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Abstract
1.	 Invasive pests pose a great threat to forest, woodland, and urban tree ecosys-
tems. The oak processionary moth (OPM) is a destructive pest of oak trees, first 
reported in the UK in 2006. Despite great efforts to contain the outbreak within 
the original infested area of South-East England, OPM continues to spread.

2.	 Here, we analyze data consisting of the numbers of OPM nests removed each 
year from two parks in London between 2013 and 2020. Using a state-of-the-art 
Bayesian inference scheme, we estimate the parameters for a stochastic com-
partmental SIR (susceptible, infested, and removed) model with a time-varying 
infestation rate to describe the spread of OPM.

3.	 We find that the infestation rate and subsequent basic reproduction number 
have remained constant since 2013 (with R0 between one and two). This shows 
further controls must be taken to reduce R0 below one and stop the advance of 
OPM into other areas of England.

4.	 Synthesis. Our findings demonstrate the applicability of the SIR model to de-
scribing OPM spread and show that further controls are needed to reduce the 
infestation rate. The proposed statistical methodology is a powerful tool to ex-
plore the nature of a time-varying infestation rate, applicable to other partially 
observed time series epidemic data.
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1  |  INTRODUC TION

Invasive pests, such as non-native insects, pose a threat to forest, 
woodland, and urban tree ecosystems by damaging and killing trees 
and reducing biodiversity (Freer-Smith & Webber, 2017; Kenis et al., 
2009; Manchester & Bullock, 2000). This threat has increased in re-
cent years due to growth in international travel and trade (Roy et al., 
2014) coupled with a changing climate driving the migration of spe-
cies into new ecosystems (Lenzner et al., 2020). The loss of biodiver-
sity has a profound economic impact, through short- to long-term 
control measures and the impact on ecosystem services (Aukema 
et al., 2011; Boyd et al., 2013; Bradshaw et al., 2016).

The oak processionary moth (OPM), Thaumetopoea processionea, 
is an invasive and destructive pest of oak trees, causing defolia-
tion and making trees vulnerable to other stressors and pathogens. 
The larvae of OPM have poisonous hairs, containing an urticating 
toxin (thaumetopoein) which is harmful to human and animal health 
(Gottschling & Meyer, 2006; Maier et al., 2003, 2004; Rahlenbeck 
& Utikal, 2015).

OPM was introduced to the UK through accidental imports on 
live oak plants, first reported in 2006. Up to 2010, the governmen-
tal policy was one of eradication (Mindlin et al., 2012; Tomlinson 
et al., 2015). However, in 2011 it was decided that OPM was fully 
established in the South-East England area and so the government 
moved to a containment strategy, aiming to contain the OPM infes-
tations within this original outbreak area (Tomlinson et al., 2015). In 
2018, legislation was introduced to curb continuing imports through 
the Plant Health Order (Plant Health (England) (Amendment) (no. 
3) Order, 2018). Despite the containment strategies, the extent of 
OPM has continued to spread with recent analysis suggesting an 
expansion rate of 1.7 km/year for 2006–2014, with an increase to 
6 km/year from 2015 onwards (Suprunenko et al., 2021). The regions 
surrounding the current infestation area are particularly climatically 
suitable (Godefroid et al., 2020), and so being able to predict and 
control the future dynamics of the OPM population is crucial to pro-
tect these areas.

Mathematical models provide a powerful tool for describing and 
predicting the spread of tree disease and pest infestation (Gertsev 
& Gertseva, 2004; Orozco-Fuentes et al., 2019; Wang & Song, 
2008). For OPM, previous work has included using models from 
electric network theory to predict high-risk regions (Cowley et al., 
2015) along with species distribution models to examine the spatial 
distributions of OPM (Scholtens, 2021) and the effects of climate 
change on its expansion (Godefroid et al., 2020). Bayesian inference 
can be used to inform and evaluate these ecological mathematical 
models (Ellison, 2004). Previously, Bayesian approaches have been 
used to estimate key parameters in the spatio-temporal invasion 
of alien species (Cook et al., 2007); however, the techniques have 
yet to be applied to data for the spread of OPM. Nevertheless, the 
Bayesian paradigm provides a natural mechanism for quantifying 
and propagating uncertainty in the model parameters and dynamic 
components. Consequently, Bayesian inference techniques have 
been ubiquitously applied in the broad area of epidemiology (see 

e.g., Fuchs, 2013; Kypraios et al., 2017; McKinley et al., 2014 for an 
overview).

