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Abstract
As the ongoing battle between brick-and-mortar stores and e-commerce shops esca-
lates, managers of the former are becoming more cautious regarding their strategic
store site selection and decoration decisions, particularly if foreseeable competition
from rival companies exists. This paper investigates a bilevel competitive facility loca-
tion (BCFL) problem, where two companies, a leader and a follower, plan to enter a
market sequentially. Each company has a budget to open and design facilities. The goal
is to maximize expected revenue that is forecasted through a discrete choice model.
To reflect a practical environment, we further consider a situation with elastic demand,
explaining the market expansion effect when customers are offered better service due to
the opening of new facilities. We formulate the problem as a nonlinear 0-1 bilevel pro-
gram. Because of the bilevel structure and the market expansion effect, this problem is
so challenging that we are unaware of any exact algorithms in the literature. Motivated
by this gap, we develop an exact framework that leverages the state-of-the-art value-
function–based approach. However, this framework requires solving a mixed-integer
nonconvex optimization problem (MINOP) at each iteration, which is computationally
prohibitive even for medium-scale instances. To mitigate the intractability, we propose
a new framework that avoids MINOP and tackles instances with hundreds of location
variables. Finally, we conduct extensive computational studies to show the efficiency
and effectiveness of our method as well as provide insightful guidance for managers
to have win–win/dominate outcomes and choose an appropriate market size function
when dealing with expansion decisions in chained business operations.

K E Y W O R D S
chained business expansion, competitive facility location, demand elasticity, leader–follower game, value-
function–based reformulation

1 INTRODUCTION

Market competition, under proper circumstances and regu-
lations, has the power to make a business better serve its
customers. Sportswear retailing brands, for example, Adidas
and Nike, always have their stores sit closely to each other in
order to satisfy customers’ diverse requirements and, where
possible, cannibalize the rival’s market share. In fact, market
competition is inevitably found in most business environ-
ments, whose occurrence has been partially explained by the
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median voter theorem from economists’ lens (Downs, 1957).
Essentially, any company that strays too far from customers
at the business center will soon be out of business. Therefore,
it is common to observe that the above sportswear twins keep
their presence nearby at popular shopping malls.

Undoubtedly, the athleisure industry has boomed over
the last few years, wherein the competitive store locations
are certainly of strategic importance to determine the sales
and operational costs. Consultants estimated that it costs
approximately USD 107,500 on average to open a brick-
and-mortar sportswear retailing store, in which the rental
and decoration components account for over 80% in total
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(CostHack, 2021). As is commonly known, location plays a
key role in attracting and retaining customers—a good loca-
tion decision can significantly boost a store’s long-term sales
performance while unwise decisions might result in loss of
customers costing up to thousands of dollars. Retail store
decoration, without a shadow of doubt, also has a tangible
and far-reaching impact on securing customers and, perhaps
more importantly, allows differentiation from its competitors.
Thus, executive board members are more than cautious to
locate new physical stores and decorate them with differ-
ent budget levels when planning to enter a new market. For
example, in 2019, Adidas opened 147 new stores in total,
among which, 142 were decorated as factory outlets and 5 as
concession corners stores; meanwhile, it also closed 9 con-
cept stores (Statista, 2021). A similar emphasis on physical
stores’ decisions was also identified in Nike’s business prac-
tice (Emma, 2019). As large companies face site selection and
decoration decisions, a natural question that arises concerns
about how a company such as Adidas locates and designs its
new store by anticipating the potential competition from its
competitors (e.g., Nike) in the near future. In our opinion,
this is an interesting topic that requires further contributive
investigation.

Our study is motivated by the site location and design prob-
lem in the athleisure retailing industry, which is somewhat
affiliated to the competitive facility location (CFL) prob-
lem. The CFL is a vibrant research field that studies an
“entrant” company planning to enter a market with incumbent
or prospective competitors. The company wishes to locate
and design new facilities to maximize the expected market
share (or revenue) that is characterized by discrete choice
models (e.g., multinominal logit model and gravity model),
given different competition types enforced by the competi-
tors. Particularly, previous literature illustrates CFL models
in terms of two streams, static versus foresight. The former
assumes that the competitor’s facilities location and design
decisions are not affected as the company enters the mar-
ket (Lin & Tian, 2021b; Ljubić & Moreno, 2018). The latter,
on the contrary, takes the competitor’s reaction into consid-
eration. Such a problem, often termed as CFL with foresight,
has been developed from a game-theoretical perspective and
is inherently more challenging than its static counterpart. We
suggest interested readers to the book by Mallozzi et al.
(2017) for a comprehensive discussion. Zooming on CFL
with foresight, there are two main branches in terms of reac-
tion timing, that is, simultaneous- and sequential-entry CFL.
According to the literature on simultaneous-entry CFL, com-
petition is embedded into a Nash game where companies
simultaneously make the location and design decisions on
their own facilities. Under Nash equilibrium, no company
can improve the market share/revenue by unilaterally alter-
ing its own strategy. However, such an equilibrium is absent
in many cases. In contrast, the sequential-entry CFL prob-
lem assumes that there exists a “leader” that makes decisions
at first and interprets the problem as a Stackelberg (leader–
follower) game. More precisely, the leader needs to anticipate
the reaction of the follower(s) so as to select the best strategy,

thereby leading to a bilevel optimization program (Wu et al.,
2016; Xiong et al., 2021).

In this paper, we focus exclusively on the sequential-entry
setting and consider the bilevel competitive facility location
(BCFL) problem with two competing companies, that is, a
leader and a follower. Below, we describe the detailed BCFL
decision process as shown in Figure 1. Suppose that each
company has a fixed amount of budget to set up and design
the facilities (i.e., rectangle and pentagon). In addition, each
facility has several design options that exhibit different utility
levels to the customers and incur different costs. Sequentially,
the leader and then the follower are required to locate and
design new facilities at candidate sites (i.e., filled rectangle
and pentagon). The goal of each company is to attract as
many customers as possible, that is, to maximize the expected
revenue (sum of fractional weights on solid or dash arrows).

This paper further considers the market expansion effect,
a concept that has been gaining considerable research
attention in recent operational studies related to customer
choices (Baloch & Gzara, 2020; Lin & Tian, 2021c; Wang,
2021). It is commonly assumed that the market size is influ-
enced by the companies’ decision, and empirical evidence
has demonstrated that failure to account for the variable
market size may result in substantial loss (Wang, 2021).
In previous CFL studies, it has been reported that when
companies open new facilities, customers will experience
or perceive better service quality or utility, causing demand
volume to increase (Berman et al., 2009). It is indeed a
spillover phenomenon induced by the economies of scale and
a direct consequence of the bandwagon effect (i.e., a pop-
ular trend attracts even greater popularity). However, most
extant studies mainly focus on single-level models (i.e., static
competition) while the market expansion effect has not been
fully investigated in a Stackelberg setting. Furthermore, an
interesting question regarding how the leader and follower
split the incremental market size, such as the situations of
win–win or winner-takes-all, has not been answered in the
literature yet. Motivated by these observations, we adopt that
both the leader and the follower will take the market expan-
sion effect into consideration when making their decisions
and intend to address the open question with a more insightful
analysis.

