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Abstract: Based on provincial panel data for the past 15 years in China, the SBM-ML index method
was used to measure agricultural productivity under the environmental-constraint perspective with
agricultural surface source pollution as the non-desired output. A dynamic panel regression model
was used to empirically analyze the factors influencing agricultural productivity to provide a reference
for formulating policies to alleviate the conflict between economic development and environmental
pollution. The results show that the green total factor productivity of Chinese agriculture exhibits a
slow, incremental trend year by year. The growth of green total factor productivity in agriculture
mainly comes from the increase in the rate of green technological progress. In terms of geographical
disparity, the eastern, central, and western regions show a high-to-low gradient of agricultural green
total factor productivity. Agricultural green total factor productivity showed a significant positive
spatial correlation in some years. As for the influencing factors, foreign trade in agricultural products
is conducive to enhancing green total factor productivity in agriculture, whereas foreign direct
investment in agriculture and agricultural technology input inhibit the growth of green total factor
productivity in agriculture. This research also found a significant U-shaped relationship between
environmental management inputs and green total factor productivity in agriculture. Accordingly,
suggestions are provided to optimize the international trade structure of agricultural products,
selectively introduce high-quality green foreign investment projects, drive the efficiency of R&D
investment through digital technology, and increase investment in special funds for agricultural
pollution control.

Keywords: environmental constraints; agriculture; total factor productivity; agricultural surface
source pollution; green production

1. Introduction

The ravages of the novel coronavirus pandemic pose a new challenge to vulnerable
agriculture. A 2021 report by the Food and Agriculture Organization of the United Nations
(FAO) states that 720–811 million people worldwide faced hunger in 2020, which represents
an increase of 161 million compared to 2019 [1]. The COVID-19 pandemic is just the tip of
the iceberg; more alarmingly, the pandemic has exposed vulnerabilities forming in agricul-
tural systems in recent years as a result of major drivers, such as conflict, climate variability,
and economic slowdowns and downturns. In the current situation, with many changes are
emerging in global development, it is imperative to enhance agricultural resilience, promote
green production, and explore the major drivers affecting agricultural productivity.

Since reform and opening up, Chinese agriculture has managed to feed more than
20% of the world’s population with less than 10% of the world’s arable land [2]. The
“green revolution” in agriculture centered on high-yielding seeds and the improvement
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of irrigation and fertilization technology. However, this success has meant that agricul-
tural development may have come at an environmental cost. Economic growth has been
accompanied by excessive use of pesticides, fertilizers, agricultural films, and other chem-
icals, leading to severe soil contamination, declining land strength, and water pollution.
According to the data of the National Bureau of Statistics, in 2019, fertilizer, agricultural
film, and pesticide inputs reached 54.036 million tons, 2.408 million tons, and 1.391 million
tons, respectively, with an increase of 24.5%, 57.3%, and 6.1%, compared with 2002 [3].
Agriculture has become a major source of chemical oxygen demand (COD), as well as
total nitrogen (TN) and total phosphorous (TP) emissions, which indicates that agricultural
development should fully consider its resource carrying capacity and the environmental
disasters that may result.

In order to realize the transformation from traditional agriculture to modern agri-
culture, China must rely on the improvement of factor input efficiency, optimization of
production factor combination methods, technological progress, organizational and institu-
tional innovation, etc., which means that the growth of agriculture depends on the total
factor productivity (TFP). TFP, which can measure economic performance that accounts for
the influences of technical progress and efficiency, was proposed by Solow (1957) [4]. This
source of labor productivity increase can offset the adverse effects of diminishing returns to
capital and is an enduring engine of economic growth. In opposition to traditional total
factor productivity analysis, this paper adopts a non-radial, non-perspective slack-based
model (SBM) and a Malmquist (ML) index that considers non-consensual output and
incorporates resources, environment, and development into a unified analytical framework
to evaluate China’s agricultural productivity from the perspective of environmental con-
straints, which is not only important for establishing a mechanism to objectively exam
the agricultural growth model ,but also provides the government with an opportunity to
practice the “resource-saving and environment-friendly society” concept.

2. Literature Review

From a methodological point of view, previous studies of agricultural TFP mostly
adopted parametric and non-parametric analysis [5–8]. Grilliches (1957) [9], Alston et al.
(1998) [10], McCunn and Huffman (1998) [11] (for US agriculture), Hayami and Rutta
(1970) [12] (for Japanese agriculture), Rosegrant and Evenson (1992) [13] (for Indian agricul-
ture), and Coelli and Rao (2005) [14] conducted cross-country comparisons of agricultural
TFP. Lin (1992) [15] used the traditional growth accounting method to analyze the growth of
agricultural TFP and found that Chinese agricultural TFP increased dramaticallyfrom 1978
to 1984 and contributed 48.64% to total agricultural output. Agricultural outputs and inputs
then fell sharply between 1984 and 1987, with TFP increasing by only 2.05% during this
period. Fan and Pardey (1997) [16] also used the growth accounting approach to analyze
the sources of growth in total agricultural output between 1965 and 1989 and found that
technological and efficiency improvements resulting from a series of institutional reforms
introduced in the late 1970s contributed only 14% to the growth of total agricultural output
in China. Gong (2018) [8] states that there are significant cyclical fluctuations in agricultural
TFP growth in China, with six periods. The third and fifth reform periods (1990–1993 and
1998–2003) achieved higher productivity growth than the first reform period (1978–1984),
whereas the second and sixth reform periods (1985–1989 and 2004–present) experienced
low growth. Regarding the influencing factors of agricultural TFP, the current literature
mostly looks at the motivations such as agricultural financial support [17], the education
level of farmers [18], openness to the outside world [6,7], land–resource mismatch [19], etc.

The above-mentioned studies are important for a deeper understanding of the relation-
ship between agricultural development and resource constraints, but few of them address
environmental factors. Studies on agricultural development and environmental pollution
have been developed along another main line: the environmental Kuznets curves (EKC)
hypothesis, which was proposed by Grossman and Krueger (1992) [20].Earlier studies,
such as those by Antle and Heidebrink (1995) [21] and Mc Connell (1997) [22], analyzed
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the relationship between economic growth and agricultural pollution at the theoretical
level, suggesting that the relationship between agricultural surface pollution and economic
development may also be consistent with the EKC. However, the EKC test has the following
problems: on the one hand, it is difficult to incorporate resource constraints into the analysis
framework, and on the other hand, pesticides, fertilizers, and agricultural films are not only
pollutants but also agricultural inputs. Therefore, this relationship leads to endogenous
problems with the EKC test.

