The simulation of rigid or incompressible bodies is a chal-
lenge that arises in many fields. Notably, it is at the heart of discrete element method
(DEM) simulations, where millions of these objects are studied. Progress on sim-
ulations with rigid, impenetrable objects depends on whether we can handle high
geometric detail accurately: For the analysis of particle flow such as powder, it is
mandatory to simulate billions of particles, i.e., incompressible bodies, while the re-
alism of some simulations hinges on the ability to handle particles of different shapes
and sizes [2, 13, 14, 15, 16, 22, 23, 24, 25]. It is the support of different shapes and
sizes that allows us to simulate complex mixture phenomena, separation of scales,
or blockage if many objects, also known as particles, try to squeeze through narrow
geometries.

DEM codes spend most of their runtime on collision detection [13, 15, 16, 19].
We tighten the challenge and study a DEM prototype over particles where (i) rigid
particles have massively differing size, (ii) rigid particles are discretized by many
triangles, and (iii) rigid particles have complicated, nonconvex shapes. Our code
supplements each rigid particle with an \epsilon -area [2, 22, 24] and considers two particles
to be ``in contact"" if their \epsilon -environment overlaps. This yields a weak compressibility
model, where the contact points are unique up to an \epsilon -displacement. Yet, both the
arrangement and the topology of these points still can change significantly between
any two time steps, while the collision models using the contact data remain inherently

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section May 21,
2021; accepted for publication (in revised form) March 14, 2022; published electronically July 28,
2022.

https://doi.org/10.1137/21M1421842
Funding: This work was supported by the EPSRC through grant 1764342.

\dagger Department of Computer Science, Durham University, Durham, DH1 3LE, UK (peter.j.noble@
durham.ac.uk, tobias.weinzierl@durham.ac.uk).

A2121

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1421842
mailto:peter.j.noble@durham.ac.uk
mailto:peter.j.noble@durham.ac.uk
mailto:tobias.weinzierl@durham.ac.uk

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2122 PETER J. NOBLE AND TOBIAS WEINZIERL

Fig. 1.1. Surrogate triangle hierarchy for a ``bumped sphere."" The actual sphere geometry \BbbT h

is shown on the right. From left to right: Finer and finer surrogate representations including their
\epsilon -environments. The coarser a representation, the lower the triangle count and the larger the cor-
responding \epsilon . The surrogate triangles are weakly connected. The right most geometry is the actual
particle with a closed surface.

stiff. Large-scale DEM codes require the comparison of many particles per time step.
Efficient many-body simulations employ techniques such as neighbor lists and cell
or tree metadata structures [2, 10, 15, 22] to narrow down the potential collisions,
i.e., to identify particle pairs which might collide as they are spatially close. After this
preprocessing or filtering step, they detect collision points between particle pairs. We
focus exclusively on the particle-particle comparison challenge, as efficient algorithms
for the neighborhood identification---including techniques for challenging shapes and
massively differing sizes---are known.

Our work proposes a multiscale contact detection scheme which brings down
the compute time for the contact detection aggressively. We can handle complex,
nonconvex shapes and even speed up implicit time stepping significantly. The latter
is, so far, prohibitively expensive for most codes. To reduce the runtime, our approach
phrases the contact search between two particles as an iterative algorithm over multi-
ple resolutions, where coarser particle resolutions act as surrogates (Figure 1.1). This
idea enables us to introduce five algorithmic optimizations: First, the surrogates help
us identify ``no contact"" constellations quickly. In this case, we can immediately ter-
minate the search algorithm. The surrogates yield a generalization of classic bounding
sphere checks---if two bounding spheres do not overlap, the underlying objects cannot
overlap---to highly nonspherical geometries. Second, we exploit that we do not repre-
sent surrogate resolutions as a plain level of detail [1] but make them form a tree: If
we identify a potential collision, only those sections of the geometry are ``up-pixeled""
from where a collision point might arise from. We increase the resolution locally. The
complexity per iterative step thus does not grow exponentially as we switch to more
accurate geometric representations. Instead we tend to have a linear increase of cost
as we use finer and finer geometric models. Third, the surrogate resolutions yield
conservative estimates of the force that might result from a contact point. Once we
employ an implicit time stepping scheme with a Picard iteration, we can permute the
iterative solver loop, and the resolution switches such that the Picard iteration forms
the outer loop which zaps through resolution levels upon demand. The cheap surro-
gates provide an educated guess to the iterative force calculation and thus accelerate
the convergence. Fourth, we phrase the contact detection as a distance minimization
problem [14, 15]. The minimization problem is solved iteratively through an addi-
tional, embedded Newton which approximates the Jacobian via a diagonal matrix
and runs through a prescribed number of sweeps. Once more, we permute the loop
over triangle pairs and the Picard iterations to improve the vectorization suitability.
Finally, we acknowledge that an iterative minimization subject to a prescribed itera-
tion count can fail if the underlying geometric problem is ill-posed. In such cases, we
eventually postprocess it by falling back to a comparison-based distance calculation.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2123

However, this is only required on the finest mesh, whereas we use nonconvergence
within the surrogate tree as sole ``refinement criterion"" (use a finer mesh) that does
not feed forces into the implicit time stepping.

To the best of our knowledge, our rigorous multiscale idea, which can be read as
a combination of (i) loop permutation and fusion, (ii) adaptive mesh refinement, (iii)
a generalization of volume bounding hierarchies [5, 8, 9, 11, 12], and (iv) an approx-
imate, weak closest-triangle formulation [14, 15], is unprecedented. Its reduction of
computational cost plus its excellent vectorization character in combination with the
fact that rigid body simulations scale well by construction---the extremely short-range
interactions fit well to domain decomposition---brings implicit DEM simulations for
triangulated, nonconvex shapes within practical applications into reach. The core
algorithmic ideas furthermore have an impact well beyond the realm of DEM. The
search for nearest neighbors, i.e., contact within a certain environment, is, for exam-
ple, also a core challenge behind fluid-structure interaction.

The manuscript is organized as follows: We first introduce our algorithmic chal-
lenge and a textbook implementation of both explicit and implicit time stepping for
it (section 2). An efficient contact detection between triangulated surfaces of two
particles via a minimization problem is introduced next (section 3) before we rewrite
the underlying geometric problem as a multiresolution challenge and introduce our
notion of a surrogate data structure (section 4). In section 5, we bring both the effi-
cient triangle comparisons and the tree idea together as we plug them into an implicit
time stepping code before we allow the nonlinear equation system solvers' iterations
to move up and down within the surrogate tree. This is the core contribution of the
manuscript. Following the discussion of some numerical results (section 6), we sketch
out future work and close the discussion.

2. Algorithmic framework. We study a system of | \BbbP | rigid bodies (particles).
Each particle p \in \BbbP has a velocity v(p, t) and an angular velocity \omega (p, t) which deter-
mine its change of position and rotation. Each is described by a triangular tessellation
\BbbT (p, t). t \geq 0 is the simulation time. We may assume that \BbbT (p, t) spans a well-defined,
closed surface represented by a conformal mesh: No two triangles intersect, and we
can ``run around"" a particle infinitely often without falling into a gap. While the tri-
angulation of the object is time-invariant, it moves and rotates over time and therefore
depends on t.

Time stepping. A straightforward high-level implementation of an explicit Euler
for DEM consists of a time loop hosting a sequence of further loops (Algorithm 2.1):
The first inner loop identifies all contact points between the particles. Once we know
all contact points per particle, we can determine a velocity and rotation update (dv(p)
and d\omega (p)) per particle. Before we do so, we update the particles' positions using their
velocity and angular momentum. Finally, we progress in time. Euler--Cromer would
result from a permutation of the update sequence.

It is impossible to simulate exact incompressibility with explicit time stepping
schemes when no interpenetration is allowed: Everytime we update a particle, we run
risk that it slightly penetrates another one due to the finite time step size \Delta t. At the
same time, particles exchange no momentum as long as they are not in direct contact
yet. The momentum exchange remains ``trivial"" until we have violated the rigid body
constraint. For these two reasons, we switch to a weak incompressibility model, where
each particle is surrounded by an \epsilon > 0 area [2, 22, 24]. The area is spanned by the
Minkovski sum of the triangles from \BbbT (p, t) and a sphere of radius \epsilon minus the actual
rigid object. Without loss of generality, we assume a uniform \epsilon per particle. Our
formalism is equivalent to a soft boundary formulation with an extrusive surface.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2124 PETER J. NOBLE AND TOBIAS WEINZIERL

Algorithm 2.1 High-level pseudocode for an explicit Euler for rigid particles. The
continuous properties v(p, t), \omega (p, t), and \BbbT (p, t) are discretized in time and thus be-
come v(p), \omega (p), and \BbbT (p). t is the (discretized) time, \Delta t the time step size.
1: while t < Tterminal do \triangleleft We simulate over a time span
2: \forall pi \in \BbbP : \BbbC (pi)\leftarrow \emptyset \triangleleft Clear set of collisions for particle pi
3: for pi, pj \in \BbbP , pi \not = pj do \triangleleft Run over all particle pairs
4: \BbbC (pi)\leftarrow \BbbC (pi)\cup findContacts(\BbbT (pi),\BbbT (pj))
5: \BbbC (pj)\leftarrow \BbbC (pj)\cup findContacts(\BbbT (pi),\BbbT (pj))
6: end for
7: for pi \in \BbbP do
8: \BbbT (pi)\leftarrow update(\BbbT (pi), v(pi), \omega (pi),\Delta t) \triangleleft Update geometry
9: end for \triangleleft Use velocity, rotation, and time step size
10: for pi \in \BbbP do
11: (dv, d\omega)\leftarrow calcForces(\BbbC (pi))
12: (v, \omega)(pi)\leftarrow (v, \omega)(pi) + \Delta t \cdot (dv, d\omega) \triangleleft Update velocity and rotation
13: end for
14: t\leftarrow t+\Delta t
15: end while

Algorithm 2.2 Contact identification between two particles pi and pj .

1: function findContacts(\BbbT (pi),\BbbT (pj))
2: \BbbC = \emptyset
3: for ti \in \BbbT (pi), tj \in \BbbT (pj), ti \not = tj do \triangleleft Run over all triangles pairs
4: c\leftarrow contact(ti, tj) \triangleleft Find closest point in-between ti and tj , and compare normal
5: if c \not = \bot then \triangleleft | n| against \epsilon ; return \bot if | n| > \epsilon
6: \BbbC \leftarrow \BbbC \cup \{ c\}
7: end if
8: end for
9: return \BbbC
10: end function

Definition 2.1 (contact point).Each particle is surrounded by an \epsilon -environment.
Two particles are in contact if their \epsilon -environment overlaps. Overlaps yield contact
points which in turn yield forces.

We parameterize each contact point with its penetration depth: Our contact de-
tection in Algorithm 2.2 identifies the closest path between two triangles. A potential
contact point c is located at the center of this line. It is equipped with a normal n(c),
which points from the contact point toward either of the closest triangles (Figure 2.1).
There is an overlap between the two \epsilon -augmented triangles if and only if | n(c)| \leq \epsilon ,
that is, if the \epsilon -environments penetrate. In this case c is added to the set of collision
points.

With a set of contact points plus their normals and dimensionless masses M(pi)
and M(pj), we can derive the force acting on a particle.

F (c) =
n(c)

| n(c)|
Ks

\biggl(
1 - | n(c)|

\epsilon

\biggr) \sqrt{}
1

1
M(pi)

+ 1
M(pj)

computes the force arising from one contact point by mapping the \epsilon -area onto a simple
spring with a perpendicular friction force yet without any empirical damping [7]. The
force depends on the contact normal n(c) and applies to both colliding particles pi
and pj subject to a minus sign for one of them. It is calibrated by a spring constant
Ks = 1, 000. A particle's total force is then the sum over the individual contact
forces. Taking the center of mass, the total mass, and the mass distribution of a

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2125

Fig. 2.1. A pair of objects (black, solid) with their \epsilon -environment (black, dotted) collide. In the
present sketch, one object is a ``spherical"" particle spanned by six edges, while the other object is a
plane at the bottom. Left: Two-dimensional sketch of the contact point concept. The zoom-in shows
the contact point which is located in the middle of the overlap region. The contact normal is directed
from the middle point toward the closest point on one of the objects involved. Middle: When an
object hosts very extruded features, we slightly shrink the surrogate such that the surrogate without \epsilon
becomes a closer fit around the ``unbumped"" real geometry. We trade such a surrogate for a bigger \epsilon .
Empirical evidence suggests that this yields slightly advantageous forces within a multiscale iterative
solve. Right: The conservative property of the surrogate triangles states that all fine level geometry
(including its \epsilon -boundary) must be encompassed by the surrogate's \epsilon . This doesn't suggest that all
surrogate children are included.

particle into account, the total force and total torque determine its acceleration and
angular acceleration [4].