In essence, we formally introduce a nonlinear bilevel com-
petitive facility location problem with variable market size
(BCFL-VM) and formulate it as a nonlinear 0-1 bilevel pro-
gram. Clearly, the following three distinct features of the
BCFL-VM render it rather challenging to address exactly:
(i) First and foremost, given the bilevel decision structure,
the leader knows ex ante that the follower observes its deci-
sion before reacting optimally. Therefore, if the leader aims
to find out the best strategy, then it needs to anticipate the fol-
lower’s response in advance. (ii) Due to the restricted choices
in a discrete space, extensive efforts are required to satisfy the
integrality conditions. (iii) Last but not least, the variable mar-
ket size incorporates additional customer behavior factors and
interactions into the nonlinear decision objectives, thereby
leading to foreseeably extra computational iterations. To the
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F I G U R E 1 Illustration of a BCFL-VM problem in discrete space [Color figure can be viewed at wileyonlinelibrary.com]

best of our knowledge, we are unaware of any exact solu-
tion approach in the BCFL literature that can handle such a
problem in possession of the aforementioned features in prac-
tical business environments. In light of these observations,
this paper is dedicated to developing a high-performance
exact algorithm to search for solutions of proven optimal-
ity, which is also generalizable to address other industrial
decisions.

Because the decisions related to location and design are
strategically long-lasting and economically prohibitive to
alter for years, we identify a wide variety of applications for
our proposed approach in business environments. For exam-
ple, when the U.S. retail giant Walmart debuted its business
in London, as an incumbent, it had to anticipate that other
retailers (e.g., Tesco and Marks & Spencer) would enter the
nearby regions and compete for market share soon. Another
interesting application of the BCFL-VM is in the context of
chained business decisions among hotels (e.g., Hilton and
Marriot) and shopping malls, in which the manager needs to
make a strategic facility deployment and design plan with the
foresight of its competitor’s (enter)response.

1.1 Related literature

We briefly review related works regarding BCFL solution
approaches to position the contributions of this paper. To date,
many BCFL solution methods are heuristics, which rely on
metaheuristic methods (e.g., tabu search, randomized local
search, and evolutionary algorithm) to search for improved
leader solutions. The quality of a leader’s solution is evalu-
ated by solving a follower problem (Biesinger et al., 2015;
Drezner et al., 2015). However, these methods are not guar-
anteed to find an optimal solution and require solving the
follower problem for a large number of iterations. Consider-
ing that the follower problem itself is possibly NP-hard (in

many cases, it is a static CFL), the effectiveness of these
approaches is also limited. As a result, nonexact algorithms
or metaheuristics have been adopted to solve the follower
problem in a computationally efficient manner (Biesinger
et al., 2016).

There exists a considerable number of works on linear
BCFL, which assumes that customers only visit the most
attractive facility. The resulting models are bilevel linear
0-1 programs. This research stream is also called the dis-
crete (r|p)-centroid problem where several exact solution
approaches exist. By representing the model as a maximiza-
tion problem of a pseudo-Boolean function, Beresnev (2013)
proposed an exact branch-and-bound algorithm, which was
later extended to solve the case where the facility capac-
ity was considered (Beresnev & Melnikov, 2018). However,
as shown in the study, such a method can only handle
small-scale instances with less than 35 possible locations
in a reasonable time. Alekseeva et al. (2015) presented an
integer linear reformulation using an exponential number
of constraints. Based on this representation, they developed
an iterative algorithm that combines with a local search
procedure to search for a feasible solution given certain con-
straints. Gentile et al. (2018) also restated the model as
an integer linear program. Different from Alekseeva et al.
(2015), the formulation was solved via a branch-and-cut algo-
rithm where the cuts were generated on-the-fly by solving
some separation problems.

The exact methods mentioned above are dedicated to linear
BCFL models, assuming that customers make deterministic
choices. However, it is prevailing in the CFL literature that
customer’s choices are captured probabilistically (Berman
et al., 2009; Ljubić & Moreno, 2018). This is because an
individual may prefer a facility that is not necessarily the
nearest according to their preferences. These preferences are
typically unknown or hard to measure; therefore, the odds
of a customer patronizing a facility should be estimated by
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some probabilistic choice models. This argument has been
well supported by empirical evidence and validated through
big-data analysis (Lyu & Teo, 2022; Suhara et al., 2021). In
this paper, we consider a BCFL model with a proportional
choice rule based on Luce’s choice axiom (Luce, 2012), lead-
ing to a nonlinear BCFL model that is fundamentally different
from the linear case. Furthermore, we explicitly consider
the market expansion effect, which is an important but usu-
ally neglected aspect, making the resultant model even more
challenging than the linear BCFL models.

To the best of our knowledge, the only exact approach for
nonlinear BCFL was proposed by Küçükaydin et al. (2011)
for addressing a special case of the problem. They consid-
ered that the leader makes both discrete location decisions
and continuous design decisions for the facilities, whereas
the follower has already set up the facilities and the deci-
sion is to make continuous adjustments in the design of
facilities. The follower problem was a convex optimization
problem. With Karush-Kuhn-Tucker (KKT) conditions, the
bilevel model was recast into a non-convex mixed-integer
program (NMIP), which was subsequently solved to 𝛼-
optimality using the GMIN-𝛼BB algorithm (Adjiman et al.,
2000). However, there are two main limitations. First, this
approach cannot be used to solve the problem where both
companies make location decisions. If the follower prob-
lem contains discrete variables, then the KKT conditions are
not applicable. Second, the KKT-based reformulation leads
to an NMIP whose nonconvexity makes it computationally
prohibitive even for small-scale problems. In the numerical
experiment, GMIN-𝛼BB can only solve problems with less
than 20 leader facilities and 8 follower facilities.

To address the aforementioned gaps, we aim to develop
an exact approach for large-scale nonlinear BCFL prob-
lem. Our methodology certainly contributes to the research
stream on (mixed-)integer bilevel optimization. In particular,
the majority of extant studies in this regard focus on linear
problems, where both the objective functions and constraints
are linear, and branch-and-cut algorithms are considered as
state-of-the-art techniques (Fischetti et al., 2017; Taherne-
jad et al., 2020). This situation aligns with the literature
on linear BCFL where, indeed, efficient exact algorithms
were implemented within branch-and-cut frameworks. We
refer the readers to Kleinert et al. (2021) for a comprehen-
sive survey on bilevel optimization. However, upon departing
from the extant literature and incorporating nonlinearity, the
corresponding bilevel problem becomes extremely challeng-
ing. Although several algorithms have been proposed—for
example, the branch-and-sandwich approach by Kleniati and
Adjiman (2015) and the iterative framework by Mitsos
(2010)—due to extra efforts required to handle the non-
linearity (even nonconvexity), these algorithms were shown
to be limitedly effective and only tested with small-scale
instances. Recently, Lozano and Smith (2017) proposed a
powerful value-function–based approach that can handle both
optimistic and pessimistic versions of the bilevel problem.
Motivated by this framework and underpinned by various
acceleration procedures and reformulation techniques, we

design a more powerful solution framework that substantially
enhances the computational performance.

1.2 Our contributions

Our main contributions include the hierarchical problem def-
inition, (enhanced) exact methods development, as well as
insights from numerical experiments.

(i) Hierarchically strategic decisions with distinct features.
This paper investigates nonlinear BCFL with discrete
location and design decisions for both the leader and
the follower under variable market size. Such a BCFL-
VM problem is inherently more challenging than linear
BCFL, nonlinear BCFL with continuous decision vari-
ables for the follower, and nonlinear BCFL without
market expansion effect.

