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Abstract. Computer models are widely used to help make decisions about real-world systems. As computer
models of large and complex systems can have long run-times and high-dimensional input spaces
it is often necessary to use emulation to assess uncertainties in computer model output. This
paper presents methodology for emulation of complex computer models motivated by a real-world
example in energy policy. The computer model studied is an economic model of investment in
electricity generation in Great Britain. The computer model was used to select parameters
in a government policy designed to incentivise investment in renewable technologies to meet
government targets. Limited computing time meant that few runs of the computer model were
available to fit an emulator. The statistical methodology developed was therefore focussed on
accurately capturing the uncertainty in computer model output arising from the small number of
available model runs. A varying coefficient emulator is proposed to model uncertainty in model
output when extrapolating away from model runs. To maximise use of the small number of runs
available, this varying coefficient emulator is paired with a criterion-based procedure for design
selection.
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1. Introduction. Computer models of complex systems are used in many fields to
help make decisions about these systems. These computer models combine a set of input
assumptions with some approximation of a system to give some output of interest. A
computer model can therefore be thought of as a function f(·), taking a vector of inputs
x and returning a vector of outputs f(x). It is usually the case that the modeller is
interested in the behaviour of the real-world system, rather than the output of the computer
model, making it necessary to study the uncertainties that link the model to this real-world
system. Uncertainties that should be considered include: parametric uncertainty, arising
from lack of knowledge about the appropriate input parameters (x) to use, and structural
discrepancy, which relates to the imperfect approximation of the system (by f(·)).

For fast computer models with small input spaces, parametric uncertainty can be as-
sessed using standard Monte Carlo simulation and calibration can be performed using
Markov Chain Monte Carlo techniques. For slow computer models or models with a large
input space, these methods become computationally infeasible. To resolve this issue, emula-
tors (statistical models of computer models) are commonly used to quantify the uncertainty
in the output of a computer model at an untested input. For a given input x, an emulator
gives a probability distribution for the value of f(x). An emulator can be combined with
Monte Carlo simulation over the joint distribution of x to assess parametric uncertainty
([29], [22]) and can be used to calibrate a computer model against historical data using
Bayesian techniques ([5], [20], [19]).

∗Submitted to the editors.
Funding: This work was supported by EPSRC grants EP/K03832X/1 and EP/K036211/1.
†School of Mathematics, University of Edinburgh, Edinburgh, UK (Amy.L.Wilson@ed.ac.uk,

Chris.Dent@ed.ac.uk).
‡Department of Mathematical Sciences, Durham University, Durham, UK (Michael.Goldstein@durham.ac.uk).

1

mailto:Amy.L.Wilson@ed.ac.uk
mailto:Chris.Dent@ed.ac.uk
mailto:Michael.Goldstein@durham.ac.uk


2 A.L. WILSON, M. GOLDSTEIN, C.J. DENT

A common form for an emulator is to model the i-th element of the computer model
output at input x as

(1.1) fi(x) =

pi∑
j=1

βijhij(x) + εi(x),

where B = {βij} are a set of unknown constants associated with a set of known and
deterministic basis functions hij(x) and εi(x) is a stochastic process uncorrelated with B
with zero mean and covariance function σ2i ci(x,x

′), where ci(x,x
′) depends only on ‖x−x′‖

and gives a positive semi-definite covariance matrix. The term
∑pi

j=1 βijhij(x) is known
as the mean function. There are often natural linear relationships between the inputs
and outputs of a computer model. Specification of a mean function with regression terms
as in (1.1) allows for these linear relationships to be directly modelled and for any prior
information about the relationships to be incorporated. In a traditional Bayesian analysis,
a common choice for εi(x) is a Gaussian Process model (for example, see [29], [30], [3])
combined with a prior distribution over the βij , σ

2
i and any parameters in the correlation

function. In a Bayes linear analysis ([15]) it is only necessary to specify prior means and
covariances for βij and for εi(x) rather than complete probability distributions. See [5],
[6], [8] and [37] for further details. For both Bayes linear and traditional Bayesian fitting,
prior judgments are combined with model (1.1) and data consisting of N computer model
evaluations D = {(x1,y1), . . . , (xN ,yN )} (where yk = f(xk) for k ∈ {1, . . . , N}) to give
updated beliefs as to the value of f(x) for any x.

This article presents methodology for applications where the number of possible model
evaluations N is small, relative to the number of inputs. The focus is on problems where
there is sparse coverage of the input space so extrapolation outside the design is needed
but the number of runs is still sufficient to fit an emulator (unlike, say, very large physical
models). For very large and slow models where very few model runs are possible one
option is to use a multi-level modelling approach [7]. This can be done by constructing a
fast approximate version of the model (e.g. by coarsening the grid, changing the time step
or approximating the solution) and building an emulator of this fast version of the model.
This emulator can then be used as an informed prior for the emulator of the full slow
model. Where a multi-level modelling approach is used the methodology presented here
is still of use because there is still a need for careful extrapolation to avoid overconfidence
when emulating the slow model.

The development of the methodology in this paper was motivated by a real-world
example, concerning the need to make government policy decisions under uncertainty using
a computer model of the long-term GB electricity supply. In this example, the objective
was to set the parameters of a support scheme for renewable generation to give the best
chance of meeting future government climate and cost targets. Computing limitations
meant that it was only possible to perform 80 evaluations of this computer model to fit
an emulator with fourteen input parameters. With limited model evaluations available to
fit the emulator it was critical to make best use of these model evaluations. Two aspects
of this problem will be focussed on in this paper. The first aspect relates to the form
of the emulator. An adaptation of (1.1) with varying coefficients was used to capture
uncertainty about the coefficients βij in regions where there were few model evaluations.
The second aspect focuses on the iterative selection of model evaluations for fitting the
emulator. By carefully choosing the experimental design, time is not wasted performing
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model evaluations that are not ultimately of value. For the example in this paper, model
evaluations were selected by minimising a specific design objective related to the problem
under study.

The rest of this article is organised as follows. Section 2 describes the background to
the problem and the motivating example. Section 3 presents a varying coefficient model
for emulation of a complex computer model, describes the process of fitting this model
using Bayes linear methods and demonstrates use of this model on the electricity system
example described above. Section 4 discusses some general principles for design choice
with limited data and applies these principles to the example. Section 5 presents results
from the analysis of the electricity system example, including a discussion of the use of
emulation in making decisions on the choice of strike prices for renewable technologies.

2. Background.

2.1. Emulation in problems with limited model evaluations. When fitting an emula-
tor to a small number of model evaluations, the need to minimise the number of independent
parameters in the model (to avoid overfitting) must be balanced with the need to reflect
accurately the form of the response surface and its associated uncertainty. This is par-
ticularly problematic when the parameters βij are thought to vary in different regions of
the input space, a common problem with large and complicated computer models. With a
large design, errors arising from an inexact prior assumption that each βij is constant over
the whole space can be corrected for in the updated beliefs about the stochastic process
εi(x). With a small design there may not be enough model evaluations to override the in-
exact prior assumption and so the predictive ability of the emulator may be poor. Whilst
interaction terms in the mean function of (1.1) can deal with the issue of coefficients which
vary in different regions of the space to some extent, they can only be used for simple linear
relationships. For large computer models, interactions are likely to be complex and non-
linear. If it is thought that some or all of the βij may be non-constant over the input space
then it may be possible to obtain a better fit to the computer model using an emulator
which allows for coefficients to vary in different regions of the input space.

A further benefit of incorporating varying coefficients into the the emulator is to guard
against the underestimation of uncertainty when extrapolating away from model evalua-
tions. The emulator in (1.1) uses regression terms to model the global behaviour of the
computer model. In regions of the space with few model evaluations, this fitted regression
model is extrapolated. In contrast, an emulator which uses only the stochastic process term
in (1.1) will revert to a mean of zero when extrapolating. Use of regression terms can there-
fore be helpful when computing time is limited because the fit of the emulator in regions
with design points is extrapolated into sparse regions but there is a risk that uncertainty
is underestimated. This underestimation of uncertainty arises because an assumption is
made that the same polynomial mean function can be used to describe the global response
surface of the computer model everywhere. In practice, for complex models, there is likely
to be considerable uncertainty as to the form of the most appropriate polynomial global
response surface in regions of the space with few model evaluations. A varying coefficient
model explicitly models this uncertainty by allowing the coefficients of the regression terms
to vary across the input space. By assuming that coefficients are constant, uncertainty in
regions of the space with no model evaluations will be underestimated, as uncertainty in
the form of the polynomial mean function is not accounted for. This is particularly a
problem for small designs, which will have a sparse coverage of the input space, because
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making decisions based on such designs will necessarily involve extrapolation. A varying
coefficient model has a greater number of parameters to be fitted, which can be a challenge
with a small design, but these extra parameters give the flexibility to introduce additional
uncertainty when there is uncertainty as to the stability of the polynomial mean function
across the input space. We argue that unless the prior information suggests that same
polynomial mean function can be used across the relevant input space it is crucial to cap-
ture the increased uncertainty arising from lack of knowledge of this mean function in the
modelling process.