Agricultural production yields economic outputs with environmental pollution, such
as fertilizer and pesticide runoff, whereas a traditional TFP analysis that does not include
environmental pollution would make the assessment results-biased. Based on studies
related to agricultural TFP and EKC, scholars have gradually shifted their research focus
from agricultural TFP to agricultural green TFP. Agricultural green TFP is agricultural TFP
regarding resource and environmental constraints. Ball et al. (2001) [23] and Rezek and
Perrin (2004) [24] measured TFP in US agriculture from the perspective of environmental
constraints and found that the TFP index accounting for environmental pollution was
lower than the TFP index without accounting for environmental pollution. Wang Qi et al.
(2012) [25] measured the green TFP change index of Chinese agriculture from 1992 to 2010
based on the stochastic frontier production function analysis using nitrogen and phosphorus
loss in agricultural production as factor inputs and found that the average annual growth
rate of green TFP and TFP during the study period were basically the same. Li Gucheng
(2014) [26] analyzed the growth of agricultural green TFP in China by combining the
directional distance function (DDF) model and the Malmquist index, and the results were
consistent, both models concluding that agricultural green TFP was generally lower than
agricultural TFP and that green TFP was higher in the eastern region than in the central and
western regions. With regard to the factors influencing green TFP in agriculture, literature
has been developed from the perspectives of human capital [27,28], fiscal expenditure [29],
agricultural technology inputs [30], agricultural industry structure [31] etc.

In summary, existing studies on the relationship between economic development
and environmental pollution have difficulty incorporating resource constraints into the
analytical framework. Hence, research on agricultural TFP may overestimate agricultural
productivity by ignoring the effects of agricultural pollution. Most of the few studies on
green TFP in agriculture have focused on the plantation, vegetable, or food industry, and
there are fewer comprehensive evaluations of green TFP in agriculture. To measure the non-
desired output of agriculture, some scholars have used indicators such as carbon emissions
from agricultural production [32,33], ignoring the impact of surface source pollution in
agricultural production. Therefore, this research attempts to make the following extensions
and contributions: measurement of agricultural surface source pollution output by the unit-
survey assessment method to compensate for the lack of estimation of agricultural pollution
emissions; measurement of agricultural productivity from the perspective of environmental
constraints to obtain more accurate productivity measurement results; analysis of the
driving factors affecting agricultural productivity to provide a theoretical basis for the
government to implement targeted policies.

3. Evaluation of China’s Agricultural Productivity from the Perspective of
Environmental Constraints

In this paper, we used the unit-survey assessment method to account for agricultural
surface source pollution and used the accounting results as non-desired outputs into the ML
index based on the SBM directional distance function to measure agricultural productivity
from the perspective of environmental constraints, i.e., green TFP. This section introduces
the unit-survey evaluation method, the ML index based on the SBM directional distance
function, and an exploratory spatial data analysis method.
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3.1. Unit-Survey Evaluation Method

There are three main methods accounting for agricultural surface source pollution.
First, fertilizer, pesticide, and agricultural film applications are used as agricultural envi-
ronmental pollution variables, which cannot objectively reflect the degree of pollution due
to varying sewage effects of the above agricultural inputs in different production modes.
Second, the theory of nutrient balance is applied to measure the total amount of excess
nitrogen; however, this method ignores the agricultural surface source pollution of other
pollution elements. Third, the unit-survey and assessment method of the Department of
Environmental Science and Engineering of Tsinghua University is used to measure the
amount of discharge. This method accounts for total pollution production by investigating
the amount of discharge from different agricultural pollution units and the coefficients
affecting agricultural surface pollution. The accuracy of the final pollution accounting may
be affected by the collection of emission factors from different sources and continuous
changes, but in general, this is a more advanced method of accounting for agricultural
surface pollution. This paper draws on this methodology to conduct a literature survey to
establish the correspondence between agricultural activities and emissions.

A process of accounting for agricultural surface source pollution is proposed as fol-
lows. First, identification of surface source types and pollution production analysis are
established. Identifying the main types of surface source pollution and determining the
scope of investigation of pollution-producing units is the basis for subsequent assessment.
The traditional cycle of material and capacity between planting and farming is broken
by the specialization and regionalization of modern agriculture. Under the production
mode of “high input, high output and high emission”, a large amount of waste cannot be
effectively used and pollutes the groundwater. In addition, waste pollution and sewage
pollution in rural life also put pressure on the ecological environment. Therefore, this
paper focuses on four pollution sources: farm fertilizer, livestock farming, farm solid waste,
and rural living. The main pollutants accounted for are TN, TP, and COD. Second, unit
determination and statistical survey on the basis of the analysis and decomposition of
agricultural surface pollution sources are conducted to establish the basic units of the
survey. Survey unit refers to an independent unit that produces pollutants and has a certain
contribution rate to surface pollution. Third, in the process of investigating and analyzing
the pollution generation process, quantitative analysis of the main sources of pollutant loss
is the basis for determining the emission factor values of each unit, which are obtained
mainly through the method of literature research. Finally, emissions and emission intensity
of various surface source pollutants are estimated.

After obtaining the statistical indicators of each pollution producing unit and the
production and discharge coefficients, we drew on the idea of Chen et al. (2006) [34] to
account for agricultural surface source pollution emissions. The accounting formula is
shown in Equation (1).

Ej = ∑ EUiρij(1− ηi)Cij(EUij, S) = ∑ PEijρij (1− ηi) Cij(EUij, S) (1)

In Equation (1), Ej is the emissions of agricultural pollutants TN, TP, and COD in
each province; EU is the index statistics of each source of pollution; ρij is the pollution
production intensity factor of pollutant j of unit I; ηi is a coefficient characterizing the
efficiency of the relevant resource use; PEij is the amount of pollutant j generated, Cij is
the emission factor for pollutant j of cell i and is determined by the cell and spatial feature.

3.2. SBM Directional Distance Function and ML Index

In order to overcome the biased results caused by ignoring slack variables and focusing
on only one aspect of inputs or outputs when evaluating productivity, Tone (2001) [35]
proposed the SBM model. The proposed model incorporates slack variables into the
objective function to address both the inefficiency factor caused by slack and the inclusion of
non-desired output in the productivity evaluation system. The SBM model is dimensionless
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and angle-free, avoiding the bias caused by different dimensions and angle differences,
and its measurement results are more accurate. The basic form of the SBM model is shown
in Equation (2).