In this paper, we use data tracking the numbers and locations of 
OPM nests removed from oak trees as part of a control program in 
two parks in London. We illustrate the use of statistical inference 
techniques for estimating the parameters for a classic SIR compart-
mental model (Bartlett, 1949; Kermack & McKendrick, 1927) con-
sisting of susceptible, infested, and removed states. To allow for 
intrinsic stochasticity in the spread of OPM, we use an Itô stochas-
tic differential equation (Oksendal, 1995) representation of the SIR 
model. This is further modified via the introduction of a time-varying 
infestation rate, as is necessary to capture the effect of unknown 
influences such as preventative measures (Dureau et al., 2013). 
Bayesian inference for the resulting model is complicated by the in-
tractability of the observed data likelihood, and subsequently, the 
joint posterior distribution of the key quantities of interest (model 
parameters and dynamic components). We overcome these difficul-
ties via a linear Gaussian approximation of the stochastic SIR model, 
coupled with a Markov chain Monte Carlo scheme (Fearnhead et al., 
2014) for generating samples from the joint posterior. These meth-
ods are outlined in Section 2 and detailed in Appendix S1, Sections 
S1 and S2, for use as a toolbox to apply to other ecological datasets. 
We use the parameters from the compartmental model to estimate 
a yearly R0 measure for OPM, analogous to the basic reproduction 
number for a pathogen (Heesterbeek & Dietz, 1996), and estimate 
the OPM population in 2021.

2  |  METHODS

In this section, we present the observational time series data with a 
summary of the data collection methods (Section 2.1), the details of 
the stochastic SIR model (Section 2.2), and an outline of our statis-
tical inference methods (Section 2.3). Further statistical details in-
cluding the relevant algorithms are set out in Appendix S1 (Sections 
S1 and S2).

2.1  |  Data

The data in this paper are from Richmond and Bushy Park, col-
lected and processed by The Royal Parks. This is shared with the 
Forestry Commission on an annual basis to inform the national Oak 
Processionary Moth Programme (Contingency Plan, 2021). The 
University of Southampton (GeoData) provide analysis, support, and 
hold the program data on behalf of the Forestry Commission.

The data used in this study were obtained through the re-
cording of OPM nest removals in Richmond and Bushy Parks in 
South-West London. For each of the years 2013–2020, it contains 
(i) the eastings and northings of trees which had nests removed 
and (ii) the number of nests removed from each tree. The dataset 
consists of 8470 unique tree locations, with 1767 in Bushy Park 
and 6703 in Richmond Park. The locations of the trees which had 
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nests removed are shown across the two parks in Figure 1. There 
are no recordings of the locations of trees, which did not have any 
nests removed.

The raw and cumulative time series of the numbers of removed 
nests are shown in Figure 2(a,b). We count each tree in the year 
it first had nests removed as one “removal” in the SIR model (see 
Section 2.2), regardless of how many nests were recorded as re-
moved from this location. The raw and cumulative time series for 
the number of unique trees which had nests removed are shown in 
Figure 2(c,d). We use the latter cumulative time series, R(t), as our 
observational data in the following sections.

