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choice for Bayes linear emulation of complex computer models with limited
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SM1. Varying coefficient emulator: illustrative examples. In this section, the varying
coefficient emulator (3.1) is compared to a fixed coefficient emulator for a series of illustrative
examples. In the first two examples a simple function with just one input parameter is
emulated. The third (more detailed) example uses a more complicated function with multiple
inputs that is likely to be more representative of the types of functions encountered in practice.

SM1.1. Example 1 - a linear function. In this example, data are generated from the
following linear function:

(SM1.1) f(x) = α0 + α1x,

where x ∈ [−0.5, 0.5], α0 = 0.3 and α1 = 0.5 + 0.3x so that α1 varies with x. An emulator of
form (3.1) is fitted to a set of 5 evaluations of the function f , where the inputs at which the
function is evaluated are chosen using a maximin Latin hypercube design ([SM1], [SM4]).

The basis function in (3.1) is set to h(x) = (1, x)T and β1 and β2 are chosen to be varying
coefficients. The prior judgment for σ1 was set to 0.02, corresponding approximately to the
residual standard error of a standard regression fit to a design of size 5 and the prior judgment
of σ2 was set to 0.3. The correlation matrix cj(x, x

′) was set to the Gaussian correlation
function given in (3.2) with δ1 = 0.3 and δ2 = 1 (here the subscript i has been dropped as
the output is one-dimensional). Thus, the coefficient of x is a priori assumed to vary slowly
throughout the space, whereas εβ1(x) is assumed to be more locally variable.

For the remainder of the prior assumptions, we set: E[βj ] = 0; Cov[βj , βk] = 0 for j 6= k
and Cov[βj , βk] = 1 for j = k.

As x ∈ [−0.5, 0.5], the prior variance of f(x), given by k(x, x) in (3.7), will be smaller for
x closer to zero and larger as the absolute value of x increases. As in this case zero is in the
centre of the range of x and a space-filling design has been used, this assumption is justified
as we would expect the fit of the emulator to be better in the centre of the space and for the
variance to increase the further away we move from the design points. In general, it may be
the case that expert modellers are more confident in subjective judgments made in central
regions of the input space as the edges of the input space may be less well explored.

For comparison, the fixed coefficient model described in (1.1) is also used to emulate
the function (SM1.1) so that comparisons can be drawn between the two models. For this
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Figure SM1. Example 1: Plots of the true function (solid line), the expectation of the emulator (dashed
line) and the probability interval formed by taking two standard deviations either side of the mean (dotted line).
The varying coefficient model (model (3.1)) is shown on the left hand side, the fixed coefficient model (model
(1.1)) with basis functions h(x) = (1, x) in the centre and the fixed coefficient model with with basis functions
h(x) = (1, x, x2) on the right hand side.

fixed coefficient model two basis functions are tested: h(x) = (1, x)T (as above) and h(x) =
(1, x, x2)T . The priors used are largely the same as those used above, with the exception of
σ1, which is set to 0.08. This value is chosen so that Var[f(x)] = k(x, x) is approximately
the same for both the fixed coefficient and varying coefficient models when x = 0.25 and
x = −0.25. When | x1 |< 0.25, the prior variance of f(x) is larger for the fixed coefficient
model, and when | x1 |> 0.25 the prior variance is smaller for the fixed coefficient model. The
correlation length δ is set to 0.3, to correspond to δ1 in the varying coefficient model.

Figure SM1 compares the varying coefficient emulator to the fixed coefficient emulator. It
is clear that the variance of the fixed coefficient emulator with basis function h(x) = (1, x)T

(centre) is too small to capture the variation in the true function when extrapolating outside
x ∈ [−0.5, 0.5] (i.e. the range of the design). When the correct basis function h(x) = (1, x, x2)T

is used (right hand side) the true function lies within the dotted lines but the posterior variance
is much larger than that of the varying coefficient emulator (note the difference in scales on the
y-axis). In practice, the correct basis function will not be known and as both basis functions
appear to fit the data well within x ∈ [−0.5, 0.5] there is a risk that uncertainty will be
underestimated when extrapolating with fixed coefficients.