The problem of varying coefficients can be dealt with by fitting different emulators
to different regions of the input space. When using emulators to history match, model
evaluations are performed in waves (e.g. see [37], [5], [6], [38]). After each wave, a new
emulator is fitted and used to restrict the input space to inputs that could plausibly match
system observations. Then a new wave of analysis is performed on this smaller input
space. As a new emulator is fitted with each restriction of the input space, different prior
assumptions for the βij (and also the covariance function) can be used. In [16],[21] and [32]
partitioning methods are used to divide the input space into different regions. A different
emulator is fitted within each of these regions, so the βij are not assumed to be constant
over the input space (and the covariance function is not assumed to be stationary). These
methods are very flexible but require enough model evaluations to fit a separate emulator
in each region. Where model evaluations are limited, this can result in very high levels
of emulator uncertainty over the entire input space. For complex computer models with
very different response surfaces in different regions, this high level of uncertainty may be
warranted, but in many cases the values of βij in one region of the space may be informative
about the values of βij in neighbouring regions. Making use of this information can help
reduce the emulator uncertainty over the whole input space.

Methods for Bayes linear estimation of parameters in general regression models without
an assumption of a constant regression coefficient were presented in [13] and [14]. These
general regression models were fitted over the whole dataset, allowing every datapoint
to contribute to estimation of the coefficient, rather than by partitioning the variable
space. In [31] a fully specified Bayesian formulation for a smoothly varying coefficient
regression model was given in the context of choosing an optimal design. Variation in
coefficients was modelled using a Gaussian process with specified covariance function. This
covariance function determines the extent to which coefficients vary throughout the space.
[12] extended this approach to use a varying coefficient model for spatial data. Further
applications of this spatially varying coefficient model can be seen in [11] and [18]. In this
paper, a varying coefficient model is proposed for emulation of complex computer models.
A varying coefficient model explicitly models the uncertainty in the coefficients βij , which
is of particular use when the number of model evaluations is limited because of the need
to extrapolate outside the dataset.

An alternative approach when assumptions of constant mean and variance do not hold
is to use a non-stationary Gaussian Process model ([35], [28]). In [1] a Gaussian Process is
used to model the global mean function in addition to the local variation. Our approach
differs in that we use a polynomial global mean function and associate a stochastic process
with each polynomial term in this function. This makes it possible to incorporate any
prior information about the coefficients βij into the analysis. In [39] a non-stationary
Gaussian Process is formed from a mixture of stationary processes, where the weights
determining the mixing depend on the dominant local behaviour of the computer model.
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Our proposed model can also be thought of as a sum of stationary stochastic processes
but we instead explicitly link each of these processes with one of the coefficients of the
global mean function. This makes the prior specification more transparent and reduces the
number of parameters that must be estimated (as no mixing weights are needed) which is
an important consideration when few model runs are possible.

Our proposed emulator is tested on the motivating example of a complex computer
model of the UK electricity system. Unlike the alternative approaches described above
(e.g. [1] and [39]), the emulator is fitted using Bayes linear techniques ([15]), rather than
using fully specified probability distributions. The advantage of using Bayes linear methods
is that it is only necessary to specify prior expectations and covariances for quantities of
interest rather than full probability distributions. The result of this simplification is that
computations are reduced to linear algebra and so Markov Chain Monte Carlo methods are
not required to fit the emulator. Therefore, design calculations can be carried out which
would otherwise be computationally intractable.

2.2. Choice of design for emulation with limited model evaluations. In applications
where it is only possible to evaluate the computer model for a limited selection of input
parameters it is necessary to make a careful choice of these input parameters in order
to maximise the use of each model run. There are many options for constructing an
experimental design for a computer experiment ([34]). A common choice is to use a space-
filling design such as a Latin Hypercube sample ([24], [25], [36], [23]) to give good coverage
of the input space. Often in studies using computer models, the objective is not to fit an
emulator, but to use the emulator to make some decision under uncertainty (e.g. to find
optimal inputs or to find inputs that meet some given criterion or to history match). With
this in mind, using a space-filling design when computing time is limited can be a poor
choice because model evaluations are wasted on improving the emulator in regions of the
input space that have little impact on the final objective of the study. Criterion based
methods which account for the output of the computer model, particularly in combination
with sequential choice of design points (individually or in waves), can be a better choice as
model evaluations can be chosen specifically with the aim of the study in mind.

This paper presents a criterion based method for the sequential selection of model
evaluations. Examples of criterion based methods for design selection can be seen in [2],
[37], [7] and [17]. These methods all seek to reduce the variance of the emulator over the full
input space, which is appropriate where all regions of the input space are equally important.
For the motivating example of a computer model of the UK electricity system, the ultimate
purpose of the study was to find model inputs that met key government targets. It was
therefore important to focus the design on improving the emulator in regions of the input
space with a high probability of meeting these targets, making minimisation of the emulator
variance over the full space an inappropriate choice for a design criterion. The iterative
method presented in this paper instead weights points in a grid at which the criterion is
evaluated so that the design can be focussed on improving the emulator in regions of the
input space that are relevant for the ultimate purpose of the study.

2.3. Motivating example. The example studied in this paper is a computer model of
the long-term UK electricity supply. The model is proprietary software used by industry
and government to investigate energy policy and hence many of the technical details are
confidential. This confidentiality does not impact our results as we are concerned with the
statistical methodology used for emulation.
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The model takes inputs such as projected demand, fossil fuel prices and the costs
of future technology and uses these assumptions to model investment in generation and
electricity supply in the UK. Investment decisions are based on projected future cash-
flows by assessing whether a plant will exceed the user-specified rate of return required
by investors. The computer model estimates wholesale electricity prices by comparing
daily demand curves on sample days (net of wind generation, interconnection, storage and
reserve requirements) to the generation merit order. This merit order is estimated using
assumptions about the short term costs for each plant in the system. The projected income
of a plant can be estimated from the projected wholesale electricity prices and the merit
order (which determines whether a plant will be used on a particular day). Projected costs
are estimated using user assumptions about the set-up and running costs associated with
different types of generating plant. Outputs from the computer model are wide-ranging
and include future costs, generation mix and emissions.

The computer model is used to study aspects of government energy policy such as the
amount of generation to incentivise to reduce the risk of shortfalls in electricity supply. In
this paper, we focus on one particular application, which was to study a new policy for
providing support for renewable generation in relation to three outputs: the projected cost
of government support in 2020, the proportion of UK electricity generation provided by
renewable technology in 2020 and the level of CO2 emissions in 2030. The policy was part
of the UK government Electricity Market Reform program ([9]) and aimed to reform the
system for making payments to large scale renewable generators whilst still incentivising
investment into these technologies. Under the new policy, potential renewable generation
projects can bid for a contract for difference at a specific ‘strike price’. If the project
is successful in this bid, then the generator is guaranteed to receive this strike price for
electricity produced over the next 15 years. If the price of electricity is lower than the
strike price, then the government will make up the difference, and if the price of electricity
is higher than the strike price then the generator must re-pay the difference ([10]).

The computer model was used to assess which strike prices would likely result in a
total cost in 2020–21 of less than £7.6 bn, a proportion of electricity provided by renewable
generation of at least 30% in 2020 and CO2 emissions of less than 100 gCO2/kWh in 2030
([27]). The restriction on cost arises from the Levy Control Framework ([26]), whilst the
restrictions on renewable generation and emissions are set to comply with EU targets. A
different strike price is used for each renewable technology as technologies which are less
well developed require a larger price to offset risk, and strike prices are expected to reduce
through time, as the cost of developing new technology reduces.

As well as modelling the effect of different strike prices on computer model outputs,
the computer model was used to assess the effect that different assumptions about the
future electricity system have on these outputs. Strike prices are under the control of
the government, but assumptions such as future electricity demand and future fuel prices
are not, and so uncertainty in these inputs should be modelled to get an accurate picture
of the effect that changes in these assumptions will have on the targets. In this paper
focus is given to eight uncertain assumptions: electricity demand, coal price, gas price, the
construction costs of different plants, the load factors for onshore and offshore wind power
(the ratio of actual output to theoretical maximum output) and the hurdle rates for onshore
and offshore wind power (the rate of return required by investors in these technologies).
These inputs were chosen after discussion with expert modellers because they were thought
to have a large impact on computer model outputs and were also highly uncertain.



VARYING COEFFICIENT MODELS FOR EMULATION 7

In this example, the use of emulation is investigated as a methodology for identifying
strike prices which meet government cost, renewable generation and emissions objectives
with a high probability, accounting for uncertainty in parameters and model discrepancy.
As the model is proprietary software, access to the model and ability to make changes to
speed-up the model run-time was restricted. This, combined with the one-hour run-time
meant that only 80 model runs were possible. Use of proprietary software is not unusual in
the energy policy field and it is often the case that there is limited time available for analysis
in practice as decisions are made quickly in response to policy changes. Thus methodology
is needed that can maximise use of limited data. This was especially necessary for the
motivating example because the effect of different model inputs was thought to vary in
different regions of the parameter space.