→
D

t

0(xt,k′, yt,k′, ut,k′; g) = Minρ =
1− 1

N
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M
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I
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K
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K
∑
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zk = I;

K
∑

k=1
zkumk + Su

i = ui0,i = 1, 2, . . . , I; zk ≥ 0; Sx
n ≥ 0; Sy

m ≥ 0; Su
i ≥ 0

(2)

In Equation (2), D0 is the directional distance function; x indicates input; y indicates
the desired output; u indicates non-desired outputs; Direction vector g shows that the
desired and undesired outputs are increased or decreased in the same proportion for a
given input; t indicates period; k indicates the number of decision units; Z indicates the
respective weights when constructing environmental technologies; and Sx

n, Sy
m, and Su

i
represent the slack vectors for input redundancy, desired output deficiency, and excessive
environmental pollution emissions, respectively. When Sx

n, Sy
m, and Su

i are all greater than
zero, the actual inputs and pollution are greater than the inputs and pollution emissions
at the boundary, whereas the actual output is less than the output at the boundary. The
model is a directional distance function with variable returns to scale (VRS) or, if the sum

of the weight variables,
K
∑

k=1
zk = 1, is removed, the model becomes a directional distance

function with constant returns to scale.
The economic meaning of ρ in the SBM directional distance function represents the

inefficient ratio of inputs to outputs that strictly decreases with respect to Sx
n, Sy

m, and Su
i .

When ρ = 1, the production unit is fully efficient, and there is no excess of inputs and
undesired outputs or deficiency of desired outputs; when ρ < 1, it there is an efficiency
loss in the production unit, and the efficiency can be improved by reducing the amount of
inputs and undesired outputs in combination. The sources of green technical inefficiencies
are usually input redundancy, agricultural output deficiencies, and agricultural surface
source pollution redundancy.

The technical efficiency of green agriculture, measured by SBM, is a static analysis that
can only reflect the relative relationship between provinces and production boundaries. The
ML productivity index, on the other hand, allows for a dynamic analysis of each province’s
position relative to the production frontier (efficiency change) and movement toward
the production frontier (technological progress). According to the method of Chung et al.
(1997) [36], the ML index from period t to t + 1 can be expressed in the following form.

MLt+1
t =

 1 +
→
D

t

0(xt, yt, ut; g)

1 +
→
D

t

0(xt+1, yt+1, ut+1; g)
× 1 +

→
D

t+1

0 (xt, yt, ut; g)

1 +
→
D

t+1

0 (xt+1, yt+1, ut+1; g)


1
2

(3)

MLTECHt+1
t =

1 +
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0 (xt, yt, ut; g)

1 +
→
D

t

0(xt, yt, ut; g)
× 1 +

→
D

t+1

0 (xt+1, yt+1, ut+1; g)

1 +
→
D

t

0(xt+1, yt+1, ut+1; g)
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1
2

(4)

MLt+1
t = MLTECHt+1

t ×MLEFFCHt+1
t (5)

MLEFFCHt+1
t =

1 +
→
D

t

0(xt, yt, ut; g)

1 +
→
D

t+1

0 (xt+1, yt+1, ut+1; g)
(6)

In Equations (3)–(6), D0 indicates the directional distance function; x indicates input; y
indicates desired output; u indicates non-desired output; the directional vector, g, indicates
that the desired and undesired outputs are increased or decreased in the same proportion
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for a given input; and t indicates the period. The ML index can be decomposed into
technical progress rate (MLTECH) and technical efficiency (MLEFFCH) where the technical
progress rate measures the rate of progress of the green technology frontier, i.e., the dynamic
change of the outward expansion of the generation possibility frontier; and the technical
efficiency reflects the speed of catching up with the production possibility frontier, which
can be decomposed into scale efficiency and pure technical efficiency. The ML index is
usually used to measure and decompose the green TFP. Indices such as ML, MLTECH, and
MLEFFCH greater than 1 reflect the progress of green TFP, green technological progress
rate, and green technological efficiency, respectively, whereas values less than 1 reflect
their decline.

3.3. Exploratory Spatial Data Analysis Method

Due to the relatively similar social, economic, and ecological attributes, the proximity
of geographic units exhibits a certain spatial correlation. In order to further grasp the
spatial association and interaction characteristics among spatial units, the global Moran
index was used to describe the average level of green TFP association between all spatial
units and its significance. The calculation formula is as follows:

I =

n
n
∑

i=1

n
∑

j=1
wij(xi −

_
x)(xj −

_
x)

n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi −

_
x)2

(7)

In Equation (7), x = 1
n

n
∑

i=1
xi, xi, and xj indicate the observations in region i; and year j,

n is the number of regions. In this paper, the spatial weight matrix, w, was used based on
the adjacency matrix, and wij takes the value of 1 when region i and year j are adjacent—
otherwise, it is 0, where Hainan is set as adjacent to Guangdong. The value interval of I
is [−1,1]. The closer I is to 1, the stronger the spatial positive correlation between regions,
indicating higher similarity of spatial distribution of a certain crop yield in neighboring
regions; the closer I is to −1, the stronger the spatial negative correlation between regions;
if I is close to 0, there is no spatial autocorrelation between regions. The local Moran index
measures the degree of spatial difference between each spatial unit and its surrounding
spatial units, as well as its significance. The calculation formula is as follows:

Ii =
(xi − x)

S2

n

∑
j=1

wij
(
xj − x

)
, i 6= j (8)

In Equation (8), S2 = 1
n

n
∑

i=1
(xi − x)2. The rest of the symbols have the same meaning

as in Equation (7). The Moran scatter plot and LISA agglomeration plot can be used to
analyze the degree of continuous production of a certain crop and its distribution area.
The contiguous distribution was divided into four main types, namely high–high (HH),
low–low (LL), high–low (HL), and low–high (LH) clustering.

3.4. Variables and Data

This paper used the SBM-based directional distance function method to measure
green total factor productivity in agriculture and decomposes its structure into four com-
ponents: green technological progress rate, green technology efficiency, scale efficiency,
and pure technical efficiency. In this paper, for the agricultural green TFP measure, data
from 30 provinces across China (excluding Hong Kong, Taiwan, Macau, and Tibet, consid-
ering data availability and smoothness) from 2002–2016 were selected for the empirical
study. The data used for the analysis were obtained from the China Agricultural Statistical
Yearbook, provincial statistical yearbooks and the EPS data platform. In this paper, the
above 30 provinces were divided into three major regions, namely the eastern, central,
and western regions, according to the traditional division method. The current generally
accepted division of the eastern and western regions is as follows: the eastern region
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includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong, Guangxi, and Hainan; the central region includes Shanxi, Inner Mongolia,
Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan; the western region includes
Sichuan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.

With reference to existing studies, expected output was treated with the gross out-
put value of agriculture, forestry, animal husbandry, and fishery as the output variables,
whereas the value-added index of primary industry (2002 = 100) was used to remove the
effect of price factors. The non-desired output was measured as the total TN, TP, and COD
emitted from agricultural surface source pollution in each province. The selected input
variables were total power of agricultural machinery, fertilizer application, crop sowing
area, and number of people employed in the primary industry, which are closely related to
agricultural production. The value added of primary industry, total agricultural surface
pollution discharge, total power of agricultural machinery, agricultural fertilizer, crop
sown area, number of farm animals, and number of people employed in primary industry
are denoted by GDP, E, Mach, Chem, Land, Cattle, and Labor, respectively. Descriptive
statistics for the variables are shown in Table 1.