SM1.2. Example 2 - a trigonometric function. For the second example, data are gener-
ated from the following function:

f(x) =α0 + α1x for x ≤ 0

f(x) =α0 + sin (α1x) for x > 0(SM1.2)

where x ∈ [−0.5, 0.5], α0 = 0.3 and α1 = 1 + 0.8x so that α1 varies with x. As before, an
emulator of form (3.1) with basis function h(x) = (1, x)T is fitted to a set of 5 evaluations of
the function f . Priors are chosen as for the first example, with σ1 = 0.06 and σ2 = 0.8.

Figure SM2 compares the varying coefficient model to two fixed coefficient models with
basis functions h(x) = (1, x)T (centre) and h(x) = (1, x, x2)T (right hand side). We see again
the same pattern as for the first example - the variance of the fixed coefficient emulator with
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Figure SM2. Example 2: Plots of the true function (solid line), the expectation of the emulator (dashed
line) and the probability interval formed by taking two standard deviations either side of the mean (dotted line).
The varying coefficient model (model (3.1)) is shown on the left hand side, the fixed coefficient model (model
(1.1)) with basis functions h(x) = (1, x) in the centre and the fixed coefficient model with with basis functions
h(x) = (1, x, x2) on the right hand side.

basis function h(x) = (1, x)T is too small to capture the variation in the true function when
extrapolating outside the range of the design. In the right hand plot, the fit is much better
but again the variance is larger than for the varying coefficient emulator and it is not clear
that this basis function could be correctly chosen based on the design alone.

SM1.3. Example 3.

SM1.3.1. Model and prior assumptions. For the third example, an emulator is fitted to
data generated by the following function:

f(x1, x2, x3, x4) =α0 + 2 cos
(
− π

15
+ α1x1

)
− α2(x2 + α3)

2

− x3 sin(α4x3)− α5x
2
4,(SM1.3)

where x1, x2, x3, x4 ∈ [−0.5, 0.5]. Set α0 = 0.3, α2 = 1.5, α3 = 0.1, α4 = 0.6 and α5 = 0.75.
Let α1 = exp(0.4(x1+x2+x3)) so that α1 varies with x. An emulator of form (3.1) is fitted to
a set of N evaluations (where N is small relative to the number of inputs) of the function f .
This time, the aim is to use the emulator to find the inputs that correspond to the maximum
of f(x).

For this example, the basis functions in (3.1) are set to

(SM1.4) h(x) = (1, x1, x2, x
2
1, x

2
2, x

2
3, x

2
4)
T .

These basis functions have been chosen to correspond to the Taylor expansion of
f(x1, x2, x3, x4).

The parameter α1 varies with x1, x2 and x3. As α1 appears as a coefficient of x1 and x21
in the Taylor expansion of f(·), β2 and β4 are chosen to be the varying coefficients in model
(3.1). To model the local variation arising from the error term in the Taylor expansion, β1 is
also allowed to vary throughout the input space. As β3, β5, β6 and β7 are to be held constant,
we set σ3 = σ5 = σ6 = σ7 = 0.
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The prior judgments for the variance parameters are set as for the first two examples, so
that σ1 = 0.04. Prior judgments for σ2 and σ4 were obtained by assessing the size of the
coefficients of x1 and x21 in a standard regression fit and by considering the range of values
taken by the coefficients of x1 and x21 in the Taylor expansion of f(·). Based on this, σ2 was
set to 0.2 and σ4 was set to 0.7. In practice, a Taylor expansion is unlikely to be available for
setting prior judgments but subjective views from expert modellers, who may have an idea as
to the relative effects of different input parameters on the output in different regions of the
space, can be used to set these parameters. Prior judgments can also be formed by using a test
set or small initial set of model evaluations to assess the variation in coefficients if regression
models are fitted to different regions of the space.

The correlation functions cj(x,x
′) are again set to the Gaussian correlation function given

in (3.2). The correlation lengths are set to δ1k = 0.3, δ2k = 1 and δ4k = 1 for k = 1, 2, 3. Thus,
the coefficients of x1 and x21 are a priori assumed to vary slowly throughout the space, whereas
εβ1(x) is assumed to be more locally variable. The remainder of the prior assumptions are the
same as the previous two examples.

SM1.3.2. Comparison to fixed coefficient model. The fixed coefficient model described
in (1.1) is also used to emulate the function (SM1.3) so that comparisons can be drawn
between the two models. The same basis functions (as given in (SM1.4)) are used for this
fixed coefficient model. The priors used are largely the same as those used above, with the
exception of σ1, which is set to 0.07755 (chosen as in the first example).