2.2  |  Stochastic SIR model

We consider a SIR model (Andersson & Britton, 2000; Kermack & 
McKendrick, 1927) in which a population of trees of fixed size N is 

classified into compartments consisting of susceptible (S), infested 
(I  ), and removed (R) trees. Although most commonly used in epi-
demiology, SIR models have previously been used to describe the 
spread of tree diseases (Parry et al., 2014; Rodriguez-Quinones & 
Gordillo, 2019) and invasive species through varying landscapes 
(Ferrari et al., 2014; Wildemeersch et al., 2019). In our case, suscep-
tible trees are those that have yet to ever be infested with OPM 
nests and are at risk from the currently infested trees. The time se-
ries data we use (see Section 2.1) are observations of the removed 
category, trees that have previously been infested with OPM nests 
and have now had these nests removed. A fixed population of trees 
is appropriate as over the timescale of interest the number of trees 
born into the S compartment will be sufficiently small to be negligi-
ble. Transitions between compartments can be summarized via two 
pseudo-reactions of the form

S + I
�

⟶2I, I
�

⟶R.

F I G U R E  1 Map of the nests removed 
from Bushy (bottom left) and Richmond 
(top right) parks between 2013 and 2020. 
The area of the marker is proportional to 
the number of nests removed
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The first transition describes the “contact” of a currently infested 
tree with a susceptible tree (in this case, since trees have fixed lo-
cations, a probabilistic opportunity for the S to I  transition to occur 
through the dispersal of OPM) and with the net effect resulting in 
one additional infested tree and one fewer susceptible. The second 
transition accounts for the currently infested trees moving into the R 
category as their nests are removed. The parameters � and � govern 
the rate of infestation and removal, respectively. The infestation rate 
for the whole population (assuming one initial infested tree) of trees 
is thus �N to scale for the number of possible “contacts”. It is clear 
that transitions should result in discrete changes to the numbers of 
trees in each state. This most naturally leads to a continuous time, 
discrete valued Markov jump process (MJP) description of disease 
dynamics, as detailed in Appendix S1, Section S1 (Ho et al., 2018). 
We eschew the MJP formalism in favor of a continuous-valued ap-
proximation, formulated as a stochastic differential equation (SDE). 
This is a pragmatic choice, since the SDE model ultimately leads to 
a computationally efficient inference scheme, and the model can be 
easily augmented with additional components, such as time-varying 
parameters, which we now describe.

The SDE representation of the standard SIR model can be de-
rived directly from the MJP (see Appendix S1, Section S1). Here, 
we extend this to include a time-varying infestation process. Let 
Xt = (St , It , �̃t)

� where Stand Itdenote the numbers in each of the 
states Sand Iat time t ≥ 0and �̃t = log�tis the (transformed) time-
varying infestation process. Note that the fixed population size gives 
Rt = N − St − Itfor all t ≥ 0so that the current state of the SIR model 
is completely described by Xt. We model �̃tas a generalized Brownian 
motion process so that

and W3,t is a standard one-dimensional Brownian motion process. 
Hence, we assume that the log infestation rate evolves according to 
a random walk in continuous time, with variability controlled by �. 

Combining this process with component SDEs describing the dynam-
ics of St and It gives the complete SDE description of the SIR model with 
time-varying infestation rate as

Here, xt = (st , it , �̃t)
� is the state of the system at time t, θ = (γ, σ)′ is the 

vector of static parameter values, Wt = (W1,t, W2,t, W3,t)′ is a vector 
of uncorrelated standard Brownian motion processes, and the drift 
function a(xt , �)and diffusion coefficient b(xt , �)are given by

Unfortunately, due to the nonlinear forms of a(xt , �) and b(xt , �) , 
the SDE specified by (1) and (2) cannot be solved analytically. We, 
therefore, replace the intractable analytic solution with a tractable 
Gaussian process approximation, which is the subject of the next 
section. The resulting linear noise approximation is subsequently 
used as the inferential model.

2.2.1  |  Linear noise approximation

The linear noise approximation (LNA) provides a tractable approxi-
mation to the SDE given by (1) and (2). In what follows we give a 
brief derivation; formal details can be found in Kurtz, (1972) (see also 
Kampen, 2001; Komorowski et al., 2009).

