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Abstract: It has been previously shown that a Gauss-Bonnet term non-minimally cou-
pled to a scalar field produces a scalarised black hole solution which can be considered as
having secondary scalar hair, parametrised in terms of the black hole’s mass and charge.
In this paper we extend a previously investigated linear coupling of the form f(φ) = φ to
a non-minimally coupled Maxwell term, with the form 1

8FµνF
µν + βφFµνF

µν . By using
numerical methods the solutions to the full differential equations are found, as well as a
perturbative expansion in the r → ∞ limit and a perturbative expansion in couplings pa-
rameters such as β. These solutions describe scalarised black holes with modified electric
field which have dependence not only on the electric charge of the black hole, but also the
value of the non-minimal coupling constant. We also discuss the bounds imposed on the
parameters of the black hole by the reality condition of the solution, giving some explicit
numerical bounds.
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1 Introduction

With the advent of gravitational wave astronomy [1–6] there is a need to closely investigate
our current theories of gravity in an astrophysical setting. One of the most fruitful areas
to do this is the arena of black hole physics.

The hair, or rather lack thereof, of black holes has been well established in the literature
assuming a General Relativistic-like theory of gravity [7–11]. In these theories a black hole
can be characterised by only three Kerr-Newman quantities: the mass, electromagnetic
charge and angular momentum. These no-hair theorems have since been extended to
Brans-Dicke and certain Scalar-Tensor theories [12, 13]. In Brans-Dicke theory, it was
shown that the end points of collapse to stationary black holes are identical to their GR
counterparts [14], which are described by the Kerr-Newman metric. These theorems have
further been extended to some Galileon models of gravity [15, 16], where it was shown that
using the ‘John’ term [17] scalar hair could not be supported outside of the horizon1. In
this paper we are mainly concerned with the no-scalar hair arguments that are put forward
in these previous works for spherically symmetric, static spacetimes.

1However, it is possible to support so-called ‘stealth hair’ [18]. This kind of hair leaves the metric solution
unchanged when compared to GR, but a non-trivial scalar field is supported outside of the horizon. It is
also possible to circumvent no-hair theorems if certain couplings of the scalar field are logarithmic or have
negative powers of the scalar [19].
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The arguments for each of these no-scalar hair theorems follow the same logical struc-
ture as in [16]. That is, the scalar equation of motion can be written as a current conserva-
tion equation due to the shift symmetry implied by the Galileon model, hence ∇µJµ = 0.
Then, due to spherical symmetry and a static spacetime, the only non-zero component of
the current is the radial part, of the generic form,

Jr =
φ′

eB(r)
Γ(φ′; g, g′, g′′), (1.1)

where Γ is a generic function which depends upon the form of the action, eB(r) is the
radial component of the spherically symmetric metric, g denotes metric components and
′ denotes the radial derivative. Then, using the conditions that the spacetime must be
asymptotically flat to be well-defined and JµJµ must be finite at the horizon, it is shown
that Jr = 0 everywhere by using the Poincaré invariance of the theory. The arguments are
also outlined in [20].

There are of course exceptions to the rule, and these exceptions are by no means
new. The Einstein-Yang-Mills action with an SU(2) gauge group challenges the no-hair
theorems [21, 22] by showing that there are configurations of the matter fields which produce
an asymptotically flat spacetime such that they are regular on the horizon of the black
hole. It was also found that black holes can have Skyrmion hair [23, 24], which manifests
as a Skyrmion charge of the black hole. Furthermore, it was shown in [25] that non-
Abelian gauge theories can also generate hairy solutions. Specifically, it was shown that an
SU(2) gauge group coupled to a Higgs doublet and an Einstein–non-Abelian–Proca action
would produce hair. Moreover, general Galileon models are significantly more complex than
standard scalar-tensor theories, such as Brans-Dicke, and so they are quite frequently not
entirely encompassed by the no-hair proofs.

Our main focus in this work, however, is the development of scalar hair in black hole
solutions. Over the past decade a variety of works have been produced which show that
scalar hair can exist within certain scalar-tensor theories. It was shown in [26, 27] that if a
scalar field φ is non-minimally coupled to the Gauss-Bonnet invariant G, then a nontrivial
scalar field configuration could be supported outside the event horizon. It was further shown
in [28, 29] that the same process occurs for non-minimal coupling to the Maxwell tensor.
In both cases, the coupling was a general function f(φ), and the issues of stability were
not addressed. In this context, stability relates to the tendency of black holes to collapse
into a Kerr-Newman end state or some other novel end state. In certain theories, with
f(φ) satisfying certain conditions, the end state of collapse can either be a Kerr-Newman
like solution or a new solution. However, illustrative examples of the consequences of
instability can be found in [30] where it was shown that non-minimal coupling to Born-
Infeld electrodynamics produced different black hole solutions depending upon the mass of
the black hole. It is thermodynamically favourable, under certain conditions, to generate
a scalarised solution to the field equations rather than a Schwarzschild-like solution. A
study of the instability in Einstein-Gauss-Bonnet-scalar (EGBS) theory found very much
the same results, that is in certain regions it is favourable to scalarise the solution as the
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Schwarzschild solution becomes unstable and the system bifurcates to give new scalarised
solutions [31].

Aside from the interest in violations of the no-hair conjecture, scalar-tensor theories
are also of cosmological interest. Brans-Dicke gravity has been shown to produce eras of
inflation followed by eras of almost no growth, assuming a specific potential [32]. EGBS
gravity has been used to investigate inflation, producing non-trivial results such as driving
inflationary stages without the need of a slow roll approximation [33]. Furthermore, Galileon
gravity has been investigated extensively in cosmological settings [34], and was found to
produce some results which fit better with cosmological data [35] than standard GR alone.
While these results do not directly relate to the scalar hair surrounding black holes, they
motivate investigating any consequences of such theories, as any deviation from the expected
Schwarzschild-like metrics could provide evidence for such deviations from GR.

To avoid discussion of stability here, we have chosen a linear coupling of φ to G and
FµνF

µν as a linear scalar coupling to the Gauss-Bonnet term excludes Schwarzschild-like
solutions [20], so such models do not suffer from instability arguments. The reason such
a term generates scalar hair is due to the form of the non-minimally coupled term in the
equations of motion. In this case, the current obeys the requirements for a usual black
hole (asymptotically flat with finite current), but there is no trivial way to determine the
asymptotic behaviour of the function Γ in (1.1). Since we want to avoid any Ostrogradsky
instability, we can only have second derivatives in the equations of motion, furthermore in
the φ→ constant limit we need the term to be divergence free so we recover GR. The only
choice by Lovelock’s theorem, is the Gauss-Bonnet invariant [36].

The structure of this paper will closely follow that outlined in [20, 36, 37]. In Section
2 we shall present the action, motivate its form and derive the equations of motion for a
general metric. We then go on to specify a spherically symmetric ansatz and derive the
component differential equations associated with each of these equations of motion. In Sec-
tion 3 we investigate the asymptotic and near-horizon solutions, presenting the conditions
the scalar field must satisfy to be regular at the horizon and for the solution to be asymp-
totically flat. In Section 4 we present the numerical solutions to the equations of motion
and investigate their consequences. Finally, in Section 5 we draw our conclusions.