Table 1. Descriptive statistics of variables.

Variables Description Unit Obs Mean Std.Dev Min Max

GDP Value added of primary industry
RMB 100
million

million Yuan
450 1471.26 1131.93 65.50 5409.56

E Agricultural surface pollution
discharge million tons 450 100.71 81.94 7.91 360.79

Mach Agricultural machinery million
kilowatts 450 2839.71 2735.26 95.30 13,353

hem. Agricultural fertilizer million tons 450 177.30 138.85 6.60 716.10

Land Crop sown area thousands of
hectares 450 5294.39 3551.41 151.40 14,472.30

Cattle Number of farm animals in
primary industry million heads 450 388.63 316.63 1.23 1512.83

Labor Number of people employed in
primary industry

million
people 450 990.03 712.95 36.35 3403.60

3.5. Analysis of China’s Agricultural Productivity from the Perspective of
Environmental Constraints

In this section, the ML index based on the SBM directional distance function was used
to measure and decompose the agricultural green TFP, followed by spatial data analysis to
explore its spatial correlation.

3.5.1. Measurement Results of Green TFP in Agriculture

First, we calculated the average value of agricultural green TFP and its decomposition
in 30 Chinese provinces from 2002 to 2016 with the SBM-ML index method, and the specific
results are shown in Table 2. The overall results show that the average value of the national
agricultural green TFP index is greater than 1, with an increasing trend year by year, which
indicates that China’s agricultural green TFP is growing every year. The national average
value of green TFP in agriculture is 1.052, indicating that the average annual growth rate
of green TFP in agriculture is 5.22%. The green efficiency of agriculture decreased by
3.97%, and the rate of green technological progress in agriculture increased by 9.52%. The
growth of green TFP in agriculture mainly comes from the increase in the level of green
technological progress. Pure technical efficiency decreased by 2.01%, and scale efficiency
decreased by 2.08%.
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Table 2. Average green total factor productivity and decomposition values by province, 2002–2016.

Province Green Technology
Efficiency

Green
Technological
Progress Rate

Pure Technical
Efficiency

Scale
Efficiency Green TFP

Beijing (BJ) 1.000 1.164 1.000 1.000 1.164
Tianjin (TJ) 0.953 1.096 0.932 1.024 1.045
Hebei (HB) 0.963 1.093 0.982 0.979 1.052
Shanxi (SX) 0.977 1.093 1.007 0.968 1.067

Inner Mongolia (NM) 0.926 1.098 0.953 0.969 1.017
Liaoning (LN) 0.951 1.096 0.965 0.984 1.042

Jilin (JL) 0.933 1.091 0.955 0.975 1.018
Heilongjiang (HL) 0.952 1.101 0.981 0.969 1.048

Shanghai (SH) 1.000 1.075 1.000 1.000 1.075
Jiangsu (JS) 0.987 1.095 1.009 0.976 1.080

Zhejiang (ZJ) 0.981 1.110 1.000 0.980 1.089
Anhui (AH) 0.964 1.091 0.987 0.974 1.051
Fujian (FJ) 0.970 1.106 1.000 0.968 1.073

Shandong (SD) 0.968 1.092 1.000 0.966 1.057
Henan (HN) 0.950 1.088 0.950 1.001 1.034
Hubei (HB) 0.968 1.091 1.001 0.965 1.056

Hunan (HN) 0.967 1.090 0.998 0.967 1.054
Guangdong (GD) 0.962 1.093 1.000 0.959 1.051

Jiangxi (JX) 0.952 1.091 0.977 0.972 1.038
Guangxi (GX) 0.966 1.088 0.992 0.972 1.051
Hainan (HI) 0.917 1.103 0.936 0.978 1.011

Chongqing (CQ) 0.961 1.091 0.993 0.965 1.049
Sichuan (SC) 0.964 1.090 0.995 0.967 1.051

Guizhou (GZ) 0.980 1.091 1.022 0.956 1.069
Yunnan (YN) 0.937 1.091 0.963 0.971 1.022
Shaanxi (SN) 0.967 1.088 0.996 0.968 1.052
Gansu (GS) 0.955 1.095 0.986 0.966 1.046

Qinghai (QH) 0.976 1.087 1.000 0.974 1.058
Ningxia (NX) 0.957 1.090 0.875 1.102 1.043
Xinjiang (XJ) 0.928 1.094 0.956 0.968 1.015

National 0.961 1.095 0.980 0.979 1.052

Second, in terms of time-varying dynamics, green TFP, green technical progress rate,
green technical efficiency, pure technical efficiency, and scale efficiency all show up- and
down trends. In Figure 1, GTFP is green TFP, GTE is green technical efficiency, GTC is green
technical progress rate, PE is pure technical efficiency, and SE is scale efficiency. As shown
in Figure 1, the ML index is greater than 1, except for 2009, indicating a steady growth
trend of agricultural green TFP in general. The rate of technological progress fluctuates
considerably, reaching a peak in 2004 and then falling back. Technical efficiency is relatively
low—than 1, except for 2011 and 2012.

Third, in terms of regional differences, green TFP in the eastern, central, and western
regions shows an upward trend. The average green TFP indices of the eastern, central and
western provinces were 1.055, 1.053, and 1.045, respectively, for 2002–2016. Agricultural
green TFP showed an upward trend in all regions, with an average increase of 5.54% in the
eastern region, 5.30% in the central region, and 4.48% in the western region. The eastern,
central, and western regions show a high-to-low gradient of agricultural green total factor
productivity. In addition, the increase in green TFP in the eastern, central, and western
regions is driven by growth of the green technology advancement rate. The increase in the
rate of green technological progress means that the production frontier is pushing outward,
driving productivity and compensating for the loss of green technological efficiency. Green
TFP and decomposition values for the eastern, central, and western provinces are shown in
the Appendix A.
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Figure 1. Agricultural green TFP and decomposition values, 2002–2016.

As the estimation results show, the average growth rate of green TFP in the eastern
provinces is 5.54%, including a 3.96% decline in technical efficiency and a 9.72% increase in
the rate of technological progress. Pure technical efficiency decreased by 6.44%, and scale
efficiency decreased by 2.19%. The eastern provinces with the highest green TFP growth
rates are Beijing, Zhejiang, Jiangsu, and Shanghai. Tianjin, Liaoning, and Hainan have the
lowest green TFP growth rates among eastern provinces.

The average growth rate of green TFP in the central provinces is 5.30%, including
a 3.73% decline in technical efficiency and a 9.37% increase in the rate of technological
progress. Pure technical efficiency and scale efficiency decreased by 1.46% and 2.46%,
respectively. The central provinces with the highest green TFP growth rates are Shanxi,
Hubei, and Hunan. The central provinces with the lowest growth rates are Jiangxi, Henan,
Jilin, and Inner Mongolia.