(ii) Exact methods and acceleration enhancement. To the
best of our knowledge, although there exists a large
body of research on nonlinear discrete BCFL, the
exact solution approach to address nonlinear BCFL
with variable market size is still absent. Motivated by
this research gap, we develop the following two exact
solution frameworks:
∙ VF-based algorithm. The algorithm is motivated

by the state-of-the-art value-function reformula-
tion approach. Specifically, we craft the framework
of Lozano and Smith (2017) to align with our problem
setting and derive an iterative algorithm that alternates
between an upper bounding problem and a lower
bounding problem.

∙ EVF-based algorithm. As the upper bounding problem
is a mixed-integer nonconvex optimization prob-
lem (MINOP), it becomes a key bottleneck to the
solution procedure. We thus propose an enhanced
version of the VF-based framework, in which both
bounding problems show convex structures and can
be solved significantly faster. To efficiently solve
the bounding problems, we develop branch-and-
cut algorithms based on outer-approximation (OA)
cuts and customized conic approaches leveraging the
second-order conic representability of the problems.

(iii) Insights from experimental tests. We test the perfor-
mance of the algorithms on a broad testbed. The results
show that our enhanced algorithm is rather effective
and that it can yield significant improvement with up to
several orders of magnitude in terms of computational
time compared to the original framework by Lozano
and Smith (2017). Furthermore, when the market size is
fixed, our algorithm can satisfactorily handle instances
with hundreds of location variables in a reasonable
computational time. Our tests also provide several man-
agerial insights for chained business decisions in terms
of typical design parameters such as budget, demand
elasticity, and choice-set characteristics. For example,
we conclude that the unilateral raising budget activity



LOCATING FACILITIES UNDER COMPETITION AND MARKET EXPANSION 3025
Production and Operations Management

will lead to a “win-win” or “raiser dominates” out-
come, depending on the trade-off consequence between
spillover and cannibalization effects in a concavely sized
expanded market. In addition, we find that adopting a
well-fitted market size function can significantly reduce
potential revenue loss and help managers achieve more
desirable expansion results.

The rest of the paper is organized as follows. We present the
problem description and the model for the BCFL-VM in Sec-
tion 2. Then, we develop an exact solution algorithm based
on the value-function reformulation approach in Section 3.
Section 4 presents an enhanced algorithm that substantially
speeds up computation time. We then conduct extensive
computational studies and discussion in Sections 5 and 6,
followed by a concluding remark in Section 7.

2 PROBLEM DESCRIPTION

2.1 Basic setting

This section presents a detailed description of the problem.
Two companies, a leader and a follower, are planning to
enter a market. The leader and the follower will locate and
design new facilities among a few candidate sites sequen-
tially. For example, in Figure 1, the pentagons represent the
candidate locations for the leader while rectangles denote
potential locations of the follower. It is assumed that when
a facility is open, it is able to attract a certain number of cus-
tomers to visit (e.g., the opening of a new shopping mall).
Moreover, each facility has several design options that exhibit
different utility/attraction levels to the customers and incur
different costs. With a fixed amount of budget, the goal of
each company is to compete for attracting customers, that
is, to maximize the expected revenue jointly determined by
a market size function and a discrete choice model. More
precisely, when customers are offered a set of open facilities
from the leader and the follower, they first decide whether to
use the service from one of the companies (which is predicted
by a market size function). If yes, they subsequently choose a
facility to patronize following the Luce’s choice axiom (Luce,
2012). That is, the probability of a customer patronizing a
facility is proportional to the utility/attraction provided by
the facility to the customer. Notably, two popular models that
exhibit such a proportional choice characteristic are the grav-
ity model and the multinominal logit model, both of which
have been widely adopted in the CFL literature (Aboolian
et al., 2007; Drezner & Drezner, 2017; Freire et al., 2016;
Ljubić & Moreno, 2018). Once the choice probabilities have
been estimated, the expected revenue captured by a (leader
or follower) company can be derived as a weighted sum of
the market sizes among all demand zones multiplying the
revenue produced by one unit of market size.

The market size at each customer zone is elastic, that is, we
consider the market expansion effect, which states that when
companies open new facilities, customers will experience or

perceive better service quality or utility, and the demand vol-
umes increase correspondingly. In the CFL models, this effect
is typically defined as demand elasticity, and the demand vol-
ume or the market size at a customer zone is modeled by
some expenditure function or market size function, which is
assumed to be concave and nondecreasing over the total util-
ities that customers observe (Baloch & Gzara, 2020; Berman
et al., 2009; Lin & Tian, 2021c).

Based on the above setup, we study a BCFL problem where
the leader locates facilities first and the follower observes the
leader’s decision before responding in an optimal manner.
Both companies make decisions considering the customer’s
choice behavior and the market expansion effect. We take the
perspective of the leader and aim to find its best strategy for
revenue maximization.

2.2 Model formulation

As indicated in Figure 1, we divide the region into several
customer zones (circles) denoted by set I, and each zone
aggregates the buying power di (∀i ∈ I) inside. The leader
has a budget Bl that can be used to open the facilities, select-
ing from some candidate sites, that is, set J. When the leader
opens facility j, there are |Rj| design options, and exactly
one option will be chosen at the end. If an option r ∈ Rj is
selected, then the attractiveness of the facility j is denoted
as ajr and, accordingly, the leader incurs a fixed cost cjr,
∀r ∈ Rj, j ∈ J.

The utility of leader facility j under design option r to
customer zone i is characterized by

uijr = F(ajr, lij, 𝜖ijr), (1)

where F(⋅) is a nonnegative utility function that is assumed
to depend on the attractiveness ajr of facility j with option r,
the distance lij between a facility j and a customer zone i, and
an additional term 𝜖ijr capturing the impact of other factors
on the utility. On the one hand, F(⋅) is an increasing function
over ajr, meaning that when the leader invests more on facility
j, the utility of the facility to customer zone i will increase. On
the other hand, F(⋅) is a decreasing function in lij, suggesting
that when the distance between the facility and the customer
zone increases, the facility becomes less attractive.

Similarly, the follower has a budget Bf and its candidate
facilities are denoted by a set K. There are |R̃k| design options
for facility k, ∀k ∈ K, and the attractiveness is b̃kr with a
fixed cost gkr, ∀r ∈ R̃k, k ∈ K. We then describe the utility
of follower facility k under design option r to customer zone
i by

vikr = F̃(b̃kr, l̃ik, �̃�ikr), (2)

where F̃(⋅) is a nonnegative utility function that depends on
b̃kr, the distance l̃ik between facility k and customer zone i,
and an additional term �̃�ikr.



3026 LIN ET AL.Production and Operations Management

Now, we define two binary variables xjr and yjr that are
required for model development:

xjr =

⎧⎪⎪⎨⎪⎪⎩
1 if the leader opens facility j with design option

r, r ∈ Rj, j ∈ J;

0 otherwise.

ykr =

⎧⎪⎪⎨⎪⎪⎩
1 if the follower opens facility k with design option

r, r ∈ R̃k, k ∈ K;

0 otherwise.