2 The Action and Equations of Motion

The action we shall investigate in this paper is an extension of the action in [20, 38]. We
shall consider not only the Gauss-Bonnet term, but also the Maxwell term non-minimally
coupled to the scalar field. This will allow us to generalise the theories previously studied
and also understand the effects of varying parameters within the theory. The simplest
model we can investigate, in parallel with [20], is

S =
M2
P

8π

ˆ
d4x
√
−g
(
R

2
− 1

8
FµνF

µν − 1

2
∂µφ∂

µφ+ φ(αG − βFµνFµν)

)
, (2.1)

as a result of the dimensions of the derivatives, the scalar field is dimensionless and the
gauge field strength has dimensions of inverse length; hence α is a coupling constant of
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dimension length squared, and β is a dimensionless coupling constant. In our work we shall
use natural units such that GN = 1

4πε0
= e = c = 1, where GN is Newton’s constant. This

action can be connected to a heterotic string theory with couplings of the form eγφ [39],
which is well known to produce scalar hair [40]. To make this connection, we may consider
the theory to be an expansion in the coupling parameters α, β. The existence of this action
can also be argued from an Effective Field Theory (EFT) viewpoint; however we have not
included all operators present at this order and hence we are working with some restricted
EFT.

The equations of motion that result from this theory are relatively straightforward to
derive, the only troublesome term being the Gauss-Bonnet term. Details of the variation
of this term can be found in Appendix B of [20]. The equations of motion resulting from
(2.1) are

�φ+ (αG − βFµνFµν) = 0, (2.2)

Gµν = T̃µν , (2.3)

∂ν(
√
−g(18 + βφ)Fµν) = 0, (2.4)

where (2.4) is the same as eqn.(2.4) in [29] and T̃µν represents the modified stress-energy
tensor, and is given by,

T̃µν =∂µφ∂νφ−
1

2
gµν(∂φ)2 − α(gρµgδν + gρνgδµ)εληρσεαβγδRληαβ∇σ(∂γφ)

+ (12 + 4βφ)(FµβF
β

ν )− gµν(18 + βφ)FαβF
αβ.

(2.5)

The εληρσεαβγδRληαβ term is the double dual Riemann tensor [41], and is divergence free.
Using the equations of motion (2.2-2.4) we can derive the component equations of motion in
a similar way to [20, 26], and find the form of the electric field. By considering a spherically
symmetric ansatz for the metric of the form,

ds2 = −eA(r)dt2 + eB(r)dr2 + r2(dθ2 + sin2 θdϕ2), (2.6)

we obtain a time-independent, spherically symmetric scalar field of the form,

φ = φ(r). (2.7)

Next, we can reasonably make the ansatz that, allowing for the existence of electric monopoles
only, the gauge potential has the form,

A = V (r)dt, (2.8)

where V (r) is the electric potential and we shall denote the electric field by E(r). As a
result, the only nonzero components of the field strength tensor are F01 = −F10 = E(r).
We note briefly that our metric ansatz (2.6) is only valid outside the horizon and to extend
beyond the horizon we would have to multiply the dt2 components by -1. We also note that
the scalar field equation is redundant as it can be retrieved from the divergence-free nature
of the modified stress energy tensor, ∇µT̃µν = 0, as in [20]. However, the scalar equation will
be used extensively in the r → ∞ expansion in Section 3, and in the numerical solutions,
as it is a simpler equation which can be used more conveniently in Mathematica.
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2.1 The Scalar Equation

We begin by finding the scalar equation of motion. The Gauss-Bonnet invariant, which
appears in (2.2) is given by the expression,

G =
2(1− eB)A′2 + 2(eB − 3)A′B′

r2e2B
+

4(1− eB)A′′

r2e2B
, (2.9)

and the d’Alembert operator acting on the scalar field gives,

�φ =
1√
−g

(∂µ
√
−ggµν∂ν)φ

=
2φ′

reB
+

(A′ −B′)φ′

2eB
+
φ′′

eB
.

(2.10)

Finally, the field strength tensor squared is given by,

FµνF
µν = −2E(r)2e−A−B. (2.11)

Combining (2.9-2.11), we obtain a modified version of the scalar field equation in [20],

0 = 8α(e−B − 1)A′′ + 2r2φ′′ + r2(A′ −B′)φ′ + 4α(1− 3e−B)A′B′

+ 4α(e−B − 1)A′2 + 4rφ′ + 4βr2e−AE(r)2,
(2.12)

which in the limit of F 2 → 0 recovers the exact equation found in [20].

2.2 The Electric Field Equation

Using the ansatz of (2.8) in (2.4), and noting that V ′(r) = E(r), we can determine the
equation governing the electric field in terms of the radial coordinate, scalar field and
metric components. Identifying the integration constant resulting from integrating (2.4) as
the electric charge of the black hole, we obtain the solution,

E(r) =
e

A+B
2

r2
Q

(1 + 8βφ)
, (2.13)

which is only singular at r = 0, provided that φ 6= − 1
8β . In fact we must take the bound

βφ > −1
8 as we can see from the action (2.1) in order for the energy to be bounded from

below. In particular, as φ cannot cross the value where βφ = −1
8 , βφ must everywhere be

either above or below −1
8 , but in the case that it is below the contribution from the gauge

field has the wrong sign. Indeed, since we necessarily must impose asymptotic boundary
conditions φ→ 0 we again see that we must have βφ > −1

8 . This suggests that βφ = −1
8 is

a bifurcation point of solutions in the theory leading to two branches, those with βφ > −1
8

and those with βφ < −1
8 which are nonphysical. Note that if β > 0 we then have φ > − 1

8β

while instead if β < 0 we then have φ < − 1
8β . It turns out that finding solutions in the case

where β < 0 is numerically difficult due to divergences for some initial conditions which
cause issues in the automatic shooting method used in Mathematica. However we were
able to find some approximate solutions, presented in Section 4, in this regime by using a
manual shooting method and searching for solutions by hand.
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The key thing to note here is that this equation highlights the explicit interdependence
of the electric and scalar fields and demonstrates that the scalar field serves to suppress
the electric field outside the horizon. The suppression will become obvious in the numerical
results presented in Section 4 (see Figure 5) and in the asymptotic expansion of the fields,
as the electric field has a correction of order r−3 which is proportional to the scalar charge.

2.3 The Components of the Einstein Equation

Next we shall find the tt, rr and θθ components of the Einstein equation (2.3). We shall
explicitly show the form of the stress energy tensor and Einstein tensor for the tt case, and
then present the rest of the equations.

We begin with the Einstein tensor for the tt component, which is the same as in [20],

Gtt =
e−A

r2
(e−BB′r − e−B + 1). (2.14)

The stress energy tensor is more complicated as it contains the double dual Riemann tensor
and the second-order derivatives of the scalar field. When the smoke clears, and we simplify
as far as we can, the stress energy tensor component takes on the form,

e−AT̃tt =
4α(eB − 3)φ′B′

r2e2B
− φ′2

2eB
− 8α(eB − 1)φ′′

r2e2B
− (18 + βφ)E(r)2e−A−B. (2.15)

This leads to the tt equation of motion,

0 = 16α(1− e−B)φ′′ + 8α(3e−B − 1)φ′B′ + r2φ′2 + 4(18 + βφ)e−AE(r)2r2

− 2rB′ − 2eB + 2,
(2.16)

which is a nonlinear coupled equation for the metric and scalar field. This is a general
theme of this type of gravitational theory: non-linear coupled differential equations which
can only be solved numerically or perturbatively. The rr component then follows the same
sort of analysis, and gives the equation,

0 = (eB)2 + eB
[φ′2r2

2 − 4αφ′A′ − (A′r + 1)− 2(18 + βφ)E(r)2r2e−A
]

+ 12αφ′A′, (2.17)

which is a quadratic in the metric function eB. This fact was used in [20, 26] in order to
derive two coupled differential equations for A′′ and φ′′, which is the method we adopt in
this case, and can be found in Section 3.