Table SM1 compares the fit of the fixed coefficient model and the varying coefficient model
using the mean squared error as the metric (the mean squared error is calculated on a leave-
one-out basis). The results presented are the average values obtained using 50 randomly
selected Latin hypercube designs. Under this metric, the fit of the varying coefficient model
is better than the fit of the fixed coefficient model for N > 5. The fixed coefficient model has
a stochastic process term, which should be capable of modelling the local variation in β2 and
β4 given enough design points, but even with 100 design points, the fixed coefficient model
still has a larger mean squared error than the varying coefficient model.

Number of Average reduction Average MSE Average MSE
Design points in MSE Model (3.1) Model (1.1)

5 -0.0020 (19 positive) 0.0722 0.0702
10 0.0025 (41 positive) 0.0093 0.0118
15 0.0019 (49 positive) 0.0031 0.0050
20 0.0016 (49 positive) 0.0019 0.0035
25 0.0014 (50 positive) 0.0011 0.0025
50 0.0012 (50 positive) 0.0004 0.0016
100 0.0009 (50 positive) 0.0001 0.0010

Table SM1
Assessment of average model fit over 50 Latin Hypercube samples with varying size of design. The average

mean squared error is shown for Model (3.1) and Model (1.1) .

Figure SM3 compares the true f(x) to the estimates obtained using each of the emulators
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Figure SM3. Plots of the true function (solid line), the expectation of the emulator (dashed line) and
the probability interval formed by taking two standard deviations either side of the mean (dotted line) for fixed
x2 = −0.1, x3 = 0, x4 = 0 and x1 ∈ (−0.75, 0.75) for a design of size 15. The varying coefficient model (model
(3.1)) is shown on the left hand side and the fixed coefficient model (model (1.1)) is shown on the right hand
side.

when varying x1, for a design of size 15 with xi ∈ [−0.5, 0.5] for i ∈ {1, 2, 3, 4}. The mean
of the emulator tracks the true function more closely when the varying coefficient model is
used. The updated variance of the emulator is also generally smaller for the varying coefficient
model for x1 ∈ [−0.5, 0.5]. Extrapolating outside the design, we see the same as in the first two
examples: the probability interval associated with the varying coefficient model is larger than
the probability interval associated with the fixed coefficient model. This finding is confirmed
in Figure SM4 (which considers values of x1 between −2 and 2). In this range, the error term
in the Taylor expansion of f(·) is much larger, and the varying coefficient α1 takes a wider
range of values. As seen in Figure SM4, the varying coefficient model is better at capturing
this increased uncertainty outside x1 ∈ [−0.5, 0.5]. Using the fixed coefficient model, the true
function shown in bold is outside the probability interval for large values of x1.

Table SM2 assesses the two models against the objective of the study, which was to find
x that maximises f(x). The Table gives the loss (against the maximum found using the
true function) for each of the emulators for N = 10, 15, 20. The search for the maximum is
performed over a Latin hypercube sample of size 50,000. The loss presented is averaged over
ten draws of a Latin hypercube design for fitting the emulator and over ten draws from the
grid over which the search is performed. We see that for all N tested, the optimum found
using the varying coefficient model is closer to the truth than the optimum found using the
fixed coefficient model.
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Figure SM4. Plots of the true function (solid line), the expectation of the emulator (dashed line) and
the probability interval formed by taking two standard deviations either side of the mean (dotted line) for fixed
x2 = −0.1, x3 = 0, x4 = 0 and varying x1 ∈ (−2, 2) for a design of size 15. The varying coefficient model
(model (3.1)) is shown on the left hand side and the fixed coefficient model (model (1.1)) is shown on the right
hand side.

Number of Average loss Average loss
Design points Varying coefficient model (3.1) Fixed coefficient model (1.1)

10 0.031 0.054
15 0.007 0.017
20 0.001 0.004

Table SM2
The average loss (over ten designs and ten grids) when using an emulator instead of the true function

to find the maximum of f(x), searching over a Latin hypercube sample of size 50,000. The loss is defined as
f(xopt) − f(xe), where xe is the input that maximises E[f(x)] (as estimated using the emulator) and xopt is
the input that maximises f(x).

SM2. Further details on the inputs of the motivating example. In this section, further
details are given on the parametrisation of the inputs of the energy policy computer model.
In the main manuscript, a brief discussion of these inputs is given in subsection 3.3.1.