Consider a partition of Xt as

where {�t , t ≥ 0} is a deterministic process satisfying the ODE

d�̃t = �dW3,t

(1)dXt = a(xt , �)dt +

√
b(xt , �)dWt .

(2)a(xt , �) =

⎛
⎜⎜⎜⎜⎝

−exp(�̃t)st it

exp(�̃t)st it−� it

0

⎞
⎟⎟⎟⎟⎠
, b(xt , �) =

⎛
⎜⎜⎜⎜⎝

exp(�̃t)st it −exp(�̃t)st it 0

−exp(�̃t)st it exp(�̃t)st it+� it 0

0 0 �2

⎞
⎟⎟⎟⎟⎠
.

(3)Xt = �t + Zt ,

F I G U R E  2 (a) Raw and (b) cumulative 
number of OPM nests removed from 
Richmond (blue) and Bushy (orange 
dashed) parks between 2013 and 2021. 
The number of (c) raw and (d) cumulative 
unique trees (described by their eastings 
and northings) which had nests removed 
between 2013 and 2021. The cumulative 
number of trees is the time series R(t)
corresponding to the “removed” category 
in the SIR model (see Section 2.2)
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and {Zt , t ≥ 0} is a residual stochastic process. The residual process Zt 
satisfies

which will typically be intractable. The assumption that ||Xt − �t|| is 
“small” motivates a Taylor series expansion of a(xt , �) and b(xt , �) about 
�t, with retention of the first two terms in the expansion of a and the 
first term in the expansion of b. This gives an approximate residual pro-
cess {Ẑt , t ≥ 0} satisfying

where Ht is the Jacobian matrix with (i , j)th element

For the SIR model in (1) and (2), we therefore have

Given an initial condition Ẑ0 ∼ N(̂z0, V̂0), it can be shown that 
Ẑt is a Gaussian random variable (see Fearnhead et al., 2014). 
Consequently, the partition in (3) with Zt replaced by Ẑt, and the ini-
tial conditions �0 = x0 and Ẑ0 = 0 give

where �t satisfies (4) and Vt satisfies

Further details on the derivation of (6) are given in Appendix S1, 
Section S1. Hence, the linear noise approximation is characterized 
by the Gaussian distribution in (5), with mean and variance found 
by solving the ODE (ordinary differential equation) system given by 
(4) and (6). Although this ODE system will typically be intractable, a 
numerical scheme can be straightforwardly applied.

2.3  |  Bayesian inference

We consider the case in which not all components of the stochastic 
epidemic model are observed. Moreover, we assume that data points 
are subject to measurement error, which accounts for mismatch 

between the latent and observed process, due to, for example, the 
way in which the data are collected. Observations (on a regular grid) 
yt , t = 0, 1,⋯n are assumed conditionally independent (given the la-
tent process) with conditional probability distribution obtained via 
the observation equation,

where P =  (1, 1, 0)′. This choice of P is due to the data consisting of 
observations on the removed state Rt, which, for a known population 
size N, is equivalent (in information content) to observing the sum 
St + It . Note that the logarithm of the infestation rate process, �̃t, is 
completely unobserved. Our choice of observation model is motivated 
by a Gaussian approximation to a Poisson Po(P′xt) distribution, with the 
role of �2

e
 to allow a decoupling of the mean and variance. Moreover, 

the assumption of a Gaussian observation model admits a tractable 
observed data likelihood function, when combined with the LNA (see 
Section 2.2, Fearnhead et al., 2014; Golightly et al., 2015) as a model 
for the latent epidemic process Xt. Details on a method for the efficient 
evaluation of this likelihood function can be found in Section S2.3 of 
Appendix S1.