This is a simplistic presentation---we ignore, for example, sophisticated interaction
functions which distinguish contact points from contact faces---where the discontinu-
ous force that arises at a contact is approximated by a ``fade-in"" force as two particles
approach each other: Over an interval of size \epsilon , the force smoothly approximates the
target force as the penetration depth | n(c)| increases. The simple physics allow us to
focus on the core challenge: how to find contact points efficiently.

Implementation remark 1. As we work with triangulated objects and derive con-
tact points from triangle-triangle comparisons, the algorithm identifies some contact
points redundantly: If the closest distance between two objects is spanned by two
object vertices xi and xj , every triangle combination ti and tj , where ti is adjacent to
xi and tj to xj , finds the same contact point and consequently adds it to \BbbC (Algorithm
2.2). The set notation for \BbbC highlights that we do not work with redundant contact
points: In the implementation, we run over \BbbC and merge close-by contact points,
i.e., points closer than \epsilon , into one average point. This filter step prior to any use of
the elements from \BbbC is necessary, as we work with floating point arithmetics and an
\epsilon > 0; i.e., a contact point is not a unique point in space and might temporarily exist
multiple times within \BbbC with slightly different coordinates. \square

Implicit time stepping. An implicit Euler for a DEM code has to solve a nontrivial,
nonlinear equation system per time step. Nontrivial means that the system's sparsity
pattern depends on the solution of the system itself. It is determined by the contact
point search: We obtain entries in the interaction matrix, where the corresponding
normal | n| \leq \epsilon . Nonlinearity means that the quantities in the interaction matrix
(forces) depend on the (guess of the) geometries' arrangement.

Assumption 1. Our implicit time stepping problem exhibits a contraction prop-
erty; i.e., Picard iterations can solve the underlying nonlinear equation system.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2126 PETER J. NOBLE AND TOBIAS WEINZIERL

Algorithm 2.3 High-level pseudocode for an implicit Euler.
1: while t < Tterminal do \triangleleft We simulate over a time span
2: \forall pi \in \BbbP : \BbbT guess(pi)\leftarrow \BbbT (pi), vguess(pi)\leftarrow v(pi), \omega guess(pi)\leftarrow \omega (pi)
3: while \BbbT guess, vguess or \omega guess change significantly for any p do
4: \forall pi \in \BbbP : \BbbC (pi)\leftarrow \emptyset \triangleleft Clear set of collisions for particle pi
5: for pi, pj \in \BbbP , pi \not = pj do \triangleleft Run over all particle pairs
6: \BbbC (pi)\leftarrow \BbbC (pi)\cup findContacts(\BbbT guess(pi),\BbbT guess(pj))
7: \BbbC (pj)\leftarrow \BbbC (pj)\cup findContacts(\BbbT guess(pi),\BbbT guess(pj))
8: end for
9: for pi \in \BbbP do
10: (dv, d\omega)\leftarrow calcForces(\BbbC (pi))
11: (vguess, \omega guess)(pi)\leftarrow (v, \omega)(pi) + \Delta t \cdot (dv, d\omega)
12: \BbbT guess(pi)\leftarrow update(\BbbT (pi), vguess(pi), \omega guess(pi),\Delta t)
13: end for
14: end while
15: \forall pi \in \BbbP : \BbbT (pi)\leftarrow \BbbT guess(pi), v(pi)\leftarrow vguess(pi), \omega (pi)\leftarrow \omega guess(pi)
16: t\leftarrow t+\Delta t
17: end while

As our nonlinear system is ``well behaved""---we employ reasonably small \Delta t---we
rely on a fixed-point formulation of the implicit time stepping and employ Picard it-
erations; i.e., we approximate the velocity and angular velocity (dv, d\omega)(p)(t) through
a repeated application of the contact detection plus its following force calculation
(Algorithm 2.3). We assume that we remain within the Picard iterations' region of
convergence.

Picard avoids the assembly and inversion of an equation system. However, many
contact points enter the algorithm temporarily throughout the iterations, which even-
tually are not identified as contacts. This happens, for example, if we rotate the
particles ``too far"" throughout the iterations. Despite small \Delta t, we cannot provide
an upper bound on the number of Picard iterations required or make assumptions on
the (temporarily) identified contact points, i.e., the cost per iteration.

Notation and terminology. Any particle p \in \BbbP has a (closed) volume V (p) which
is spanned by its triangular surface \BbbT (p). Since we stick to explicit and implicit
single-step, single-shot methods, we omit the parameterization (t) from hereon:

p1 \cap p2 = \emptyset \forall p1, p2 \in \BbbP with p1 \not = p2,

as we have rigid, nonpenetrating objects. Consequently, \BbbT (p1) \cap \BbbT (p2) = \emptyset . The
particles' triangles do not intersect. Yet, as each particle is surrounded by an \epsilon -layer,
our particles' triangles t \in \BbbT (p) unfold into a set of volumetric objects t\epsilon \in \BbbT \epsilon (p), and
our particles' volumes are extended p \subset p\epsilon , too. Overlaps between extended volumes
do exist and yield contact points

(2.1) p\epsilon 1 \cap p\epsilon 2 \not = \emptyset \Rightarrow contact point

which is equivalent to

\exists t1 \in \BbbT (p1), t2 \in \BbbT (p2) : t\epsilon 1 \cap t\epsilon 2 \not = \emptyset \Rightarrow contact point.

A contact point c between two triangles ti and tj in (2.1) is located at

(2.2) x(c) =
1

2
(t1(a1, b1) + t2(a2, b2)) with argmin

a1,b1,a2,b2\in [0,1]

1

2
\| t1(a1, b1) - t2(a2, b2)\| 2

if t1 and t2 are surrounded by the same \epsilon -halo. For different \epsilon 's, the weights for
x(c) have to be adapted accordingly. a1, b2 are Barycentric coordinates within t1;

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2127

i.e., t1(a1, b1) returns a position within the triangle. a2 and b2 are the counterparts
for t2. If x(c) is the position of the contact point c, the corresponding normal n(c) =
t1(a1, b1) - x(c) or n(c) = t2(a2, b2) - x(c).

3. Iterative contact detection via distance minimization. To find the clos-
est point between two triangles is a classic computational geometry problem [10]. We
rely on three different algorithms to solve it.

Direct distance calculation (comparison based). A comparison-based identifica-
tion of contact points consists of two steps. First, we compute the distance from
each vertex of the two triangles to the closest point on the other triangle as well as
the distance between each pair of edges between the two triangles [10]. This yields
six point-to-triangle distance tests and nine edge-to-edge distance tests. In a second
step, we select the minimum distance out of the 15 combinations. This brute force
calculation yields an exact solution---agnostic of truncation errors---yet requires up
to 30+14 comparisons (if statements) per triangle pair, which we tune via masking,
blending, and early termination [20]. Dealing with the cases where intersections be-
tween triangles are possible requires an additional six edge-to-plane distance tests,
where intersections outside the area of the triangle are discounted.

Iterative distance calculation. As an alternative to a comparison-based approach,
we replace the geometric checks with a functional, where we minimize the distance
between the two planes spanned by the triangles but add the admissibility conditions
over the Barycentric coordinates as Lagrangian parameters [14, 15]. In line with (2.2),
let a, b \in [0, 1] describe any point on their respective triangle:

argmin
a1,b1,a2,b2

J(a1, b1, a2, b2) := argmin
a1,b1,a2,b2

1

2
\| ti(a1, b1) - tj(a2, b2)\| 2\underbrace{} \underbrace{}

=: \^J(a1,b1,a2,b2)

+\alpha iterative

\Bigl(

max(0, a1 - 1) + min(- a1, 0) + max(0, b1 - 1) +

max(- b1, 0) + max(0, a1 + b1 - 1) +

max(0, a2 - 1) + min(- a2, 0) + max(0, b2 - 1) +

max(- b2, 0) + max(0, a2 + b2 - 1)
\Bigr)
.(3.1)

This is a weak formulation of the challenge since any \alpha iterative < \infty allows the closest
distance line between two triangles to be rooted slightly outside the very triangles.

The minimization problem can be solved via Newton iterations. However, the
arising Hessian becomes difficult to invert or noninvertible for close-to-parallel or
actually parallel triangles. We therefore regularize it by adding a diagonal matrix.
After that, we approximate the regularized Hessian and update the minimization and
constraints alternatingly:

(a1, b1, a2, b2)
(n+0.5) = (a1, b1, a2, b2)

(n) - diag - 1
\Bigl(
\^H(a1, b1, a2, b2)

(n)

+\alpha regularizer id
\Bigr)
\nabla a1,b1,a2,b2

\^J(a1, b1, a2, b2)
(n)

(a1, b1, a2, b2)
(n+1) = (a1, b1, a2, b2)

(n+0.5) - diag - 1
\Bigl(
\~H(a1, b1, a2, b2)

(n+0.5)

+\alpha regularizer id
\Bigr)
\nabla a1,b1,a2,b2

\~J(a1, b1, a2, b2)
(n+0.5)(3.2)

\alpha regularizer > 0 is small, while (n) is the iteration index. The \^J and its Hessian
correspond to the quadratic term of the actual functional in (3.1) also known as

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2128 PETER J. NOBLE AND TOBIAS WEINZIERL

Algorithm 3.1 A hybrid, batched reformulation of the iterative distance calculation.
The iterative sweep over a whole batch of triangles is stripped of a dynamic stopping
criterion (top) and therefore yields three types of results per triangle pair: x holds
a coordinate if the Barycentric coordinates yield a contact point or \bot if they yield
no contact point or \odot if the triangle combination has to be postprocessed with the
comparison-based algorithm (bottom).

1: for ti \in \BbbT (pi), tj \in \BbbT (pj), ti \not = tj do
2: (a1, b1, a2, b2, n)(ti, tj)\leftarrow 0 \triangleleft Variables per triangle pair allow us to vectorize
3: Jold(ti, tj)\leftarrow \infty \triangleleft Over triangles in \BbbT
4: J(ti, tj) = J(a1(ti, tj), b1(ti, tj), a2(ti, tj), b2(ti, tj)) \triangleleft Functional from (3.1)
5: while n \leq Niterative do \triangleleft Fixed iteration count instead of | J - Jold| > C\epsilon
6: Jold(ti, tj)\leftarrow J(ti, tj)
7: update a1(t), b1(t), a2(t), b2(t) \triangleleft Modified gradient descent from (3.2)
8: J(ti, tj) = J(a1(ti, tj), b1(ti, tj), a2(ti, tj), b2(ti, tj))
9: n\leftarrow n+ 1
10: end while

11: x(ti, tj)\leftarrow

\left\{
1
2
(ti(a1, b1) - tj(a2, b2))(ti, tj) if | J(ti, tj) - Jold(ti, tj)| \leq C\epsilon \wedge \^J(ti, tj) \leq 2\epsilon 2

\bot if | J(ti, tj) - Jold(ti, tj)| \leq C\epsilon \wedge \^J(ti, tj) > 2\epsilon 2

\odot otherwise
12: end for
13:
14: for ti \in \BbbT (pi), tj \in \BbbT (pj), ti \not = tj do
15: if x(ti, tj) = \odot then
16: \^n(ti, tj)\leftarrow shortest distance vector between ti and tj \triangleleft Use comparison-based algorithm
17: \^x(ti, tj)\leftarrow is central point on line identified by \^n(ti, tj)

18: x(ti, tj)\leftarrow
\biggl\{

\^x(ti, tj) if | \^n(ti, tj)| \leq 2\epsilon
\bot otherwise

 \triangleleft Eliminate \odot entries in result

19: end if
20: end for

(2.2). \~J and its Hessian cover the remaining penalty terms, i.e., J - \^J . However,
we omit the Dirac terms in there; i.e., we explicitly drop terms that enter the for-
mulae for a1 = 0, a1 = 1, b1 = 0, Our solver iterates back and forth between
the \^J-minimization and a fullfillment of the constraints. This modified Newton be-
comes a gradient descent, where the step size is adaptively chosen by analyzing an
approximation of the inverse to the Hessian.