3. Emulation.

3.1. Varying coefficient emulator. Let f(x) be the output of a deterministic computer
model at some vector of inputs x. The precise value of f(x) is unknown at untested x so
we represent our uncertainty in the i-th dimension of f(x) as

(3.1) fi(x) =

pi∑
j=0

βijhij(x) +

pi∑
j=0

εβij (x)hij(x),

where hij(x) are a set of known and deterministic basis functions with hi0(x) = 1, B =
{βij} are unknown constants and εβij (x) are a set of stochastic processes. The εβij (x) are
assumed to be uncorrelated with B and each other and to have zero mean and covariance
σ2ijcij(x,x

′), where cij(x,x
′) is some correlation function that is dependent only on ‖x−x′‖.

A common choice for the correlation function is the Gaussian correlation function, given
by

(3.2) cij(x,x
′) = exp

(
−
∑
k

(xk − x′k)2

δ2ijk

)
,

where the δijk are constants to be specified. Note that the correlation lengths δijk are
allowed to vary with the input dimension. This can be useful if certain inputs are thought
to have a bigger effect on the correlation but in practice may have little effect on the results
(see the motivating example for further discussion).

We use Bayes linear methods ([15]) to fit (3.1). Bayes linear methods only require prior
means and covariances for quantities of interest (rather than full probability distributions).
There are several resulting advantages. Firstly, it is not necessary to elicit judgments of
the precise forms of prior distributions for emulator parameters from experts. This is
particularly useful because the effect of some emulator parameters may be non-intuitive
and so eliciting accurate prior judgments can be difficult. Secondly, regardless of the choice
of priors, Markov Chain Monte Carlo (MCMC) methods are not required for the updating
of prior beliefs. Without the need for MCMC, calculations are simplified and sped up,
making it possible to perform more complicated analyses using these updated beliefs. One
such example is seen in section 4, where the effect of adding different potential design points
to a design is evaluated against a criterion. For each potential design point, updated beliefs
for the emulator parameters based on this extra design point must be obtained to evaluate
the criterion. Using Bayes Linear methods rather than MCMC reduces the computational
burden as the time spent fitting the emulator is reduced. It would also be possible to fit
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(3.1) using other methods, for example a traditional Bayesian approach using Gaussian
Processes – this is discussed further in subsection 3.2.

In this paper, the dimensions of f(x) are assumed to be independent. It is theoretically
possible to fit a multivariate emulator which accounts for dependence between dimen-
sions (e.g. [33], [4]) but in the motivating example studied the mean function adequately
accounted for any dependence between dimensions. To complete the Bayes linear prior
specification, prior judgments must be made for E[βij ] and Cov[βij , βik] for all i, j.

Model (3.1) can be written equivalently as

(3.3) fi(x) =

pi∑
j=1

ε′βij (x)hij(x) + ε′βi0(x),

where ε′βij (x) = βij + εβij (x) for j ∈ {1, . . . , pi}. Comparing (3.3) with (1.1), we see that
the parameters governing the relationship between the basis functions and the output in
(3.3) are allowed to vary as stochastic processes. These stochastic processes are dependent
on the inputs of the computer model and so vary across the input space. The extent of the
variation over the input space is governed by the correlation function of each stochastic
process. If ε′βij (x) is highly correlated over the input space then its value will not vary much
with different inputs, and so data in all regions of the space can contribute to the estimation
of this value (when the correlation of ε′βij (x) and ε′βij (x

′) is one for all i and all j > 0 and

all pairs x and x′, (3.3) reduces to (1.1)). Conversely, if ε′βij (x) has a low correlation over
the input space, then its value will vary in different regions of the space, and so more data
over the whole region will be required to reduce the uncertainty associated with its value.
The parameters of the correlation function can therefore be used as tuning parameters to
determine the extent to which information is borrowed across the space. For small datasets
a careful prior choice of these tuning parameters is needed to ensure sufficient flexibility of
the emulator whilst extracting maximum information from the limited dataset.

As discussed in section 2, the additional stochastic processes associated with the coef-
ficients βij in (3.1) explicitly model the uncertainty in the form of the polynomial mean
function given by the term

∑pi
j=0 βijhij(x). For small datasets it will be necessary to

extrapolate. Any extrapolation is inherently assumption based but in order not to be over-
confident when extrapolating it is important to ground these assumptions in the scientific
understanding of the problem. For example, it may be that there are scientific reasons to
believe that a linear regression should fit well over the whole parameter space. If the re-
gression parameters accord with this scientific understanding then it is often reasonable to
be directed by this regression when extrapolating. Where this is not the case, our proposed
approach in (3.1) offers the flexibility to compromise between strictly following the form of
the polynomial mean function or ignoring it and simply inflating the predictive variance.
Away from data, the mean of (3.1) will revert to the polynomial mean function (the same
as (1.1)) but the uncertainty will be greater than (1.1) because of the additional stochastic
process terms εβij (x). An alternative approach might be to increase the prior variance
associated with the βij in (1.1) but this would overinflate the variance in all regions of the
space (i.e. not just far from data) and would also mean that if there were lots of model
evaluations in one region of the input space, the variance of the coefficients would reduce
over the whole space, failing to capture the extrapolative uncertainty. In general we would
also recommend testing any assumptions made when extrapolating using a small test set
of further model evaluations at values far from existing data where the polynomial mean



VARYING COEFFICIENT MODELS FOR EMULATION 9

function gave very different predictions to those close to existing evaluations (note that
due to access to the model this was not possible with the motivating example).

3.2. Fitting the emulator - Bayes linear analysis. The Bayes linear updating equations
are used to update prior beliefs about the emulator, given data D. For a complex computer
model, the data associated with the i-th element of the computer model output areN model
evaluations so that Di = {(xn, yin), for n ∈ {1, . . . N}}, where yin = fi(xn). The Bayes
linear equation for the updated expectation of the i-th element of the computer model
output at x is

(3.4) EDi [fi(x)] = E[fi(x)] + Cov[fi(x), Di](Var[Di])
−1(Yi − E[Di]),

where Yi = (yi1, . . . , yiN ) is a vector of the i-th element of the observed outputs. Expecta-
tions and variances in (3.4) are taken with respect to the prior judgments. Similarly, the
Bayes linear equation for the updated covariance between two outputs fi(x) and fi(x

′) is

(3.5) CovDi [fi(x), fi(x
′)] = k(x,x′)− Cov[fi(x), Di](Var[Di])

−1Cov[Di, fi(x
′)],

where k(x,x′) is the prior covariance between fi(x) and fi(x
′).

Taking the expectation of (3.1), the expectation E[fi(x)] in (3.4) is given by

(3.6) E[fi(x)] =

pi∑
j=0

E[βij ]hij(x) +

pi∑
j=0

E[εβij (x)]hij(x) =

pi∑
j=0

E[βij ]hij(x)

and the covariance k(x,x′) in (3.5) is given by

Cov[fi(x), fi(x
′)] = k(x,x′) =

pi∑
j=0

pi∑
k=0

hij(x)hik(x
′)Cov[βij , βik]+

pi∑
j=0

hij(x)hij(x
′)σ2ijcij(x,x

′).(3.7)

The vector Cov[fi(x), Di] in (3.4) and (3.5) is given by (k(x,xi1), . . . , k(x,xiN ))T , and
the matrix Var[Di] is given by the matrix with (n,m)-th entry k(xn,xm). By substituting
these quantities into (3.4) and (3.5), adjusted beliefs for the expectation and variance of
fi(x) for some untested x can be found. The Bayes linear updating equations can be used
in a similar way to update prior judgments for βij and εβij (x), giving adjusted beliefs for
these parameters for any x, i and j.

After setting the prior beliefs and updating these beliefs using the Bayes linear equa-
tions, the fit of the emulator can be checked. One possible diagnostic is a leave-one-out
plot, leaving each design point out in turn, fitting the emulator to the remaining points,
and checking the emulator mean and variance for the left out point. If too many of the
observed points lie outside the emulator prediction intervals then the model assumptions
need investigating. In particular, the basis functions or correlation function may need
adjusting. Validation of the emulator is discussed further in relation to the motivating
example in subsection 5.1. A varying coefficient emulator is compared to a fixed coefficient
emulator for three illustrative examples in section SM1 of the supplementary material.

As an alternative to the Bayes linear analysis set out above, we could instead assume
that the stochastic processes εβij (x) in (3.1) are Gaussian Processes, specify full prior

SupplementaryMaterialV5.pdf{}{}{}#section.1{}{}{}
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distributions for the unknown parameters βij , σ
2
ij and δijk and fit the model using Bayesian

updating by conditioning on the data D. After performing the Bayesian update (see [29])
the posterior distribution for unknown fi(x) is given by

(3.8) fi(x) | D, {βij}, {σ2ij}, {δijk}) ∼ GP
(
m∗i (x), r∗i (x,x

′)
)
,

where if X = (x1, . . . ,xN ) are the inputs associated with D,

m∗i (x) =

pi∑
j=0

βijhij(x) + ri(x, X)TR−1(Yi −mi(X)),

r∗i (x,x
′) = ri(x,x

′)− ri(x, X)TR−1ri(x, X),

mi(X) =

 pi∑
j=0

βijhij(x1), . . . ,

pi∑
j=0

βijhij(xN )


ri(x,x

′) =

pi∑
j=0

hij(x)hij(x
′)σ2ijcij(x,x

′),

ri(x, X)T = (ri(x,x1), . . . , ri(x,xN )),

and R is given by the matrix with (n,m)-th entry ri(xn,xm). Markov Chain Monte Carlo
in combination with this posterior distribution and prior distributions for βij , σ

2
ij and δijk

could then be used to fit the emulator (e.g. see [19]).

