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Computational Simulations using Time-Dependent
Ginzburg–Landau Theory for Nb–Ti-like

Microstructures
C.W.W. Haddon, A.I. Blair, F. Schoofs, and D.P. Hampshire.

Abstract—Simulations based on time-dependent Ginzburg–
Landau theory are employed to determine the critical current for
a model system which represents a Nb–Ti-like pinning landscape
at low drawing strain. The system consists of ellipsoids of normal
metal, with dimensions 60ξ × 3ξ × 3ξ, randomly distributed
throughout the superconducting bulk with their long axes parallel
to the applied current and perpendicular to the field. These
preciptates represent the ααα-Ti elongated precipitates which act as
strong pinning centres in Nb–Ti alloys. We present the volume
pinning force density as a function of field across the entire
range of precipitate volume fractions and find that optimised
material in our model system occurs at 32 vol.% ppt., whereas
in real materials the optimum occurs at 25 vol.% ppt. The
maximum pinning force density in our simulations is slightly
higher (5.4 × 10−3JDBc2 vs. 17GN·m−3 = 4.5 × 10−3JDBc2)
and occurs at a lower reduced field (0.2Bc2 vs. 0.5Bc2) than in
real materials. We conclude that the broad features of Nb–Ti-like
systems are captured in our model, but that the details of the
precipitate pinning mechanism are not yet included properly.

Index Terms—critical current density, flux pinning, niobium
alloys, numerical simulation

I. INTRODUCTION

CRITICAL currents of high-field superconductors are dif-
ficult to predict because of the complexity of both the

superconductor itself, as well as the underlying microstructure
that pins the fluxons. The volume pinning force density, FFF p,
given by JJJc × BBB where JJJc is the critical current density,
depends on the nature and distribution of pins in a complicated
way. Historically, simple analytic expressions for critical cur-
rents have been found by considering systems containing a sin-
gle type of pin, typically assuming that either the elementary
pinning force or the elastic properties of the lattice dominate
[1]–[5]. The reason for pinning has long been understood—
a normal inclusion pins vortices because there is a reduction
in the free energy when the vortex core overlaps the normal
region. However, optimised normal metal coated high-field
superconductors in technological conductors contain a huge
variety of pins (e.g., atomic impurities, normal inclusions, twin
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planes, and grain boundaries) at densities which can result
in a vortex glass or liquid state [6]–[11]. Hence, in material
optimised to maximise high-field Jc, the fluxon-fluxon spacing
is broadly preserved and the pinning results from a disordered
flux-line-lattice interacting with a complex microstructure that
changes on the scale of a few nanometres.

Pinning can be visualised and quantified using the frame-
work of time-dependent Ginzburg–Landau (TDGL) theory
[12] incorporating spatial variation of the parameters in the
Ginzburg–Landau (GL) free energy. Since the TDGL equa-
tions cannot be solved analytically except for simple pinning
systems, a number of computational methods have been de-
veloped [13], [14]. Unfortunately the most general solvers
are prohibitively expensive for critical current calculations
in realistic 3D systems, and so further simplifications are
required.

The computational approach used here is based on the
work of Sadovskyy et al., who have proposed a massively-
parallel solver for the TDGL equations in the very high-κ limit
[11] where the magnetic flux density is homogeneous. After
choosing a Landau gauge the independent variables are the
order parameter and the scalar potential. The huge reduction in
simulation time which this approach provides, allows for sys-
tematic exploration of a wide range of microstructures. Since
all high-field superconducting materials have relatively high-
κ, this approach also opens the possibility of comprehensive
comparison between computational and experimental Jc-data
from important high field superconductors used in applications
from MRI to fusion. Optimisation of microstructures for
maximal Jc has been previously studied using this approach.
In [15], spherical metallic precipitates with different diameters
were considered and the optimal volume fraction was found
at a few different fields. Here, we consider different volume
fractions for a single precipitate size over the entire magnetic
field range. We visualise pinning by microstructures that are
typical of alloys such as Nb–Ti, which is the workhorse
material for all high-field applications operating at magnetic
fields up to 10 T.