Strike prices were parametrised as following an exponential decay (with each price rounded
to the nearest £5). For each technology considered, the strike price in 2016 and the rate
of decay over time were varied, with the remaining parameters of the exponential decay
set to constants over all model runs. The strike price for each technology in year t (for
t ∈ {2016, . . . , 2035}) was given by

st = smin + (smax − smin) exp

(
−r(t− 2016)

T

)
,

for r the rate of decay over time and smax the strike price in 2016 for the technology in question.
The parameters smin and T were set to be constant over all model runs. For offshore wind
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smin = 90 and T = 19; for onshore wind, smin = 75 and T = 4; and for solar power, smin = 75
and T = 4. The strike prices for round three offshore wind (which is a scheme for larger
scale offshore wind development) were determined by setting smax equal to that of standard
offshore wind, and r equal to half that of standard offshore wind. The other parameters for
round three offshore wind were set to smin = 100 and T = 19. Values of the parameters smin
and T for each technology were set by considering the amount of support required and the
expected timescales for further cost-reducing technological developments. The parameters
smax and r were varied in the design to investigate the impact on the output of changing
these parameters. For all technologies, r ∈ [0, 4]. For offshore wind, smax ∈ [100, 160] and for
onshore wind and solar, smax ∈ [75, 130].

The other inputs varied in the study were: electricity demand, coal price, gas price, the
construction costs of different plants, the load factors for onshore and offshore wind power and
the hurdle rates for onshore and offshore wind power. The assumptions used in a government
study ([SM5], [SM2]) of this problem were available and were used to parametrise each of the
inputs.

For annual total electricity demand from 2010 to 2080, three time series of assumptions
were tested in the government study: dc (the central assumption), dl (the low assumption)
and dh (the high assumption). For emulation, the demand time series was parametrised as a
shift away from the central assumption, setting demand to

dc +
z1
2

((dc − dl) + (dh − dc)) ,

where z1 is some scalar shift parameter. The high and low assumptions dh and dh are such
that the range of demands tested increases through time. The shift parameter z1 was allowed
to range from −1.5 to 1.5 in the design.

The same approach was used to parametrise the time series of annual gas and coal prices.
The price for each fossil fuel was set to the central government assumption plus some pro-
portion of the average shift tested in the government study. Coal and gas were each given an
independent scalar shift parameter, which varied between −1.5 and 1.5 in the design.

The construction costs for different plants are modelled with three different costs (low,
medium and high) for each different plant and for each year. The supply curve used for each
technology in each year consists of straight lines linking the low cost to the medium cost and
the medium cost to the high cost. The central government assumptions for these costs were
varied using one scalar multiplier, so that all costs for all technologies in all years are shifted
by this multiplier. The multiplier varied between 0.8 and 1.2 in the design.

A hurdle rate for a plant is the return on an investment that would be required by an
investor in this plant. The computer model incorporates a hurdle rate for each type of plant
for each year. To vary the central hurdle rate assumptions used in the government study for
onshore and offshore wind farms we took the central government assumptions for each type
of wind farm and shifted them independently using two scalar multipliers (one for onshore
wind and one for offshore wind). Each multiplier was set to between 0.8 and 1.2 in the design.
Hurdle rates for all other plants were set to the central government assumption.

A similar approach was used to vary annual load factors for onshore and offshore wind.
The load factor of a plant is the energy produced over a year divided by the theoretical amount
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Parameter Description Minimum Maximum

θ1 Offshore strike price rate of decay 0.0 4.0
θ2 Offshore strike price starting price 100.0 160.0
θ3 Solar strike price rate of decay 0.0 4.0
θ4 Solar strike price starting price 75.0 130.0
θ5 Onshore strike price rate of decay 0.0 4.0
θ6 Onshore strike price starting price 75.0 120.0
z1 Demand -1.5 1.5
z2 Coal -1.5 1.5
z3 Gas -1.5 1.5
z4 Technology costs 0.8 1.2
z5 Offshore hurdle rate 0.8 1.2
z6 Onshore hurdle rate 0.8 1.2
z7 Offshore load factor 0.8 1.2
z8 Onshore load factor 0.8 1.2

Table SM3
Description of parameters with ranges explored when selecting Latin Hypercube sample

of energy that could be produced if the plant were operating at its maximum capacity. The
computer model takes the load factor of a plant to be constant over the years of operation.
Load factors for onshore and offshore wind farms were allowed to vary independently in the
design between 0.8 and 1.2 of the central government assumption.