3.3. Motivating example. In this section, the emulator described in subsection 3.1 is
fitted to an initial set of design points obtained from the energy policy computer model.
Limited computing time was available to evaluate this model and so the varying coefficient
emulator was used to accurately model uncertainty arising from sparse coverage of the
input space.

3.3.1. Inputs and initial design. In total, fourteen inputs to the computer model were
included in the study. Six inputs were used to represent strike prices for three different
renewable technologies (offshore wind power, onshore wind power and solar power) and
eight inputs were used to model the uncertain parameters. We write the inputs of the
computer model as x = (θ, z), where θ represents the strike prices and z represents the
remaining uncertain parameters.

The strike prices for each of the three technologies considered were represented by two
parameters: the strike price in 2016, and the exponential rate of decay of the strike price
through time to 2035. The other inputs varied in the study were: electricity demand (z1),
coal price (z2), gas price (z3), the construction costs of different plants (z4), the load factors
for offshore (z5) and onshore (z6) wind power and the hurdle rates for offshore (z7) and
onshore (z8) wind power. The assumptions used in a government study ([27], [10]) of this
problem were available and were used to parametrise each of these inputs. The electricity
demand, coal price and gas price inputs (all time series) were represented as a shift away
from the central government assumption. The construction costs, load factors and hurdle
rates were represented as a multiple of the central government assumption. More details on
the parametrisation of the inputs are given in section SM2 of the supplementary material.

Computer model evaluations had to be pre-prepared in sets off site, and so a stepwise
procedure, selecting the next run based on results from the previous run, was not appropri-
ate. As an initial design, a maximin Latin hypercube sample was used to select 40 design
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points over the fourteen dimensional input space. For this initial design there was a fixed
time available for model runs (one working week) and 40 was the number thought to be
possible in that time. In practice, there was time to run an additional 16 design points.
A second wave of analysis was completed later (again with a fixed period of access to the
computer model), consisting of 24 design points, selected using a criterion-based design
selection method. This method is discussed in section 4.

3.3.2. Emulator for initial design. Let f(θ, z) = (fr(θ, z), fe(θ, z), fs(θ, z)) be the com-
puter model output, where the subscripts r, e and s represent the three one-dimensional
outputs studied: renewable generation in 2020, emissions in 2030 and spend in 2020 respec-
tively. The varying coefficient emulator given in (3.1) was used to model each dimension
of f(θ, z), with each of the three outputs assumed independent conditional on the input
parameters. This is a reasonable assumption as the inputs were selected in discussion with
experts to be those that are likely to impact the outputs so any residual dependence should
be small.

By using a varying coefficient emulator, we can account for uncertainty in the coeffi-
cients βij when extrapolating outside the limited design. A varying coefficient emulator is
also appropriate because the effects of different input parameters were thought to vary in
different regions of the input space. The computer model determines whether different gen-
erating plants are constructed based on assumptions about the potential cashflows of these
plants. Inputs relating to particular types of plant will have different impacts depending
on whether these plants are constructed. For example, the load factor of an offshore wind
plant will have more impact on the cost of support when a lot of offshore wind plants are
constructed (where the number of plants constructed depends on the values of the other
inputs). Initial fits of linear regression models to the design points supported this view
because the estimated values of coefficients varied when different subsets of the design were
used to fit the model. Later, in subsection 5.2, the fit of the varying coefficient model is
compared to the fit of the fixed coefficient model using the full design.

Prior judgments and fitting of the emulator. Linear regression fits combined with expert
judgment were used to select the vector of basis functions (both linear and non-linear
terms) for each output. Table 1 gives the linear terms included in the basis function of
each dimension of the emulator alongside the adjusted estimate of the coefficient βij for each
term. The coefficient estimates reflect intuitive explanations for the relationships between
the variables (this is discussed further in section SM4 of the supplementary material).
Additional non-linear terms are listed beneath Table 1. Not all of the coefficients included
in the model were allowed to vary and a different subset of the coefficients was allowed to
vary for each of the three outputs. Selecting which subset of the coefficients in model (3.1)
to vary was done with reference to the residual sum of squares when fitting the emulator,
expert knowledge and the extent that coefficient estimates in linear regression fits varied
when fitted to different subsets of the space. Note that the inputs to include in the model
were determined before testing the extent to which the coefficients varied (so we did not
select inputs on the basis of whether the coefficients were variable or not). Choosing which
coefficients to vary based only on linear regression fits to subsets of the input space was not
possible because the small size of the design meant that uncertainty in parameter estimates
was large, and so it was difficult to distinguish between coefficients which might be varying
and coefficients which were very uncertain.

The coefficients allowed to vary for each dimension of the emulator are listed in Table 2
along with prior judgments for the variance and correlation lengths for the stochastic
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Input Renewables Emissions Spend

1. Offshore strike price rate of decay -0.14 0.13 -0.19
2. Offshore strike price starting price 0.35 -0.24 0.44
3. Onshore strike price rate of decay -0.06
4. Onshore strike price starting price 0.08
5. Solar strike price rate of decay
6. Solar strike price starting price
7. Demand -0.49 0.46
8. Coal
9. Gas 0.15 -0.44
10. Technology costs -0.39 0.56 -0.29
11. Hurdle rate offshore -0.12 0.16 -0.12
12. Hurdle rate onshore
13. Load factor offshore 0.61 -0.42 0.57
14. Load factor onshore 0.22

Table 1
Coefficient estimates for inputs included as linear terms in the basis functions for each emulator.

Interaction terms also included for all three outputs were: (2,10,13), (2,10), (2,13), (10,13), where numbers
correspond to the inputs listed in the table.

processes associated with these varying coefficients. These prior judgments were set by
considering the expected size of variation of each coefficient, and the speed over which the
coefficient might vary (in practice, these might be set in consultation with practitioners
or based on previous studies). For the remainder of the prior assumptions, we set (for
each dimension): E[βj ] = 0; Cov[βj , βk] = 0 for j 6= k, Cov[βj , βk] = 0.1 for j = k for
the renewables and emissions emulators and Cov[βj , βk] = 0.15 for the emulator of cost.
Some of these prior assumptions are simple, in particular those used for the coefficients βj .
For the motivating example it was not feasible to conduct a full expert elicitation exercise
and the complex interactions between the various inputs made it difficult to determine in
advance the effect that individual inputs would have, so we chose priors that reflected these
limitations on our judgements.

The input and output data were scaled to lie between −1 and 1 before fitting the
emulator. With the prior judgments given above, this scaling means that the prior variance
(given in (3.7)) increases with the distance from the centre of the input space, so outliers
will be associated with a larger prior variance.

Validation. To test the fit of the emulator, a leave-one-out cross validation was per-
formed using the 56 initial design points. Each design point was removed in turn. The
emulator was then fitted using the remaining 55 design points and used to predict the com-
puter model output for the removed point. Figure 1 shows the results of this validation.
Whilst the outputs for the majority of the design points are predicted well by the emulator,
for around 15% of the design points in each dimension the computer model output is out-
side the probability interval associated with that design point, indicating that there may
be an issue with the fit of the emulator. In total, 10 (renewables emulator), 7 (emissions
emulator) and 11 (cost emulator) of the probability intervals in Figure 1 did not contain
the true computer model output. Increasing the probability intervals to three standard
deviations either side of the mean gives 2 (renewables emulator), 4 (emissions emulator)
and 2 (cost emulator) of the true computer model outputs lying outside their prediction
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Renewable model Emissions model Spend model

Basis σ2j δ∗jk Basis σ2j δ∗jk Basis σ2j δ∗jk
function function function

Constant 0.152 1, 3 Constant 0.152 1, 5 Constant 0.1752 1, 5
2 0.112 4, 10 10 0.182 4, 10 2 0.152 4, 10

(2, 10, 13) 0.112 4, 10 13 0.182 4, 10 (2, 10, 13) 0.152 4, 10
(2, 10) 0.112 4, 10 (2, 10) 0.152 4, 10
(2, 13) 0.112 4, 10 (2, 13) 0.152 4, 10
(10, 13) 0.112 4, 10

Table 2
Prior judgments for the covariance function associated with each basis function. The basis function

number corresponds to numbers given for inputs in Table 1. ∗ δjk was set equal to the first number listed
where input k was included in the basis function for the emulator in Table 1 and to the second number for
k not included (so that δjk varies with both basis function and input dimension).

intervals. The fixed coefficient emulator (1.1) was also fitted to the initial design. Prior
judgments were the same as those given above for the constant term, except the variances
σ20 were set so that the prior variance of the fixed coefficient emulator and varying coeffi-
cient emulator were the same for xi = 0.5 for all i = {1, . . . , 14}. For the fixed coefficient
emulator, 12 (renewables emulator), 10 (emissions emulator) and 15 (cost emulator) of the
probability intervals did not contain the true computer model output, suggesting a bet-
ter fit with the varying coefficient emulator. A more detailed comparison of the varying
coefficient emulator and the fixed coefficient emulator is given for the full design of the
motivating example in subsection 5.2 and for an illustrative example in section SM1 of the
supplementary material.