In this paper, we calculate critical current density values
and provide visualisations of the flux pinning in Nb–Ti-
like systems in magnetic fields up to the upper critical field
Bc2. The pinning from the normal precipitates is simply
modelled by decreasing the condensation energy (i.e., α) so
that T > Tcn in the normal region, whilst keeping the other
GL parameters the same as the bulk superconductor.

http://ieeexplore.ieee.org
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II. TIME-DEPENDENT GINZBURG–LANDAU THEORY

We use a standard normalisation of the TDGL equations,
with lengths in units of the coherence length, ξ [16].

−η(∂t + iφ)ψ = −α̃ψ + β̃|ψ|2ψ
+ (−i∇+AAA)m̃−1(−i∇+AAA)ψ

(1)

JJJ − JJJn = m̃−1
(
i
2 (ψ

∗∇ψ − ψ∇ψ∗)− |ψ|2AAA
)

= κ2 curl curlAAA+ ∂tAAA+∇φ
(2)

where ψ,AAA, and φ denote the normalised order parameter, vec-
tor potential, and scalar potential respectively. The timescale
ratio η has the value 5.79 in the dirty limit [12], but is set
here to 1 since the stationary solutions of interest should not
significantly depend on the dynamics of the non-stationary
solutions. The symbols with tildes denote the spatially varying
GL parameters that characterise the material at each point in
the domain. In this work, the normal precipitates are specified
by a change in α̃ (alone) from +1 for superconducting material
to −1 for normal metal. The parameters β̃ and m̃−1 are set
to 1 throughout the entire material.

III. SIMULATIONS IN THE VERY HIGH-κ LIMIT

The general approach for producing the computational so-
lutions follows that of Sadovskyy et al. [11] and so only the
most important relevant features are outlined below:

A. Boundary conditions and discretisation

In Sadovskyy’s very high-κ limit (κ = 27 for Nb–Ti [17])
the applied field fully penetrates the superconductor and the
magnetic field is assumed to be completely uniform. This
reduces the degrees of freedom associated with the vector
potential, which are expensive to compute in 3D, and yields
TDGL equations for the order parameter and scalar potential.

In order to obtain bulk critical current densities which
are representative of large systems, surface effects must be
eliminated. However, the usual choice of vector potential
depends linearly on the y-coordinate, which would lead to a
discontinuity in the vector potential and therefore the current
density if strict periodic boundary conditions were imple-
mented. To avoid this, we have implemented Sadovskyy’s
quasiperiodic boundary conditions, where the magnitude of
the order parameter is continuous, but there is a discontinuity
in the phase (see Fig. 1), the magnitude of which is determined
by requiring current continuity normal to the boundary. The
large phase gradients in the x-direction at the upper and lower
boundaries do not correspond to large screening currents,
which would be expected for insulating boundaries, because
they are compensated for by the vector potential.

A current applied in the x-direction, JJJ = Jxeeex, can result
in flux motion in the y-direction, which produces an average
electric field in the x-direction. Since the vector potential is
taken to be time-independent, there is a net change in the
scalar potential across the system in the x-direction. The
discontinuity at the boundary is resolved by introducing a
gauge transformation which removes the component of φ
corresponding to this net field, −xEx, and adds a time
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Fig. 1. The phase of the order parameter for a system with quasiperiodic
boundary conditions in the y-direction, showing a discontinuity between the
upper and lower boundaries. The net field is 0.2Bc2.

dependent phase K(t) to ψ where ∂tK = Ex. The time-
evolution of K is therefore driven by the externally applied
current.

The TDGL equations are then discretised in a modified
Crank–Nicolson scheme [18], re-writing the gradient term
using link variables to maintain gauge-invariance [13]. The
use of an iterative Jacobi method with a maximum norm
convergence check results in discrete update equations which
can be implemented using local kernel functions, allowing
for efficient implementation on a GPU. The equation which
describes the evolution of the gauge parameter K, however,
depends on the average current, and hence a summation over
all grid points is required.