Hybrid distance calculation. If two subsequent iterates | J(a1, b1, a2, b2)(n+1) -
J(a1, b1, a2, b2)

(n)| \leq C\epsilon , we have found an actual minimum over functional (3.1) and
can terminate the minimization. In this case, we assume that a1, b1, a2, b2 identify the
minimum distance. Without further analysis, it is impossible to make a statement
on the upper bound on n. Our hybrid algorithm therefore eliminates the termination
criterion and imposes n \leq Niterative. Consequently, it labels a distance calculation
as invalid if | J(a1, b1, a2, b2)(Niterative) - J(a1, b1, a2, b2)

(Niterative - 1)| > C\epsilon . The itera-
tive code's result realizes a three-valued logic: ``found a contact point,"" ``there is no
contact,"" or ``has not terminated"" (Algorithm 3.1).

Our hybrid algorithm invokes the modified iterative algorithm. If the result equals
``not terminated"" (\odot), the hybrid algorithm falls back to the comparison-based dis-
tance calculation. It is thus not really a third algorithm to find a contact point but a
combination of the iterative scheme with the comparison-based approach serving as
a posteriori limiter.

Implementation remark 2. Triangle meshes are typically held as graphs over
vertex sets. We flatten this graph prior to the contact detection: A sequence of
| \BbbT | triangles is converted into a sequence of 3 \cdot 3 \cdot | \BbbT | floating point values; i.e., each

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2129

triangle is represented by the coordinates (three components) of its three vertices.
Such a flat data structure can be generated once prior to the first contact detection.
All topology is lost in this representation, and vertex data is replicated---it is a triangle
soup---but the data is well suited to be streamed without indirect memory lookups.
Per update of the position and rotation, every coordinate is subject to an affine
transformation. \square

4. A multiresolution model. The cost to compare two particles pi and pj is
determined by their triangle counts | \BbbT (pj)| and | \BbbT (pj)| . To reduce this cardinality,
we construct geometric cascades of triangle models per particle---the surrogate models
(Figure 1.1)---and plug representations from this cascade into Algorithm 2.2.

Definition 4.1. A surrogate model \BbbT k(p), k \geq 1, is a triangle-based geomet-
ric approximation of a particle described by \BbbT (p). A sequence of surrogate models
\{ \BbbT 1(p),\BbbT 2(p),\BbbT 3(p), . . .\} for p with its volumetric extensions \BbbT \epsilon

k(p) hosts efficient
(Definition 4.2), conservative (Definition 4.3), and weakly connected (Definition 4.5)
abstractions of \BbbT (p).

Surrogate models are different representations of a particle. The term ``cascade""
highlights that each particle is assigned a whole sequence of representations. These
representations can step in for our real geometry and are a special class of bounding
volume techniques [10]. To simplify our notation, \BbbT 0(p) := \BbbT (p); i.e., the k = 0
surrogate model is the geometric object itself. The bigger k is, the coarser, i.e., more
abstract, the surrogate. We emphasize that the \epsilon is a generic symbol; i.e., each
surrogate model hosts its own bespoke \epsilon -environment.

Definition 4.2. A surrogate model \BbbT \epsilon
ki
(pi) is efficient if, for any other model

\BbbT \epsilon
kj
(pj), finding all contact points between \BbbT \epsilon

ki
(pi) and \BbbT \epsilon

kj
(pj) is cheaper than finding

all contact points between \BbbT \epsilon
\^ki
(pi) and \BbbT \epsilon

kj
(pj) \forall 0 \leq \^ki < ki.

We assume an almost homogeneous cost per triangle-to-triangle comparison---
an assumption that is shaky for the hybrid comparison and subject to vectorization
efficiency and memory management effects. Hence, the triangle count of surrogate
models decreases with increasing k, i.e., | \BbbT k| \ll | \BbbT k+1| .

Definition 4.3. A surrogate model \BbbT ki
(pi) inducing \BbbT \epsilon

ki
(pi) is conservative if

\forall pi, pj , ki, kj : \BbbT \epsilon
ki
(pi) \cap \BbbT \epsilon

kj
(pj) = \emptyset \Rightarrow \BbbT \epsilon (pi) \cap \BbbT \epsilon (pj) = \emptyset .

Conservative means that any two surrogates of two particles are in contact (over-
lap) if the two particles are in contact. Yet, this does not have to hold the other
way round: If their surrogates are in contact, there might still be gaps between the
particles; i.e., there might be no contact point.

Corollary 4.4. Let a surrogate model hierarchy \BbbT k(p), k \geq 1, be monotonous
if

\forall 1 \leq \^k < k : \forall t\epsilon \^k \in \BbbT \epsilon
\^k
(p) : t

\epsilon \^k
\^k

\subseteq
\bigcup

t\in \BbbT \epsilon
k(p)

t.

Our surrogate hierarchies do not have to be monotonous.

A monotonous cascade of triangles plus \epsilon -environments would grow in space as
we move up the hierarchy of models. Therefore, we do not impose it, even though
monotonicity would imply conservativeness ``for free."" Empirical evidence suggests
that abandoning monotonicity allows us to work with significantly tighter \epsilon -choices

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2130 PETER J. NOBLE AND TOBIAS WEINZIERL

per level. Yet, it also implies that we generally cannot show algorithm correctness
through plain induction.

Classic level-of-detail algorithms require a coarsened representation of a triangu-
lated model to preserve certain properties such as connected triangle surfaces or the
preservation of certain features such as sharp edges. Our surrogate models, however,
are to be used as temporary replacements within our calculations. We thus can ask
for weak representations of the geometries.

Definition 4.5. The triangles of a particle have to span a connected surface. For
surrogate models, there is no such constraint. Therefore, the surrogate models can be
weakly connected: Their triangles can be disjoint with gaps in-between, or they can
intersect each other. A surrogate's \epsilon -environment is connected, however, and it covers
(overlaps) all connectivity of the original model.

The connectivity addendum in Definition 4.5 motivates the term weakly con-
nected. It clarifies that we---despite the disjoint, anarchic configuration of a surrogate
triangle set (Figure 1.1)---cannot miss out on some geometry extrema such as sharp
edges due to tests with surrogates: If there is no contact between two surrogates,
there is also no contact between their real discretizations.

Definition 4.3 implies that we can use surrogate models as guards and run through
them for coarse to fine: If there are no contact points between two surrogate models,
there can be no contact points for the more detailed models. We can stop searching
for contact points immediately. It does not, however, hold the other way round.
Definition 4.2 implies immediately that the number of triangles that we examine
in such an iterative approach is monotonously growing. Definition 4.5 gives us the
freedom to construct such triangle hierarchies, as it strips us from many geometric
constraints.

Definition 4.6. Let \scrT be a directed acycling graph, where each node represents
a set of triangles. The level \ell of a node is its distance (edge count) from the root node
in \scrT . The resulting graph is a surrogate tree if and only if

1. the root node hosts the coarsest surrogate model \BbbT kmax
;

2. the union over all leaf sets yields the particle triangulation \BbbT 0;
3. any triangle is a surrogate for the union over its children's triangle sets.

With Definition 4.6, the union over all sets with the same level yields the surrogate
model \BbbT kmax - \ell . We use Nsurrogate to denote the number of children of a surrogate
triangle. Nsurrogate does not have to be uniform over the tree, i.e., is a generic symbol.
If we have a surrogate model, take the nodes within the tree which hold its triangles,
and replace the triangles with those triangles stored within children nodes, we obtain
the next finer surrogate. A surrogate tree is a generalization of the concept of a cascade
of surrogates: The tree formalism allows us also to construct different, hybrid-level
surrogate models if we only replace some triangles of a model with their children.

Implementation remark 3. There are multiple ways to construct surrogate trees.
We construct our trees through a recursive algorithm. It starts from the triangle set
\BbbT = \BbbT 0 of the particle and splits this set into Nsurrogate subsets of roughly the same
size hosting close-by triangles. Per subset, we construct one surrogate and thus obtain
a tree of depth one where the root node hosts | Nsurrogate| triangles. As long as a node
within the tree hosts more triangles than a prescribed threshold, we apply the splitting
recursively and thus disentangle the triangle sets further and further: Existing tree
levels are pushed down or sieved through the tree hierarchy (Appendix B). A follow-
up bottom-up traversal of the tree constructs well-suited surrogate triangles with

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2131

appropriate \epsilon -choices. As we only require weakly connected surrogates, the steps
within this bottom-up traversal are independent of operations on sibling nodes within
the tree and can be mapped onto local minimization problems (Appendix A). \square

5. Multiresolution contact detection. With our surrogate tree definition, we
are in the position to propose a multiscale algorithm for an explicit Euler which utilizes
the tree as an early stopping criterion for the search for contacts. The observations for
the explicit time stepping then allow us to derive two implicit time stepping algorithms
that exploit the multiscale nature of the geometry to terminate searches early and to
supplement the underlying iterative algorithm with educated guesses.

5.1. Explicit Euler. Our explicit Euler exploits the multiscale hierarchy by
looping over the resolutions held in \scrT top-down. The tree is unfolded depth-first,
and we implement an early stopping criterion: If a surrogate triangle and a triangle
set from another particle do not collide, the children of the surrogate triangle in our
triangle tree cannot collide either. The depth-first traversal along this branch of the
tree thus can terminate early. The surrogate model unfolds adaptively.

The concept defines a marker (Algorithm 5.1): Let \BbbA identify a set of active nodes
from \scrT . The union of all sets labeled by \BbbA yields all triangles from a particle that
participate in collision checks. At the begin of a particle-to-particle comparison, only
the particles' roots are active. From there, we work our way down into finer and finer
geometric representations as long as the surrogate models suggest that there might
be some contacts until we eventually identify real contact points stemming from the
finest mesh.

Algorithm 5.1 Multiresolution contact detection within explicit time stepping. It
compares two particles pi and pj given by their surrogate trees \scrT (pi) and \scrT (pj) with
each other.
1: \BbbA i \leftarrow root(\scrT (pi)), \BbbA j \leftarrow root(\scrT (pj)) \triangleleft Set of active triangles to check
2: while \BbbA i \not = \emptyset \vee \BbbA j \not = \emptyset do
3: \BbbA i,new \leftarrow \emptyset , \BbbA j,new \leftarrow \emptyset
4: for ti \in \BbbA i, tj \in \BbbA j do
5: c\leftarrow contact iterative(ti, tj) \triangleleft Use context-specific \epsilon depending on ti, tj
6: if c = \odot \wedge ti \in \BbbT \epsilon

0(pi) \wedge tj \in \BbbT \epsilon
0(pj) then \triangleleft Not converged on nonsurrogate triangles

7: c\leftarrow contact comparison(ti, tj) \triangleleft Use comparison-based algorithm this time
8: end if
9: if c \not = \bot then
10: if ti \in \BbbT \epsilon

0(pi) \wedge tj \in \BbbT \epsilon
0(pj) then \triangleleft No surrogate triangles

11: \BbbC (pi)\leftarrow \BbbC (pi) \cup \{ c\} , \BbbC (pj)\leftarrow \BbbC (pj) \cup \{ c\} \triangleleft I.e., proper contact point
12: else \triangleleft Unfold
13: if ti \in \BbbT \epsilon

0(pi) then
14: \BbbA i,new \leftarrow \BbbA i,new \cup \{ ti\}
15: else
16: \BbbA i,new \leftarrow \BbbA i,new \cup \{ \^t : \^t \sqsubseteq child ti\}
17: end if
18: if tj \in \BbbT \epsilon

0(pj) then
19: \BbbA j,new \leftarrow \BbbA j,new \cup \{ tj\}
20: else
21: \BbbA j,new \leftarrow \BbbA j,new \cup \{ \^t : \^t \sqsubseteq child tj\}
22: end if
23: end if
24: end if
25: end for
26: \BbbA i \leftarrow \BbbA i,new, \BbbA j \leftarrow \BbbA j,new

27: end while

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2132 PETER J. NOBLE AND TOBIAS WEINZIERL

Lemma 5.1. The hierarchical algorithm yields exactly the same outcome as our
baseline code over sets \BbbT \epsilon (pi) and \BbbT \epsilon (pj). Algorithm 5.1 is correct.

Proof. The argument relies on three properties:
1. If a contact point is identified for a surrogate triangle, it is not added to the set

of contact points. Therefore, a given active set never identifies artificial/too
many contact points.

2. A contact point is added if it stems from the comparison of two triangles from
the fine grid tessellations which are in the active sets.