Figure 1 shows that for a small selection of design points, the variance of the emulator
is very large in comparison to the range of each output (e.g. one of the probability intervals
for the cost spans over £4bn). Given the small size of the design, large probability intervals
are to be expected. The probability intervals in the plots shown could be considered as
worst case scenarios, as most of the design points form a space-filling Latin Hypercube
sample. Performing a leave-one-out validation on a Latin Hypercube design results in
outputs being estimated using the emulator at points with no design points nearby, so
the emulator variance is likely to be larger. Ideally, a separate test set would be used to
validate the emulator, but the small size of the design prevented this.

In the next section, 24 further design points are selected. By increasing the size of
the design the fit of the emulator should improve. The process used to select the design
points focuses on reducing the variance of the emulator in regions of the input space of
interest rather than using a space-filling design, as done for the initial set of design points.
By using a criterion-based approach, the aim is to make best possible use of the limited
number of computer model runs available.

4. Design selection. In Subsection 3.1, a varying coefficient model was used to emulate
a complex computer model. The aim when fitting an emulator is often to reduce uncertainty
about some decision based on a computer model as much as possible, whilst accurately
modelling the uncertainty associated with this decision. The varying coefficient model in
subsection 3.1 can be used to accurately capture the uncertainty arising from a small design
but in order to reduce this uncertainty it is necessary to pair the varying coefficient model
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Figure 1. Leave-one-out plot to assess the fit of the emulator for the proportion of renewable generation
in 2020/21 (left), emissions in 2030 (middle) and cost in 2020 (right). Computer model outputs shown
with a cross, emulator prediction shown by a circle with probability interval formed by taking two standard
deviations either side of emulator prediction. Design points are shown ordered by their respective outputs.

with a carefully chosen design. This is particularly important when it is not possible to
reduce uncertainty by performing further batches of model evaluations. In this section,
methodology for sequentially selecting a small design for an emulation study is described
and applied to the motivating example described in subsection 2.3.

The steps for choosing a design described here are not specific to the emulator given in
(3.1). It is assumed that model evaluations are done in waves, with Nm model evaluations
selected as the design for the m-th wave. The design for the m-th wave uses data from
waves 1, . . . ,m− 1. The methodology presented is criterion-based, i.e. the aim is to select
a design for the next wave, Dnew, which minimises or maximises some criterion. A good
choice of criterion is one which improves the fit of the emulator in the region of space most
of interest in the study. For example, an emulator might be used to find the input to a
computer model that results in the maximum possible output. A good criterion in this
case would focus on reducing uncertainty in the emulator in regions of x such that f(x) is
likely to be high.

4.1. Criterion. The aim is to select a new design Dnew which optimises some criterion.
To construct this criterion we use a combination of some weights and a utility function.
The utility function, denoted U(x), is used to assess the utility of the emulator at some
input x if the new design were chosen (for example U(x) could be the emulator variance
at x). The weights w(x), where 0 ≤ w(x) ≤ 1, are used to reflect the relative importance
of the input x in relation to the purpose of the emulation study. These weights can be
used to focus the design on improving the emulator in the region of the input space most
of interest. The utility function and the weights are combined to form a criterion C(Dnew)
for some new design Dnew:

(4.1) C(Dnew) =
∑
g

w(x(g))Efi(Dnew)
[
U(x(g))

]
,

where X = {x(g) for g ∈ {1, . . . Ng}} is a grid of points over which the criterion is evaluated,
Dnew = {x(d) for d ∈ {1, . . . ND}} is a new design and fi(Dnew) is the vector of outputs with
d-th entry fi(x

(d)). The notation Efi(Dnew) in (4.1) is used to mean that the expectation is
taken over the distribution of the outputs fi(Dnew) associated with the new design Dnew.
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Taking the expectation over the distribution of fi(Dnew) is necessary because U(x) is used
to evaluate the new design, and hence may be dependent on the unknown outputs fi(Dnew).

In section 3 the dimensions of the emulator were assumed to be independent of one
another. This simplification is continued here. It is theoretically possible to extend the
approach described here to the multivariate case by replacing fi(Dnew) by the matrix of
outputs f(Dnew) with (i, d)-th entry fi(x

(d)) but in practice this may be challenging for
applications with small designs. In the rest of this section, the subscript i on fi(Dnew) is
dropped to simplify the notation.

4.2. Example: criterion selection.

4.2.1. Objectives of study. Limited computing time was available to make further
runs of the computer model described in subsection 2.3 and so it was necessary to carefully
select which sets of inputs to test. In section 3 the varying coefficient emulator was fitted
to an initial Latin hypercube design of size 56. The criterion-based methods described
above were used to choose an additional 24 design points. This section describes how the
general principles described above for choosing a criterion were applied specifically to the
example.

The aim of the analysis was to choose a set of strike prices that were likely to result in the
meeting of the three government objectives associated with cost, proportion of renewables
and emissions. Whether a set of strike prices will meet the three objectives is uncertain.
This uncertainty stems from parametric uncertainty in z, uncertainty as to the output
of the computer model for any given input (given that the number of model evaluations
is limited) and the structural discrepancy of the computer model in comparison to the
real-world. The aim can therefore be thought of as finding a set of strike prices which is
associated with a high probability of meeting the three objectives given these uncertainties.

From the perspective of a decision-maker, the three objectives may have unequal weight.
For example, it may be preferable to have a higher certainty of meeting the renewable
target at the expense of the emissions target, given that the renewables target occurs ten
years before the emissions target so there is more time to make policy changes. As a
result, multiple solutions may be of interest to decision-makers, depending on the relative
importance of each objective to that decision-maker. It is not necessarily the case that the
optimal solution is that which minimises the cost subject to the constraints on renewable
generation and emissions. As such, rather than focussing on design strategies which would
help locate the strike prices with the minimum expected spend subject to the constraints
on renewables and emissions, we develop a design criterion that attempts to reduce the
variance of the emulator (integrated over the parametric uncertainty) in the region of the
input space where the renewable, emissions and cost constraints have a high probability
of being met. The benefit of such an approach is the ability to present decision-makers
with a range of options with different expected costs, proportions of renewable generation
and emissions along with the associated uncertainties. Decision-makers can then use this
evidence to determine their own view of the best choice of strike price for each technology.

4.2.2. Choosing the utility function and weights. Recall that fr(θ, z), fe(θ, z) and
fs(θ, z) are emulators for the proportion of renewable generation, the CO2 emissions and
the total cost of the support scheme. We let our parametric uncertainty for z be described
by the probability density function pZ(z). As described above, the aim when selecting
the new design is to reduce the variance of the emulator (integrated over the parametric
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uncertainty) in the region of the input space of interest. The utility function is thus set to

(4.2) U(θ) = Var∗(EZ [fr(θ, z)]) + Var∗(EZ [fe(θ, z)]) + Var∗(EZ [fs(θ, z)]),

where Var∗ is the variance arising from functional uncertainty (i.e. the variance due to
emulation) and EZ is the expectation taken over the parametric uncertainty given by the
joint probability density function pZ(z). In the analysis done here a specific choice is made
for pZ(z) (given later), but it would be possible to test a range of distributions. At any
given θ, the value of EZ [f(θ, z)] (dropping the subscript r, e or s) is uncertain, because the
function f is uncertain. The uncertainty in f is modelled using the emulator. The term
Var∗(EZ [f(θ, z)]) measures the variance in EZ [f(θ, z)] arising from uncertainty as to the
form of the function f . The utility function was chosen so that new designs are evaluated
by the extent to which they reduce this uncertainty.

For this example, the input space has been partitioned into x = (θ, z). The strike
prices θ are control parameters as they are under the control of policy-makers. The z are
parameters which are uncertain and out of the control of policy-makers (e.g. electricity
demand). As the objective is to investigate strike price choices (i.e. choices of θ), we
chose to minimise the sum of the variances of EZ [f(θ, z)], rather than of f(θ, z). This
decision was made because summary features at a particular choice of strike price are of
more interest to policymakers than the output of the model at a particular value of z. To
reflect that EZ [f(θ, z)] is a function of θ, U(·) is a function of θ rather than x.

The computer model inputs and outputs will be scaled before fitting the emulator. As
a result, the variance of each dimension of the emulator is on the same scale and so in
(4.2), the variances of the three emulators are given equal weight. In cases where there
is a greater tolerance for uncertainty in a subset of the emulators, it would be possible to
adjust the contribution of each emulator to the overall utility function.