The average green TFP growth rate in the western provinces is 4.48%, with a 4.19%
decline in technical efficiency and a 9.05% increase in the rate of technological progress.
Pure technical efficiency and scale efficiency decreased by 2.46% and 1.89%, respectively.
The western provinces with the highest green TFP growth rates are Guizhou, Shaanxi,
and Qinghai, and the provinces with the lowest green TFP growth rates are Chongqing,
Ningxia, and Yunnan. Similarly to the eastern and central provinces, the western provinces
are all driven by technological progress.

3.5.2. Spatial Correlation Analysis of Green TFP in Agriculture

Table 3 shows the spatial correlation of green TFP in agriculture. The global Moran
index of agricultural green TFP in 2004, 2006, 2010, 2015, and 2016 passed the significance
test, indicating that the above years of agricultural green TFP have significant positive
spatial correlation and show a more obvious spatial clustering characteristic.

To further investigate the spatial agglomeration at the local scale, LISA agglomeration
analysis was used to study the spatial agglomeration types of each province. As shown
in Figure 2, the number of provinces with significant spatial correlation during the study
period was low and unstable.

The above results suggest that agricultural green TFP has a spillover effect in some
years and that the improvement of green productivity level in a given province may drive
a similar improvement in neighboring provinces. However, no obvious agglomeration
center was formed, and the spillover effect is not regular.
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Table 3. Green TFP Moran global autocorrelation index and test values for Chinese agriculture.

Year Global Moran Index

2004 0.3148 ***
2006 0.2337 **
2010 0.1674 **
2015 0.1711 **
2016 0.2424 **

Note: ***, ** are significant at the 1%, and 5% levels, respectively; values in parentheses indicate standard errors.

Figure 2. LISA cluster types of green TFP in Chinese agriculture (2002–2016).

4. Empirical Analysis of the Influencing Factors of Agricultural Productivity from the
Perspective of Environmental Constraints
4.1. Econometric Models and Research Methods

Coe and Helpman (1995) [37] proposed that the change in a country’s TFP in an
open economy is influenced by the stock of domestic R&D intellectual capital on the one
hand and related to the stock of international R&D intellectual capital on the other; they
accordingly proposed a model as follows:

ln Fi = ai0 + aid ln Sid + ai f ln Si f (9)

In Equation (9), Fi represents TFP, Si
d represents domestic R&D intellectual capital,

and Si
f represents international R&D intellectual capital spillover. The above international

R&D knowledge-spillover model has become a standard paradigm for academics to explore
technology spillover effects. This paper extends the model by introducing international
trade in agricultural products, foreign direct investment in agriculture, agricultural tech-
nology input, agricultural human capital, rural affluence, environmental regulation, and
agricultural industry structure to examine the factors influencing green TFP in agriculture.

International Trade in Agricultural Products. The impact of international trade in
agricultural products on agricultural green TFP is a combination of the TFP effect and an
environmental effect. Agricultural trade may affect agricultural TFP through technology
spillovers and may affect the environment through structural, technological, and scale
effects. The above effects play a dominant role in determining the direction of the impact of
agricultural trade on agricultural green TFP. Thus, the direction of the agricultural trade on
green agricultural TFP needs to be further verified.
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Foreign direct investment in agriculture. On the one hand, agricultural FDI hinders
agricultural TFP due to its competitive effect. On the other hand, regarding the analysis of
the environmental effects of foreign direct investment in agriculture, according to the pollu-
tion paradise hypothesis, the stringent environmental regulations in developed countries
may also force some heavily polluting enterprises and industries to shift their produc-
tion abroad, putting pressure on the local environment. Therefore, this paper assumes a
negative effect of agricultural FDI on agricultural green TFP.

Agricultural technology inputs. According to endogenous growth theory, R&D inno-
vation drives productivity. Green technologies can boost productivity and reduce pollution.
Thus, this paper expects a positive effect of agricultural technology inputs on agricultural
green TFP.

Agricultural human capital. The increase in the level of human capital significantly
raises the level of agricultural TFP. An increase in education is conducive to raising en-
vironmental awareness and enforcing appropriate environmental regulations. Therefore,
this paper assumes that higher levels of human capital have a positive effect on green TFP
in agriculture.

Rural affluence. The level of rural affluence is closely related to the choice of agri-
cultural production methods, the promotion and application of agricultural technologies,
and the improvement of agricultural production efficiency. As the per capita income level
of farmers increases, people’s awareness of environmental protection and environmental
regulations increases, accompanied by a reduction in agricultural surface source pollution
emissions. Based on the above analysis, this paper expects a positive effect of rural affluence
on agricultural green TFP.

Environmental Regulation. The traditional neoclassical economic view argues that
in the short run, the implementation of environmental regulations increases the cost of
pollution control and has a “crowding-out effect” on other profitable investments, i.e.,
the “compliance-cost” effect of environmental regulations, thus negatively affecting green
total factor productivity. [38]. The modified view represented by Porter et al. (1995) [39]
takes a dynamic perspective, arguing that appropriate environmental regulations can
encourage producers to adopt cleaner production technologies in the long run, optimize
factor allocation efficiency, partially or even fully offset their “compliance costs”, and
achieve the dual goals of economic growth and environmental protection. This is the
“innovation-compensation” effect of environmental regulation. From a dynamic point
of view, after a certain period of development, the “innovation-compensation” effect of
environmental regulations on green TFP in agriculture will gradually offset the negative
impact of the “compliance-cost” effect. In terms of the “innovation-compensation” effect,
an increase in the intensity of environmental regulations encourages agricultural producers
to apply green production technologies and improve green total factor productivity in
agriculture by increasing the value added of agricultural products and reducing agricultural
pollution emissions. In this paper, we expect that the effect of environmental regulations
on green TFP in agriculture may show a nonlinear effect.

Agricultural industry structure. Industries have differ in resource consumption and
pollutant emission intensity. When the proportion of resource-consuming and pollution-
intensive industries in the agricultural industry increases or the development rate acceler-
ates, pollution emissions intensify; conversely, when the proportion of such industries in
the agricultural industry decreases or the development rate slows, pollution is reduced.
Therefore, this paper expects that the rising share of livestock farming in the agricultural
industry structure has a hindering effect on the growth of green TFP in agriculture.

Changes in economic factors are often influenced by past behavior patterns. The
efficiency of green TFP in agriculture in the one period will have a persistent effect on the
next period. Therefore, we constructed a dynamic panel model, which introduces a lagged
variable of green TFP to obtain more effective estimation results. This paper draws on
previous research to form a model based on the above analysis.
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ln GTFPit = a0 + a1 ln GTFPit − 1 + a2 ln Tradeit + a3 ln FDIit + a4 ln Tit

+a5 ln HCit + a6 ln Incit + a7 ln Erit + a8(ln Erit)
2 + a9 ln Strit + εit

(10)

In Equation (10), GTFPit represents the agricultural green TFP for each province
by year, Tradeit represents the scale of international trade in agricultural products, FDIit
represents the amount of foreign direct investment in agriculture, Tit represents the level of
agricultural technology inputs, HCit represents the level of human capital, Incit represents
the level of rural affluence, Erit represents environmental regulation, and Strit represents
the structure of the agricultural industry.