3. Let two triangles t\epsilon i and t\epsilon j yield a contact point. As surrogates are conserva-

tive, they belong to nodes (triangle sets) \BbbT (pi) and \BbbT (pj) with \BbbT (pi) \sqsubseteq child \^ti
and \BbbT (pj) \sqsubseteq child \^tj in \scrT (pi) or \scrT (pj), respectively. These surrogates fulfill

t\epsilon i \cap t\epsilon j \not = \emptyset \Rightarrow \^t\epsilon i \cap \^t\epsilon j \not = \emptyset .

and therefore are replaced in the active set by their children in Algorithm 2.1
before the respective algorithm terminates.

The correctness of the algorithm follows from bottom-up induction over the levels of
\scrT : The property holds directly for the finest surrogate levels \BbbT 1 of the tree. Any
violation thus has to arise from \BbbT k, k \geq 2, in pi or pj . We apply the arguments
recursively.

We have two triangle-to-triangle comparison strategies on the table (hybrid and
comparison based) which are robust, i.e., always yield the correct solution. If we
employ the comparison-based approach only, the c = \odot condition never holds, and
the corresponding branch is never executed. Otherwise, our algorithmic blueprint
implements the hybrid's fallback as it automatically reevaluates the contact search
for c = \odot . However, it is indeed sufficient to rerun this a posteriori contact search if
and only if both triangles stem from the finest triangle discretization.

Corollary 5.2. On the surrogate levels within the tree, it is sufficient to use
the (efficient) iterative collision detection algorithm (Algorithm 3.1, bottom), without
falling back to the comparison-based variant.

Proof. Let \BbbT \epsilon (pi) \cap \BbbT \epsilon (pj) \not = \emptyset , i.e., two particles collide. We assume the lemma
is wrong; i.e., the tree unfolding terminates prematurely. This assumption formally
means

\exists ti \in \scrT (pi), tj \in \scrT (pj) : r(pi, pj) = \bot ,

with

\exists t0,i \in \BbbT (pi), t0,j \in \BbbT (pj) : t0,i \sqsubseteq child . . . \sqsubseteq child ti\wedge t0,j \sqsubseteq child . . . \sqsubseteq child tj \wedge t\epsilon i \cap t\epsilon j \not = \emptyset .

This assumption is a direct violation of the definition of a surrogate model which has
to be conservative.

5.2. Implicit Euler with multiresolution acceleration. Picard iterations
can exploit the multiscale hierarchy by looping over the hierarchy levels top-down:
Per iteration of Algorithm 2.3, we have to identify all contact points for the current
particle configuration. This search for contact points is the same search as we use it
in an explicit Euler. If we replace the contact detection within the inner loop with
our multiscale contact detection from section 5.1, we obtain an implicit Euler where
the surrogate concept is used within the Picard loop as multiresolution acceleration.
The surrogate concept enters the algorithm's implementation as a black box.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2133

Corollary 5.3. An implicit Euler using surrogates within the Picard loop body
to speed up the search for contact points yields the same output as a flat implicit code
with the same number of Picard iterations.

Proof. This is a direct consequence of Lemma 5.1 and implies the algorithm's
correctness.

Though we end up with exactly the same number of Picard iterations, the indi-
vidual iterations are accelerated by the multiresolution technique.

For a localized contact between two particles, the surrogate tree is unfolded along
a single or a few branches of the tree. If the nodes within the tree hold roughly the
same number of triangles, the number of triangles to be compared grows linearly with
the number of Picard steps. We benefit both from a zapping through the resolution
levels and the localization of contacts, i.e., the fact that two particles usually collide
only in a small area compared to the overall geometric object.

5.3. Implicit multiresolution Euler. Amore bespoke implicit multiresolution
algorithm arises from ideas inspired by multilevel nonlinear equation system solvers.
The multiscale Algorithm 5.2 consists of two nested while loops---the outer loop stems
from the Picard iterations, the inner loop realizes the tree unfolding---which we can
permute. We obtain an algorithm that runs top-down via the active sets through the
surrogate hierarchies and unfolds the trees step by step. Per unfolding step, it uses
the Picard loop to converge on the selected hierarchy level. The rationale behind such
a permutation is the observation that the efficiency of a nonlinear equation system
solver hinges on the availability of a good initial guess. Surrogate resolution levels
might be well suited to deliver a good initial guess of what \BbbT looks like in the next time
step. This train of thought is similar to the extension of multigrid into full multigrid.
The same multigrid analogy suggests that we do not have to converge on a surrogate
level, as the level supplements only a guess anyway. In the extreme case, it is thus
sufficient to run one Picard iteration per unfolding step only.

Our advanced variant of the implicit Euler is an outer-loop multiresolution Picard
scheme. Let the Picard loop start from the coarsest surrogate representation per
particle (Algorithm 5.2). These representations form our initial active sets. After the
Picard step, any surrogate triangle for which the hybrid algorithm has not terminated
or for which we identified a contact point is replaced by its next finer representation.
In the tradition of value-range analysis, we widen the active set [3]. The Picard loop
terminates if the plain algorithm's termination criteria hold; i.e., the outcome of two
subsequent iterations does not change dramatically anymore, and no surrogate tree
node has unfolded anymore throughout the previous iterate.

The algorithm is completed by a cleanup which removes ``obsolete"" triangles from
the active set: If all children of a surrogate triangle do not certainly contribute a
contact point anymore, they are replaced with their parent surrogate triangle. We
narrow the active set.

Implementation remark 4. Different to the explicit scheme, we maintain an
active set \BbbA (pi, pj) per particle-particle combination pi, pj : A particle pi can exhibit
a very coarse surrogate representation against one particle while using a very detailed
mesh when we compare it to another one. While the number of particle-particle
combinations is potentially huge, it is small in practice, as particles are rigid and thus
cannot cluster arbitrarily dense. \square

Our genuine multiscale formulation stresses the convergence assumptions: While
Assumption 1 guarantees the convergence of the Picard iterations on the finest level,

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2134 PETER J. NOBLE AND TOBIAS WEINZIERL

Algorithm 5.2 Implicit time stepping algorithm, where the Picard and multiresolu-
tion loops are intermingled.
1: \forall pj \not = pi \in \BbbP : \BbbA (pi, pj)\leftarrow root(\scrT (pi)) \triangleleft Active sets are now parameterized over interactions
2: while \BbbT guess(pi), v

guess(pi), \omega
guess(pi) or any \BbbA change significantly for any pi do

3: \forall pj \not = pi \in \BbbP : \BbbA new(pi, pj)\leftarrow \emptyset , \BbbA new(pj , pi)\leftarrow \emptyset , \BbbC (pi, pj) = \emptyset , \BbbC (pj , pi) = \emptyset
4: for pj \not = pi \in \BbbP do
5: for ti \in \BbbA (pi, pj), tj \in \BbbA (pj , pi) do
6: c\leftarrow contactIterative(ti, tj) \triangleleft Use context-specific \epsilon depending on ti, tj
7: if c = \odot \wedge ti \in \BbbT \epsilon

0(pi) \wedge tj \in \BbbT \epsilon
h(pj) then \triangleleft Not converged on nonsurrogate triangles

8: c\leftarrow contactComparisonBased(ti, tj) \triangleleft Use comparison-based algorithm this time
9: end if
10: if c \not = \bot \wedge c \not = \odot then \triangleleft Implicit guess
11: \BbbC (pi)\leftarrow \BbbC (pi) \cup \{ c\} , \BbbC (pj)\leftarrow \BbbC (pj) \cup \{ c\}
12: end if
13: if c = \bot then \triangleleft Add only parents
14: \BbbA new(pi, pj)\leftarrow \BbbA new(pi, pj) \cup \{ \^t : ti \sqsubseteq child \^t\}
15: \BbbA new(pj , pi)\leftarrow \BbbA new(pj , pi) \cup \{ \^t : tj \sqsubseteq child \^t\}
16: else \triangleleft Widen active sets
17: . . . \triangleleft Compare to Algorithm 5.1
18: end if
19: end for
20: end for
21: \forall pj \not = pi \in \BbbP : \BbbA (pi, pj)\leftarrow \BbbA new(pi, pj), \BbbA (pj , pi)\leftarrow \BbbA new(pj , pi)
22: for pi \in \BbbP do
23: (dv, d\omega)\leftarrow calcForces(\BbbC (pi)) \triangleleft Remove redundant contact points first
24: (vguess, \omega guess)(pi)\leftarrow (v, \omega)(pi) + \Delta t \cdot (dv, d\omega) \triangleleft Additional damping might be required
25: \BbbT guess(pi)\leftarrow update(\BbbT (pi), vguess(pi), \omega guess(pi),\Delta t)
26: end for
27: for pj \not = pi \in \BbbP do \triangleleft Clean up; i.e., add siblings
28: \triangleleft Obsolete if surrogate nodes host only one triangle
29: \forall t, \^t \in \BbbA (pi, pj) with t \sqsubseteq child \^t : \BbbA (pi, pj)\leftarrow \BbbA (pi, pj) \cup \{ t\prime \in \scrT (pi) : t\prime \sqsubseteq child \^t\}
30: \forall t, \^t \in \BbbA (pj , pi) with t \sqsubseteq child \^t : \BbbA (pj , pi)\leftarrow \BbbA (pj , pi) \cup \{ t\prime \in \scrT (pj) : t\prime \sqsubseteq child \^t\}
31: \triangleleft And remove ``redundant"" parents
32: \forall t \in \BbbA (pi, pj) : \BbbA (pi, pj)\leftarrow \BbbA (pi, pj) \setminus \{ \^t \in \scrT (pi) : t \sqsubseteq child \^t\}
33: \forall t \in \BbbA (pj , pi) : \BbbA (pj , pi)\leftarrow \BbbA (pj , pi) \setminus \{ \^t \in \scrT (pj) : t \sqsubseteq child \^t\}
34: end for
35: end while
36: \forall pi \in \BbbP : \BbbT (pi)\leftarrow \BbbT guess(pi), v(pi)\leftarrow vguess(pi), \omega (pi)\leftarrow \omega guess(pi)
37: t\leftarrow t+\Delta t

our multiresolution approach may push the solution into the wrong direction via the
surrogate levels and thus make the initial guess on the next finer level leave the single
level's convergence domain.

Assumption 2. We assume that a Picard iteration on any level of the surrogate
trees yields a new solution on the same or a finer resolution which preserves the Picard
iteration's contraction property.

Lemma 5.4. If Assumption 2 holds and if Algorithm 5.2 terminates, it delivers
the correct solution.

Proof. We have to study two cases over the active sets \BbbA (pi, pj) and \BbbA (pj , pi).
First, assume that (t\BbbA (pi,pj), t\BbbA (pj ,pi)) \in \BbbA (pi, pj)\times \BbbA (pj , pi) yields an invalid contact
point, i.e., a contact point that does not exist in \BbbT 0(pi) compared to \BbbT 0(pj). One of
the triangles has to be a surrogate triangle. They are replaced by their children, and
the algorithm has not terminated. Instead, we approach the solution further.

In the other case, assume that the algorithm has terminated yet misses a triangle
pair (t(pi), t(pj)) \not \in \BbbT (pi)\times \BbbT (pj) which contributes a contact point in the plain model.
Due to Definition 4.3 over conservative surrogates,

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2135

(5.1) \forall t(pi) \in \BbbT 0(pj),\exists \^t\BbbA (pi,pj) \in \BbbA (pi) : t(pi) \sqsubseteq child . . . \sqsubseteq child \^t\BbbA (pi,pj)

such that \^t\BbbA (pi,pj) yields a contact point. This point is eventually removed as the

corresponding \^t\BbbA (pi,pj) is replaced by its children. The algorithm has not terminated
yet.

Corollary 5.5. The removal of triangles from the active set can cause Algorithm
5.2 to violate Assumption 2.

Proof. If no triangles are ever removed from the active set, the proof of Lemma
5.4 trivially demonstrates that the algorithm terminates always, as the surrogate tree
is of finite depth and width. Even if we overshoot with the Picard iterations, i.e., if
we violate the contraction property, we will, in the worst case, get \BbbA (pi, pj) = \BbbT (pi).
From hereon, the algorithm converges.

If we, however, remove triangles, it is easy to see that we cannot guarantee that
we do not introduce cycles or even amplify oscillations. The contraction property is
violated.