The weights w(·) are set to

(4.3) w(θ) = P (fr(θ, z) + εr > cr, fe(θ, z) + εe < ce, fs(θ, z) + εs < cs),

where εr, εe and εs are three independent Normally distributed random variables used to
model the discrepancy between the computer model and the real-world and cr = 0.3, ce =
100 and cs = 7600. Further details about this discrepancy are given later in section 5. The
values of cr, ce and cs are set to the government targets (of 30% renewable generation, CO2
emissions less than 100gCO2/kWh and a cost of less than £7.6 bn). The probability in (4.3)
accounts for parametric uncertainty, structural discrepancy and functional uncertainty.

The function U(·) measures the sum of the variances of the expected values of the three
emulators (where the expected value is taken over parametric uncertainty) at a given grid
point. This is an appropriate choice because our interest is in the cost, the proportion of
renewables and the emissions accounting for parametric uncertainty, so it is desirable to
reduce our uncertainty about these quantities. The weights w(·) give more weight to grid
points with a higher probability of meeting the three government targets. By combining the
weights and the utility function, designs which reduce the emulator variance in the region
of the input space of interest will be prioritised over designs which reduce the emulator
variance elsewhere.

4.3. Estimating the criterion. Depending on the choice of utility function, it can
sometimes be possible to determine analytically the value of Ef(Dnew)[U(x(g))]. For cases
in which the utility function depends on the uncertain outputs f(Dnew), simulation of



VARYING COEFFICIENT MODELS FOR EMULATION 17

f(Dnew) to pair with Dnew can be used to estimate this expectation. The following steps
describe a procedure for simulating f(Dnew) and estimating the criterion for a given design
Dnew = {x(d) for d ∈ {1, . . . , ND}}, incorporating model evaluations from all previous
waves, D.

1. Draw a grid of size Ng over the input space x using a space-filling design such as a
Latin Hypercube sample. Denote this grid X = {x(g) for g ∈ {1, . . . Ng}}.

2. Use the Bayes linear updating equations (3.4) and (3.5) to obtain adjusted beliefs
for f(x) using all previously run model evaluations D. From this updated emu-
lator, the adjusted mean ED[f(Dnew)] and covariance matrix CovD[f(Dnew)] for
f(Dnew) = (f(x(1)), . . . , f(x(ND))) can be obtained . Approximate the joint dis-
tribution of f(Dnew) by some probability distribution with mean and covariance
given by ED[f(Dnew)] and CovD[f(Dnew)] respectively. For the motivating exam-
ple, we use the multivariate Normal distribution for this approximation. Draw a
sample of size Nf from this distribution, and denote the j-th draw from this sample
f(Dnew)(j).

3. The criterion can then be estimated by

(4.4) C(Dnew) ≈
∑
g

w(x(g))
1

Nf

Nf∑
j=1

U(x(g) : f(Dnew)(j)),

where the notation U(x(g) : f(Dnew)(j)) is used here to indicate that the utility
function should be evaluated using the simulated model evaluations f(Dnew)(j)

paired with the design Dnew (as well as all previous model evaluations D).
The procedure described above can be used to estimate the criterion C(·) for a large

number of candidate designs. These designs can then be compared and the design with
the largest (or smallest) criterion chosen. Alternately, a stepwise addition and/or deletion
procedure can be used.

Estimating the criterion by simulation as described above can be a computationally
expensive procedure. For each set of simulated outputs f(Dnew) the utility function must
be estimated. As the aim is usually to improve the emulator in some way it can be neces-
sary (depending on the chosen utility function) to re-fit the emulator with each simulated
f(Dnew). The full procedure must then be repeated for each candidate design Dnew. If
MCMC is needed to re-fit the emulator each time a new f(Dnew) is drawn it is likely to
be computationally intractable to estimate the criterion using simulation for a reasonable
number of candidate designs. Using Bayes Linear methods rather than a full probability
specification make the above computations feasible by reducing fitting the emulator to
straightforward linear algebra.

4.4. Example: estimating the criterion. To estimate the criterion for some design
Dnew for the motivating example, the expected value of the utility function (4.2) under
this new design must be estimated. To estimate this expectation, simulations of f(Dnew) to
pair with Dnew are needed. The steps given above can be used to draw these simulations.
As the utility function requires integration over the uncertain parameters z, the criterion
in step 3 above cannot be evaluated analytically. This section describes the simulation
procedure used to estimate the utility function and the weights need in step 3 above for
the motivating example. The steps taken here are specific to the utility function chosen
for the example.
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The utility function (4.2) was estimated for each proposed new design Dnew (and the
simulated outputs paired with this new design f(Dnew)) using the Monte Carlo simulation
steps below. These steps were repeated for each dimension of the emulator, with f replaced
by each of fr, fe and fs.

1. Draw z(i) for i ∈ {1, . . . , I} from pZ(z). The distribution pZ(z) describes uncer-
tainty in the inputs z, the distribution used is given in subsection 5.3.

2. Update the emulator using (3.4) and (3.5), where D in this case will consist of
the existing model evaluations and the proposed new design Dnew (where the out-
puts paired with this new design have been sampled using the procedure described
above). Obtain the mean-vector M of length I with i-th entry ED[(f(θ, z(i))] and
the I × I covariance matrix C with (i, j)-th entry CovD[f(θ, z(i)), f(θ, z(j))] from
this updated emulator.

3. Draw K emulators by taking K draws from a multivariate Normal distribution with
mean M and covariance matrix C. Denote the k-th draw
f (k)(θ) = f (k)(θ, z(1)), . . . , f (k)(θ, z(I)).

4. Estimate

E∗[EZ [f(θ, z)]] ≈ 1

K

K∑
k=1

1

I

I∑
i=1

f (k)(θ, z(i))

Var∗(EZ [f(θ, z)]) ≈ 1

K − 1

K∑
k=1

(
1

I

I∑
i=1

f (k)(θ, z(i))− E∗[EZ [f(θ, z)]]

)2

.

The estimate of the utility function is then given by the sum of Var∗(EZ [fr(θ, z)]),
Var∗(EZ [fe(θ, z)]) and Var∗(EZ [fs(θ, z)]).

The terms E∗[VarZ [f(θ, z)]] and Var∗[VarZ [f(θ, z)]] for f = fr, fe, fs can also be ap-
proximated using the process described above, but with estimators

E∗[VarZ [f(θ, z)]] ≈ 1

K

K∑
k=1

1

I − 1

I∑
i=1

(
f (k)(θ, z(i))− 1

I

I∑
i=1

f (k)(θ, z(i))

)2

,

Var∗[VarZ [f(θ, z)]] ≈ 1

K − 1

K∑
k=1

 1

I − 1

I∑
i=1

(
f (k)(θ, z(i))− 1

I

I∑
i=1

f (k)(θ, z(i))

)2

− E∗[VarZ [f(θ, z)]]

)2

.

These terms are not used in the utility function but are used later in this paper when
comparing summary statistics associated with different choices of strike prices.

To estimate each weight (4.3), the process described above for the estimation of the
utility function can be used, but the design points D will consist only of the existing model
evaluations. The estimate of w(θ) obtained from K emulator draws f (1)(θ), . . . , f (K)(θ) is
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given by

w(θ) ≈ 1

K

K∑
k=1

1

I

I∑
i=1

P (cr − f (k)r (θ, z(i)) < εr)× P (ce − f (k)e (θ, z(i)) > εe)

× P (cs − f (k)s (θ, z(i)) > εs),

where independence holds because the terms εr, εe and εs are assumed independent. For
correlated error terms, the joint probability must be evaluated. For the above computa-
tions, K was set to 10,000 and I to 2,000. These values were found to give a good balance
between computation time and Monte Carlo error when tested.

4.5. Example: design selection for motivating example. The first wave of the analysis
was described in subsection 3.3. The 56 design points run in the first wave were used to
construct emulators fr, fe and fs as described in subsection 3.3.2. For the second wave of
analysis, the methodology described above was used to select a further 16 design points.
A maximin Latin hypercube of size 50, X = {x1, . . . , x50}, was generated over all fourteen
inputs. Design points were chosen from this Latin hypercube sample using the following
procedure:

1. Set Dnew = {xi} for each xi in the Latin hypercube sample and estimate the
criterion (4.1) for Dnew. Repeat for i ∈ {1, . . . , 50}.

2. Order the points in the Latin hypercube sample by the size of the criterion, denoting
this ordered sample x(1), x(2), . . . , x(50). Set Dnew = {x(1), x(2), x(3), x(4)}, selecting
the four points with the smallest criterion.

3. Set Dnew = {x(1), x(2), x(3), x(4), x(i)} and estimate the criterion for Dnew for i ∈
{5, . . . , 50}. Add the four points associated with the smallest criterion to the design.

4. Repeat the above process for another step, to add four further points to the design,
giving a design of size 12, which we denote Dx.