(3)

Given this, for a customer zone i, the total utility Ui from
the leader facilities and the total utility Vi from the follower
facilities are defined as Ui =

∑
j∈J

∑
r∈Rj

uijrxjr and Vi =∑
k∈K

∑
r∈R̃k

vikrykr. According to the proportional choice
rule, the probability of a customer at zone i patronizing one
of the leader’s facilities is given by

pi =
Ui

Ui + Vi
=

∑
j∈J

∑
r∈Rj

uijrxjr∑
j∈J

∑
r∈Rj

uijrxjr +
∑

k∈K

∑
r∈R̃k

vikrykr

∀i ∈ I, (4)

where the denominator stands for the total utility jointly
provided by the leader and the follower to customer zone
i. We define zi(x, y) to emphasize that such total utility
is determined by the decisions of both companies, that
is,

zi(x, y) =
∑
j∈J

∑
r∈Rj

uijrxjr +
∑
k∈K

∑
r∈R̃k

vikrykr. (5)

Similarly, the probability of a customer at zone i patroniz-
ing one of the follower’s facilities is given by p̃i = 1 − pi,
∀i ∈ I.

The market size at zone i is assumed to be elastic and rep-
resented by some expenditure function Gi(⋅) over the total
utility, that is,

MSi = Gi(zi) ∀i ∈ I. (6)

In this paper, MSi can be interpreted as the number of cus-
tomers at zone i that will eventually patronize the facilities
opened by the leader and the follower. For ease of expo-
sition, we assume that one unit of market share leads to
one unit of revenue. Given the market size, we estimate
the revenue of the leader as Π(x, y) =

∑
i∈I MSi ⋅ pi and

that of the follower as Φ(x, y) =
∑

i∈I MSi ⋅ p̃i. With these

notations, BCFL-VM can be formulated as the following
bilevel optimization problem:

maxΠ(x, y∗) =
∑
i∈I

Gi

⎛⎜⎜⎝
∑
j∈J

∑
r∈Rj

uijrxjr +
∑
k∈K

∑
r∈R̃k

vikry∗kr

⎞⎟⎟⎠
×

∑
j∈J

∑
r∈Rj

uijrxjr∑
j∈J

∑
r∈Rj

uijrxjr +
∑

k∈K

∑
r∈R̃k

vikry
∗
kr

(7a)

[Leader] s.t.
∑
j∈J

∑
r∈Rj

cjrxjr ≤ Bl, (7b)∑
r∈Rj

xjr ≤ 1 ∀j ∈ J, (7c)

xjr ∈ {0, 1} ∀r ∈ Rj, j ∈ J, (7d)

where y∗ is an optimal solution to the follower problem.

maxΦ(x, y) =
∑
i∈I

Gi

⎛⎜⎜⎝
∑
j∈J

∑
r∈Rj

uijrxjr +
∑
k∈K

∑
r∈R̃k

vikrykr

⎞⎟⎟⎠
×

∑
k∈K

∑
r∈R̃k

vikrykr∑
j∈J

∑
r∈Rj

uijrxjr +
∑

k∈K

∑
r∈R̃k

vikrykr

(8a)

[Follower] s.t.
∑
k∈K

∑
r∈R̃k

gkrykr ≤ Bf , (8b)∑
r∈R̃k

ykr ≤ 1 ∀k ∈ K, (8c)

ykr ∈ {0, 1} ∀r ∈ R̃k, k ∈ K. (8d)

Objective functions (7a) and (8a) are the revenue of the leader
and the follower, respectively. Constraints (7b) and (8b) are
their budget restrictions. Constraints (7c) and (8c) ensure that
only one design option can be selected if a facility is open.
Finally, constraints (7d) and (8d) are the integrality restric-
tions on the decision variables. We refer to the above bilevel
model as the nonlinear BCFL-VM.

In the BCFL-VM model, the utilities of the leader and
the follower facilities are represented by (1) and (2). Both
equations impose that the utility should increase with the
attractiveness of the facility and decrease with the distance
between the facility and the customer zone. Gravity-based
utilities exactly satisfy these requirements and have been val-
idated in various empirical studies (Drezner, 2006; Suhara
et al., 2021). We therefore adopt the gravity-based utilities
function in this paper. For simplicity, we also set 𝜖ijr and �̃�ikr
to 0 so that the utility only depends on the attractiveness of
the facility at a specific design option and the distance, that
is, uijr = ajr∕f (lij), vikr = b̃kr∕f (l̃ik), where f (⋅) is a distance
decay function that reflects the decline in the probability of
a customer patronizing a facility as a function of his/her
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distance away from the facility. We note that our model is
not restricted to the gravity-based utility. Instead, it can be
extended to other types of utility functions as the utilities are
input parameters (and not decision variables). In real-world
applications, the utility shall be estimated from a practical
data set and its formulation depends on a specific business
environment under investigation.

2.3 Market size function

With variable market size assumption, customers’ choice
behavior can be illustrated as follows. When companies open
new facilities, customers are expected to determine whether
to use the service from the companies at first. If not, the
demand is lost from the companies’ perspective; if yes, they
subsequently select an open facility to patronize following the
proportional choice rule.

Given the above procedure, the market size function comes
into effect to specify the total number of customers that
are attracted by the leader and the follower. In particular, it
also reflects the “demand loss” scenario when a customer
decides not to use the service from the companies. Follow-
ing the common assumption on market expansion in the CFL
literature, we represent the market size in (6) by concave
expenditure functions that are nondecreasing in the total util-
ity (Berman et al., 2009). Considering the variable market
size assumption and the demand loss scenario, two types of
expenditure functions arise for general purpose.

∙ Fractional expenditure function (FEF), which takes the
form

Gi(x, y) = di ⋅
zi(x, y)

zi(x, y) + oi
, (9)

where di is the maximum possible demand at zone i and
oi is a nonnegative parameter that can be interpreted as
the utility of “not-use-the-service.” The demand loss is
captured by a fractional term di ⋅

oi

zi(x,y)+oi
. In the extreme

case where oi = 0, the demand loss is zero. The demand
becomes inelastic and thus attains its maximum level, that
is, Gi(x, y) = di.

∙ Exponential expenditure function (EEF), which is repre-
sented by

Gi(x, y) = di ⋅
[
1 − e−𝜆i⋅zi(x,y)

]
, (10)

where 𝜆i is a parameter that reflects both the elasticity and
the size of demand with respect to the total utility. The
demand loss is given by an exponential term di ⋅ e−𝜆i⋅zi(x,y).
When the value of 𝜆i is higher, the demand is larger. Specif-
ically, when 𝜆i →∞, the demand becomes inelastic and
attains its maximum level, that is, Gi(x, y) = di. Such a
function has been widely used in various static CFL mod-
els to capture the market expansion effect (Aboolian et al.,
2007; Baloch & Gzara, 2020).

In general, under the above expenditure functions, the fol-
lower’s objective Φ(x, y) is either a convex or a concave
function. Fortunately, the following lemma establishes the
concavity and convexity of Φ(x, y) when we fix the leader’s
decision and the follower’s decision, respectively.

Lemma 1. Under FEF and EEF, we have the following
results. (i) If the leader’s decision is fixed at x̄, then Φ(x̄, y)
is a concave function over the follower’s decision space y.
(ii) If the follower’s decision is fixed at ȳ, then Φ(x, ȳ) is a
convex function over the leader’s decision space x.

We present the proof in Supporting Infomation EC.1. Note
that this lemma serves as a key component in developing the
solution algorithms for BCFL-VM in Sections 3 and 4.