A summary of the parameters included in the study, with associated ranges is given in
Table SM3. As described in the main manuscript, as an initial design, a maximin Latin
hypercube sample was used to select 40 design points over the fourteen dimensional input
space. After completing the initial design some computing time was still available so a further
16 design points were run. These 16 design points were chosen by generating 32 potential
design points and calculating the expected value and standard deviation of the emissions,
renewable generation and cost output for each of these potential design points. These values
were calculated using a fixed coefficient emulator. By comparing the expected value and
variance for each design point, 16 were subjectively selected as having a higher probability
of meeting the three objectives. Time constraints prevented a more detailed analysis at this
stage.

SM3. Further details on selecting the design for the motivating example. This sec-
tion gives further technical details on the selection of the design for the motivating example,
expanding on details in subsection 4.5.

The steps listed in subsection 4.5 add design points in batches of four. This process could
be improved by the addition of stepwise delete steps, and by adding points to the design
individually. By adding points to the design in batches of four and not performing stepwise
deletes, it is not possible to mitigate against situations where points added to the design later
reduce the importance of points selected earlier in the process. These improvements were
difficult in practice because even with Bayes linear methods, the calculation for estimating the
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criterion was expensive. The computing time needed to estimate the criterion also meant that
only 50 points were selected as candidate design points initially. By using a Latin hypercube
sample to select these 50 points we aimed to ensure that the candidate design points were well
spread throughout the space. The final step above of choosing four points from a new design
was used to reduce dependence on the single initial choice of Latin hypercube sample.

The government target for emissions was to reach 100gCO2/kWh in 2030. Based on the
assumed parametric uncertainty and model evaluations chosen in the first wave, the probability
of meeting this target was found to be much smaller than the probability of meeting the
targets on spend and renewables. The target for emissions occurs ten years after the targets
on renewable generation and spend and so the small probability of reaching 100gCO2/kWh by
2030 is not necessarily an issue. There is time to adjust future policy to meet 100gCO2/kWh
when more information about the evolution of the electricity system through time is known.
To account for this inequality in treatment of targets, each stage of the design selection process
was repeated for an emissions target of 120gCO2/kWh. The selection of design points at each
stage was made with reference to the criterion both for an emissions target of 120gCO2/kWh
and an emissions target of 100gCO2/kWh (this only resulted in changes to the design in step
4). Another approach would be to adjust the weights in the criterion (4.4).

The grid over which the criterion was estimated was chosen by sampling 100 possible
grids of size 25 and then finding which grid had the highest probability that one or more of
the points in the grid met the three objectives associated with cost, emissions and renewable
technologies. The aim of this process was to reduce time spent computing the criterion at grid
points with very low probabilities of meeting the objectives as these points will have a weight
close to zero and so any reduction in emulator variance at these points will not contribute to
the overall criterion. By estimating the probability that one or more points in each selection of
25 meets the objectives we aimed to capture grid points across multiple modes in the space. If
instead, the 25 grid points with highest individual probability were selected, there is a higher
risk that all of these points could belong to one mode.

The design points included in the final design generally had high strike prices for offshore
wind, having either a high starting price or a mid-range starting price with a low rate of decay.
The strike prices for onshore wind and solar chosen in the design were spread throughout the
range, although points with a very high strike price for offshore wind tended to have mid-
range rates of decay for solar plant, possibly reflecting the increased cost that would result
in later years from having high strike prices for both solar and offshore wind. Offshore wind
has a larger effect on both the cost of government support and the emissions than onshore
wind and solar because offshore wind is currently a more expensive technology and so requires
higher strike prices to incentivise investment. The chosen design points also tended not to
have high or low values for the construction cost of plant or the load factor for offshore wind.
The computer model output is sensitive to these two inputs, so it is important to reduce the
emulator variance in regions where these two inputs have a higher chance of occurring.

SM4. Further details on fitting the emulator using the full design. This section gives
additional details on the fitting of the emulator to the full design, expanding on the text in
subsection 5.1 in the main manuscript.