5. Draw a new Latin hypercube sample X2 = {x2,1, . . . , x2,50} of size 50. Set Dnew =
{Dx, x2,i} and estimate the criterion for Dnew for i ∈ {1, . . . , 50}. Add the four
points from X2 associated with the smallest criterion to Dnew.

The choice to restrict the Latin hypercube to 50 design points and to choose additions to
the design in batches of four (rather than using stepwise addition or deletion) was made
to reduce the computation time. Further technical details on design selection specific to
the motivating example including a summary of the design points selected can be found in
section SM3 of the supplementary material.

Plots showing the criterion evaluated for each candidate design point at each stage of
the design selection process are shown in Figure 2. The plot on the left shows the criterion
for each of the 50 points in the initial set of candidate points. The four points with the
lowest criterion were selected. In the next plot the criterion for the remaining 46 candidate
design points is shown, having incorporated the four points selected in the previous stage
into the design. In the plot on the right a new set of 50 candidate design points were
tested. At each subsequent stage, the criterion reduces as more points are added to the
design and the size of this improvement decreases with each stage. It is clear by comparing
the first plot to the third plot that as more design points are chosen from the initial Latin
hypercube sample the difference in criterion between the best possible point and the worst
possible point decreases.

The criterion was evaluated incorporating all sixteen of the additional design points
into Dnew and was found to be 0.0226 (or 0.0227 for the actual reduction in variance
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rather than expected), compared to 0.0274 for a Latin hypercube sample. These values
correspond approximately to a reduction in standard deviation of £45m for cost, 0.2% for
proportion of renewable generation and 2gCO2/kWh of emissions for a given set of strike
prices (dividing the reduction in variance evenly between the three emulators).

In practice, it was possible to run a further 8 model evaluations in addition to the 16
selected above. The five points with the highest prior probability of meeting the objectives
(i.e. with the highest weights) out of a possible 1,000 points tested were run. Three further
design points were then chosen from the second design X2.
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Figure 2. Estimated criterion for candidate design points. From left to right, corresponding to steps 2,
3, 4, 5 in the text. All criterion estimated for emissions of 100gCO2/kWh.

5. Example: results. The procedure described in section 4 was used to select 24 further
model evaluations for the electricity supply model, in addition to the 56 discussed in
subsection 3.3. These 24 model evaluation were run and an emulator fitted to the full set
of 80 model evaluations. This section describes the emulator that was fitted and presents
results from the study.

As for the initial design, the varying coefficient emulator (3.1) was used to model
the three computer model outputs: renewable generation in 2020, emissions in 2030 and
spend in 2020. Each of these outputs was assumed to be independent conditional on the
input parameters. To incorporate structural discrepancy, the real-world output y(θ, z) =
(yr(θ, z), ye(θ, z), ys(θ, z)) (with subscript r for renewables, e for emissions and s for spend)
was modelled as

(5.1) y(θ, z) = f(θ, z) + ε,

where f(θ, z) = (fr(θ, z), fe(θ, z), fs(θ, z)) is the emulator for the computer model and
ε = (εr, εe, εs) is a vector of independent error terms, with ε = MVN(0,Σ), for some
diagonal covariance matrix Σ (numerical values are given later). The terms ε and f(θ, z)
are assumed to be independent of one another.

5.1. Emulation using full design. The varying coefficient emulator f(θ, z) in (5.1) was
fitted using the full set of design points tested, i.e. the 80 design points comprising the 56
from the initial design described in subsection 3.3.2 and the 24 from the design described
in section 4. The Bayes linear approach described in subsection 3.2 was used to fit the
emulator.

As for the emulator based on the initial design (described in subsection 3.3.2), linear
regression fits, the residual sum of squares of the emulator and expert judgment were
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used to select the basis functions for each output. Prior judgments were adjusted so that
the variance term

∑
h2j (x)σ2j was approximately equal to the residual variance of a linear

regression fit when xk = 0.5 for all k ∈ {1, . . . , 14}. These residual variances were 0.132

(renewables model), 0.132 (emissions model) and 0.152 (spend model). The remainder of
the prior assumptions were set as in subsection 3.3.2. Unlike in subsection 3.3.2, values for
δjk were set to the same value for all k. Although it was expected that inputs included in
the mean function would have a bigger effect on the correlation (and hence be associated
with a smaller δjk), this was not found to make a difference in practice. Tables listing the
basis functions used and numerical values for the prior judgments are given in section SM4
of the supplementary material.

To validate the emulator, leave-one-out plots equivalent to those in Figure 1 were
produced to check emulator predictions against the true computer model output. For all
three outputs the emulator had a good predictive ability.
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Figure 3. Assessment of the fit of the fixed coefficient emulator to renewable generation model output.
The dataset used to fit the emulator was split into two, based on the value of the offshore load factor. The
graph on the LHS was fitted using design points with the scaled offshore load factor less than zero and tested
against design points with load factor greater than zero. The graph on the RHS was fitted using those design
points with scaled offshore load factor greater than zero and assessed against those with load factor less than
zero. Computer model outputs are shown with a cross, emulator prediction shown by a circle with probability
interval.

5.2. Comparison to fixed coefficient emulator. To check whether a varying coefficient
emulator was necessary, the fixed coefficient emulator in (1.1) was fitted to different regions
of the input space and the predictions using this emulator were tested against the actual
computer model output. Figure 3 shows the fixed coefficient emulator predictions for
renewable generation when the input space is partitioned by offshore load factor. As can be
seen, the emulator seems to be underestimating the proportion of renewable generation in
the plot on the left hand side, and overestimating the proportion of renewable generation in
the plot on the right hand side. This difference is evidence to suggest that the coefficients B
are varying as the load factor for offshore wind varies, and so a varying coefficient emulator
is needed. If the coefficients were constant throughout the space then the emulator fitted
to design points with load factor less than zero should also be able to predict the output
for design points with load factor greater than zero. Coefficient estimates for the fixed
coefficient emulator and the varying coefficient emulator were examined for each of the
outputs and were found to vary in different regions of the space, further supporting the
need for a varying coefficient emulator.

The fit of the varying coefficient emulator was compared to the fit of a fixed coefficient
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emulator using the prediction residual sum of squares (Table 3), calculated as the sum of
the squared difference between the leave-one-out prediction and the true output. The prior
variance term σ2 of the fixed coefficient emulator for each output was set to the residual
variance of a linear regression fit to that output. This is comparable to the prior variance
of the varying coefficient emulator at xi = 0.5 for all i ∈ {1, . . . , 14}. For the emulators
for emissions and cost, the residual sum of squares is smaller for the varying coefficient
emulator, implying that the fit of the varying coefficient model is better. For the emulator
for the proportion of renewable generation, the residual sum of squares is the same for
both emulators, so there may be no advantage in using a varying coefficient emulator
in this case (although it is not clear whether there would be an advantage or not with
further extrapolation outside the existing design given the plots in Figure 3). Note that as
Table 3 gives the prediction error we do not need to adjust these numbers to account for
the additional degrees of freedom required for fitting the varying coefficient emulator.

Output RSS - non-varying coefficients RSS - varying coefficients

Renewable generation 1.90 1.89
Emissions 1.79 1.62

Spend 2.50 2.01
Table 3

Residual sum of squares (RSS) from leave-one-out cross validation estimated for each rescaled output
for the varying coefficient model compared to the fixed coefficient emulator

The varying coefficient emulator is a more general form of the fixed coefficient emulator,
allowing for a more flexible prior specification. In the absence of evidence to suggest that the
relationship between the inputs and outputs of a computer model are constant throughout
the space it is risky to make this assumption, as the resulting uncertainty in the computer
model outputs will be underestimated. As demonstrated above, there is evidence for the
motivating example that coefficients are varying and that a varying coefficient emulator
gives a better fit than one with fixed coefficients (as measured using the RSS).

5.3. Parametric and structural uncertainty. The aim of the analysis was to find a
set of strike prices that will meet the three government targets with a high probability,
accounting for uncertainty in the eight input parameters z. To model this parametric
uncertainty z was assumed to have a multivariate Normal distribution with

E [z] =(0, 0, 0, 1, 1, 1, 1, 1)T

Var [z] =(0.52, 0.52, 0.52, 0.052, 0.052, 0.052, 0.052, 0.052)T

Corr(z1, z2) =Corr(z1, z3) = 0.2, Corr(z2, z3) = 0.4,

Corr(zi, zj) =0 for other pairs of inputs

where the dimensions of z are defined in subsection 3.3.1. The mean of this distribution
is the central government scenario used in [27]. The variance of the demand, coal, gas
and technology cost parameters was set so that a 95% probability interval around the
mean corresponds approximately to the low and high scenarios tested in [27]. The variance
for the hurdle rate and load factor parameters was set so that a 95% probability interval
around the mean would be approximately (0.9, 1.1) (uncertainty in these parameters was
not considered in [27]). The correlation between gas and demand and coal and demand
was set to 0.2 to represent that over the short term an increase in electricity demand could
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lead to an increase in gas and coal prices as more fuel is needed to meet demand. The
correlation between coal price and gas price was set to 0.4 because a rise in the price of one
fuel could lead to increased usage of the other fuel, resulting in increased prices in both.