Finally, we have the θθ equation, which is the same as the ϕϕ equation due to the
assumed spherical symmetry of the solution,

0 = 16α(φ′A′′ + φ′′A′)r − 2A′′r2eB + 8α(A′ − 3B′)A′φ′r − 2φ′2r2eB

−A′(A′ −B′)r2eB − 2(A′ −B′)reB + (1 + 8βφ)r2E(r)2eB−A.
(2.18)

As a basic check, we note that all the equations of motion become the expected equations
in [20] in the limit of smoothly sending β and Q to zero.

Next we algebraically solve the rr equation for eB to find

eB =
−Λ±

√
Λ2 − 4∆

2
, (2.19)
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where we have defined,

Λ =
[φ′2r2

2 − 4αφ′A′ − (A′r + 1)− 2(18 + βφ)E(r)2r2e−A
]
, (2.20)

and,
∆ = 12αφ′A′. (2.21)

We take the positive root of this equation as this ensures the correct asymptotic behaviour
of the eB(r) solution. This equation can then be used to eliminate B′ and eB from the other
equations of motion, which subsequently can be solved numerically, as we will do in Section
4. The electric field E(r) depends upon eB, and hence when we find numerical solutions we
shall substitute (2.13) in (2.18) and then solve for eB again. Alternatively, we could first
substitute (2.13) into (2.18) to eliminate E and then solve for eB.

3 The Limiting Cases

In this section, we investigate the behaviour of the solution at the horizon and at infinity.
The former limit will give us a boundary condition for the gradient of φ′ at the horizon, and
the latter limit will give us an instinctive feeling for the behaviour of the solutions as seen by
an asymptotic observer, and will aid us in Section 4 in the case when β < 0. We ultimately
expect the asymptotic solution to produce something close to the Reissner-Nordström so-
lution to order O( 1

r2
), since in the small φ limit of the action (2.1) we approximately get

the Einstein-Maxwell action. We shall use this fact in Section 3.2 in order to fix some of
the parameters within the infinite perturbative expansion.

3.1 The Near Horizon Limit

To find black hole solutions, we assume there is a horizon at r = rh. At the horizon, the
metric must satisfy certain properties [26], including that as r → rh we must have eA → 0

which implies that e−A → ∞ and A′ → ∞. In performing this analysis, there are two
approaches. The first is to analyse the behaviour of eB near the horizon and then use this
to determine the near horizon behaviour of A′′ and φ′′ [20, 26, 42]. The other option is to
use an explicit expansion of the metric function as in [40, 43]. While the latter method
gives an explicit expansion of the metric functions near the horizon, it is rather complicated.
Hence here we shall analyse the behaviour of eB and use this to determine the near horizon
behaviour. In order to do this, we shall investigate the behaviour of (2.19) in the near
horizon regime, finding the leading order term in an expansion of the square root. We first
begin by noting that in this limit e−A ≈ A′/a1 due to the metric function form near the
horizon as shown in more detail in Appendix A. Using this fact, and expanding to O(1),
we can see that (2.19) takes on the approximate form,

eB = (r + 4αφ′ + 2
a1

(18 + βφ)E(r)2r2)A′ −
(

1

2
φ′2r2

+
8αφ′ − r − 2(18 + βφ)(a1)

−1E(r)2r2

r + 4αφ′ + 2(18 + βφ)(a1)−1E(r)2r2

)
+O

(
1

A′

)
,

(3.1)
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which replicates eqn.(36) in [20] in the E(r)→ 0 limit. Next, we substitute this into (2.12),
(2.16) and (2.18) to produce three simultaneous equations, two of which can be used to
produce the near-horizon A′′ and φ′′ equations mentioned earlier, with the third serving as
a consistency check. Given that in this process we have eliminated all divergent factors in
favour of terms proportional to A′, we can take an asymptotic expansion of these equations
about A′ →∞ which yields,

φ′′ = f(φ, φ′, A;α, β)A′ +O(1), (3.2)

A′′ = g(φ, φ′, A;α, β)A′2 +O(A′), (3.3)

where the function g is not important to our current analysis as we do not explicitly consider
the behaviour of A′′ near the horizon. We do, however, require the form of the function
f as this will determine our initial gradient for the numerical solutions in Section 4. The
function f for φ′′ is given by (B4) in Appendix B, and whilst this equation is tedious it
does reproduce the expected result from [20, 44] and hence serves as an important check
for our work. In order for φ′′ to remain finite on the horizon, we must have that the second
bracket in the numerator of (B4) is identically zero. We can then solve that equation for
φ′, in doing so we obtain,

φ′h =−
[
− 64αβQ2r4h + 8α2

(
4Q2r2h(8βφh + 1) +Q4

)
+
(
Q2 − 4r2h(8βφh + 1)

)
×
(
r6h(8βφh + 1)∓

{
64α4Q2

(
24r2h(8βφh + 1) +Q2

)
− 1536α3βQ2r4h

+ 32α2r6h(8βφh + 1)
(
Q2 − 6α2r2h(8βφh + 1)

)
+ r12h (8βφh + 1)2

} 1
2

)]
/[

8α
(

32α2Q2(8βφh + 1)− 32αβQ2r2h + r4h(8βφh + 1)
(
Q2 − 4r2h(8βφh + 1)

))]
,

(3.4)

which we shall use as an initial condition with a free value for φ at the horizon. We take
the negative sign of the square root as this is required for a smooth α → 0 limit, noting
that the denominator vanishes in this limit. The required value of φ to solve the initial
condition will then be determined by the shooting method.

In order to deal with the presence of the electric field in the initial condition, we
substitute in (2.13) and then specify the electric charge for each of the black hole solutions
found. The result in (3.4) is very similar in structure to Eqn.(33) in [38] which gives a
scalarised Reissner-Nordström black hole; the action is similar to that in (2.1), however
there is no non-minimal coupling between φ and the gauge field. The complexity of (3.4) is
one of the reasons using the shooting method in this theory is difficult, the initial gradient
is very sensitive to small changes in the initial values of the parameters. Now that we have
analysed the near horizon behaviour, we can move on to investigating the approximate
behaviour of the solution at spatial infinity. This will demonstrate the behaviour at very
large r.
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3.2 Perturbative Solutions at Infinity

In this subsection, we analyse the asymptotic solutions via a perturbation method. To
apply this, first we must lay out what we expect to happen at infinity. The spacetime must
be asymptotically flat to be a stable solution to Einstein’s equations, and so we enforce
that as r →∞ the metric tends to the Minkowski metric, gµν → ηµν . Hence, in this limit,
eA → 1, eB → 1 and the scalar field must become a constant, i.e. φ′ → 0. We can also set
the asymptotic value of φ, φ(∞) = 0. These assumptions are also outlined in [26, 42, 44].
We may then also use a power series expansion in 1/r in order to expand at spatial infinity,

eA(r) = 1 +
∞∑
n=1

ãn
rn
, (3.5)

eB(r) = 1 +
∞∑
n=1

b̃n
rn
, (3.6)

φ(r) =
∞∑
n=1

φ̃n
rn
, (3.7)

E(r) =
∞∑
n=2

q̃n
rn
, , (3.8)

where we shall determine the constants order-by-order. In order to do this we first fix three
of the constants, since we have a reasonable idea of the behaviour of the expansion of eA, φ
and E(r). Specifically, ã1 = −2M , we can also fix φ̃1 = P where P is the scalar charge of
the black hole, and finally q̃2 = Q with Q being related to the electric charge of the black
hole. These choices are based upon the assumption that in a 1/r expansion, to leading
order the solutions will match those of the Reissner-Nordström solution.