4.2. Variable and Data
4.2.1. Variable

The agricultural green TFP resulted from the SBM-ML model was a chain change
index of 1 in the previous year, which was transformed into a year-on-year cumulative
growth index of 1 in 2002 as the dependable variable in the empirical model in this section.
The variables are shown in Table 4.

Table 4. Definition of variables and measurement methods.

Variable Name Abbreviations Variable Measurement Method

Dependable
variables

Agriculture
Green TFP GTFP SBM-ML model measurement results

Independent
variables

Scale of foreign
trade Trade Total import and export of agricultural

products
Foreign direct

investment FDI Amount of agricultural foreign direct
investment

Technology
inputs T

Number of agricultural technicians in
public sector enterprises and

institutions

Human capital HC Average years of schooling of
agricultural labor force by region

Rural income Inc Per capita income of farmers
Environmental

regulation Er Total investment in environmental
pollution control

Industry
structure Str

Proportion of the output value of
animal husbandry in the total output
value of agriculture, forestry, animal

husbandry, and fishery

4.2.2. Data Description

Considering the availability and smoothness of data, we selected data from 30 Chinese
provinces (excluding Hong Kong, Taiwan, Macau, and Tibet) for the empirical study. The
data used for the analysis were obtained from the China Agricultural Statistical Yearbook,
the China Agricultural Products Import and Export Monthly Statistical Report, the China
Environmental Yearbook, and the EPS Global Statistics Platform. Per capita income of
farmers and the amount of investment in environmental pollution control was converted
to constant 2002 prices. The amount of foreign trade in agricultural products and the
amount of foreign direct investment in agriculture were converted to 2002 constant prices
according to the average exchange rate of RMB in previous years. The descriptive statistical
characteristics of the variables are shown in Table 5.
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Table 5. Descriptive statistics of variables.

Variables Abbreviation Obs Unit Mean Std.Dev Min Max

Agriculture Green
TFP GTFP 450 / 1.06 0.09 0.86 1.54

Scale of foreign trade Trade 450 RMB 10
thousand Yuan 2,423,533 3,826,027 3543.08 25,892,799

Foreign direct
investment FDI 450 RMB 10

thousand Yuan 3,910,778 4,747,961 74,750.55 30,408,194

Technology inputs T 450 people 22,350.74 12,104.09 2186 56,991
Human capital HC 450 year 8.59 0.97 6.08 12.12
Rural income Inc 450 RMB yuan 1471.26 1131.93 65.50 5409.56

Environmental
regulation Er 450 RMB 100 million

Yuan 162.62 171.20 1.1 1281.9

Industry structure Str 450 / 31.44 9.09 13.80 58.02

Natural logarithms were taken for all variables to eliminate heteroskedasticity and to
maintain consistency with the econometric model. In addition, in order to avoid “pseudo-
regression”, all variables were logged and subjected to unit root LLC test, Breitung t-stat
test, IPS test, ADF test, and PP test, and the results are shown in Table 6.

Table 6. Panel data stability tests.

Variables Levin, Lin &
Chut Breitung t-Stat Im, Pesaran and

Shin W-Stat
ADF-Fisher
Chi-Square

PP-Fisher
Chi-Square

GTFP
Log-Level −17.59 *** −11.16 *** −11.93 *** 232.28 *** 344.93 ***

First difference −26.54 *** −11.93 *** −18.89 *** 351.33 *** 551.25 ***

Trade
Log-Level −7.39 *** 0.34 −2.89 *** 110.26 *** 139.97 ***

First difference −22.29 *** −8.28 *** −14.09 *** 255.74 *** 302.50 ***

FDI
Log-Level −3.80 *** 1.84 −1.91 ** 113.56 *** 85.28 **

First difference −19.72 *** −1.10 *** −12.54 *** 226.47 *** 258.29 ***
T Log-Level −2.00 ** −4.33 *** 0.56 79.73 ** 97.19 **

First difference −19.22 *** −8.58 *** −11.86 *** 231.37 *** 311.33 ***
HC Log-Level −9.14 *** −2.61 *** −5.46 *** 129.70 ** 102.87 ***

First difference −16.67 *** −9.49 *** −11.01 *** 215.75 *** 306.40 ***
Inc Log-Level −6.86 *** −7.98 *** −4.71 *** 107.37 *** 107.45 ***

First difference −23.29 *** −24.16 *** −18.04 *** 322.11 *** 412.66 ***
Er Log-Level −10.82 *** −8.06 *** −6.31 *** 135.69 *** 142.10 ***

First difference −16.75 *** −11.38 *** −14.20 *** 259.87 *** 339.37 **
Str Log-Level −7.62 *** 2.56 −3.20 *** 108.81 *** 168.63 ***

First difference −18.09 *** −4.99 *** −12.47 *** 243.39 *** 332.46 ***

Note: ***, ** are significant at the 1% and 5% levels, respectively; values in parentheses indicate standard errors.

The unit root and cointegration tests of the variables are shown in Table 6, and the
first-order differences of all variables are significant at the 10% level, indicating that the
panel data are stationary in general.

4.3. Empirical Testing and Analysis

Since all changes in economic factors have a certain inertia, the current behavior of
individuals often depends on their past behavior patterns, and the change and improve-
ment of agricultural green TFP is a continuous dynamic process. Therefore, this paper
constructs a dynamic panel model and introduces a lagged variable of green TFP to obtain
more effective estimation results, adopting the generalized method of moments (GMM)
estimation method to verify the result. The systematic GMM model and differential GMM
model were used to analyze the factors influencing agricultural productivity in China from
the perspective of environmental constraints, and the results are shown in Table 7. All
variables in Table 7 are taken as logarithms.
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Table 7. Empirical results on the influencing factors of agricultural green TFP.

Variables
Differential GMM System GMM

(1) (2)

GTFP(−1) 0.983 *** 0.775 ***
(0.051) (0.045)

Trade 0.081 *** 0.084 ***
(0.012) (0.015)

FDI −0.098 *** −0.028 ***
(0.057) (0.010)

HC 1.243 ** 0.064
(0.271) (0.054)

T −0.054 ** −0.117 ***
(0.018) (0.022)

Inc −0.069 −0.014
(0.024) (0.025)

Er −0.080 ** −0.047 ***
(0.372) (0.049)

Er2 0.010 *** 0.008 *
(0.003) (0.005)

Str −0.181 *** −0.001
(0.031) (0.030)

AR1 0.002 0.001
AR2 0.586 0.101

Sargan 1.000 1.000
Constant term 1.440 *** 0.846 ***

(0.339) (0.394)
Obs 420 420

Note: ***, **, * significant at the 1%, 5%, and 10% levels, respectively; values in parentheses indicate
standard errors.