Implementation remark 5. In practice, Corollary 5.5 implies that we, on the one
hand, have to damp the Picard iterations. We artificially reduce the force contribu-
tions from coarse surrogate levels to avoid oscillations. On the other hand, we work
with a memory set \BbbU (pi, pj) in which we hold references to triangles which have been
removed from the active set. Once they are readded, we veto any subsequent removal
from hereon and, hence, the activation of such triangles' surrogates. \square

5.4. Implementation. There are two reasons why our multiresolution algo-
rithms are expected to yield better performance than a straightforward textbook
implementation: First and foremost, we expect the number of triangle-to-triangle
comparisons to go down compared to a flat, single level approach. The multiscale
algorithm iteratively narrows down the region of a particle where contacts may arise
from. These savings on the finer geometric resolutions compensate for additional
checks with surrogate triangles. However, any cost amortization has to be studied
carefully---in particular for the implicit, nonlinear case, where trees unfold and col-
lapse again---and it hinges upon an efficient realization: In this context, we expect
the streaming, comparison-free variants of our algorithm to benefit from vector archi-
tectures.

The multiresolution representation of an object can be computed at simulation
startup as a preprocessing step. Though we keep the multiresolution hierarchy when
particles move and rotate, the flattening of the active sets of triangles from \scrT (p)
into a sequence of coordinates is done on-the-fly, and the flattened data is not held
persistently.

On the one hand, this ensures that the memory overhead remains under control.
On the other hand, it pays tribute to the fact that the active set changes permanently.
To remain fast despite permanently changing active sets, we pick Nsurrogate such that
the finest nodes within | \BbbT | hold triangle sequences for which streaming instructions
such as advanced vector extensions (AVX) already pay off. The tree clusters \BbbT into
segments that fit to the architecture, and Algorithm 3.1 hence does not process all
triangles from \BbbT in one batch. Instead it runs over subchunks of batches.

We apply this argument recursively and make each nonleaf node within \scrT hold
a set of triangles, too. We make the nodes in the surrogate tree host many triangles
and the tree overall shallow such that the per node data cardinality again ensures

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2136 PETER J. NOBLE AND TOBIAS WEINZIERL

that we benefit from vector units. This ``tweak Nsurrogate"" idea, however, does not fit
perfectly to multiscale algorithms where the coarser tree levels typically do not occupy
a complete vector length. It would be a coincidence if | \BbbT | and Nsurrogate yielded only
nodes that fill a vector unit completely on each and every surrogate level. Therefore,
we do not run triangle-to-triangle comparisions within the tree directly. Instead, we
make the tree/triangle traversal collect all comparisons to be made with a buffer.
Once we have identified all triangle collisions to be computed, we stream the whole
buffer through the vector units. We merge the triangle representations on-the-fly.

Implementation remark 6. If our surrogate tree hosts more than one triangle
per nonleaf node, the algorithm has to be completed by a further cleanup step which
ensures that the active set remains consistent with the tree: It runs through the active
set of a particle-particle combination once again. If any of a surrogate triangle's
children is part of the active set, the surrogate is removed from the set, but all of
its children become active. Without such an additional sweep over the active set, all
triangles of a node could be active plus the children of one triangle which implies that
we test against the children triangle set plus their surrogate triangle. Restricting the
node triangle cardinality for surrogate levels to one renders the additional cleanup
unneccessary. \square

6. Runtime results. Our algorithms yield correct results (Lemma 5.1, Corol-
lary 5.3, and Lemma 5.4), but they do not provide an efficiency guarantee. We
hence collect runtime results, i.e., gather empirical evidence. Real-world experiments
benchmarked against measurements remain out-of-scope for the present paper. We
furthermore continue to focus on the actual collision detection and neglect the impact
of different time step sizes---in particular comparisions between implicit and explicit
schemes facilitating different stable time step choices---the cost of a coarse-grain neigh-
bor search via a grid, e.g., and notably the construction cost for the surrogates which
are done offline prior to the simulation run. All experiments are run on Intel Xeon
E5-2650V4 (Broadwell) chips in a two socket configuration with 2 \times 12 cores. They
run at 2.4 GHz, though TurboBoost can increase this up to 2.9 GHz. However, a core
executing AVX2 instructions will fall back to a reduced frequency (minimal 1.8 GHz)
to stay within the thermal design power limits [6].

Our node has access to 64 GB TruDDR4 memory, which is connected via a hi-
erarchy of three inclusive caches. They host 12 \times (32 + 32) KiB, 12 \times 256 KiB, or
12 \times 2.5 MiB, respectively. We obtain around 109 GB/s in the Stream TRIAD [18]
benchmark on the node which translates into 4,556 MB/s per core. The node has a
theoretical single precision peak performance between 2.4 (non-AVX mode and base-
line speed) and 46.4 Gflop/s per core (AVX 2.0 FMA3 with full turbo boost). All of our
calculations are ran in single precision. They are translated with the Intel 19 update
2 compiler and use the flags -std=c++17 -O3 -qopenmp -march=native -fp-model

and fast=2; i.e., we tailor them to the particular instruction set.
All presented performance counter data is read out through LIKWID [21]. DEM

codes are relatively straightforward to parallelize as their particle-particle interac-
tion is strongly localized: We can combine grid-based parallelism (neighbor cells)
with an additional parallelization over the particle pairs [15]. The load balancing
of these concurrency dimensions, however, remains challenging. As our ideas re-
duce the comparison cost algorithmically yet do not alter the concurrency character,
we stick (logically) to single core experiments to avoid biased measurements due to
parallelization or load balancing overheads. Yet, we artificially scale up the setup by

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2137

replicating the computations per node over multiple OpenMP threads whenever we
present real runtime data or machine characteristics and then break down the data
again into cost per replica per core. This avoids that simple problems fit into a partic-
ular cache or that memory-bound applications have exclusive access to two memory
controllers.

6.1. Experimental setup. We work with two simple benchmark setups before
we validate our results for large numbers of particles. In the particle-particle setup,
we study two spherical objects which are set on direct collision trajectory. They
bump into each other and then separate again. The setup yields three computa-
tional phases: While the particles approach, there is no collision and no forces act
on the particles as we neglect gravity. When they are close enough, the particles ex-
change forces, and the system becomes very stiff suddenly before the objects repulse
each other again and separate. We focus exlusively on the middle phase. Through-
out this approach-and-contact situation, the algorithmic complexity of the contact
detection is in \scrO (| \BbbT | 2), as we assume that both particles have the same triangle
count.

In the particle-on-plane scenario, we drop a spherical object onto a tilted plane.
The particle hits the plane, bumps back in a slightly tilted angle, i.e., with a rotation,
and thus hops down the plane. This problem yields free-fall phases which take turns
with stiff in-contact situations. Furthermore, the area of the free particles which is
subject to potential contacts changes all the time as the particle starts to rotate,
and the contacts result from a complex geometry consisting of many triangles com-
pared to a simplistic geometry with very few triangles. The underlying computational
complexity is in \scrO (| \BbbT |).

In the grid scenario, we finally arrange 24,576 spheres in a Cartesian grid. Each
particle slightly overlaps the \epsilon -region of its neighbors. As there is no ground plane
or gravity, the particles ``float"" in space. Due to the regular particle layout, the
interaction pattern yields a Cartesian topology; i.e., each particle collides with four
other particles initially.

Our codes work exclusively with sphere-like particle shapes, which result from
a randomized parameterization: We decompose the sphere with radius 1 into | \BbbT |
triangles. If not stated otherwise, | \BbbT | = 1, 280. In the first two scenarios the vertices
on the sphere which span the triangles are subject to a Perlin noise function, which
offsets the vertex along the normal direction of the surface. \eta r = 1 adds no noise and
thus yields a perfect, triangulated sphere with radius 1, where all vertices are exactly
1 unit away from the sphere's origin. Otherwise, the per vertex radius is from [1, \eta r].
As we use a hierarchical noise model, a high \eta r yields a degenerated shape which
retains a relatively smooth surface.

For the implicit schemes, we consider the result converged when the update to
the force and torque applied to every particle underruns a relative threshold of 1\%.
With this accuracy, single precision is sufficient. The Picard iterations are subject to
damping and acceleration: Any update (dv, d\omega) relative to the start configuration of
a time step results from the weighted average between the currently computed forces
and the forces of the previous step. If forces ``pull"" into one direction over multiple
iterations, the updates behind trials become successively bigger. If the forces oscillate,
these oscillations are diminishing. Empirical data suggests that this choice helps us
to meet Assumptions 1 and 2. \epsilon = 10 - 2 is uniformly used on the finest mesh level.
This is a relative quantity, i.e., chosen relative to the particle diameter. For the plane,
we uniformly use \epsilon = 10 - 2.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2138 PETER J. NOBLE AND TOBIAS WEINZIERL

6.2. Surrogate properties. We first assess our surrogate geometry's proper-
ties. Our coarsest surrogate model consists of a single triangle. We compare this
triangle's longest edge (diameter) dkmax

plus its corresponding \epsilon kmax
value to the ra-

dius rsphere = \eta r

2 of the bounding sphere of the fine grid object (Table 6.1). For
the surrogate hierarchy, we use Nsurrogate = 8 as a coarsening factor, a choice we
employ throughout the experiments. This implies that an object with | \BbbT | = 64 trian-
gles spans three surrogate organized as a tree: They host | \BbbT | = 64 (original model),
| \BbbT \nVdash | = 64/Nsurrogate = 8, and | \BbbT \nvDash | = 1 triangles. In this first test, we approximate
low frequency noise by scaling along one axis; i.e., we elongate the sphere along one
direction yet do not introduce bumps or extrusions (Figure 6.1). With growing \eta r,
we obtain increasingly nonspherical objects resembling an ellipsoid. The rationale
behind this simplified noise is that we eliminate nondeterministic effects and study
the dominant sphere distortion effects.

The combination of dkmax
and \epsilon kmax

characterizes the shape of our coarsest surro-
gate model. A large diameter relative to a small halo size describes a disc-like object.
A small diameter relative to a large halo size describes a sphere-like object. Different
triangle counts for the fine grid model allow us to assess the impact of the level of
detail of the fine grid mesh onto the resulting coarsest surrogate geometry.

Table 6.1
Different triangle counts | \BbbT | per spherical object scaled along one axis by a factor of \mu . Per

setup, we study the top level surrogate which contains one triangle and compare the maximum
triangle diameter plus its halo size against the bounding sphere radius. Here we only report on the
increase in \epsilon for the coarsest surrogate, ie., at the finest level \epsilon = 0.

| \BbbT | = 80 | \BbbT | = 320 | \BbbT | = 1, 280
\eta r dkmax \epsilon kmax dkmax \epsilon kmax dkmax \epsilon kmax rsphere
1.0 0.09 0.49 0.09 0.50 0.08 0.52 0.50
1.2 0.10 0.55 0.10 0.56 0.10 0.56 0.60
1.4 0.34 0.54 0.12 0.65 0.11 0.66 0.70
1.8 0.14 0.84 0.89 0.53 1.35 0.51 0.90
2.6 1.54 0.58 2.24 0.51 2.36 0.52 1.30

Fig. 6.1. A series of objects created from unit spheres with increasing level of detail (80 \leq | \BbbT | \leq
1, 280 from left to right) and a scale factor (1.0 \leq \eta r \leq 2.6 from top to bottom).

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2139

Our surrogate model of choice on the coarsest level (see the penalty term in
(A.1) of the appendix) almost degenerates to a point if the underlying triangulated
geometry approximates a sphere. It approaches a bounding sphere. The triangle
count approximating a spherical object does not have a significant qualitative or
quantitative impact on this characterization of the coarsest surrogate triangle. Once
the triangulated mesh becomes less spherical, the surrogate triangle starts to align
with the maximum extension of the fine mesh. It spreads out within the geometry
along the geometry's longest diameter, an effect that is the more distinct the higher
the fine geometry's triangle count. The halo layer \epsilon kmax

around the surrogate triangle,
which is analogous to a sphere's radius if the surrogate triangle approaches a point,
remains in the order of r = 0.5. This is the radius of the original unit sphere (\eta r = 1).

For a close-to-spherical geometry, our volumetric surrogate model never exceeds
135\% of the bounding sphere volume (| \BbbT | = 1, 280). For the highly nonspherical cases
(\eta r = 2.6) our surrogate volume can be as little as 37\% (| \BbbT | = 80) of the simple
bounding sphere volume. This advantageous property results from the observation
that a growth of dkmax anticipates any extension of the geometry, while the \epsilon kmax

ensures that the minimal geometry diameter, which is at least as large as the original
sphere, remains covered by the surrogate triangle plus its halo environment.

Observation 1. For highly nonspherical sets of triangles, our surrogate formal-
ism yields advantageous representations. For spherical observations, it resembles the
bounding sphere. This holds for all levels of the surrogate cascade.