We can then substitute (3.5-3.8) into the equations of motion (2.12,2.16-2.18), and
solve the equations order by order using Mathematica, finding

eA(r) ≈1− 2M

r
+
Q2

4r2
+
MP 2 − 4βPQ2

6r3
(3.9)

eB(r) ≈1 +
2M

r
+

16M2 − 2P 2 −Q2

4r2
+

16M3 − 5MP 2 − 2MQ2 + 4βPQ2

2r3
, (3.10)

E(r) ≈Q
r2
− 8βPQ

r3
+
−32βMPQ− P 2Q+ 256β2P 2Q+ 32β2Q3

4r4
(3.11)

φ(r) ≈P
r

+
MP − βQ2

r2
+

16M2P − P 3 − PQ2 + 64β2PQ2 − 16βMQ2

12r3
(3.12)

where all symbols have the usual meaning. Here we have displayed terms up to order 1/r3

in the metric components and 1/r4 in the electric field. The next order terms can be found
in Appendix B, since after this order the numerator expressions become unwieldy and long.
Turning off the electric field, (3.6-3.9) become eqns.(31-33) in [20] as expected. We have
three constants to specify for a physical black hole: M , P and Q. Hence we would expect
the family of solutions to be specified by the triplet (M,P,Q), so three initial conditions
are needed. This is not unexpected, as explained in [20], since for a given r we must specify
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A′, φ′ and something about the electric field E. We also recover the expected asymptotic
behaviour for a black hole in a flat spacetime.

3.3 Expanding in α

Performing an expansion in small α as in [45] is not possible in this scenario as we do
not have a zeroth order analytic solution to begin the expansion. That is, assuming the
zeroth order metric is the Reissner-Nordström solution, there are no closed forms for eA, eB

or φ with the electric field taking the form in (2.13). That being said, it was possible
to extract some information about the α expansion by considering expansions about the
Schwarzschild metric, and hence treating the Q value as a small perturbation from the
Schwarzschild solution. In doing so, we can find the O(α) correction to the scalar field φ.
If we then match this with the perturbative solutions at infinity, we find that,

P ≈ 2α+ 8βφhQ
2

M
, (3.13)

which agrees with [20] in the limit Q→ 0. This is only an approximation for small Q2, α and
β. However, it does give some explanation of the numerical results in the following section.
These numerical results go some way to confirm that an expansion from Schwarzschild
spacetime, for Q = O(0.1), does give an answer that provides the correct scaling laws for
the value of the scalar charge.

In the situation where Q 6= 0, the leading term of the scalar charge has a dependence
on the scalar field’s horizon value φh. This suggests that the scalar hair in this system is
not necessarily completely secondary, that is the scalar charge cannot be expressed in terms
of the Kerr-Newman quantities only. In order to express the scalar charge, a property of
the scalar field solution, we need to know something about the scalar field solution, thus
the hair may not necessarily be secondary. The xTras package [46] for Mathematica was
used in deriving (3.13).

4 Numerical Solutions

In this section we present the numerical solutions to the differential equations given in
Section 2. Note that in the Subsections 4.2 and 4.3 we take α = β in order to explore the
behaviour of varying charge, mass and overall coupling. We note that since α and β have
different dimension there is a dimensional constant that relates the two. Since the only
dimensional quantity in (2.1) is M2

P , the dimensionally correct relation between α and β

will be proportional to M2
P . In subsection 4.4 we take α 6= β in order to explore the effects

of different couplings between the scalar and gravity, and the scalar and the electric field.
In subsection 4.5 we investigate the case where we take β < 0. Throughout this section we
set rh = 1 since the solutions are given in the dimensionless parameter r/rh and rh can be
arbitrarily chosen, along with the other parameters, to give a black hole with the desired
mass.
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4.1 The Method

In order to solve the equations numerically, we implemented Mathematica’s shooting method
function within NDSolve. The implementation required using the gradient (3.4), however
we may express this in a clearer way. The form of this gradient is given by,

φ′h =
ψ + ϕ

√
χ

ζ
, (4.1)

where we have given ψ,ϕ, ζ in Appendix B, and can be determined from (3.4). However, χ
imposes a reality condition on the gradient of the scalar field, and we can use this to check
if our parameters give rise to a solution. The form of χ is,

χ =r8h(r4h − 192α2) + 32α2Q2r6h + 1536α4Q2r2h(1 + 8βφh)−1

+ 64α3Q2(αQ2 − 24βr4h)(1 + 8βφh)−2 ≥ 0,
(4.2)

which contains the value of the scalar field at the horizon φh. In the Q→ 0 limit we recover
the results of [20] for the function of φ′h. The equation in (4.2) is order 12 in rh and order
5 in α = β, thus it cannot be analytically solved for rh or α = β using Mathematica. We
can solve for α and β when they are not equal but the equations do not give us any more
information, the same is true for solving for φh. However, the value of this scalar field will
be O(1) and so we shall take φh ≈ 12. Under this assumption we can solve for Q, and in
doing so we find that Q ∈ R for all acceptable values of α, β and rh.

With this new φ′h, we can then express the equations of motion in terms of a tortoise
coordinate of the form,

x = 1− rh
r
, (4.3)

as this allows us to investigate the full range of the solution by looking at the open interval
x = (0, 1). The interval for x cannot be closed as this leads to issues near the horizon and
at infinity due to the numerical integration technique. We found that we can consistently
solve the equation of motion on the interval x = [0.01, 0.999], which gives a numerical range
of r = [1.01, 1000]rh. While this is not the full range, most of the interesting effects are
displayed within ∼ 10rh of the singularity.

In order for the shooting method to produce a solution, we first implemented NDSolve
using an approximation to the initial gradient and values of the functions. The data was
then extracted and used in the shooting method implementation. We repeated this process
for each set of parameters we took within the parameter space. There are numerical errors
associated with the shooting method employed here. To examine these errors, we plotted the
differential equations derived above and looked at regions where these equations were not
satisfied by the solutions found, see Appendix C. The example in the appendix shows that
the residuals errors of these differential equations were around 0.2%, hence the numerical
results in this paper can be trusted to a high degree of accuracy.

2Numerical tests in Mathematica show the explicit value of φh does not affect the limits of the inequalities
of the parameters a great deal. Corrections are of order 0.001 for α and 0.01 for rh, while there is no effect
on Q in the range of α, β and rh we shall be testing as it always satisfies the inequality (4.2)
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(a) The Electric field for various values of Q. Un-
surprisingly the value of Q has a major effect on
the Electric field.

(b) The scalar field for various values of Q, once
Q > 1 the changes in charge have larger effects
as expected from (3.13).

Figure 1: The field results of varying Q with fixed α = β = 0.05 and rh = 1.

The parameters we chose to use were (α, β,Q) as they characterised the solution’s
non-minimal coupling strength and electric charge. Hence, we investigate the variations of
each of the parameters with the other values held fixed in order to extract some qualitative
information about the solution.

4.2 Varying Q

In this subsection, we present the results for various values of Q. One issue we should first
tackle regarding our results is the problem of ‘overcharging’, which occurs in the Reissner-
Nordström metric for 2QRN > rs. Using our third order perturbative expansion, (3.9), set
to 0, we approximated the bound and checked it numerically for each of the values given
in the solutions. It was found that all solutions, in this subsection and the consequent
subsections, had real solutions3.

We fix the values α, β = 0.05 throughout the variation of Q so we can investigate the
results of charge variation only. Using (4.2) we find that all real values of Q are acceptable
for this α and rh, as expected. The only thing we are limited by is our computing power,
and so we only investigate the range 0.01 ≤ Q ≤ 2.