B. Determining the critical current density

A standard search strategy [19] for the critical current
density starts with the applied current density at an initial value
Jext which is substantially greater than the critical current [20].
The applied current is then exponentially reduced in steps until
Jc is found. For each step, first the current is reduced by
1%, then a time interval is allowed for the transient electric
fields which arise from the change in current to dissipate,
and then the electric field is averaged over the following
time interval. If this average is less than 10−5 in normalised
units (4V ·m−1), it is assumed that the critical current has
been reached. Such a large electric field criterion reduces
the averaging time required to ensure termination [21] whilst
providing sufficiently accurate estimates of the lossless current
density.

C. Pinning model

In general the GL parameters for any given superconducting
material, α, β, and m (see, e.g., [22, ch. 4]) can be related to a
subset of the measurable quantities including: λ (the London
penetration depth), ξ, Bc2, ns (the superfluid density), etc.
However, most pin types, for example grain boundaries in
YBCO, are not superconducting and there are no reliable or
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Fig. 2. Transverse cross-sections of α̃(rrr) for three different precipitate volume
fractions and a single longitudinal cross-section. Black and white represent
α̃ = −1 and α̃ = +1 (normal and superconducting) respectively.

precise values known for the GL parameters of the pins in the
normal state—not least because the fundamental mechanism
that produces superconductivity is still not known, nor is
there a detailed microscopic description of the proximity
effect [23]. In this paper, we simply implement the pinning
with a spatial variation of the relative condensation parameter
α̃(rrr) = α(rrr)/αs where the precipitates are arbitrarily assigned
a relative condensation parameter of α̃n = −1.

Superconducting alloys can have a wide range of mi-
crostructures. Over the course of the wire drawing process for
Nb–Ti, the α-Ti precipitates that are the pinning sites, become
finer and more closely spaced in the plane perpendicular to the
drawing axis [24]. At final strain, they form randomly oriented
ribbons of width 1–4 nm with a separation 3–6 nm [24]–[26],
less than the fluxon diameter of 2ξ ≈ 8 nm. Modelling this
optimised microstructure in the TDGL simulation domain is
challenging, since a fine grid is required to capture the different
length scales of the pinning landscape. Here we have chosen
to model a more straightforward system which represents the
microstructure at low strain, where the precipitates have been
drawn out into simple ellipsoids. Fig. 2 shows transverse cross
sections of α̃(rrr) for three different precipitate volume fractions
in our model, along with a typical longitudinal cross-section.
At low volume fractions the ellipsoids are mostly isolated, at
intermediate volume fractions several ellipsoids often overlap,
and at high volume fractions most of the system is normal and
the critical current drops to zero.

In this paper the precipitate diameters in each direction were
60ξ, 3ξ, and 3ξ where the long axis was aligned with the
applied current. The procedure for building the material with
N precipitates was as follows. First the mesh (dimensions
80ξ × 40ξ × 40ξ) was initialised with α̃ = 1 at all points.
Then N precipitates were distributed randomly throughout
the simulation domain, accounting for the periodic boundary
conditions [27]. Finally the precipitate volume fraction was
calculated, which is less than N times the precipitate volume
since some precipitates overlap.
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Fig. 3. Critical current data derived from simulations for each precipitate
(ppt.) volume fraction. The data for 0 vol.% and 81 vol.% are close to the
noise floor for Jc.

IV. RESULTS

The simulated Jc(B) data for systems with different pre-
cipitate volume fractions are shown in Fig. 3. The equivalent
volume pinning force densities are shown in Figs. 4 and 5.
They have been fitted using the pinning function

Fp = Abp(1− b)q (3)

where b = B/Bc2 is the reduced field and A, p, and q are
fit parameters [3]. We attribute the substantial variations in
the critical current data with field for low volume fractions
(particularly 9% and 17%), to the many metastable states that
occur when the average precipitate spacing is large compared
to the system dimensions. As expected, as the volume fraction
is increased from zero, there is an increase in the critical
current over most of the field range consistent with the
linear increase in critical current density with volume fraction
observed experimentally in the range 3%–25% [24]. The low
volume fractions have relatively high Jc in very high fields
(Figs. 3 and 4). At the optimum composition of 32 vol.%
ppt., the exponents p = 0.54, q = 2.4 in our simulations
are close to p = 1