Last but not least, it is worth noting that there is a possi-
ble variant of the BCFL-VM, that is, we can further consider
an explicit exit option to represent a scenario when customers
do not select any facility from both companies. Specifically,
let 𝜏i denote the utility of this option for customers in zone

i. We may redefine pi and MSi as pi =
Ui

Ui+Vi+𝜏i
and MSi =

Gi(zi + 𝜏i), respectively. The exit option has been investi-
gated in choice-based operations management (Wang, 2021)
under the static competition. However, in the BCFL litera-
ture where there exists Stackelberg competition between two
companies, it is commonly assumed that when the market
size is fixed, the demand is fully captured by the leader and
the follower (Beresnev & Melnikov, 2018; Biesinger et al.,
2016; Drezner et al., 2015; Gentile et al., 2018; Kochetov
et al., 2013; Küçükaydin et al., 2011). Otherwise, it implies
that there is a “third company,” implicitly competing with
the leader and the follower in a static manner (because,
oftentimes, the exit option can be interpreted as “seek-
the-service-from-alternatives”). Essentially, the demand loss
caused by the exit option has been captured by the afore-
mentioned market size function. Hereafter, aligning with the
mainstream among the BCFL literature, we do not consider
the exit option explicitly. Nonetheless, we point out that when
the market size function follows FEF, our proposed model-
ing framework and the subsequent solution algorithms can be
directly applied to the problem with an explicit exit option
after a slight modification of parameters definition. For the
case of EEF, the model can also be extended at the expense
of extra computational efforts. Both extension details have
been discussed in Supporting Information EC.6.

3 VALUE-FUNCTION–BASED
ALGORITHM

Motivated by the recent development in solving bilevel
programs, we develop an exact solution framework, leverag-
ing the value-function reformulation approach—see Fischetti
et al. (2017) and Lozano and Smith (2017) for its recent
applications. Overall, the framework reformulates the BCFL-
VM into a single-level model with an exponential number of
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constraints that specify all possible follower solutions. How-
ever, solving the value-function–based formulation can be
computationally expensive due to its exponential constraint
size. Therefore, we employ a relaxed formulation, consisting
of a subset of follower solutions (called the recorded response
set), to obtain a valid upper bound (UB). A valid lower bound
(LB) is obtained by solving a follower subproblem, whose
solution is used to enlarge the recorded response set and
to potentially tighten UB. The algorithm proceeds until UB
converges at LB or certain stopping criteria are met.

To facilitate our discussion, we define the following sets:

Ω = {(x, y) ∣ (7b) − (7d), (8b) − (8d)},

Ωx = {x ∣ (7b) − (7d)}, (11)

Ωy = {y ∣ (8b) − (8d)},

where Ω contains all possible decisions of the leader and the
follower; Ωx is the leader’s decision space; and Ωy is the fol-
lower’s decision space. Next, we define Π(x, y) and Φ(x, y)
as the revenue of the leader and the follower, respectively.
Furthermore, for each leader solution x, we define

Ξ(x) ∈ arg max
y

{Φ(x, y) ∣ y ∈ Ωy} (12)

as the follower rational response set, that is, the subset of fol-
lower solutions that maximize the follower’s revenue given
the leader solution x. In our problem, for every x, the fol-
lower’s decision space is invariably Ωy, that is, the leader
solution does not make any follower decision infeasible,
which is a common assumption in many nonlinear CFL mod-
els (Küçükaydin et al., 2011; Kochetov et al., 2013; Drezner
et al., 2015). We call a solution (x, y) bilevel feasible if x ∈ Ωx

and y ∈ Ξ(x). Note that ifΞ(x) is not a singleton, then y is cho-
sen from Ξ(x) such that the market size is maximized. This
is equivalent to indicating that if there exist multiple rational
responses of the follower, then the follower will select the one
that maximizes the market size.

With the above notations, BCFL-VM can be restated as

max
x,y

{Π(x, y) ∣ y ∈ Ξ(x), x ∈ Ωx}. (13)

Note that the Ξ(x) in (13) is only known implicitly. Therefore,
we reformulate (13) into an explicit optimization problem,
supported by the following lemma.

Lemma 2. A solution (x, y) ∈ Ω is bilevel feasible if and only
if Φ(x, y) ≥ Φ(x, yp) for every yp ∈ Ωy.

This lemma is adapted from the established result in Ye
(2006). The intuition is that for every yp ∈ Ωy, if Φ(x, y) ≥
Φ(x, yp), then y is optimal given the leader decision x and thus
bilevel feasible.

Note that Π(x, y) =
∑

i∈I Gi(x, y) − Φ(x, y). Given
Lemma 2, the bilevel problem (13) is reformulated as

the following single-level optimization problem:

[EHPP] max
(x,y)∈Ω

×

{∑
i∈I

Gi(x, y) − Φ(x, y) ∣ Φ(x, y) ≥ Φ(x, yp), ∀yp ∈ Ωy

}
,

(14)

which is called the extended high-point problem (EHPP). As
the constraint of EHPP implies the optimality of the follower
response given any leader decision x, that is, the constraint
is equivalent to Equation (8a), the following result arises
immediately.

Lemma 3. EHPP is equivalent to BCFL-VM.

Essentially, the formulation of EHPP suggests that if we
can enumerate all feasible follower responses, then solving
EHPP gives us an optimal solution of BCFL-VM. However,
the size of Ωy could be exponentially large, and it is computa-
tionally unachievable to solve EHPP by fully enumerating all
solutions in Ωy even for a moderate-sized problem. There-
fore, motivated by Lozano and Smith (2017), we consider
a relaxation of EHPP, which only contains some (not all)
feasible follower responses in the formulation. Specifically,
we choose a response set Υ such that Υ ⊆ Ωy and use the
following relaxed EHPP

[REHPP(𝚼)] max
(x,y)∈Ω

×

{∑
i∈I

Gi(x, y) − Φ(x, y) ∣ Φ(x, y) ≥ Φ(x, yp), ∀yp ∈ Υ

}
.

(15)

Here, REHPP(Υ) stands for the relaxed extended high-point
problem. Let (x∗, y∗l ) be an optimal solution to REHPP(Υ).
Because REHPP(Υ) is a relaxation of EHPP, Π(x∗, y∗l ) pro-
vides a UB to BCFL-VM. In contrast, if a leader decision has
been made at x̄, then the follower will aim to maximize its
revenue by solving the following problem:

[FSP(x̄)] max
y∈Ωy

Φ(x̄, y). (16)

Let y∗f be an optimal solution to the follower subproblem,
that is, FSP(x̄). As x̄ is not necessarily optimal for the leader,
Π(x̄, y∗f ) is of course an LB to BCFL-VM.

To summarize, solving REHPP(Υ) and FSP(x̄) allows us
to bound the best objective of BCFL-VM from both upper
and lower sides. Note that UB can be tightened if the
response set Υ is enlarged. Therefore, through an appropri-
ate way of generating new follower responses, it is possible
to derive an exact algorithm that alternates between solving
REHPP(Υ) and FSP(x̄) within finite iterations. This is exactly
the procedure of Algorithm 1.
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A L G O R I T H M 1 Value-function–based algorithm for BCFL-VM.

1: Initialize UB, LB, and set counter p = 0.

2: Select a feasible leader solution x0. Solve FSP(x0) and obtain an
optimal follower response y0

f .

3: Initialize the response set as Υ = {y0
f }.

4: while |UB − LB|∕UB > 10−4 do

5: Set p = p + 1

6: Solve REHPP(Υ). Obtain an optimal solution (xp, yp
l ). Set

UB = Π(xp, yp
l ).

7: Solve FSP(xp). Obtain an optimal follower response yp
f . Set

Υ = Υ ∪ {yp
f }.