Given data y = (y0, y1,⋯, yn) and upon ascribing a prior density 
�(�) to the components of θ =  (γ, σ, σe)′ (augmented to include �e ), 
Bayesian inference proceeds via the joint posterior for the static pa-
rameters � and unobserved dynamic process x = (x0, x1,⋯, xn). We 
have that

where �(y|�) is the observed data likelihood and �(x|y, �) is the condi-
tional posterior density of the latent dynamic process. Although �(y|�) 
and �(x|y, �) can be obtained in closed form under the LNA, the joint 
posterior in (8) is intractable. In Appendix S1 Section S2, we describe a 
Markov chain Monte Carlo scheme for generating (dependent) samples 
from (8). Briefly, this comprises two steps: (i) the generation of samples 
�(1),⋯, �(M) from the marginal parameter posterior �(�|y) ∝ �(�)�(y|�) 
and (ii) the generation of samples x(1),⋯, x(M) by drawing from the con-
ditional posterior �(x|y, �(i)), i = 1,⋯,M.

Given inferences on the static parameters � and the latent dy-
namic process x, we consider the following diagnostics for assessing 
model fit. The within-sample predictive density is

and the one step ahead out of sample predictive density is

Hence, in both cases we properly account for parameter and 
latent process uncertainty. Although the densities in (9) and (10) 
will be intractable, we may generate samples via Monte Carlo, see 
Appendix S1 Section S2 for further details.

(4)
d�t
dt

= a(�t , �), �0 = x0,

dZt = {a(xt , �) − a(�t , �)}dt +

√
b(xt , �)dWt ,

dẐt = Htẑt dt +

√
b(�t , �)dWt ,

(Ht)i,j =
�ai(�t , �)

��j,t
.

Ht =

⎛
⎜⎜⎜⎜⎝

−exp(�̃t)it −exp(�̃t)st −exp(�̃t)st it

exp(�̃t)it exp(�̃t)st−� exp(�̃t)st it

0 0 0

⎞
⎟⎟⎟⎟⎠
.

(5)Xt ∼ N
(
�t ,Vt

)
,

(6)dVt

dt
= VtH

�
t
+ b(�t , �) + HtVt , V0 = 0.

(7)Yt ∼ N(P�xt , �
2
e
P�xt), t = 0, 1,…, n

(8)�(�, x|y) ∝ �(�)�(y|�)�(x|y, �),

(9)�(ỹ|y) = ∫ ∫ �(ỹ|x, �)�(�, x|y)dxd�,

(10)�(yn+1|y) = ∫ ∫ �(yn+1|xn+1, �)�(xn+1|xn, �)�(�, x|y)dx0:n+1d�.
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3  |  RESULTS

We assume the epidemic time series (see Section 2.1) for the cumu-
lative number of trees with removed nests, R(t), shown in Figure 2(c), 
can be described by the compartmental SIR model with a time-
varying infestation rate (see Section 2.2). The aim is to estimate 
the key parameters through the Bayesian inference techniques de-
scribed in Section 2.3. These are the time-varying infestation rate 
per tree, �(t), with corresponding stochastic noise parameter � de-
scribing d�̃t = dlog(�t) = �W3,t, the removal rate �, and the observa-
tion error �e.

Section S2.4 of Appendix S1 provides details of the assumed 
population sizes for each park, initial numbers for the S (suscepti-
ble) and I  (currently infected) tree categories and the initial infes-
tation rate, along with the starting parameter values for the MCMC 
scheme and prior specification. Regarding the latter, we take an 
independent prior specification for the components of �, so that 
�(�) = �(�)�(�)�(�e). We then take lognormal LN(1, 1) distributions for 
� and �e, and a lognormal LN (0, 0. 52) distribution for �. We assume 
that initial log infestation rate �̃0 follows a Gaussian N ( − 8.5, 0. 52) 
distribution. These choices are motivated by the assumption of a 
median removal time of around 1 year (95% credible interval: (0.38, 
2.66)), and a basic reproduction number at time 0 of R0 = �0N∕� cov-
ering a wide range of plausible values. For example, with N = 5 × 103 
the prior distributions for � and �̃0 lead to a 95% credible interval 
for R0 of (0.25, 4.1). The initial conditions are chosen based on the 

increase in the removal category in the first available year, for ex-
ample, for Richmond Park there were 1414 new trees in the removal 
category between 2013 and 2014 (new trees that had nests re-
moved in 2014), so we assume this was approximately the number of 
infested locations in 2013. We investigated several choices for initial 
conditions and find our results robust to these variations.