In a surrogate tree, fine resolution tree nodes (surrogate triangles) are character-
ized by the low triangle count measurements in Table 6.1, where localized patches are
highly nonspherical (large \eta r). Surrogate triangles belonging to coarser levels inherit
characteristics corresponding to larger | \BbbT | . We conclude that our triangle-based mul-
tiresolution approach is particularly advantageous as an early termination criterion
(``there is certainly no collision"") on the rather fine surrogate resolution levels within
the surrogate tree or is overall tighter fitting than bounding sphere formalisms for
nonspherical geometries.

6.3. Hybrid single level contact detection. Even though our multiscale ap-
proach intends to reduce the number of distance calculations, a high throughput of
the overall algorithm continues to hinge on the efficiency of the core distance calcu-
lation. We hence continue with studies around the explicit Euler, where we omit the
multiscale hierarchy. We work with the finest particle mesh representation only.

The assessment of the core comparison efficiency relies on our sphere-on-plane
setup and the particle-particle setup. They represent two extreme cases of geometric
comparisons: With the plane, a complex particle with many triangles hits very few
triangles. As long as the triangles spanning the plane are large relative to the particle
diameter, it is irrelevant how the plane is modeled, i.e., if it consists of solely one
or two triangles or an arrangement of multiple triangles. The multiscale algorithms
assymptotically approach a | \BbbT | : 1 comparison with \BbbT given by the particle. When
we collide two particles---we use the same triangle count for both---we can, in the
worst case, run into a | \BbbT | : | \BbbT | constellation. For both setups, we use strictly spherical
particles (\eta r = 1).

For the triangle-triangle comparisons, two code variants are on the table: We can
run the comparison-based (baseline) algorithm, or we can use the hybrid code variant
which runs four steps of the iterative scheme before it checks if the two last iterates of
the contact point differ by more than C\epsilon h. We use C \approx 1. If the difference exceeds the

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2140 PETER J. NOBLE AND TOBIAS WEINZIERL

threshold, our algorithm assumes that the code has not converged and hence reruns
the comparison-based code to obtain a valid contact assessment. The comparison-
based code variant is 4-way vectorized and relies on Intel intrinsics. The hybrid
variant is vectorized over batches of eight packed triangle pairs using an OpenMP
simd annotation.

Our hybrid approach outperforms a sole comparison-based approach robustly
for the | \BbbT | : | \BbbT | setups (Table 6.2). For strongly ill-balanced triangle counts, the
insulated comparison-based approach is superior (Table 6.3). The comparison-based
code variant is not able to benefit from streaming SIMD extensions (SIMD) or AVX
at all (not shown), while the hybrid AVX usage increases with increasing triangle
counts. We end up with up to 40--45\% ``turbo-mode"" peak performance which we
have to calibrate with the AVX frequency reduction [6]. The relative number of
fallbacks, i.e., situations where the iterative scheme does not converge within four
iterations, decreases with growing geometry detail, while the same effect is not as
predominant for the particle-on-plane scenario.

Our data confirms the superiority of the hybrid approach for the particle-particle
comparisons [14, 15]. They confirm that the approximation of the Hessian does
not significantly harm the robustness, even though the number of fallbacks becomes
nonnegligible. Our arithmetic intensity determines how much improvement results
from the hybrid strategy. It is significantly higher for the particle-particle setup as

Table 6.2
Particle-particle scenario. We compare a comparison-based realization (top) against a hybrid

realization (bottom). Per setup, we present the time-to-solution ([t]=s) per Euler step, i.e., one
run through all possible triangle combinations, and we augment this data with MFlop/s rates split
up into scalar and vectorized contributions. Vector calculations are categorized as 128 bit packed
(SIMD) or 256 bit packed (AVX) for four and eight simultaneous 32 bit floating point operations,
respectively. For the hybrid setup, we finally quantify how many triangle pairs had to be checked a
posterio, i.e., as fallback, by the comparison-based algorithm. This runtime is included in the data.
All measurements are given as the average per core.

Packed Packed
| \BbbT | Runtime Scalar 128B 256B Fallback

C
o
m
p
. 12 6.59 \cdot 10 - 2 1.52 \cdot 10 - 2 3.22 \cdot 103

36 5.17 \cdot 10 - 2 1.90 \cdot 10 - 3 3.46 \cdot 103
140 3.80 \cdot 10 - 1 3.00 \cdot 10 - 4 3.18 \cdot 103

1,224 4.35 \cdot 101 0.00 \cdot 100 3.04 \cdot 103

H
y
b
ri
d 12 4.99 \cdot 10 - 2 6.27 \cdot 101 1.11 \cdot 103 1.07 \cdot 104 7.7\%

36 2.76 \cdot 10 - 2 1.27 \cdot 102 9.69 \cdot 102 1.45 \cdot 104 4.5\%
140 1.83 \cdot 10 - 1 1.97 \cdot 102 3.25 \cdot 102 1.84 \cdot 104 1.2\%

1,224 1.99 \cdot 101 2.42 \cdot 102 5.30 \cdot 101 2.10 \cdot 104 0.028\%

Table 6.3
Experiments from Table 6.2 for the particle-on-plane setup.

Packed Packed
| \BbbT | Runtime Scalar 128B 256B Fallback

C
o
m
p
. 12 2.60 \cdot 10 - 2 3.87 \cdot 10 - 2 3.33 \cdot 103

36 6.50 \cdot 10 - 2 1.96 \cdot 10 - 2 3.85 \cdot 103
140 1.84 \cdot 10 - 1 1.28 \cdot 10 - 2 4.09 \cdot 103

1,224 1.98 \cdot 100 2.90 \cdot 10 - 3 4.27 \cdot 103

H
y
b
ri
d 12 2.80 \cdot 10 - 2 1.06 \cdot 101 1.25 \cdot 103 9.34 \cdot 103 6.3\%

36 6.70 \cdot 10 - 2 1.56 \cdot 101 1.34 \cdot 103 1.19 \cdot 104 5.1\%
140 1.79 \cdot 10 - 1 2.15 \cdot 101 1.34 \cdot 103 1.35 \cdot 104 4.8\%

1,224 1.85 \cdot 100 3.03 \cdot 101 9.32 \cdot 102 1.48 \cdot 104 3.6\%

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2141

opposed to the particle-on-plane setup. Therefore, only the former prospers through
vectorization. We see an increased fallback for decreased geometric detail due to the
larger relative \epsilon , which is used to identify fallback conditions.

Observation 2. As long as we do not compare extreme cases (single triangle ver-
sus a lot of triangles), the hybrid approach is faster. It is thus reasonable to employ it
on all levels of the surrogate tree, even though it might be reasonable to skip iterative
comparisons a priori if the coarsest surrogate level is involved. The latter observation
does not result from a mathematical ``nonrobustness"" but is a sole machine effect.

6.4. Multiresolution comparisons for explicit time stepping. Within an
explicit time stepping code, our multiresolution approach promises to eliminate un-
necessary comparisons since it identifies ``no collission"" constellations quickly through
the surrogates: Whenever it compares two geometries, the algorithm runs through
the resolution levels top down (from coarse to fine). The monotonicity of the surro-
gate definition implies that we can stop immediately if there is no overlap between
two surrogates. The code either employs the pure geometry-based approach or the
hybrid strategy on all levels. We focus on spherical particles (\eta r=1) discretized by
1,224 triangles and average over 100 time steps such that we run into no-collision
phases for the particle-particle setup and see the particle roll down the plane for the
particle-on-plane setup.

Our measurements confirm the superiority of the hybrid scheme in the surrogate
context (Table 6.4): In line with section 6.3, no multiresolution setup with comparison-
based contact detections on surrogate levels is able to outperform the configurations
where all levels are tackled through the hybrid approach. Further studies where
different variants are used on different (surrogate) levels are beyond scope.

In our two-particles scenario, the particles yield 1, 2242 comparisons per time
step if no surrogate helper data structure is used. Our data reflects the quadratic
(particle-particle) or linear (particle-on-plane) computational complexity. In both
cases, the number of triangle comparisons is reduced by more than an order of magni-
tude through the surrogate hierarchy, and the surrogate version outperforms its single
level baseline robustly. The hierarchical scheme's additional computational cost (over-
head) is negligible, though it does not significantly alter the ratio of iterative checks
to fallback comparisons in the hybrid scheme.

Table 6.4
Time-to-solution ([t]=s) and number of triangle distance checks for an explicit Euler step for the

particle-particle collision (top) and the particle-on-plane setup (bottom). We compare a comparision-
based setup to a hybrid approach on a single level versus a surrogate hierarchy which is traversed from
coarse to fine. For the hybrid configuration, we present the number of comparison-based fallbacks ver-
sus the number of iterative comparisons. Each iterative comparison of two triangles consists of four
Newton steps. Only if these four steps fail to converge, the algorithm issues the comparison-based
postprocessing. Both the iterative comparisons plus the (fewer) comparison-based postprocessing
steps determine the runtime (right column).

Comparison-based Hybrid
Method \#tri. comp. Runtime \#tri. comp. \#iterative Runtime
Single level 1.50 \cdot 106 3.96 \cdot 100 1.66 \cdot 103 1.50 \cdot 106 1.87 \cdot 100
Surrogate hi-
erarchy

8.20 \cdot 103 2.60 \cdot 10 - 2 1.44 \cdot 102 7.64 \cdot 103 1.80 \cdot 10 - 2

Single level 6.27 \cdot 105 1.68 \cdot 100 1.57 \cdot 104 6.27 \cdot 105 8.00 \cdot 100
Surrogate hi-
erarchy

5.27 \cdot 103 7.68 \cdot 10 - 2 4.96 \cdot 102 5.03 \cdot 103 4.00 \cdot 10 - 2

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2142 PETER J. NOBLE AND TOBIAS WEINZIERL

Observation 3. Our surrogate technique efficiently reduces the number of com-
parisons between two geometries, as ``no-collision"" setups are identified with low com-
putational cost.

6.5. Multiresolution comparisons for implicit time stepping. Implicit
methods are significantly more stable then their explicit counterpart. The price to pay
for this is an increased computational complexity: The Picard iterations imply that
we have to run the core contact point detection more often per time step. The Picard
iterations' update of collision point detection furthermore implies that the surrogate
tree does not unfold linearly anymore. While the explicit time stepping algorithm
runs through the tree from coarse to fine, the implicit scheme might, through the
iterative updates of the rotation and position, walk up and down within the tree. The
increased stability of implicit time stepping allows users to pick larger time step sizes
which, in practice, compensate to some degree of the increased compute load. This
problem-specific cost amortization is beyond scope here; i.e., we compare implicit and
explicit schemes with the same time step size. All data results from spherical particles
and the default triangle counts. We average all measurements over 100 time steps and
include the ``roll down the plane"" situation for the particle-on-plane setup.

Averaged over 100 time steps, we observe that the number of Picard iterations
is small and bounded (Table 6.5). We study the impact of a switch to the iterative
scheme, with the hybrid fallback on the finest level, and observe that it slightly in-
creases the Picard iteration count. The usage of a multiscale method merged into the
Picard iterations increases the iteration count, too. Both modifications yield flawed
contact point guesses and thus require us to run more Picard iteration steps overall.
The wrong guesses have to be compensated later on.

Observation 4. Both the iterative approximation of contact points and the ``one
Picard step before we widen the active set"" strategy increase the total number of
required Picard iterations.

The surrogate hierarchy yields an efficient early termination criterion for our
collision detection. If there is no collision, the code does not step down into the fine
grid resolutions. This property carries over from the explicit to the implicit algorithm
(Figure 6.2). An increase of the computational cost by a factor of 4.6 is acceptable in
return for an implicit scheme. We, however, observe that this increase holds for brief
point contacts only. It raises to a factor of 13.1 if contacts persist. In our example,
this happens once the spherical object starts to roll and slide down the tilted plane.

Within our multiresolution framework, the cost per Picard iteration is not uniform
and constant but depends heavily on the surrogate tree fragments that are used. The
costs are in particular nonuniform for nonsimplistic setups. The growth in Picard
iterations (on average) per time step (Table 6.5) increases the number of triangle-to-
triangle checks, compared to the explicit schemes (Table 6.4), by exactly this factor

Table 6.5
Average number of Picard iterations per time step for our first two scenarios.