2 , q = 2, which are usually considered to
be representative of surface pinning (e.g., grain boundaries in
Nb3Sn). We note that the maximum pinning force observed
was 5.4 × 10−3JDBc2, occurring at B = 0.2Bc2. For high
volume fractions, the exponent q takes values between 3
and 5, which is often attributed to inhomogeneities in the
superconducting matrix material because such large values are
not found amongst the elementary pinning functions of Dew-
Hughes [3], but cannot be the explanation here. This work
suggests the relatively large q values may be associated with
the proximity effect operating [23] in the vicinity of the normal
precipitate pinning sites. For the system with 81 vol.% ppt. the
critical current is effectively zero over the entire field range
because there is no contiguous superconducting path through
the system (Fig. 6).

The model most closely resembles the microstructure found
at low drawing strain in the Nb–Ti processing procedure
where the precipitates are more ellipsoidal, rather than the
high aspect ratio α-Ti ribbons found at higher strains. The
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Fig. 4. Pinning force as a function of field for increasing volume percent
of precipitates (≤ 32%). The pinning force increases systematically with
increasing volume fraction over the entire field range. The lines are fits of the
pinning function, Eq. 3.
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Fig. 5. Pinning force as a function of field for increasing volume percent
of precipitates (≥ 32%). The pinning force decreases systematically with
increasing volume fraction over the entire field range. The lines are fits of the
pinning function, Eq. 3. Inset: peak pinning force versus volume percent of
precipitates. Error bars indicate RMS deviation of the data from the pinning
curve.

change in the pinning force over the course of the drawing
process is complex—the peak in the pinning force density in-
creases in magnitude and moves to higher reduced fields [24].
Comparing our simulations at optimum composition, with the
experimental Jc data at 4.2 K from optimised technological
conductors, real materials reach a maximum volume pinning
force at roughly 25 vol.% ppt., whereas the optimum found
in our model is 32 vol.% ppt. The pinning force in state-of-
the-art conductors Nb–Ti conductors scales with temperature
and strain [29], with the maximum occurring at B = 0.5Bc2.
At 4.2 K, Bc2 = 11T and the maximum pinning force density
is approximately Fmax

p = 17GN·m−3 [24], which gives an
equivalent dimensionless pinning force density in the best
materials of Fmax

p /JDBc2 = 4.8× 10−3 (given the zero-field
depairing current density, JD, at 4.2 K is 3.22× 1011 A·m−2

[30]). This result is similar to the maximum pinning force
value found in our simulations of Fmax

p /JDBc2 = 5.4×10−3.
We are not aware of other reports of simulations of Nb–Ti-

Fig. 6. Snapshots of the vortex matter at three fields for three representative
precipitate volume fractions (low, optimised and high). The vortices are
visualised in black as the volumes where the squared magnitude of the gauge-
invariant phase gradient in the y–z plane exceeds 5/2ξ2. Normal regions are
therefore entirely black. The precipitates are indicated in grey and have been
cut away near the surface to improve visibility. An animated version of this
figure is available online [28].

like microstructures, but it is interesting to note that optimal
volume fractions of ∼23%, similar to those reported here, have
been reported in simulations for spherical metallic nanoparti-
cles in an anistotropic superconductor [15].

V. CONCLUSIONS AND FUTURE WORK

We have presented TDGL simulations for Nb–Ti-like super-
conductors with promising results—the field dependence and
magnitude of Jc, as well as the optimum volume fraction of
normal precipitates are similar to those found in state-of-the-
art Nb–Ti materials. We attribute the differences between our
simulations and experimental data predominantly to the simple
description of the pinning sites we have used in the model,
including their ellipsoidal shape and the relatively arbitrary
choice α̃n = −1 [19]. In future work, we will implement a
more realistic description of the pinning sites including both
the δHc pinning and the δκ pinning that are expected to
operate in Nb–Ti [31] (implemented by developing the code to
include the spatial variation of the non-linearity parameter, β).
We will also implement a more realistic geometry, orientation,
and distribution of the precipitates which will enable more
complex flux movement, for example flux flow along the
length of the precipitates.
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