8: if Φ(xp, yp
l ) = Φ(xp, yp

f ) then

9: The best solution (x∗, y∗) ← (xp, yp
l ). STOP.

10: else if Π(xp, yp
f ) > LB then

11: Update LB = Π(xp, yp
f ) and the best solution (x∗, y∗) ← (xp, yp

f ).

12: Return (x∗, y∗).

Lemma 4. If REHPP(Υ) and FSP(xp) can be solved opti-
mally, then Algorithm 1 terminates in a finite number of
iterations to an optimal solution of BCFL-VM.

The proof is provided by Lozano and Smith (2017).
Lemma 4 shows that this tailored value-function–based algo-
rithm can solve BCFL-VM to the guaranteed optimality
under finite iterations.

Despite having the finite convergence property, Algo-
rithm 1 is computationally prohibitive for problems with a
reasonable size. Φ(x, y) is not concave over (x, y) in general;
therefore, REHPP(Υ) is an MINOP, giving rise to a major
bottleneck for the algorithm. In particular, when the market
size is modeled by EEF, REHPP(Υ) cannot be solved effi-
ciently using any existing approach, rendering Algorithm 1
practically ineffective for BCFL-VM.

4 ENHANCED VALUE-FUNCTION–
BASED ALGORITHM

In this section, we develop another value-function–based
algorithm that subtly avoids handling REHPP(Υ) and instead
solves a mixed-integer convex master problem (20) to UB
the objective. The new algorithm significantly improves com-
putational efficiency. To complete the algorithm, we then
propose both general and customized approaches for solving
the follower subproblem (16) and the new upper bounding
problem (20).

4.1 Overall framework

Due to the nonconcave term Φ(x, y), it is extremely challeng-
ing to solve REHPP(Υ). Observe that Φ(x, y) appears both in

the objective function and the constraint of REHPP(Υ). More-
over, in the objective, we seek to minimize Φ(x, y), whereas
the constraint defines the lowest attainable value for Φ(x, y)
given the current response set Υ. This allows us to relax
REHPP(Υ) by replacing Φ(x, y) with a single variable Φ∗.
Consider the following reformulated problem:

max
x,y,z

∑
i∈I

𝛽i − Φ∗ (17a)

s.t. Φ∗
≥ Φ(x, yp) ∀yp ∈ Υ, (17b)

[RP(𝚼)] 𝛽i ≤ Gi(zi) ∀i ∈ I, (17c)

zi =
∑
j∈J

∑
r∈Rj

uijrxjr +
∑
k∈K

∑
r∈R̃k

vikrykr ∀i ∈ I, (17d)

(x, y) ∈ Ω, (17e)

where the follower objective function Φ(x, y) is replaced by
Φ∗. We also define an intermediate variable zi to represent
the joint utility provided by the leader and the follower to
customers at zone i, and write Gi(zi) in its hypograph form
with the variable 𝛽i representing the market size at zone i.
Indeed, problem (17) is a convex problem because Gi(x, y) is
concave and Φ(x, yp) is convex according to Lemma 1.

Solving RP(Υ) provides a valid UB to BCFL-VM. How-
ever, this UB may not be tightened to the optimal value.
An intuitive explanation is presented as follows. Suppose
that all yp ∈ Ωy have been enumerated, an optimal solu-
tion of RP(Υ) is (x∗, y∗l ), and the corresponding follower
response is y∗f . We observe that, different from Algorithm 1,
y∗f does not necessarily coincide with y∗l in this setting. This
is because, although the solution pair (x∗, y∗f ) is bilevel feasi-
ble and potentially optimal, the leader’s objective in RP(Υ)
could still be improved by choosing a y∗l that leads to a
larger market size, that is,

∑
i∈I Gi(x

∗, y∗l ) >
∑

i∈I Gi(x
∗, y∗f ).

In other words, due to the substitution of Φ(x, y) by Φ∗,
the linkage between the follower’s response and the mar-
ket size is lost. RP(Υ) thus may overestimate the market
size in some scenarios because the follower’s response is
not explicitly considered in Gi(x, y). Consequently, replac-
ing REHPP(Υ) with RP(Υ) cannot ensure the convergence
of the algorithm because the optimality gap may persist. As
an example, Figure 2a shows the movement of LB and UB of
a competitive facility location and design problem (CFLDP)
instance (see the description in Section 5.1) with (𝛼,Bl,Bf ) =
(1, 30, 70). We can observe that starting from iteration
1, LB and UB do not change and the algorithm cannot
converge.

Therefore, we derive a simple but effective inequality to
avoid the market size overestimation and remove the gap.
Suppose that at iteration p, the leader’s solution is xp with an
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F I G U R E 2 LB and UB versus the number of iterations (# Itr) of a CLFDP instance when RP(Υ) or MP(Υ) is used as the upper bounding problem
[Color figure can be viewed at wileyonlinelibrary.com]

optimal response from the follower yp
f . Then the true market

size is given by g(xp, yp
f ) =

∑
i∈I Gi(x

p, yp
f ). Let Sp

o and Sp
c be

the set of open-design and not-open facility decisions under
solution xp, that is,

Sp
o =

{
(j, r) : xp

jr = 1, ∀r ∈ Rj, j ∈ J
}
,

Sp
c =

{
(j, r) : xp

jr = 0, ∀r ∈ Rj, j ∈ J
}
. (18)

We have the following linear constraint:

∑
i∈I

𝛽i ≤

⎛⎜⎜⎝
∑

(j,r)∈S
p
o

(1 − xjr) +
∑

(j,r)∈S
p
c

xjr

⎞⎟⎟⎠ ⋅ 𝛿 + g(xp, yp
f )

∀p = 1, … , |Υ|, (19)

where 𝛿 is a large number. This constraint effectively imposes
that the market size can be larger than g(xp, yp

f ) only if the
leader’s decision is not xp. Otherwise, it will bound the mar-
ket size at g(xp, yp

f ), explicitly linking the market size with

the follower response yp
f . With this bounding inequality, we

propose the following master problem to derive the UB for
BCFL-VM:

[MP(𝚼)] max

{∑
i∈I

𝛽i − Φ∗ ∣ (17b) − (17e), (19)

}
. (20)

Given MP(Υ), we design a new Algorithm 2, together with
the proof of its finiteness, in Supporting Information EC.2. As
reported in Figure 2b, Algorithm 2 (i.e., replacing REHPP(Υ)
with MP(Υ)) requires only two iterations to verify the
optimality of the solution.

In fact, Algorithm 2 is a modified version of Algorithm 1,
and this modification yields significant enhancement (up to
several orders of magnitude in terms of computational effi-
ciency) as shown in Section 5. In brief, the merits of MP(Υ)
are owing to its convex structure, which allows us to solve
MP(Υ) much more efficiently than REHPP(Υ).

4.2 General branch-and-cut approach for
MP(𝚼) and FSP(xp)

Note that Algorithm 2 terminates in a finite number of iter-
ations to an optimal solution of BCFL-VM, provided that
MP(Υ) and FSP(xp) can be solved optimally. However, both
problems are not trivial. Hereafter, we will present their
solution in detail.

4.2.1 Solving MP(Υ)

As MP(Υ) is a mixed-integer convex optimization problem,
we derive a branch-and-cut outer-approximation (B&C-OA)
algorithm to solve it optimally. The fundamental idea of
B&C-OA is to maintain a single branch-and-cut tree and
use first-order OA cuts that are generated on-the-fly during
the branch-and-cut searching tree to approximate the convex
constraints (17b) and (17c).