With no historical data available, and no computer model evaluation time to investigate
internal discrepancy, the covariance matrix Σ of the error term ε = (εr, εe, εs) was set to a
diagonal matrix with diagonal entries 7.7 × 10−6, 25, 3859. For renewable generation and
spend in 2020, these values represent a standard deviation of around 1% of the target. For
emissions in 2030, the standard deviation is 5% of the target. The standard deviations
of the errors associated with renewable generation and spend in 2020 are proportionately
much smaller than the standard deviation associated with emissions in 2030, to reflect
the greater potential for increased structural discrepancy over a longer time period. If a
complete analysis were performed for policy purposes, it would be necessary to test the
sensitivity of the results to the assumptions for pZ(z) and ε given above. A study using the
standard emulation approach to assess sensitivity and uncertainty of wholesale electricity
prices to computer model input assumptions is done in [40].

Note that the distributions representing parametric and structural uncertainty were
chosen to demonstrate the statistical methodology that is applicable for this problem and
are not a quantitatively accurate representation of the GB electricity system. The results in
this paper should therefore be seen as illustrative of the methodology and not as assessments
of probabilities of meeting government targets.

5.4. Choosing strike prices. The aim of the analysis was to use emulation to investi-
gate possible strike prices for onshore wind, offshore wind and solar generation. The strike
prices chosen should be associated with a high probability of meeting government targets
for renewable generation, emissions and spend given uncertainty in eight other computer
model inputs and structural discrepancy.

Uncertainties were assessed using simulation in combination with the emulator (fit-
ted to all 80 design points). Following previous notation, we denote the expectation
and variance taken with respect to the uncertainty modelled using the emulator by E∗
and Var∗. Steps for the estimation of E∗[EZ [f(θ, z)]], Var∗[EZ [f(θ, z)]], E∗[VarZ [f(θ, z)]]
and Var∗[VarZ [f(θ, z)]] for f = fr, fe, fs and P (yr(θ, z) > cr, ye(θ, z) < ce, ys(θ, z) < cs)
are described in section 4. To obtain the expectations and variances of y(θ, z) rather
than f(θ, z), the only adjustment required to the quantities above is E∗[VarZ [y(θ, z)]] =
E∗[VarZ [f(θ, z)]] + Var[ε].

Prob of meeting objectives Auction parameter values

Joint Renew- Emission Spend Rate of Starting Rate of Starting Rate of Starting
Prob able target target decay price decay price decay price

target offshore offshore solar solar onshore onshore

0.14 0.80 0.29 0.81 0.12 142.79 3.14 110.55 0.54 75.56
0.14 0.86 0.46 0.57 0.19 149.58 0.41 80.62 0.38 75.71
0.13 0.87 0.44 0.60 0.03 147.54 1.18 123.17 1.09 76.83
0.13 0.87 0.46 0.56 0.25 150.53 1.44 124.91 2.59 76.79
0.12 0.88 0.52 0.47 0.36 153.90 3.90 92.04 1.37 76.75

Table 4
Joint probability and marginal probabilities of meeting the three targets for the five strike price choices

with highest joint probability of meeting government objectives out of 1,000 tested.

A Latin hypercube sample of size 1,000 over the six strike price inputs was generated
and the joint and marginal probabilities of meeting the three government targets at each
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set of strike prices in this Latin hypercube sample were estimated. The five sets of strike
prices with highest joint probability are presented in Table 4. The highest joint probability
over all 1,000 sets of points tested is 14% but as Table 4 shows, sets of points with similar
joint probabilities can have very different probabilities of meeting the individual targets.

The results from all 1,000 samples are shown in the heat maps in Figure 4. Results are
displayed for the three strike price inputs that had the biggest effect on the probabilities
of meeting the targets (starting prices for offshore and onshore wind and rate of decay of
offshore wind price). As shown in both Table 4 and Figure 4, a high starting price for
offshore wind in combination with a low rate of decay over time of this price is needed to
meet all three targets. When the starting price of offshore wind is high, there is a slight
increase in the probabilities of meeting the spend and emissions targets if the starting price
of onshore wind is low. The starting price for offshore wind was modelled with a varying
coefficient in the final fitted emulator. The heat maps in Figure 4 show some evidence
of complex spatial variability in the relationship between the probabilities of meeting the
spend and emissions targets and this starting price in that the starting price only seems
to have an effect on the probabilities in a restricted region of the space. However, it is
difficult to assess from Figure 4 alone whether there is complex spatial variability in the
relationship between the starting price and the cost or the emissions targets directly as the
plots in Figure 4 integrate over the uncertain input parameters z. Regardless of whether
the plots show complex spatial variability or not, one advantage of the varying coefficient
emulator is that it captures any uncertainty that arises because it is not known whether
the spatial variability is simple or not where there are no data.
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Figure 4. Heat maps showing the probabilities of meeting the spend (Prob s), renewable generation
(Prob r) and emissions (Prob e) targets as the starting strike price for offshore wind (s str off), the rate of
decay of the offshore wind strike price (r str off) and the starting price for onshore wind (s str on) vary.

The strike prices in the top row of Table 4 are explored further in Table 5. The expected
proportion of renewable generation in 2020, emissions in 2030 and spend in 2020 given the
strike prices in the top row of Table 4 are listed. Standard deviations in these quantities due
to parametric uncertainty alone (left hand side) and due to a combination of parametric and
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Parametric Parametric and structural
Mean (SD) SD (SD) Mean (SD) SD (SD)

% Renewables 0.32 (0.0074) 0.025 (0.0023) 0.32 (0.0074) 0.025 (0.0023)
Emissions (gCO2/kWh) 113.1 (3.8) 23.9 (2.2) 113.1 (3.8) 24.4 (2.1)

Cost (£m) 7,138 (85) 532 (39) 7,138 (85) 535 (38)
Table 5

Output uncertainty for strike price choice with highest joint probability of meeting objectives. The left
hand side of the table gives the mean and standard deviation with only parametric and functional uncertainty
included. The right hand side of the table also incorporates structural discrepancy.

structural uncertainty (right hand side) are given. The effect of the additional structural
uncertainty is small in comparison to the parametric uncertainty. The values in brackets in
Table 5 give the standard deviations of each of the numbers presented, where this standard
deviation arises due to the use of an emulator. The standard deviations due to emulation
are still quite large (although small relative to the standard deviation due to parametric
uncertainty) but this reflects the small size of the design. These standard deviations could
be reduced with further model runs. Whilst the emulator standard deviations seen in
Table 5 may be too high for decision-makers to feel confident in making decisions based on
these results alone, the results are still of value because they can be used to guide further
computer model runs by narrowing down the input space of interest to decision-makers.
The size of these errors also highlights the uncertainty that arises when a limited set of
model runs is used for analysis. To make fully informed decisions based on computer model
output it is necessary to know the extent of this uncertainty.

The results presented in this section demonstrate the importance of presenting to
decision-makers a range of possible options, rather than just a single optimal solution
(which in this application would be the set of strike prices with the highest joint prob-
ability of meeting the targets). With a more complete picture of the possible choices,
decision-makers can make a more informed choice. Given the length of time taken for
one run of the computer model it would be computationally impossible to investigate the
impact of different strike price choices whilst integrating over parametric uncertainty in
this way without use of emulation.

6. Discussion. A varying coefficient emulator and design selection procedure were
demonstrated on a real-world example involving the selection of parameters in a gov-
ernment policy designed to incentivise investment in renewable technologies to meet gov-
ernment targets.

Motivated by this example, this paper describes methodology for quantifying uncer-
tainty in complex computer models, focussing on situations where the number of available
computer model evaluations is small. A varying coefficient model is proposed for emulation
of computer model output. For complex models, an assumption that the coefficients of the
global mean function of an emulator are constant throughout the input space is unrealistic.
When model evaluations are plentiful, the stochastic process governing the local variation
can adapt to incorporate these varying coefficients. With limited model evaluations better
results may be obtained by incorporating prior knowledge of the varying coefficients into
the global mean function. A varying coefficient model also allows for a more accurate
representation of uncertainty when extrapolating away from design points, which is of par-
ticular concern when the design is small relative to the number of inputs. This is because a
varying coefficient model acknowledges uncertainty in the global response surface, as well
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as in the local variation.
A design selection procedure for small designs is also presented. When the number of

model evaluations is limited, it is crucial to extract maximum benefit from the model eval-
uations performed. This paper selects a design by estimating the value of some criterion
given different possible designs. This criterion can be set as the sum of a utility function,
evaluated over a grid, with the contribution of the utility function at each gridpoint deter-
mined by a set of weights. The utility function can be used to assess the emulator under
the proposed design, and the weights can be used to prioritise the regions of the input
space of most interest.

Supplementary material. The supplementary material contains a series of illustrative
examples comparing the varying coefficient emulator to a fixed coefficient emulator as well
as further details on the inputs of the computer model, the design selection and the fitting
of the emulator to the full design.
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