The results of the Q variation are displayed in Figures 1 and 2. The main effect we
can see is with the E(r) field, which is not surprising since this field is mainly sourced via
the charge of the black hole. We also note that, as can be seen explicitly in Figure 1a, the
Electric field is finite at the value r/rh = 1 and so the asymptotic conditions which were
imposed in the no-hair theorem are satisfied here. The scalar field results are given in Figure
1b. Again the asymptotic conditions we require for a black hole solution are satisfied, that
is, the field is finite across the horizon and as r → ∞, φ → 0. It is interesting to note
that the charge of the black hole does not have a considerable effect on the value of the
scalar field. However, when Q > 1 the effects become amplified. For values 0.1 < Q < 1,

3We took an imaginary part of order 10−12 or less to be 0 due to numerical errors and the approximation
of the bound.
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Figure 2: The time component of ds2 for various values of Q. Once Q > 1 the
changes in charge have larger effects.

not shown here, the effects are not as great as Q > 1, and further analysis shows that for
ever smaller values of Q we asymptotically approach the Q = 0 value. This is somewhat
expected due to the approximate form of the scalar charge given in (3.13), where P ∝ Q2

and so it is not wholly unexpected that for Q > 1 the scalar field increases in strength
faster than the Q < 1 case. Finally, the same effects are observed in the time component of
the metric, that is, we have asymptotically flat solutions and the effects of varying Q only
become large for Q > 1.

4.3 Varying α = β

In varying α = β we kept Q = 0.5; we also restrict α . 0.07 as this is the approximate
limit on α so that the bound in equation (4.2) is satisfied, as required for the gradient of φ
to be real at the horizon as given by equation (4.1). The results of these variations can be
seen in Figure 3. We first note that varying the coupling for this (α,Q) does not produce
a great deal of variation with respect to the electric field and the time component of the
metric.

Furthermore, we only focus on values between 0.01 ≤ α ≤ 0.07 as values below 0.01

produce only very small scalar fields and do not add much to the discussion. In the case
of α ∼ O(0.001) the scalar profile does not change for varying values of α and so we can
only conclude that the numerical errors following from the solution are larger than the
contribution from the actual scalar field. It seems that the increase in the scalar field is
linear with the increase in the coupling constant α. This follows from the form of (2.2)

and (3.13), which are linear in α and hence it is not unexpected that the φ field increases
linearly with the value of α.

4.4 Taking α 6= β

In this subsection we again take Q = 0.5, but we vary α and β independently to determine
the effect each coupling has individually. Using the values Q = 0.5 and rh = 1 we find that
the bounds for α remain the same as in Subsection 4.3 and β can take on any real, positive,
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Figure 3: The φ field plotted for various values α = β. As expected, larger values
of α = β produce a larger scalar field.

Figure 4: The φ field plotted for various values α with β = 0.03.

value in order to ensure a real initial gradient. We investigated the case where α = 0.03

and β varies as well as the converse case; we also present the results of varying α and β

such that α+ β remains constant, which in this case we took to 0.1 so that α did not grow
too large.

Varying α In this test, we took β = 0.03 and varied α within the range of values that
were allowed (that is α . 0.07) and above the range of values where there was uncertainty
due to the numerical solution. Hence we take the set α = 0.03, 0.05, 0.07, which gives good
indication of the behaviour of the solutions.

The results of these simulations can be found in Figure 4. These results are similar
to those in Figure 3, with the exceptions that the very near-horizon values are marginally
different, which we can assume is down to the effects of keeping β constant and smaller than
α. The main thing to note here is that we have confirmation that the behaviour described
by (3.13) is accurate, with respect to the description of the scalar charge in terms of α.

– 14 –



(a) The electric field for varying β with α = 0.03.
(b) The scalar field for various values of β with
α = 0.03.

Figure 5: The results of varying β with a constant α = 0.03.

Take for example, the increase of α from 0.03 to 0.05, we would expect the value of the field
near the horizon to increase by approximately 1.67. The numerical solutions tell us that the
actual value of field near the horizon increases by a factor of ∼ 1.8, which is approximately
in line with (3.13). Whilst this relation does not hold exactly, it does give us confidence
that our assumptions are reasonable.

Furthermore, the results in Figure 4 also help us deduce that the value of β has a
very small effect on the overall scalar field as the difference between the horizon value for
α = β = 0.05 and α = 0.05, β = 0.03 is very small indeed whilst the increase in the scalar
field is relatively large. Thus, we can infer that the coupling to G has greater scalarisation
effects than the gauge field.

Varying β We kept α = 0.03, which is large enough for background effects to be neg-
ligible. We investigated β = 0.03 and 0.5, and the results of this are shown in Figure
5.

Looking at Figure 5b it is evident that the scalar field does not follow, even an approx-
imate, linear relationship in β as φ did in Figure 3 for variations of α = β. This is evident
from the form of (3.13), in which the scalar field’s charge depends on the value of βφh and
since φh ≈ 0.1, increasing β by ≈ 16.7 only leads to an increase of ≈ 1.5 which is in line
with our expectations from the perturbative analysis. However, in Figure 3 since α = β,
and O(α) = O(β) = 10−2, the main contribution arose from the 2α. This term is always
larger than the 8βφhQ

2, term which is of order 10−3 which is factor of 10 smaller than the
2α contribution. This, again, goes some way to confirming the approximation we took in
Section 3.3. The stronger coupling also leads to a smaller electric field strength, see Figure
5a, although this is unsurprising given the form of (2.13).

Whilst none of these results are wholly unexpected, it is useful to see that the numerical
simulations agree with the theoretical predictions implied by the analysis we performed in
Section 2 and 3. It is also reassuring to see that our approximation for P in (3.13) is again
consistent with our numerical results.
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Varying α and β Here we keep the sum of the couplings equal to a constant such that
α + β = 0.1, ensuring that α is not too large such that we can find solutions. The results
of this subsection are shown in Figure 6.

The form of the scalar field confirms the relative importance of the terms in the non-
minimally coupled part of the action in (2.1); that is the Gauss-Bonnet coupling has a
greater effect on the profile of the scalar field than the gauge field coupling. We can explain
this theoretically by invoking (3.13) again. At the order of the coupling constants and
scalar field at the horizon, the α term is approximately 10 times larger than the β term.
If we compare Figure 3 and Figure 6 we see that for α = 0.03, the β = 0.07 coupling only
increases the scalar field near the horizon by O(10−2), which is inline with the expected
change in the leading order behaviour of the perturbative expansion given by (3.13).

The main conclusion from the above subsections is that the relative strength of the
effects of the Gauss-Bonnet and gauge field terms are an order of magnitude different when
the couplings are of the same order of magnitude.

Figure 6: The φ field plotted for various values α + β = 0.1, as expected larger
values of α produce a larger scalar field whereas increasing β leads to smaller scalar
field due to the form of the scalar charge (3.13).

4.5 Negative β

In this subsection we take β < 0 in order to explore the behaviour of the initial solutions
for negative β. We have taken α = 0.03 and Q = 0.5 in the solutions of this subsection.
To work around the issues in this section we manually looked for solutions, for simplicity,
initially dropping the asymptotic condition that φ → 0. The method employed here was
required because for negative β there are certain values of the fields for which the differential
equations and (4.1) diverge;Mathematica’s NDSolve function looks around the parameter
space for the initial conditions and consequently runs into these values which cause issues
when trying to solve the equations. To prevent this, we manually explore the parameter
space to find the correct solutions - whilst time consuming, it proved the most effective
method to tackle this problem.
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Figure 7: The φ field plotted for various negative values of β. Unlike in previous
examples the scalar field φ can take φ = 0 at finite range outside of the black hole.