According to the estimation results of the differential GMM model and the systematic
GMM model for the dynamic panel, the Sargan test value is 1, so the original hypothesis
of “all instrumental variables are valid” cannot be rejected. The AR(1) and AR(2) tests for
the differential GMM are 0.002 and 0.586, respectively, and the AR(1) and AR(2) tests for
the systematic GMM are 0.001 and 0.101, respectively, indicating that there is no first- or
second-order autocorrelation in the difference of the disturbance terms. This shows that
the dynamic panel model setting is reasonable.

From the regression results, it is clear that the first-order lagged term of agricultural
green TFP, international trade in agricultural products, foreign direct investment in agri-
culture, agricultural technology input, and environmental governance have significant
effects on agricultural green TFP. The effects of agricultural human capital and agricultural
industry structure on agricultural green TFP are uncertain across models, while there is
no significant effect of rural affluence on agricultural green TFP. Compared with the weak
instrumental variability of the differential GMM, the results of the systematic GMM are
more robust and were analyzed as follows.

For every 1% increase in agricultural green TFP in the previous period, agricultural
green TFP increased by 0.78%. This indicates that the effect of agricultural green TFP in the
previous period on agricultural green TFP in the current period is significant, which is in
line with the reality. Agricultural productivity growth is influenced by production inputs
and technological advances in the previous period, whereas in agricultural production,
some factors, such as costs and prior-period emissions, have a persistent impact on the
later period. Thus, the growth of green TFP in agriculture is also dynamic process.

International trade in agricultural products increases agricultural green TFP. Every 1%
increase in the scale of agricultural trade increases agricultural green TFP by 0.08%. The
demonstration effect, scale effect, learning effect, and industry chain effect of agricultural
trade are stronger than the market and resource-crowding effects, driving the improvement
of green TFP in agriculture. Chinese agricultural exports are repeatedly restricted by the
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green barriers of developed countries, which will force Chinese agriculture to change the
current development model, improve the level of green agricultural development, and
promote the application of agricultural technology. The import of agricultural products
can also stimulate local competitors to imitate advanced technology. Imported agricultural
products containing advanced cultivation methods and management experience produce a
demonstration effect on domestic producers. The pressure of import-induced international
market competition can also motivate domestic producers to learn and innovate, which is
conducive to the development of domestic agriculture. However, we did not investigate
how specific exports and imports in international trade of agricultural products affect
agricultural green TFP, which should be addressed in future studies.

Agricultural FDI suppresses agricultural green TFP. For every 1% increase in agricul-
tural FDI, agricultural green TFP decreases by 0.03%. Since the reform and opening up, the
Chinese government has been encouraging foreign direct investment in the agricultural
sector, with a view to injecting new vitality into agriculture and spreading advanced tech-
nology, production methods, and management concepts. It has been argued that FDI can
raise the technological level of the host country and boost productivity growth under the
condition that the spillover channel is open. However, most agricultural FDI enterprises
invest and establish production bases in terms of China’s location advantages, abundant
agricultural resources, and cheap labor. Due to the difficulty of productizing agricultural
technologies and the inadequate intellectual property rights system in China, few agricul-
tural FDI enterprises have taken the initiative to transfer their production technologies.
Some transferred production technologies also run the risk of not matching the local market
reality. At present, the quality of China’s agricultural labor force is generally low, and most
agricultural producers find it difficult to imitate advanced technologies and production
methods. In addition, foreign direct-investment enterprises, on the one hand, squeeze the
market share and cause the “crowding-out effect” due to the brain drain of local enter-
prises, and on the other hand, the expansion of production scale and resource consumption
slows down the pace of agricultural green transformation, aggravates agricultural surface
pollution, and inhibits the growth of agricultural green TFP.

Agricultural technology inputs are not conducive to the growth of green TFP in
agriculture. For every 1% increase in agricultural technology inputs, agricultural green TFP
decreases by 0.12%. This shows that although China currently attaches some importance to
agricultural technology inputs and invests a lot of human and material resources, there are
problems, such as unreasonable input structure. The application of technology serves to
increase production and income but fails to pay attention to the coordinated development
of economic growth and environmental protection. The use of pesticides, fertilizers, and
agricultural films drives productivity growth at a huge cost to the environment. However,
due to data limitations, we were only able to use agricultural R&D personnel as a variable
to measure agricultural technology inputs, which may affect the presentation of the final
results; multiple perspectives may be needed to measure the robustness of the present
findings in future studies.

The primary term of environmental regulation has a significant negative effect on agri-
cultural green TFP, and the secondary term has a significant positive effect on agricultural
green TFP. The negative effect of environmental regulation on green TFP in Chinese agricul-
ture shows that the “cost-of-compliance” effect of environmental regulation on green TFP in
Chinese agriculture at the early stage is greater than the “innovation-compensation” effect,
which indicates that the government has invested a lot of financial and material resources
in order to protect the environment, although the effect of environmental regulations is
small and has not yet offset the negative impact of governance costs. However, a promising
phenomenon is that the squared term of environmental regulation drives the growth of
green TFP in agriculture, suggesting that the “innovation-compensation” effect increases at
a faster rate after crossing an inflection point. Specifically, the increase in the intensity of
environmental regulations makes agricultural producers reflect on their own problems of
low factor utilization and high pollution emissions in the production process, prompting
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them to adopt new production technologies to optimize factor allocation, reduce pollution
emissions, and increase the value added of their products [40]. The optimization of factor
allocation efficiency can improve agricultural production efficiency, and the increase in
competitiveness due to higher-value-added products can also enable agricultural producers
to earn excess profits in the short term, offsetting the negative impact of higher environ-
mental management costs [41]. In addition, with the government’s increasing attention to
environmental protection issues, green finance subsidies are being introduced, which will
reduce the R&D costs of clean technologies and financing costs for agricultural producers
and promote the efficiency of environmental management. The environmental regulation
introduced by the Chinese government have been encouraging research, development, and
applications of green agricultural production technologies while preventing and controlling
agricultural surface pollution. The concept of green development has been deeply rooted
in the hearts of the public. The market competitiveness of green agricultural products
is increasing, and the “innovative-compensation” effect of environmental regulation will
become increasingly apparent.

5. Conclusions and Policy Implications

We measured agricultural productivity under the environmental-constraint perspec-
tive using the SBM-ML index method based on provincial panel data from 2002 to 2016,
with agricultural surface source pollution as the non-desired output. A dynamic panel
regression model was used to empirically analyze the factors influencing agricultural pro-
ductivity to provide a reference for formulating policies to alleviate the conflict between
economic development and environmental pollution. The main conclusions drawn from
the empirical analysis are as follows.