Particle-particle Particle-plane
Method Comparison-based Iterative Comparison-based Iterative
Single level or surrogate
within Picard

4.6 4.9 7.1 7.1

Multiscale Picard 6.2 6.2 13.0 13.1

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2143

0 20 40 60 80 100
Time step

0

10000

20000

30000

40000

50000

60000

70000

Tr
ia

ng
le

 c
om

pa
ris

on
s

0 20 40 60 80 100
Time step

0

10000

20000

30000

40000

50000

60000

70000

80000

Tr
ia

ng
le

 c
om

pa
ris

on
s

Fig. 6.2. Number of triangle-to-triangle comparisons over time per surrogate representation
level. The data stems from the particle-particle collision (left) and the particle-on-plane setup (right)
subject to the implicit time stepping. The lowest layer illustrates the triangle comparison count for
the first iteration, the next layer for the second iteration, and so forth. The number of layers
corresponds to the total number of iterations.

if we stick to a plain geometry model. Yet, it does not manifest in an explosion of
the runtime (Table 6.6) if we employ the surrogate trees. They help to reduce the
compute cost dramatically, as we study only those parts of the surrogate tree which
might induce a collision. We prune the tree per Picard iteration.

Observation 5. Our multiscale Picard approach is particularly beneficial for
strongly instationary setups where the topology of particle interactions changes quickly.

Permuting and fusing the Picard iteration loops and the traversal over the surro-
gate tree reduce the number of triangle-to-triangle comparisons further. This obser-
vation holds for the particle-particle setup. It does not hold for the particle-on-plane
setup. The advanced version benefits from the fact that we memorize the active set
in-between two Picard iterations: While the implicit version from section 5.2 runs
through the whole tree starting from the root in every iteration, our advanced version
starts from a certain resolution and unfolds at most one level per Picard step. We
save the progress through coarser resolutions, and we do not step all the way down
in early iterations. This state-based approach works as our narrowing is effective: If
we step down into a ``wrong"" part of the tree and find out that these fine resolutions
do not contribute toward the final force, we successively remove these fine resolutions
from the (active) comparison sets again. For a sphere rolling or hopping down a plane,
the active set remains almost invariant throughout the Picard iterations, and we do

Table 6.6
Time per time step ([t]=s]) and triangle distance comparisons for our implicit schemes for the

particle-particle collision (top) and the particle-on-plane setup (bottom).

Comparison-based Hybrid
Method \#tri. comp. Runtime \#tri. comp. \#iterative Runtime
Single level 6.89 \cdot 108 1.69 \cdot 102 8.78 \cdot 105 7.34 \cdot 108 7.44 \cdot 101
Surrogate
within Picard

3.97 \cdot 106 1.08 \cdot 100 7.14 \cdot 104 3.70 \cdot 106 7.20 \cdot 10 - 1

Multiscale Pi-
card

1.82 \cdot 106 7.70 \cdot 10 - 1 2.25 \cdot 104 1.70 \cdot 106 4.70 \cdot 10 - 1

Single level 4.43 \cdot 108 9.61 \cdot 101 1.11 \cdot 107 4.43 \cdot 108 4.41 \cdot 101
Surrogate hi-
erarchy

3.59 \cdot 106 4.80 \cdot 10 - 1 3.44 \cdot 105 3.42 \cdot 106 2.20 \cdot 10 - 1

Multiscale Pi-
card

3.50 \cdot 106 4.90 \cdot 10 - 1 3.11 \cdot 105 3.35 \cdot 106 1.90 \cdot 10 - 1

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2144 PETER J. NOBLE AND TOBIAS WEINZIERL

not benefit from the narrowing or an early termination. We do, however, benefit here
from the adaptive localization of the contact detection within the tree.

Observation 6. The multiscale Picard approach in combination with a hybrid
contact detection keeps the cost of the implicit time stepping bounded by a factor of
four compared to an explicit scheme.

6.6. Multiresolution comparisons for implicit time stepping with large
scale differences. To assess collisions between objects of different scales, we first
instantiate the particle-particle scenario with both particles being spheres approxi-
mated by | \BbbT | = 80 triangles (\eta r = 1). We fix one of the spheres with a unit diameter
and scale the other one up. All data studies situations where the two particles are
close and yield contact points.

There is no clear trend relating the number of Picard iterations to the scale of the
involved particles (Table 6.7). As the scale difference grows, the number of triangle-
triangle comparisons reduces slightly (cmp. how often the iterative scheme is invoked),
while more iterative updates run into the fallback, i.e., require a posteriori, if-based
triangle comparisons. The cost to compare a large with a small particle thus remains
in the same order as the comparison of two equally sized particles. There is no clear
runtime trend.

The bigger the size difference between two triangles, the more likely it is that
the hybrid scheme runs into the fallback (cmp. data in Table 6.3, where the slope
triangles are large compared to the particle triangles). The frequent fallbacks team
up with the effect that coarse (surrogate) triangles within the larger particle overlap
large numbers of surrogate triangles on the smaller collision partner. Relatively large
fractions of the small particle's surrogate tree have to be unfolded.

To distinguish the impact of the particle sizes from the impact of the triangle,
we next subdivide the upscaled colliding particle such that the triangle sizes of both
particles remain almost invariant and comparable. Doubling the particle size thus
corresponds to four times more triangles. Within the surrogate tree, we keep the
number of triangles per leaf roughly constant.

Despite the increase in the number of triangles per upscaling, the number of
comparisons and the runtime quickly plateau (Table 6.8). The additional cost due to
the increase in the triangle count is bounded by a factor of four, even if we continue

Table 6.7
Time ([t]=s) plus triangle distance comparisons per implicit time step for a particle-particle

setup (80 triangles), where one particle is scaled relative to the other one.

Scale Triangles Iterations \#tri. comp. \#iterative Time
1 80 13 1.59 \cdot 101 1.45 \cdot 102 8.72 \cdot 10 - 2

2 80 13 1.93 \cdot 101 1.27 \cdot 102 6.80 \cdot 10 - 2

4 80 18 4.31 \cdot 101 1.78 \cdot 102 1.00 \cdot 10 - 1

8 80 14 4.10 \cdot 101 9.82 \cdot 101 6.82 \cdot 10 - 2

Table 6.8
Time ([t]=s) and triangle distance per time step for two colliding particles of different size with

comparable triangle sizes.

Scale Triangles Iterations \#tri. comp \#iterative Runtime
1 80 13 1.59 \cdot 101 1.45 \cdot 102 8.72 \cdot 10 - 2

2 320 19 4.18 \cdot 101 5.05 \cdot 102 2.25 \cdot 10 - 1

4 1,280 20 4.66 \cdot 101 5.88 \cdot 102 2.60 \cdot 10 - 1

8 5,120 17 3.80 \cdot 101 5.44 \cdot 102 2.40 \cdot 10 - 1

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2145

to increase the geometric detail beyond a factor of four. The cost per triangle reduces
as one particle grows relative to the other.

As the size of the larger object grows, its surrogate tree becomes deeper. The
algorithm unfolds the larger tree, but this unfolding is a localized process. We end
up with roughly scale-invariant compute cost which is dominated by the number of
triangles stored within one node of the finest tree level.

Observation 7. The multiscale Picard approach is particularly effective if we com-
pare objects of massively different size yet with the same level of detail. In this case,
the cost per triangle comparison remains almost invariant.

The observation is particular encouraging for simulations with objects of massively
different size, where the large objects exhibit a high level of detail. Such situations
are found in fluid-structure interaction, where a collision induces a force on a bending
object. Such objects often are modeled via adaptive meshes which have to refine
around the contact point.

6.7. Many particle experiments. Our multiscale Picard method shows an
improvement in time-to-solution for individual particles which collide with other par-
ticles of different size or simple geometric object such as a plane. To be useful in real
DEM codes, the algorithms must remain performant when we run simulations with
many particles.

As long as the neighborhood search is efficient, our achievements for individual
particle-particle interactions carry over to dynamic simulations with large particle
counts. If particles move around and bounce into each other, yet each particle only
interacts with few other objects per time step, our multiscale concepts simply are
to be generalized from two objects to a small object count. The situation changes
if particles enter a stationary regime, i.e., if the particles are densely clustered and
almost at rest.

We therefore finally simulate 24,576 particles that barely overlap and are initially
at rest. This imitates a basin of granulates; e.g., each particle is made up of 1,224
triangles; i.e., we handle a total memory footprint of approximately 3.87 GiB which
is substantially larger than the 30 MiB total L3 cache.

The hierarchical scheme yields a massive reduction of (iterative) triangle-triangle
comparisions, and it notably succeeds to avoid too many comparisons which sub-
sequently have to be postprocessed (Table 6.9). The runtime per particle-particle
comparison is significantly lower than in previous dynamic setups. Consequently, the
cost per particle is lower, too, even though we have around six collision partners per
particle.

Table 6.9
Measurements for 24,576 particles which are densely clustered yet almost at rest. The runtime

is the runtime per time step per core. We present the total time and the time per particle-particle
comparison.

Comparison-based Hybrid
Time Time

Method \#tri. comp. Total Per comp \#tri. comp. \#iterative Total Per comp
Single level 6.50 \cdot 109 1.92 \cdot 106 9.67 \cdot 102 1.29 \cdot 108 6.50 \cdot 109 8.36 \cdot 105 4.20 \cdot 102
Surrogate
within Pi-
card

2.49 \cdot 106 4.70 \cdot 102 2.37 \cdot 10 - 1 2.92 \cdot 102 2.49 \cdot 106 3.77 \cdot 102 1.90 \cdot 10 - 1

Multiscale
Picard

9.08 \cdot 105 2.30 \cdot 102 1.16 \cdot 10 - 1 1.09 \cdot 102 1.06 \cdot 106 2.13 \cdot 102 1.07 \cdot 10 - 1

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2146 PETER J. NOBLE AND TOBIAS WEINZIERL

Since the particles are almost at rest and only have tiny overlaps, the arising
forces are very small. Consequently, few Picard iterations are sufficient to converge
for the overall setup. The surrogate trees unfold only around the localized contacts,
and this unfolding is very efficient; i.e., we barely remove triangles from the active set
while we run the Picard iterations.

Observation 8. The multiscale approach remains advantageous for larger particle
assemblies where the particles are densely clustered.

7. Conclusion. We present a family of multiresolution contact detection algo-
rithms that exhibit low computational cost and high vectorization efficiency. Few
core ideas guide the derivation of these algorithms: We rigorously phrase the un-
derlying mathematics in a multiresolution and multimodel language, where low-cost
resolutions (surrogates) or algorithms (iterative contact search) precede an expensive
follow-up step which becomes cheaper through good initial guesses or can be skipped
in many cases. We replace dynamic termination criteria behind iterative algorithms
with fixed iteration counts. While this might mean that we terminate prematurely,
a fixed iteration count allowed us to unroll loops and to permute them. The permu-
tation of loops is our last ingredient which we apply on multiple levels: We switch
the traversal of triangles with Newton iterations, and we switch the Picard iterations
with the tree unfolding.

The present work is solely algorithmic and has theoretical character. A natural
next step is its application to large-scale, massively parallel, real-world simulations.
This introduces at least three further challenges: First, the parallelization between
multiple compute nodes makes the algorithm more complex and introduces significant
upscaling and load balancing challenges. Second, we only use a simple contact model
to compute interaction forces which might be inappropriate for actual challenges from
sciences and engineering. Finally, our studies solely rely on one, fixed time step size.
They do not even employ the fact that implicit schemes allow for larger time step
size, a fact which has to be employed and studied for real-world runs. Furthermore,
we rely---so far---on a naive assumption that the Picard iterations converge. A more
robust code variant would either identify nonconvergence via force, rotation, and
movement deltas that do not decrease over the Picard iterations or exploit the fact
that we know how accurate our surrogate models are via their \epsilon -value. In both cases,
surrogate levels could be skipped automatically.

On the methodological side, there are three natural extensions of our work: First,
our surrogate mechanism always kicks off from the surrogate tree's root when it
searches for contact points. For time stepping codes, this is not sophisticated. It
might be advantageous to memorize the tree configurations in-between two subse-
quent time steps and thus to exploit the fact that many particle configurations change
only smoothly in time. Scenarios such as our particle-on-plane setup may particularly
benefit from this, as coarse level surrogates, where the force estimates are just as likely
to push the solution in the wrong direction, can be skipped based on hints from the
previous time step.

Second, we work with multiple spatial representations, i.e., accuracies, but we
stick to single precision all the way through. It is a natural extension to make our
iterative algorithm use a reduced precision on coarse surrogate models, i.e., early
throughout the algorithm. Any machine imprecision can be recovered in our case
through a slight increase of \epsilon . Such a mixed precision strategy is particularly at-
tractive in an era where more and more compute devices are equipped with special-
purpose, reduced-precision linear algebra components. An additional flavor of mixed

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2147

precision arises once we use more complex contact models. It is not clear if such
complex models are required on the surrogate levels, too; i.e., it might be appropriate
to implement a multiphysics model where surrogate contact detection complements
accurate interaction models on the finest mesh level.