3.1  |  Inference results

We ran the MCMC scheme for 10 × 103 iterations and monitored the 
resulting chains for convergence. Indicative trace plots can be found 
in Appendix S1, Figure S1 and suggest that the sampler has ade-
quately explored the parameter space. Additional chains initialized 
at different starting values (not shown) further confirm convergence.

From the main MCMC run, we obtain the posterior within-sample 
means (with 50% and 95% credible intervals) for R(t), S(t), and I(t), 
shown in Figures 3 and 4(a–c) for Bushy and Richmond Park, respec-
tively. The logarithmic time-dependent infestation rate, �̃t = log(�), is 
shown in Figures 3 and 4(d). For Bushy Park, the logarithmic infesta-
tion rate is plausibly constant (given a posteriori variance) at �̃t ≈ − 8 , 
corresponding to an approximate infestation rate of � = 3.4 × 10−4 
and thus for the whole population of Bushy park an infestation rate 
of �N = 1.7. Similarly, for Richmond Park, the infestation rate is 
plausibly constant with �̃t ≈ − 10, corresponding to an infestation 
rate of � = 4.5 × 10−5 and �N = 1.8. Reassuringly, samples from the 

F I G U R E  3 Bushy Park. The within-
sample posteriors for (a) R(t), (b) S(t), 
(c) I(t), and (d) log(�t) with mean (blue solid 
line) ± one standard deviation (shaded 
region), the 50% (blue dashed), and the 
95% (blue dot-dashed) credible regions. 
The observed time series for R(t) is overlaid 
in (a) (orange dashed). The corresponding 
(e) posterior densities for the inferred 
parameters � (removal rate), � (noise on �̃t) 
and �e (observation error)
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within-sample predictive for R(t) are consistent with the data used to 
fit the model (see panel (a) of Figures 3 and 4).

The posterior density plots of the parameters � = (� , �, �e) are 
shown in Figures 3 and 4(e), for Bushy and Richmond park, respec-
tively. Pairwise joint posterior densities can be found in Appendix S1, 
Figure S2. The marginal posterior distribution of � is centered around 
� ≈ 1 for both Bushy and Richmond. The marginal posterior for � is 
centered around � ≈ 0.75 for Bushy and � ≈ 0.5 for Richmond. The 
observation error �e is centered around �e ≈ 1 for Bushy and �e ≈ 0.5 
for Richmond.

3.2  |  Estimation of R0

From the posterior estimations of �̃t for each year and the parameter 
�, we can estimate the basic reproduction number R0. This gives a 
measure of the strength of infectivity through the number of trees 
which become infested as a result of a single infested tree over its in-
fested life time (i.e., the expected number of secondary infestations 
resulting from a single original infestation). This provides additional 
information over the parameter �, since R0 takes into account the 
lifetime in which a tree can infest another tree (i.e., the removal rate 
�). In a deterministic system, for an epidemic to die out, R0 must be 
less than the threshold value of one. However, in the stochastic case, 
it is possible for R0 to be above one but the epidemic still die out as 
a result of the stochastic fluctuations. Therefore, it is required that 

R0 < 1 for the epidemic to shrink, upon averaging over the stochas-
ticity. In a SIR model with a constant infestation rate, �, the basic re-
production number is given by R0 = �N∕�. Here, we adapt this to use 
the time variant infestation rate to get a reproduction number for 
each of the years between 2013 and 2020, R0 = �(t)N∕�. Box plots 
showing the posterior distributions of R0 for both parks are shown in 
Figure 5. For both parks R0 has been stable, within errors, since 2013 
(corresponding to the relatively constant �t ). However, this suggests 
that R0 is still above one, and therefore, the epidemic will continue to 
propagate in these areas and potentially beyond.