We first generate OA cuts for constraint (17c). Given any
solution z̄, because Gi(y) is a concave function, we can UB
it by its first-order linear approximation, generated at z̄, that
is,

𝛽i ≤ Gi(z̄) +
𝜕Gi(z̄)
𝜕zi

(zi − z̄i), ∀i ∈ I. (21)

Such a linear function will not eliminate any feasible region
of MP(Υ) and further provides a valid cutting plane to cut off
nonoptimal solutions.

We then continue to address constraint (17b). Note that
during the iterations of Algorithm 2, new follower responses
are added to set Υ, and they specify new nonlinear inequal-
ities to constraint (17b), creating additional difficulties in
modeling and solving MP(Υ). To derive a compact and
unified OA cut, we first define a function F(x|Υ) as

F(x|Υ) = max {Φ(x, yp), ∀yp ∈ Υ}, (22)

which expresses the right-hand side of constraint (17b) under
the current response set Υ into a single term. Note that
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Φ(x, yp) is a convex function, and thus function F(x|Υ) is also
convex as it is the maximum of |Υ| convex functions. For any
solution x̄, we can then generate OA cuts at x̄ as

Φ∗
≥ F(x̄|Υ) +

∑
j∈J

∑
r∈Rj

𝜕F(x̄|Υ)
𝜕xjr

(xjr − x̄jr), (23)

where
𝜕F(x̄|Υ)

𝜕xjr
is the partial derivative of F(x̄|Υ) at x̄jr.

More precisely, it can be computed as follows. Let y∗ =
arg max

yp∈Υ
{Φ(x̄, yp)}, then F(x̄|Υ) = Φ(x̄, y∗), and we have

𝜕F(x̄|Υ)
𝜕xjr

=
𝜕Φ(x̄, y∗)
𝜕xjr

∀r ∈ Rj, j ∈ J. (24)

Now, given the OA cuts for constraints (17b) and (17c), we
can describe MP(Υ) as the following mixed-integer linear
program (MILP) formulation:

max
∑
i∈I

𝛽i − Φ∗ (25a)

[OA − MP(𝚼)]

s.t. Φ∗

≥ F(x̄|Υ) +
∑
j∈J

∑
r∈Rj

𝜕F(x̄|Υ)
𝜕xjr

(xjr − x̄jr) ∀x̄ ∈ Tx, (25b)

𝛽i ≤ Gi(z̄) +
𝜕Gi(z̄)
𝜕zi

(zi − z̄i) ∀z̄ ∈ Tz, i ∈ I, (25c)

(17d), (19), (x, y) ∈ Ω, (25d)

where Tx and Tz are the sets of recorded x̄ and z̄. These
points define OA cuts that drive the solution to optimality.
In this paper, we embed these OA cuts into the branch-and-
cut procedure. Specifically, we use default branching rules
and cutting planes in off-the-shelf MILP solvers and start
by initializing problem (25) without OA cuts. While in the
searching tree, once any integer nodes are identified, the cor-
responding solution (x̄, z̄, 𝛽, Φ̄∗) is retrieved. We then check if
OA cuts (25b) and (25c) are violated by this solution up to a
minimum relative violation of 10−5. If yes, we then expand
Tx and/or Tz and add the corresponding OA cuts to the current
LP relaxation as lazy cuts using the callback function within
MILP solvers.

4.2.2 Solving FSP(Υ)

We proceed to introducing the solution approach for FSP(xp).
According to Lemma 1, Φ(xp, y) is a concave term; therefore,
we consider approximating it with OA cuts as well. Define

𝜋i to represent the follower’s revenue at zone i under a leader
decision xp, that is,

𝜋i(y|xp) = Gi

⎛⎜⎜⎝
∑
j∈J

∑
r∈Rj

uijrxp
jr +

∑
k∈K

∑
r∈R̃k

vikrykr

⎞⎟⎟⎠
×

∑
k∈K

∑
r∈R̃k

vikrykr∑
j∈J

∑
r∈Rj

uijrx
p
jr +

∑
k∈K

∑
r∈R̃k

vikrykr

.

(26)

Naturally, we have Φ(y|xp) =
∑

i∈I 𝜋i(y|xp). Now, we can
express FSP(xp) in its hypograph form with the variable qi
as

max
∑
i∈I

qi (27a)

[OA − FSP(xp)] st. qi ≤ 𝜋i(y|xp) ∀i ∈ I, (27b)

y ∈ Ωy. (27c)

The OA cut for the nonlinear constraint (27b) at ȳ is given
by

qi ≤ 𝜋i(ȳ|xp) +
∑
k∈K

∑
r∈R̃k

𝜕𝜋i(ȳ|xp)
𝜕ykr

(ykr − ȳkr) ∀i ∈ I.

(28)

FSP(xp) can now be solved using B&C-OA following a phi-
losophy similar to the one described to solve MP(Υ). That
is, at the beginning, we solve the model (27) without con-
straint (27b). During the branch-and-cut searching tree, when
an integer solution ȳ that violates (27b) by a minimum rel-
atively violation of 10−5 is identified, a cut (28) is added to
the model.

4.3 Customized conic approach under FEF

In Section 4.2, we present B&C-OA approaches to solve
MP(Υ) and FSP(xp). These approaches are applicable to
BCFL-VM under both FEF and EEF and therefore pro-
vide a general framework for BCFL-VM. Actually, when the
market size is captured by the FEF, there exists a more effi-
cient approach. That is, MP(Υ) and FSP(xp) can be recast
as mixed-integer conic quadratic programs (MICQPs) and
subsequently solved by modern MIP solvers. Conic program
(CP) reformulation is an effective approach for solving frac-
tional 0–1 programs and has been successfully applied to
various facility location problems (Lin & Tian, 2021a; Lyu
& Teo, 2022; Tiwari et al., 2021). Motivated by these stud-
ies, we present customized CP approaches for MP(Υ) and
FSP(xp) to expedite Algorithm 2 under FEF (a generic form
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of MICQP is provided in Supporting Information EC.3 for
reference).

4.3.1 CP approach for MP(Υ)

Under FEF, the follower’s objective is given by

Φ(x, y)

=
∑
i∈I

(
di ⋅

∑
k∈K

∑
r∈R̃k

vikrykr∑
j∈J

∑
r∈Rj

uijrxjr +
∑

k∈K

∑
r∈R̃k

vikrykr + oi

)
.

(29)

As a result, the master problem can be written as

max
∑
i∈I

𝛽i − Φ∗ (30a)

s.t. Φ∗
≥

∑
i∈I

(
di ⋅

∑
k∈K

∑
r∈R̃k

vikry
p
kr∑

j∈J

∑
r∈Rj

uijrxjr +
∑

k∈K

∑
r∈R̃k

vikry
p
kr + oi

)
∀yp ∈ Υ, (30b)

𝛽i ≤ di ⋅

(
1 −

oi∑
j∈J

∑
r∈Rj

uijrxjr +
∑

k∈K

∑
r∈R̃k

vikrykr + oi

)
∀i ∈ I, (30c)

(19), (x, y) ∈ Ω, (30d)

where we have two nonlinear constraints (30c) and (30b).
We show that they can be reformulated as second-order
conic constraints.