The behaviour of eA and eB does not change much from the original β > 0 solutions,
and they take on the same form as the solutions in previous subsections. The same is true
of the electric field, it follows the same structure as laid out in previous figures. However,
as one can see in Figure 7, the scalar field does take on unusual behaviour. Firstly, we
note that the scalar field can now take a 0 value at a finite distance outside of the black
hole, something we had not seen previously. The scalar field also tends to a finite limit,
which violates the assumed asymptotic conditions of the theory. However, the limit at large
distance is constant and does not diverge. As we shall now show, this allows us to map
these solutions to the ones with the correct asymptotic behaviour. The solutions presented
in Figure 7 are correct to O(0.01). This is acceptable since the shooting method in previous
calculations had been started from x = 0.01 away from the black hole.

Solving the equations for negative β is quite a difficult task since the solutions are very
sensitive to the manual parameter space search. Not only this, but the equations of motion
themselves are ill-defined at certain x values for negative β and hence there are only certain
values β can take when less than 0 in order to solve the equations for the range of x. It
appears physically not very different from the previous profiles, with only a change in sign
of the scalar field near the horizon. We can map this solution onto a solution that does
satisfy the asymptotic flatness conditions. To do this we shall define new fields, which are
related to the old fields, which allow us to enforce the flatness conditions. We shall define,

F̃µν = qFµν (4.4)

φ̃+ φ∞ = φ, (4.5)

where q is a re-scaling of the charge Q and φ∞ is the asymptotic value of the scalar field.
In this case, we assume to have an action of the form,

S̃ =

ˆ
d4x
√
−g
(
R

2
− 1

8
F̃µνF̃

µν − 1

2
∂µφ̃∂

µφ̃+ φ̃(αG − β̃F̃µνF̃µν)

)
, (4.6)

from which we have to calculate q, β̃ and φ∞, assuming that φ̃ → 0 as r → ∞.4 In order
4We note that, despite there being a finite scalar field, this is not an AdS solution. There are two
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(a) The scalar field, after field redefinitions, for
β = −0.9.

(b) The scalar field, after field redefinitions, for
β = −1.0.

(c) The scalar field, after field redefinitions, for
β = −1.1.

Figure 8: The results of redefining the fields for negative β. These solutions now obey
the boundary conditions of the problem and required the modification of the black hole’s
charge, β coupling and rh.

to do this we shall compare the actions (4.6) and (2.1) in the asymptotic limit in order to
compare the FµνFµν , noting that we keep the scalar field in the original φ form of (2.1).
This then gives us the scale factor q. Then by comparing β̃φ̃F̃µνF̃µν with φ̃βFµνF

µν we
can obtain the relation between β and β̃. In doing these comparisons we find that,

Q̃2 = q2Q2, β̃ =
β

q2
, (4.7)

which tells us that the combination Q2β is invariant and hence defines a unique solution.
We focus on the specific case of β = −1 as an example, which has φ → 0.065. Then,

going through the simple comparison outlined above, we find that q2 = 12/25. Hence, the
new values for β̃ and Q̃ are given by,

Q̃ = ±
√

3

25
, β̃ = −25

12
, (4.8)

reasons for this, firstly there is no potential for the scalar field and hence there is no term that can source
a cosmological constant. Secondly, the field redefinition only affects the scalar and electric fields, hence the
redefintion is not connected to the gravitational part of the theory.
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for which we can then solve the equations of motion. We need not discuss the effect on
the Gauss-Bonnet term due to the constant shift of φ since it is topological and so when
multiplied by a constant it integrates to 0.

Once we redefine Q and β we have to consider how the value of rh changes. Since the
redefinition does not affect the mass of the black hole, the horizon radius will change and
this will have to be factored into any numerical solutions that are found. Unfortunately,
there are no analytical relations between the values of the parameters owing to the form of
the action and hence we can only approximate the change in radius. One way we can make
this approximation is to use the Reissner-Nordström relation from (3.9) at O(r−2),

rh =
1

2
(2M ±

√
4M2 −Q2), (4.9)

which for Q = 0.5 and rh = 1, gives M ≈ 17/32. Plugging this back in with the new Q

value we find that r̃h ≈ 1.0335, which is a small deviation from the original value. The
solution corresponding to these values of Q̃, β̃ and r̃h does in fact satisfy the boundary
conditions.

We can then repeat the analysis for β = −0.9 and −1.1. Dealing with β = −0.9 first
we find that φ → 0.0247 as r → ∞, this gives q2 = 1003/1250 and hence Q̃ = 0.4479,
β̃ = −1.1216 and r̃h = 1.0130. For the case of β = −1.1 we find φ → 0.0877. This gives
Q̃ = 0.2731, β̃ = −3.686 and r̃h = 1.045. The scalar field results of all field redefinitions
are presented in Figure 8, and it is now easy to see that all solutions obey the asymptotic
boundary conditions. We have displayed each solution in its own sub-plot for clarity.

We could of course work to higher orders by solving perturbatively at infinity or near
the horizon. We have already done the asymptotic perturbative expansion in (3.9) to cubic
order. If we used this in place of (4.9) then we would have to find the new P value and
find the roots of the cubic. Hence by redefinition of the fields it is possible to enforce the
asymptotic conditions of the problem. This yields new values for Q, β and rh which then
produce solutions which obey the boundary conditions of the original problem.

4.6 Shifting the Boundaries

Previously, we stated that we were able to find solutions by shooting from a point just
outside of the horizon, which avoids the divergence in the metric typical of the horizon.
For this we shot from x = 0.01 which corresponds to 1.01rh, however we need to ensure
that minimum value of x has minimal impact on the solutions generated by the shooting
method. To determine whether the solutions are affected only slightly by the choice of the
initial x value we tested x = {0.001, 0.01, 0.1} which correspond to r = {1.001, 1.01, 1.11}rh
respectively. Of course, the smaller the x value, the closer to the horizon we solve and hence
the more accurate the solutions we find. To perform these tests we have tested one of the
solutions found previously where Q = 1, α = β = 0.05 and rh = 1.

The results of these tests, for the metric functions and the electric field, were only very
slightly changed for each value of x, with the x = {0.001, 0.01} being almost identical (less
than 10−5 difference) and the x = 0.1 value being different by less than 10−3. This gives
us very good confidence that the x = 0.01 used in previous results in a good compromise
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Figure 9: The φ field plotted for various initial values of x. The value of x = 0.1

shows a dramatic difference from the two smaller values. The two smaller values
have very similar profiles but still show a difference very close to the horizon.

between speed (for larger x values) and accuracy (for smaller x) values. A larger difference
between x = {0.001, 0.01} and x = 0.1 occurs for the scalar field profile, and a minor
difference occurs between the two smaller x values. This is not surprising since the initial
gradient of the scalar field is determined strongly by the initial φh value which is affected
by the x value. The difference between the larger value and the two smaller values for
the scalar profile is of O(0.1) near the horizon and the profile is also quite different. The
difference between the two smaller x values is less pronounced and the profile is almost
identical with the difference only occurring for the horizon value. This assures us that, for
r ' 5rh, the two solutions for x = 0.001 and x = 0.01 are very close. This demonstrates
that, below x ≈ 0.01 the profiles of the solutions do not change a great deal. The results
for the scalar profile are displayed in Figure 9.