3.3  |  Forward prediction

Predictions of the spread of OPM are needed to inform control 
strategies. To test the validity of the SIR model with the inferred pa-
rameters from Section 3.1 and thus how well the model can capture 
future expansions in OPM, we can calculate a one-year prediction 
for a known data point. We remove the last data point, R(2020), and 
re-infer the parameters for the new shortened observed time series. 
We then use these parameters to run the model forward (10 × 103 ) 
simulations, matching the number of iterations in the MCMC) and ob-
tain an estimate for R(2020). The median predictions with upper and 
lower quartiles for 1000 runs are shown in Figure 6(a,c) for Bushy and 
Richmond, respectively. In both cases, the predictive interval captures 
the observed data. Realizations from 100 forward runs are shown in 

F I G U R E  4 Richmond Park. The 
within-sample posteriors for (a) R(t), 
(b) S(t), (c) I(t), and (d) log(�t) with mean 
(blue solid line) ± one standard deviation 
(shaded region), the 50% (blue dashed), 
and the 95% (blue dot-dashed) credible 
regions. The observed time series for 
R(t) is overlaid in (a) (orange dashed). The 
corresponding (e) posterior densities for 
the inferred parameters � (removal rate), � 
(noise on �̃t) and �e (observation error)
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Figure 6(b,d) to show that results are mostly concentrated around the 
observed data, with some outliers over-estimating R(t). One-step pre-
dictions for the whole time series are shown in Appendix S1, Figure 
S3. This suggests that the available data are sufficient to inform the 
model to make predictions over these time scales.

Similarly, we can produce predictions for the number of infested 
locations in 2021, R(2021). The median predictions with upper and 

lower quartiles are shown in Figure 7(a,b) for Bushy and Richmond, 
respectively. This corresponds to an average (median) of 350 new 
infested locations (lower-upper quartile estimate range 150–800) 
in Bushy Park and 1100 (700–2000) in Richmond Park. Since sub-
mission of this manuscript, the data for 2021 were recorded, with 
167 new infested locations in Bushy and 523 in Richmond Park. This 
is lower than our mean predicted estimates, which could be due to 

F I G U R E  5 Posterior distributions 
of R0(t) = �tN∕� for (a) Bushy and (b) 
Richmond Park. The central line indicates 
the median, with the bottom and top 
edges of the box showing the 25th 
and 75th percentiles, respectively. The 
whiskers extend to the most extreme data 
points not considered outliers, which are 
not shown here

F I G U R E  6 Model predictions for the 
total number of trees with removed nests 
up to 2020, R(2020), with median (blue 
line) for (a, b) Bushy and (c, d) Richmond. 
In (a) and (c), the shaded area shows 
the 50% credible region. In (b) and (d), 
100 simulations are shown from the 
forward model. The orange line shows the 
observed data
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increased efficacy of the control methods with time. Longer-term 
predictions up to the year 2025 are shown in Figure 7(c,d) for Bushy 
and Richmond, respectively. By this time, R(t) is beginning to saturate 
due to a depletion of available trees that have not yet previously 
been infested, that is, the infestation has spread through the whole 
susceptible population.

4  |  DISCUSSION

Recent modeling work has suggested that the surroundings of 
the current OPM infestation area in the UK are highly climatically 
suitable and, therefore, at very high risk from future infestations 
(Godefroid et al., 2020). Since the government strategy for the con-
tainment of OPM relies on targeted control at the boundary of the 
current infested area, it is crucial to understand and be able to pre-
dict the future spread to optimize both the cost and efficacy of these 
control programs (Contingency Plan, 2021).