Table SM4 shows the linear terms included as basis functions of each element of the
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emulator along with the estimates of the coefficients for these linear terms. Additional non-
linear terms are listed beneath Table SM4. Intuitive explanations for the estimates of the
coefficients can be found in subsection 3.3.2 of the main manuscript. Prior judgments for
the variance and correlation lengths for the stochastic processes associated with each varying
coefficient are listed in Table SM5. As in subsection 3.3.2, these prior judgments were set by
considering the expected size of variation of each coefficient, and the speed over which the
coefficient might vary. As described in the main manuscript, prior judgments were adjusted
so that the variance term

∑
h2j (x)σ2j was approximately equal to the residual variance of a

linear regression fit when xk = 0.5 for all k ∈ {1, . . . , 14}. These residual variances were 0.132

(renewables model), 0.132 (emissions model) and 0.152 (spend model). The remainder of the
prior assumptions were set as described in subsection 3.3.2. Unlike in subsection 3.3.2, values
for δjk were set to the same value for all k. Although it was expected that inputs included
in the mean function would have a bigger effect on the correlation (and hence be associated
with a smaller δjk), this was not found to make a difference in practice. To improve the fit
of the emulator, the emissions outputs for all design points were multiplied by the demand
in 2030 at that design point. This scaling was done so that the data used corresponded to
the original computer model output of total emissions. This output is later post-processed by
dividing by demand to give emissions per kWh. The input and output data were also scaled
to lie between −1 and 1.

Input Renewables Emissions Spend

1. Offshore strike price rate of decay -0.11 0.16 -0.11
2. Offshore strike price starting price 0.35 -0.27 0.47
3. Onshore strike price rate of decay
4. Onshore strike price starting price 0.07 0.04 0.07
5. Solar strike price rate of decay
6. Solar strike price starting price
7. Demand -0.40 0.43
8. Coal -0.06
9. Gas 0.07 0.08 -0.30
10. Technology costs -0.33 0.62 -0.36
11. Hurdle rate offshore -0.15 0.16 -0.19
12. Hurdle rate onshore -0.07
13. Load factor offshore 0.47 -0.29 0.53
14. Load factor onshore 0.23 0.10

Table SM4
Coefficient estimates for inputs included as linear terms in the vector of basis functions for each emulator

are shown in the table. Interaction and squared terms also included were: renewables -(2,10), (2,13), (10,13),
(2,10,13); emissions - (1,2), (1,7), (2,7), (4,7), (9,13), (11,11); spend - (1,2), (2,9), (2,10), (2,13), (9,10),
(9,13), (1,1), (2,2).

The coefficient estimates in Table SM4 correspond to intuitive explanations for the rela-
tionships between the inputs and outputs of the computer model. When the starting strike
price increases or the rate of decay of the strike price decreases, the support available to
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Renewable model Emissions model Spend model

Basis function σ2j δjk Basis function σ2j δjk Basis function σ2j δjk
Constant 0.072 0.3 Constant 0.052 0.3 Constant 0.052 0.3

2 0.112 1.5 10 0.12 1 9 0.152 2
4 0.112 1 13 0.222 2 11 0.152 3
7 0.12 1 1,7 0.052 1 14 0.152 1.5
10 0.052 1 2,9 0.252 4

2,10 0.22 1.5
2,10,13 0.22 1

Table SM5
Prior judgments for the covariance function associated with each basis function . The basis function number

corresponds to numbers given in Table SM4.

renewable generation is greater and so there is more investment in renewable technologies,
resulting in lower emissions and a greater cost to the government. Increasing demand results
in a lower proportion of that demand being met by renewable sources and hence increasing
emissions. Greater construction costs will result in less investment in renewable technology
and hence greater emissions and a lower cost to the government (as there is less take-up of
the support mechanism). An increase in hurdle rate or a decrease in load factor will also both
result in lower investment in renewable plant and hence greater emissions. An increase in the
price of gas will result in an increase in the wholesale price of electricity. If the wholesale elec-
tricity price rises, the difference between the strike price and the wholesale price will decrease,
meaning that the cost of the government support decreases. The effect that increasing the
gas price has on emissions is slightly less intuitive. The estimate of the coefficient is positive,
whereas it might be expected that an increase in gas price would result in an increase in
investment in renewable technology and hence a reduction in emissions, as plant can expect
increased revenue through increased electricity prices. Offsetting this, decreasing gas prices
can result in gas generation overtaking coal generation, resulting in a decrease in emissions
(which would give the positive coefficient seen in Table SM4). A discussion of these issues in
relation to the USA can be seen in [SM3].
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