Finally, we next will have to tackle large-scale systems implicitly: DEMmodels are
notoriously stiff, yet the stiffness is localized, as typically not all particles in a setup
interact with all other particles. It is a natural extension to investigate local time
stepping, where each particle advances with its own \Delta t, and to make the surrogate
representations naturally follow and inform these local time step choices.

Appendix A. Surrogate triangles. The construction of good surrogate
models is a challenge of its own, as there are infinitely many surrogate models for a
given particle p. We rely a functional minimization with a fixed coarsening factor to
construct the surrogate hierarchy bottom-up. Let one surrogate triangle for a set of
triangles \BbbT k - 1 be spanned by its three vertices x1, x2, x3 \in \BbbR 3 which follow

argmin
x1,x2,x3

1

\beta size

\sum
x\in \{ x1,x2,x3\} ,t\in \BbbT k - 1

\| x - t\| \beta size +
\alpha area

2
| (x2 - x1)\times (x3 - x1)| - 2

+
\alpha inside

\beta normal

\sum
x\in \{ x1,x2,x3\} ,xt\in t \forall t\in \BbbT k - 1

(max(0, (x - xt) \cdot N(x1, x2, x3)))
\beta normal .(A.1)

\beta size \geq 2 is a fixed integer parameter which we usually pick very high, and the
term \| x - t\| denotes the distance between a point x and a triangle t. The sum
thus minimizes the maximum distance between the vertices of the surrogate triangle
and the triangles from \BbbT k - 1. We try to make the surrogate triangle as small as
possible. The second term acts as a regularizer that avoids that the surrogate triangle
degenerates and becomes a single point or a line. Without it, the first term would
yield a single point, i.e., x1 = x2 = x3.

The third term exploits the fact that each triangle t of p has a unique outer
normal N(t). Even though our surrogate models can be weakly connected, it is thus
possible to assign each surrogate triangle an outer normal, too. The penalty term
over the scalar product drops out due to the max function if the surrogate's normal
points into the same direction as the triangles' normals. Effectively, this term ensures
that the surrogate triangle nestles closely around a particle and that spikes do not
induce a blown-up surrogate (Figure 2.1). Once (A.1) yields a surrogate triangle, \epsilon is
chosen such that the triangle is conservative for \BbbT k - 1.

Appendix B. Surrogate trees. Let Nsurrogate > 1 be the surrogate coarsening
factor. We construct a surrogate tree top-down (Algorithm B.1):

\bullet The first triangle that we insert into \scrT is the coarsest surrogate model, i.e., a
degenerated object description consisting of one triangle. In line with Defini-
tion 4.6, this is the root node of our surrogate tree.

\bullet Recursively dividing creates a tree over sets where all nonleaves have cardi-
nality one. The leaf sets have a cardinality of roughly Nsurrogate. The number
of children per tree node is bounded and typically around Nsurrogate.

\bullet We construct the surrogate triangles by copying one triangle out of the un-
derlying triangle set. Then, we iteratively minimize the functional (A.1).

\bullet To obtain surrogates with reasonably small \epsilon , we cluster the triangle sets
through a tailored k-means algorithm [17]. The subsets \BbbT local,i thus are rea-
sonable compact.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2148 PETER J. NOBLE AND TOBIAS WEINZIERL

Algorithm B.1 Top-down algorithm to construct a cascade of surrogate models for
a given triangulation \BbbT . The algorithm yields a tree defined through \sqsubseteq child and hence
allows us to derive a vast set of different, locally adaptive surrogate models.
1: function constructSurrogate(\BbbT)
2: Construct surrogate triangle t for \BbbT \triangleleft Solve (A.1)
3: Assign t smallest \epsilon such that t\epsilon is conservative surrogate
4: Create trivial graph \scrT with single node \{ t\epsilon \} and no edges
5: constructSurrogateRecursively(t\epsilon ,\BbbT)
6: end function
7: function constructSurrogateRecursively(t\epsilon local, \BbbT local)
8: if \BbbT local \leq Nsurrogate then
9: Add node \BbbT local to \scrT
10: Add edge \BbbT local \sqsubseteq child \{ t\epsilon local\} to \scrT
11: else
12: Split \BbbT local into Nsurrogate sets \BbbT local,0,\BbbT local,1,\BbbT local,2, . . . of roughly same size
13: for i do
14: Construct surrogate triangle tnew for \BbbT local,i \triangleleft Solve (A.1)
15: Assign tnew smallest \epsilon such that t\epsilon new is conservative surrogate over \BbbT local,i

16: Add node \{ t\epsilon new\} to \scrT
17: Add edge \{ t\epsilon new\} \sqsubseteq child \{ t\epsilon local\} to \scrT
18: constructSurrogateRecursively(t\epsilon new,\BbbT local,i)
19: end for
20: end if
21: end function

There are many alternative paradigms to construct surrogate trees: Bounding
sphere hierarchies would be an alternative. Our approach is relatively slow, yet is
exclusively used as preprocessing.

Acknowledgments. This work made use of the facilities of the Hamilton HPC
Service of Durham University.

REFERENCES

[1] T. Akenine-Mller, E. Haines, and N. Hoffman, Real-Time Rendering, 4th ed., CRC Press,
Boca Raton, FL, 2018.

[2] F. Alonso-Marroquin and Y. Wang, An Efficient Algorithm for Granular Dynamics Sim-
ulation with Complex-Shaped Objects, preprint, arXiv:0804.0474, 2008, https://arxiv.org/
abs/0804.0474.

[3] K. Apinis, H. Seidl, and V. Vojdani, Enhancing top-down solving with widening and nar-
rowing, in Semantics, Logics, and Calculi, Springer, Cham, 2016, pp. 272--288, https:
//doi.org/10.1007/978-3-319-27810-0 14.

[4] D. Baraff, An Introduction to Physically Based Modeling: Rigid Body Simulation I---
Unconstrained Rigid Body Dynamics, SIGGRAPH '97 course notes, Carenegie Mellon
University, 1997.

[5] G. Barequet, B. Chazelle, L. J. Guibas, J. S. Mitchell, and A. Tal, BOXTREE: A
hierarchical representation for surfaces in 3D, Comput. Graph. Forum, 15 (1996), pp. 387--
396, https://doi.org/10.1111/1467-8659.1530387.

[6] D. Charrier, B. Hazelwood, E. Tutlyaeva, M. Bader, M. Dumbser, A. Kudryavtsev,
A. Moskovsky, and T. Weinzierl, Studies on the energy and deep memory behaviour of
a cache-oblivious, task-based hyperbolic PDE solver, Int. J. High Perform. Comput. Appl.,
33 (2019), pp. 973--986.

[7] P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies,
G\'eotechnique, 29 (1979), pp. 47--65, https://doi.org/10.1680/geot.1979.29.1.47.

[8] H. Dammertz, J. Hanika, and A. Keller, Shallow bounding volume hierarchies for fast
SIMD ray tracing of incoherent rays, Comput. Graph. Forum, 27 (2008), pp. 1225--1233,
https://doi.org/10.1111/j.1467-8659.2008.01261.x.

[9] C. Eisenacher, G. Nichols, A. Selle, and B. Burley, Sorted deferred shading for production
path tracing, Comput. Graph. Forum, 32 (2013), https://doi.org/10.1111/cgf.12158.

[10] C. Ericson, Real-Time Collision Detection.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/0804.0474
https://arxiv.org/abs/0804.0474
https://doi.org/10.1007/978-3-319-27810-0_14
https://doi.org/10.1007/978-3-319-27810-0_14
https://doi.org/10.1111/1467-8659.1530387
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1111/j.1467-8659.2008.01261.x
https://doi.org/10.1111/cgf.12158

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A MULTIRESOLUTION DISCRETE ELEMENT METHOD A2149

[11] S. Gottschalk, M. Lin, and D. Manocha, OBBTree: A hierarchical structure for rapid in-
terference detection, in Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, ACM, 1996, https://doi.org/10.1145/237170.237244.

[12] M. Held, J. Klosowski, and J. Mitchell, Real-time collision detection for motion simulation
within complex environments, in Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, ACM, 1996.

[13] K. Iglberger and U. R\"ude, Massively parallel granular flow simulations with non-spherical
particles, Comput. Sci. Res. Develop., 25 (2010), pp. 105--113, https://doi.org/10.1007/
s00450-010-0114-4.

[14] K. Krestenitis and T. Koziara, Calculating the minimum distance between two triangles
on SIMD hardware, in Proceedings of the 23rd Conference on Computational Mechanics,
Swansea University, 2015.

[15] K. Krestenitis, T. Weinzierl, and T. Koziara, Fast DEM collision checks on multicore
nodes, in Proceedings of the 12th International Conference on Parallel Processing and
Applied Mathematics, Lublin, Poland, R. Wyrzykowski, J. J. Dongarra, E. Deelman, and
K. Karczewski, eds., Lecture Notes in Comput. Sci. 10777, Springer, Cham, 2018, pp.
123--132.

[16] T. Y. Li and J. S. Chen, Incremental 3D collision detection with hierarchical data structures,
in Proceedings of the ACM Symposium on Virtual Reality Software and Technology 1998,
1998, pp. 139--144, https://doi.org/10.1145/293701.293719.

[17] J. B. MacQueen, Some Methods for Classification and Analysis of Multivariate Observations,
1967.

[18] J. D. McCalpin, Memory bandwidth and machine balance in current high performance comput-
ers, IEEE Computer Society Technical Committee on Computer Architecture Newsletter,
2 (1995), pp. 19--25.

[19] A. D. Rakotonirina and A. Wachs, Grains3D, a flexible DEM approach for particles of ar-
bitrary convex shape - Part II: Parallel implementation and scalable performance, Powder
Technol., 324 (2018), pp. 18--35, https://doi.org/10.1016/j.powtec.2017.10.033.

[20] E. Shellshear and R. Ytterlid, Fast distance queries for triangles, lines, and points using
SSE instructions, J. Comput. Graph. Tech., 3 (2014), pp. 86--110.

[21] J. Treibig, G. Hager, and G. Wellein, LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments, in Proceedings of the 2010 39th International Con-
ference on Parallel Processing Workshops, IEEE Computer Society, 2010, pp. 207--216.

[22] A. Wachs, L. Girolami, G. Vinay, and G. Ferrer, Grains3D, a flexible DEM approach for
particles of arbitrary convex shape -- Part I: Numerical model and validations, Powder
Technol., 224 (2012), pp. 374--389, https://doi.org/10.1016/j.powtec.2012.03.023.

[23] T. Weinhart, C. Labra, S. Luding, and J. Y. Ooi, Influence of coarse-graining parameters
on the analysis of DEM simulations of silo flow, Powder Technol., 293 (2016), pp. 138--148.

[24] S. Zhao and J. Zhao, A poly-superellipsoid-based approach on particle morphology for DEM
modeling of granular media, Int. J. Numer. Anal. Methods Geomech., 43 (2019), pp. 2147--
2169.

[25] W. Zhong, A. Yu, X. Liu, Z. Tong, and H. Zhang, DEM/CFD-DEM modelling of non-
spherical particulate systems: Theoretical developments and applications, Powder Technol.,
302 (2016), pp. 108--152, https://doi.org/10.1016/j.powtec.2016.07.010.

D
ow

nl
oa

de
d

12
/1

9/
22

 to
 1

29
.2

34
.7

.1
29

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1145/237170.237244
https://doi.org/10.1007/s00450-010-0114-4
https://doi.org/10.1007/s00450-010-0114-4
https://doi.org/10.1145/293701.293719
https://doi.org/10.1016/j.powtec.2017.10.033
https://doi.org/10.1016/j.powtec.2012.03.023
https://doi.org/10.1016/j.powtec.2016.07.010

	Introduction
	Algorithmic framework
	Iterative contact detection via distance minimization
	A multiresolution model
	Multiresolution contact detection
	Explicit Euler
	Implicit Euler with multiresolution acceleration
	Implicit multiresolution Euler
	Implementation

	Runtime results
	Experimental setup
	Surrogate properties
	Hybrid single level contact detection
	Multiresolution comparisons for explicit time stepping
	Multiresolution comparisons for implicit time stepping
	Multiresolution comparisons for implicit time stepping with large scale differences
	Many particle experiments

	Conclusion
	Appendix A. Surrogate triangles
	Appendix B. Surrogate trees
	Acknowledgments
	References