4.7 Inner Horizons

Before concluding this section, it is useful to make a comment about the solution within
the horizon; theories of the kind explored here have finite size physical singularities that set
a limit on the size of the horizon in terms of the parameters of the theory [20, 47, 48]. It is
beyond the scope of this paper to find such solutions within the horizon but it is possible to
mention some interesting features of such singularities in this work, for example, [20, 47, 48]
show that the violation of the reality condition for φ′h corresponds to the existence of a finite
size singularity. It is not possible to derive an exact expression for the radius at which this
singularity appears in the theory in this paper as the form of χ in (4.2) is too high an
order in r to solve. However, as well as being able to easily see this graphically, we can
perturbatively solve for r. E.g. if we assume α ∼ β � 1 we can take the terms in (4.2) that
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are up to order α2, then solving for r we find,

r '
√

2

√
211/3α2

(
√
Q4α4 − 1024α6 −Q2α2)1/3

+ 21/3(
√
Q4α4 − 1024α6 −Q2α2)1/3, (4.10)

and so in line with the literature, we may find a finite size singularity within the horizon.
However, it is possible that certain solutions may not have such finite size singularities since
the form of φ′h has so many terms it is feasible that all of them make the solution real5.
In fact there are many values of Q and α, (Q > 4

√
2α), which make the above equation

reduce to r > 0, and so there is no a priori reason for a finite singularity in this case. Note
that (4.10) is only perturbative and it is the best one can do given the r−order of the φ′h
equation, but we can give an explicit numerical example. Taking one of the first examples
where Q = 1 and α = β = 0.05 it actually transpires that φ′h is real for all values of r and
so it would suggest that this solution does not have a finite size singularity. In fact plotting
χ for various values of α, β and Q, as well as the corresponding value of φh6 one finds that
there are many solutions for which χ is real and there is no obvious evidence of a finite size
singularity, although it is also easy to find examples where χ does become negative.

5 Conclusions

In [49] a proof was put forward for a no-hair theorem in Galileon-like gravity theories. In
this paper, we presented a theory based on the EGBS theory derived in [20, 36], which
circumvents the no-hair theorem. Our theory contained an extra, non-minimally coupled,
Maxwell term that generated an electric field. We assumed a static, stationary and spheri-
cally symmetric metric ansatz. This allowed us to numerically solve the differential equa-
tions presented in (2.2-2.4). These numerical solutions confirmed the scalarisation of the
black hole.

We initially began by analysing the asymptotic behaviour of the differential equations
once we substituted in the ansatz, which gave us an expression for the scalar field gradient
at the horizon of the black hole. This was then used as the basis for the shooting method
implemented later. We also analysed the asymptotic behaviour as r →∞, which informed
us of the number of initial parameters that would be needed in order to specify the solution.
It also gave an expansion we could use to firstly determine if the parameters we chose gave
a black hole that was not overcharged, and then we used the expansion to determine the
value of the unknown parameters.

The exact form of the electric field equation (2.13) implied the existence of two branches
of solutions. The branch we investigated in this paper corresponded to βφ > −1

8 and lead
to the results in Section 4. The other branch was not investigated since the gauge field
would take the wrong sign, hence producing unphysical solutions with energy unbounded
from below.

5We cannot say anything too precise without a formal numerical solution, but of course the value of χ
in (4.2) is easily plotted.

6Although the dependency on φh’s value is not that big a contributing factor to the zeroes of the function.
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We then numerically solved the equations of motion using the shooting method with
(3.4) as an initial gradient, transforming into tortoise coordinates such that we could solve
over the entire range of r. These results were then presented in Section 4. The first thing
we noted was that the electric charge of the black hole affects all of the fields around the
black hole and the spacetime. This is not unexpected since, in the Reissner-Nordström
solution, the charge of the black hole affects the spacetime at order 1

r2
and the same occurs

here. The spacetime then determines, more so than the electric field, the form of the scalar
field. In the case of varying α, only the scalar field was affected strongly by the variation.
This is down to the linear relationship of α in (2.2), whereas α only appears in the other
equation at order α−1.

Then we investigated the α 6= β case, concluding that the approximation in (3.13)
was approximately satisfied, even near the horizon. We also demonstrated that the Gauss-
Bonnet term had a greater effect on the scalar field profile when the couplings are of
order O(10−2), which again provides evidence that there is a very direct link between the
curvature of spacetime and the profile of the scalar field.

Finally, we took β < 0 and investigated this set of solutions. We concluded that, while
these solutions looked different to the previous results, they were physically not all that
different from the previous solutions. Finding solutions in this regime is quite difficult and
it was numerically simpler to find the solutions presented in Figure 7 which do not obey the
correct asymptotic boundary condition for the scalar field. However, as we argued, we can
then map these to physical solutions (with the correct asymptotics) and the results were
presented in Figure 8.

It is interesting to compare the results in this paper to the GR case, the parameters α
and β define the perturbation from the GR theory and their effect on the metric is to reduce
the gradient of the eA function near the horizon. These parameters have very little effect
on the eB function but this is expected since eB grows very large near the horizon, even in
the GR case, and so small perturbations from the theory will not change this a great deal.
As noted in the above, the electric field is only mainly affected by the charge of the black
hole and there is very little effect from the non-minimally coupled terms. Of course, the
scalar field is directly correlated with the value of α and β and these terms, which source
the perturbation from GR, source the scalar field. Physical quantities, such as the radius
of the innermost stable circular orbit, also only deviate by small amounts for the solutions,
hinting that the physical signatures of EMGBS black holes will be very similar to the GR
case.

We should note that we have not included rotation in our calculations, but it would be
interesting to generalise our results to include rotating black holes since most astrophysical
black holes rotate. An investigation of this kind has been carried out for Einstein-Dilaton-
Gauss-Bonnet gravity in [50] and for a massive complex scalar field in [51]. It would also be
of interest to generalise the coupling φ to f(φ), with a different coupling function g(φ) for
the Maxwell field. Finally, it would be interesting to treat the full system as a perturbation
from the Schwarzschild metric, as in (3.13), in order to assess how closely the near horizon
behaviour of the system can be modelled by a perturbative expansion in small α, β.
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A Divergence properties of eA and A′ near the Horizon

In this appendix we show that, in the limit of r → rh, e−A � A′. We do this by showing
that the limit,

lim
r→rh

A′

e−A
= ξ, (A1)

where ξ is some non-zero finite number. In order to do this we must write the near horizon
expansion of eA as a power series in (r − rh),

eA = a1(r − rh) + a2(r − rh)2 + ...

=
∞∑
n=1

an(r − rh)n,
(A2)

The derivative of A can then be expressed in terms of (A2) and its derivatives as

A′ = (eA)′e−A = a1e
−A + 2a2(r − rh)e−A + ... . (A3)

Hence, the limit in (A1) is then expressed as

lim
r→rh

A′

e−A
= lim

r→rh

a1e
−A + 2a2(r − rh)e−A + ...

e−A

= a1,

(A4)

which is a finite limit. Hence in the near horizon limit, e−A and A′ diverge in very much
the same way and we may take the approximation that e−A ≈ A′/a1.

B Near Horizon Expansion Functions and O( 1
r4
) approximations

In this appendix we show the results of the full near horizon expansion, and also the O( 1
r4

)

expansion coefficients from (3.9-3.12). Whilst these coefficients add little to the discussion,
they have been included here for completeness. The order 1/r4 term in the asymptotic
expansion of eA is given by,

1

24r4
[
192αMP +M2P 2 − 16βMPQ2 − P 2Q2 + 64β2P 2Q2 + 8β2Q2

]
. (B1)

In the case of eB the fourth-order terms take the slightly more complicated form,

1

48r4
[
768M4 − 768αMP − 416M2P 2 + 12P 4 − 144M2Q2 + 480βMPQ2 + 14P 2Q2

− 512β2P 2Q2 + 3Q4 − 64β2Q4
]
.