China’s agricultural green TFP shows a trend of slow incremental growth year by year.
The growth of agricultural green TFP mainly comes from the increase in the green techno-
logic progress rate. In terms of geographic disparity, agricultural green TFP in the eastern,
central, and western showed a high-to-low gradient. The agricultural green TFP showed a
significant positive spatial correlation in some years. As for the influencing factors, the ex-
pansion of foreign trade in agricultural products is beneficial to enhance agricultural green
TFP, whereas foreign direct investment in agriculture and agricultural technology input
inhibits the growth of agricultural green TFP. There is a significant U-shaped relationship
between environmental management inputs and agricultural green TFP.

Based on the above and empirical results, Chinese agriculture is seeking a sustainable
development path with high yield and low resource consumption. To improve the develop-
ment of green agriculture and reduce regional differences, the driving factors need to be
taken into account to come up with corresponding policies.

First, because agricultural trade is the main contributor to agricultural GTFP growth
across China, the government should vigorously develop modern trade modes with less
environmental pollution, high added value, and low resource consumption. On the one
hand, export agricultural products should be distinguished as either clean agricultural
products or pollution-intensive agricultural products according to the degree of resource
consumption and pollution in the production process. On the other hand, efforts should
be made to achieve “moderate imports”. The structure of imported agricultural products
should be optimized, and inspection and quarantine should be strengthened for imported
agricultural products from epidemic areas.

Second, policy makers could implement selectively high-quality green foreign in-
vestment projects. It is essential to establish an ecological early-warning system to mon-
itor and control agricultural surface source pollution emissions. Technology spillover
channels should be unblocked to absorb the advanced technology brought by foreign
investment projects.

Third, policy makers could consider improving R&D efficiency through digital tech-
nologies. In the future, agricultural challenges such as climate change and natural resource
degradation will require a shift from the past focus on productive technologies to digitally
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focused technological innovation. Artificial intelligence, Internet of Things, blockchain,
and other technological applications will re-enable the agricultural industry. Various new
technologies, such as sensors, drones, and robots, will be more widely used in agricultural
production. The application of these new technologies will accelerate the digital transfor-
mation of all aspects of traditional agriculture, improve total factor productivity and release
the amplification, superposition, and multiplication effects of digital technology on rural
economic and social development. Favorable digital technology and human capital should
be input in western and central areas to promote regional synergy development.

Finally, the government could consider increasing investment in special funds for
agricultural pollution control and establish a financial support system linked to the reduc-
tion of agricultural pollutants. Special subsidies could also be provided to producers who
promote and use soil-testing technology and clean production technologies. Agricultural
subsidies should be transformed from direct subsidies of the fertilizer and pesticide indus-
tries to subsidies for agricultural producers, agricultural projects, and enterprises. Farmers
should be encouraged to adopt environmentally friendly technologies, and the regulation
of agricultural surface pollution should be transferred to individual conscious behavior.

6. Research Limitations and Future Directions

In accounting for agricultural surface source pollution, the unit-survey evaluation
method was used to measure and analyze the characteristics and trends of pollution
emissions from agricultural surface source pollution by combining the pollution production
and discharge coefficients of each pollution unit. The survey mainly covered agricultural
fertilizer, livestock and poultry breeding, agricultural solid waste, and rural household
pollution. However, not all pollution-causing units were fully investigated, and due to
data limitations, it was not possible to obtain dynamic changes in pollution production and
discharge coefficients. The above factors may lead to bias in the accounting of agricultural
surface source pollution emissions. In the future, the scope of production and discharge
units of the unit-survey evaluation method can be further expanded, or more accurate
production and discharge coefficients can be obtained through field research to obtain more
accurate data on agricultural surface source pollution.
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Appendix A

Table A1. Green TFP and decomposition values in eastern provinces (2002–2016).

East
Green

Technology
Efficiency

Green
Technologic

Progress
Rate

Pure
Technical
Efficiency

Scale
Efficiency Green TFP

Beijing 1.000 1.164 1.000 1.000 1.164
Zhejiang 0.981 1.110 0.980 1.000 1.089
Jiangsu 0.987 1.095 0.976 1.009 1.080

Shanghai 1.000 1.075 1.000 1.000 1.075
Fujian 0.970 1.106 0.968 1.000 1.073



Sustainability 2022, 14, 2807 18 of 20

Table A1. Cont.

East
Green

Technology
Efficiency

Green
Technologic

Progress
Rate

Pure
Technical
Efficiency

Scale
Efficiency Green TFP

Shandong 0.968 1.092 0.966 1.000 1.057
Hebei 0.963 1.093 0.979 0.982 1.052

Guangxi 0.966 1.088 0.972 0.992 1.051
Guangdong 0.962 1.093 0.959 1.000 1.051

Tianjin 0.953 1.096 1.024 0.932 1.045
Liaoning 0.951 1.096 0.984 0.965 1.042
Hainan 0.916 1.103 0.978 0.936 1.011
Mean 0.960 1.097 0.978 0.982 1.055

Table A2. Green TFP and decomposition values in central provinces (2002–2016).

Central
Green

Technology
Efficiency

Green Tech-
nological
Progress

Rate

Pure
Technical
Efficiency

Scale
Efficiency Green TFP

Shanxi 0.977 1.093 1.007 0.968 1.067
Hubei 0.968 1.091 1.001 0.965 1.056
Hunan 0.967 1.090 0.998 0.967 1.054
Anhui 0.964 1.091 0.987 0.974 1.051

Heilongjiang 0.952 1.101 0.981 0.969 1.048
Jiangxi 0.952 1.091 0.977 0.972 1.038
Henan 0.951 1.088 0.950 1.001 1.034

Jilin 0.933 1.091 0.955 0.975 1.018
Inner

Mongolia 0.926 1.098 0.953 0.969 1.017

Mean 0.963 1.094 0.985 0.975 1.053

Table A3. Green TFP and decomposition values in western provinces (2002–2016).

West
Green

Technology
Efficiency

Green Tech-
nological
Progress

Rate

Pure
Technical
Efficiency

Scale
Efficiency Green TFP

Guizhou 0.961 1.090 0.993 0.965 1.049
Shaanxi 0.964 1.090 0.995 0.967

0.956
1.051

Qinghai 0.980 1.091 1.022 1.069
Sichuan 0.937 1.091 0.963 0.971 1.022
Xinjiang 0.967 1.088 0.996 0.968 1.052
Gansu 0.955 1.095 0.986 0.966 1.046

Chongqing 0.976 1.085 1.000 0.974 1.058
Ningxia 0.957 1.090 0.875 1.102 1.043
Yunnan 0.928 1.094 0.956 0.968 1.015
Mean 0.958 1.091 0.975 0.981 1.045
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