We have shown the applicability of a SIR compartmental model 
with a time-varying infestation rate to describe the OPM epidemic in 
the UK between the years 2013 and 2020. Such models have previ-
ously been used to describe the spread of tree diseases (Rodriguez-
Quinones & Gordillo, 2019) and invasive species (Ferrari et al., 2014; 
Wildemeersch et al., 2019). The statistical methodology used is 
a powerful tool for inferring the parameters of such models from 
real data and is transferable to other epidemiological and ecolog-
ical datasets. Previously, similar statistical methodology has been 
used to describe the spread of infectious diseases (e.g., measles 
(Cauchemez & Ferguson, 2008) and Ebola (Fintzi et al., 2020)) and 
the spatial expansion of non-native plants (Cook et al., 2007), but has 
not yet been applied to the study of invasive insects.

Our results show, along with previous analysis (Suprunenko et al., 
2021), that the spread of OPM is continuing at a stable rate despite 

the current intervention methods. Correspondingly, we show that the 
basic reproduction number R0 has been above one since 2013. To see 
a reduction in the OPM population density and to protect the sur-
rounding areas, a reduction of R0 to below one would need to be seen. 
Although the basic reproduction number R0 is typically used in the 
modeling of infectious diseases (Dietz, 1993; Ma, 2020), here it gives 
an analogous measure for the expected number of infested trees 
caused by a single currently infested tree through its infested lifetime.

Driven by the nature of the data collected, we chose to make the 
assumption that the trees with removed nests best represented the 
removed category in the SIR model. Although not explicitly formu-
lated in this model, we expect that after nest removal and spraying 
with a biological insecticide, these trees will not be susceptible to 
future infestation on the short time scales considered here. This lim-
itation of the model could be explored further through assuming this 
data instead represented the infested category (with the caveat that 
these trees would not actually be infective to others at the times the 
data were collected) or by extending the model to an SIRS formula-
tion, which would allow for re-infestation after a period of immunity.

For simplicity and to be better described by a SIR model, we 
counted each tree that had undergone nest removal as one removed 
tree, regardless of how many nests were recorded as being removed 
from it. However, the defoliation effects and risks to human health 
from OPM are closely related to nest density (i.e., the numbers of 
nests per tree) (Jactel et al., 2011). In future work, nest density could be 
taken into account through a nest density-dependent infestation rate.

A challenge of modeling OPM and other tree pests and diseases 
is the lack of a complete inventory oak trees in the UK, representing 
the susceptible population in our SIR model. This has been previ-
ously noted and highlighted as a priority for future data collection by 
other modeling studies (Cowley et al., 2015). It is of particular impor-
tance for future spatial models of OPM, which require an estimate of 
the distribution of oak trees in the areas of interest.

F I G U R E  7 Model predictions 
for the median (solid blue line) total 
number of trees with removed nests 
up to 2021, R(2021), for (a) Bushy and 
(b) Richmond park, and up to 2025, 
R(2025), for (c) Bushy and (d) Richmond 
park. The shaded area shows the 50% 
credible region. The orange line shows 
the observed data up to 2020 used to 
parameterize the model, and the red cross 
shows the most recent data for 2021
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It is also worth noting that many areas infested with OPM have 
been undergoing control measures (Contingency Plan, 2021) and so 
any inferred infestation rates represent the dynamics under these 
controls, rather than the inherent parameters of the uncontrolled 
pest spread. In Richmond and Bushy Parks, control measures include 
the yearly nest removal and limited spraying with a biological insec-
ticide. It would be interesting to conduct a similar analysis on a con-
tained area that had undergone no (or different) control measures to 
assess the differences in the infestation rates and thus assess the ef-
ficacy of the controls. The effect of confounding factors such as the 
weather, difference in landscapes, and the presence of other pests 
and parasitoids should also be investigated.

The results from this work can inform the development of future 
mathematical models for the spread of OPM. These models can be 
used to identify at-risk regions (Cowley et al., 2015) and predict the 
distribution of OPM on a national scale. The development of these 
models will require further targeted data collection to obtain com-
plete oak tree inventories, as well as data on the population num-
bers and locations of OPM (or indeed any other invasive insect or 
pathogen).
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