(B2)
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The scalar field has r−4 correction of the form,

1

24r4
[
− 96αM2 + 48M3P − 8MP 3 − 48βM2Q2 − 6MPQ2 + 256β2MPQ2

+ 12βP 2Q2 − 768β3P 2Q2 + 3βQ4 − 64β3Q4
]
.

(B3)

The near horizon expansion function f of φ′′, defined in (3.2), is given in terms of the
electric field E rather than Q and has the rather complicated functional form,

f =−
(
4αφ′(r) + r

) [
48αa21 + 8a1βr

4E(r)2φ(r)φ′(r) + a1r
4E(r)2φ′(r) + 8a1βr

3E(r)2

+ 32αa1βr
2E(r)2φ′(r)− 256α2a1βE(r)2φ(r)φ′(r)− 32α2a1E(r)2φ′(r)

+ 4a21r
3φ′(r) + 16αa21r

2φ′(r)2 + 16β2r4E(r)4φ(r) + 2βr4E(r)4

− 128αβ2r2E(r)4φ(r)2 − 32αβr2E(r)4φ(r)− 2αr2E(r)4
]/
a1
[
− 384α2a1 + 4a1r

4

+ 16αa1r
3φ′(r) + 8βr5E(r)2φ(r) + r5E(r)2 − 256α2βrE(r)2φ(r)− 32α2rE(r)2

]
.

(B4)
By setting the numerator to 0, we can obtain a finiteness condition on φ′ at the horizon.
This produces one of the initial boundary conditions we use to solve the numerical problem.
This can be expressed in terms of the charge Q as in (4.1). We already have the form of χ,
which was given in (4.2). Here we give the form of ψ,ϕ, ζ. The form of ψ is,

ψ =− 4r8h +Q2r2h(32α2 + r4h)(1 + 8βφh)−1 + 8αQ2(αQ2 − 8βr4h)(1 + 8βφh)−2. (B5)

The form of ϕ is given by,
ϕ = 4r2h −Q2(1 + 8βφh)−1. (B6)

Finally, we have the form of ξ,

ζ =32αr7h − 8αQ2rh(r4h + 32α2)(1 + 8βφh)−1 + 256α2βQ2r3h(1 + 8βφh)−2. (B7)

C Numerical Errors

In this appendix, we briefly discuss the numerical errors associated with the integration
methods used in the main body of the paper. In order to do this, we take an indicative
example and note that all other solutions presented above follow the same sort of pattern
of residuals; the indicative example sets α = β = 0.05, Q = 1 and rh = 1. To find the
solutions, we solved the θθ and φ equations of motion once the E field had been eliminated
via the solution to its equation of motion; we could have equally solved the tt and θθ

equations, or any combination of the three to find the solutions and the variation of the
combinations was of the order of the residuals. The residuals of the equations we did solve,
θθ and φ, are shown in Figure 10. The residuals are in general quite small everywhere but
very close to the horizon, and in the case of the φ equation the numerical residuals remain
less than 0.2% for the whole range of the solution shown in Figure 1b. It is hard to use
the θθ residual to give a percentage as in the φ case, but it is reasonable to expect that the
residual error is of the same order of magnitude. Hence the numerical errors are very small
and hence the solutions represent accurate results of integration.
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(a) The residual of the numerical integration for
the θθ Einstein equation.

(b) The residual of the scalar field equations after
numerical integration.

Figure 10: The residuals for the two equations used to solve for the solutions
in the main body of the paper. Here we take an indicative example in which
α = β = 0.05, Q = 1 and rh = 1.

Figure 11: The residual of the tt-differential equation divided by e−A.
This equation was not used in solving for the new solutions.

That being said, the tt equation that is not used to solve for the solution seems to
pose a problem since it begins to diverge to −∞ close to the horizon, however this is to be
expected. Satisfying this equation as we approach the horizon requires a precise cancellation
between divergent quantities (involving eA and B′) to return a zero result and in light of
these large quantities it is not surprising that the residual grows large. However, once
normalised by e−A as seen in Figure 11 the errors were of order 5% at around 2rh.
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D Virial Identity

We can derive a virial identity to perform an additional check on the numerical solutions.
Virial identities are derived from an effective action which is the Lagrangian after substitut-
ing in the ansatz for the solution. In particular, the virial identity arises from the fact that
the effective action must be stationary for the classical solution, and specifically considering
a variation which rescales the radial coordinate. The method is presented clearly in [52]
where it is also explained that for GR it is necessary to include the Gibbons-Hawking-York
boundary term. In our case we need to generalise this boundary action due to the inclusion
of the Gauss-Bonnet term coupled to the scalar φ. The correct boundary action in this case
can be found in [53]. We then find the virial identity for the action (2.1) with the spherically
symmetric ansatz (2.6), (2.7), (2.8) for the metric, scalar field and gauge potential,

ˆ ∞
ri

dr
(
− 2e(A+B)/2 + 2e(A−B)/2 − 2e(A−B)/2B′(r − ri) + 2α(φ′ + φB′)

× eA/2(eB/2 − e−B/2)A′ + 1

2
r(2ri − r)(1 + 8βφ)(V ′)2e−(A+B)/2

+ r(r − 2ri)(φ
′)2e(A+B)/2

)
=
[
4(r − ri)eA/2(e−B/2 − 1) + 2αφeA/2(eB/2 − e−B/2)A′

]∞
ri

(D1)

where ri ≥ rh is an arbitrary radius which we take to be 1.5rh, as this is far enough from
the horizon to not be too sensitive to numerical errors. This identity was tested numerically
for α = β = 0.05 and Q = 0.5 for a number of ri values. At ri = 1.1rh we found that
the identity was satisfied down to an ∼ 2% error7 indicating that the numerical method
is breaking down this close to the horizon, but for ri = 1.2rh the accuracy increased to
give a ∼ 1% error and at ri = 1.5rh the error was of order ∼ 0.2%. We performed this
test on other solutions from the main body of the paper and found that all tested solutions
satisfied the above identity to within a discrepancy of order 1% or better for ri = 1.2rh
and much less for ri = 1.5rh. In fact for smaller values of α and β we can get significantly
better agreement. E.g. for α = β = 0.01 and Q = 0.5 we find the discrepancy is of order
0.1% even for ri = 1.1rh. These results give us confidence that the solutions found in the
main body of the paper are indeed physical solutions, but consistent with the analysis in
appendix C we cannot solve too close to the horizon.

Finally, for reference, assuming the spherically symmetric ansatz (2.6), (2.7), (2.8) for
the metric, scalar field and gauge potential for an asymptotically flat solution with action,

S =
M2
P

16π

ˆ
d4x
√
−g
(
R− 1

4
h(φ)FµνF

µν − ∂µφ∂µφ+ f(φ)G
)
, (D2)

7This is determined as the discrepancy between the left and right sides of the virial identity compared
to the magnitude of one side.
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the virial identity is,
ˆ ∞
ri

dr
(
− 2e(A+B)/2 + 2e(A−B)/2 − 2e(A−B)/2B′(r − ri) + (f ′(φ)φ′ + f(φ)B′)eA/2

× (eB/2 − e−B/2)A′ + 1
2r(2ri − r)h(φ)(V ′)2e−(A+B)/2 + r(r − 2ri)(φ

′)2e(A+B)/2
)

=
[
4(r − ri)eA/2(e−B/2 − 1) + f(φ)eA/2(eB/2 − e−B/2)A′

]∞
ri
.

(D3)
Here f(φ) and h(φ) are arbitrary functions while in the specific theory considered in this
paper we chose f(φ) = 2αφ and h(φ) = 1 + 8βφ.
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