Let us first study the reformulation of (30c). We
define variable ei such that ei =

∑
j∈J

∑
r∈Rj

uijrxjr +∑
k∈K

∑
r∈R̃k

vikrykr + oi; then, (30c) is equivalent to
dioi ≤ (di − 𝛽i)ei. Note that 𝛽i ≤ di by definition (𝛽i is
the market size at customer zone i whereas di is the maxi-
mum possible market size). Therefore, dioi ≤ (di − 𝛽i)ei is
indeed a rotated conic inequality because the right-hand side
is a constant. We can thus replace (30c) by

ei =
∑
j∈J

∑
r∈Rj

uijrxjr +
∑
k∈K

∑
r∈R̃k

vikrykr + oi ∀i ∈ I, (31a)

(di − 𝛽i) ⋅ ei ≥ dioi ∀i ∈ I, (31b)

𝛽i ≤ di ∀i ∈ I. (31c)

Let us now consider the reformulation of (30b). For
each follower response yp, we define variable hp

i such
that hp

i =
∑

j∈J

∑
r∈Rj

uijrxjr +
∑

k∈K

∑
r∈R̃k

vikry
p
kr + oi.

As a result, (30b) becomes Φ∗
≥
∑

i∈I(di ⋅∑
k∈K

∑
r∈R̃k

vikryp
kr∕hp

i ). Now, let us define 𝜃
p
i such that

𝜃
p
i ≥ di ⋅

∑
k∈K

∑
r∈R̃k

vikry
p
kr∕hp

i . Consequently, (30b) is then
equivalent to

Φ∗
≥

∑
i∈I

𝜃
p
i ∀p = 1, … , |Υ|, (32a)

hp
i 𝜃

p
i ≥ di

∑
k∈K

∑
r∈R̃k

vikry
p
kr ∀i ∈ I, p = 1, … , |Υ|, (32b)

hp
i =

∑
j∈J

∑
r∈Rj

uijrxjr +
∑
k∈K

∑
r∈R̃k

vikryp
kr + oi

∀i ∈ I, p = 1, … , |Υ|, (32c)

where (32b) is a rotated conic inequality.
To summarize, MP(Υ) is finally reformulated as the

following program:

[CP-MP(𝚼)]

max

{∑
i∈I

𝛽i − Φ∗ ∣ (19), (31), (32), (x, y) ∈ Ω

}
, (33)

which has a linear objective function, and the constraints are
either linear or conic quadratic. Therefore, it definitely is
an MICQP.

4.3.2 CP approach for FSP(xp)

Under FEF, the follower subproblem FSP(xp) becomes

max
y∈Ωy

∑
i∈I

di

×
⎛⎜⎜⎝1 −

∑
j∈J

∑
r∈Rj

uijrx
p
jr + oi∑

j∈J

∑
r∈Rj

uijrx̄jr +
∑

k∈K

∑
r∈R̃k

vikrykr + oi

⎞⎟⎟⎠ ,
(34)

where we have a nonlinear objective function that is
second-order conic representable. Let us define variable ni
such that ni =

∑
j∈J

∑
r∈Rj

uijrx
p
jr +

∑
k∈K

∑
r∈R̃k

vikrykr + oi.

We can then rewrite the objective function as
∑

i∈I di −∑
i∈I di(

∑
j∈J

∑
r∈Rj

uijrxp
jr + oi)∕ni. Let us then introduce

a variable Qi such that Qi ≥ di(
∑

j∈J

∑
r∈Rj

uijrxp
jr + oi)∕ni

holds, and we can construct a rotated conic inequality
Qini ≥ di(

∑
j∈J

∑
r∈Rj

uijrxp
jr + oi), meaning that FSP(xp) is

equivalent to the following MICQP:

max
∑
i∈I

(di − Qi) (35a)
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[CP-FSP(xp)]

s.t. ni=
∑
j∈J

∑
r∈Rj

uijrxp
jr+

∑
k∈K

∑
r∈R̃k

vikrykr + oi ∀i ∈ I, (35b)

Qini ≥ di

⎛⎜⎜⎝
∑
j∈J

∑
r∈Rj

uijrxp
jr + oi

⎞⎟⎟⎠ ∀i ∈ I, (35c)

y ∈ Ωy. (35d)

In a nutshell, under FEF, we can replace the generic MP(Υ)
and FSP(xp) with respective reformulated problems (33) and
(35) to accelerate the convergence process.

Remark 1. In Algorithm 2, when using the MICQP approach,
we need to introduce additional constraints in the form of (32)
to MP(Υ) to tighten UB at each iteration. This process is sim-
ilar to the cutting-plane algorithm where we can improve the
efficiency of solving the problem by warm-starting the solver
with some feasible and/or high-quality solution. In this paper,
at iteration p ≥ 1, we warm-start the MICQP model (33)
with the bilevel feasible solution (xp−1, yp−1

f ). Through our
preliminary computational test, we find that such a straight-
forward warm-start strategy generally leads to substantial
speed up compared to the case where warm-start is not
implemented.

5 COMPUTATIONAL EXPERIMENTS

This section presents the computational experiments and
result analysis. The algorithms are programmed using Python
on a 16 GB RAM macOS computer with a 2.6 GHz Intel Core
i7 processor. The adopted solver is Gurobi 9.1.2. Without loss
of generality, we assume that the number of design options
for all facilities is the same, that is, |R| = |R̃k| = |Rj|, ∀k ∈
K, j ∈ J.

Throughout this section, we refer to the value-function–
based algorithm (i.e., Algorithm 1) as VF. When both
REHPP(Υ) and FSP(x̄) are solved by B&C-OA, the approach
is named after VF-OA. By contrast, when both REHPP(Υ)
and FSP(x̄) are solved by the CP reformulation, the approach
is called VF-CP. Moreover, we refer to the enhanced value-
function–based algorithm (i.e., Algorithm 2) as EVF, and
use EVF-OA and EVF-CP to denote the approaches employ-
ing B&C-OA and the CP reformulation to solve MP(Υ) and
FSP(x̄). We point out that under EEF, only EVF-OA is applica-
ble as REHPP(Υ) and MP(Υ) are not MICQP-representable.
However, under FEF, all approaches can be used to solve
BCFL-VM. The nonconvex term Φ(x, y) in REHPP(Υ) can
be reformulated exactly. We present the corresponding linear
formulation for Φ(x, y) in Supporting Information EC.4.

We now define the measurements that will be used in our
later discussion: t[s] denotes the computational time in sec-
onds. By default, we impose a 1-h time limit (i.e., 3600 s)

for solving an instance. rgap[%] stands for the relative exit
gap in percentages when the whole solution process termi-
nates, that is, |UB − LB|∕UB × 100. In our default setting, an
instance is considered to be solved to optimality if rgap is less
than 0.01%. #Itr is the number of iterations, which also spec-
ifies the number of times we successfully solve REHPP(Υ) or
MP(Υ).

5.1 Testbed

Our testbed includes two data sets, both of which have been
used in various CFL models.

∙ CFLDP,1 which is a data set in the well-known Discrete
Location Problems benchmarks library. It consists of 50
points on a plane, that is, |I| = |J| = |K| = 50. l and l̃
are computed by the Euclidean distance. For each facility,
there are three design options, that is, |R| = 3. Therefore,
the total number of location variables are 300. The val-
ues for a, b̃, d, c, and g are also provided. This data set
was originally used by Kochetov et al. (2013), where the
gravity-based utilities are defined as uijr = ajk∕(lij + 1) and
vikr = b̃jk∕(l̃ik + 1).

∙ COMP,2 which has been used as a common testbed in the
discrete (r|p)-centroid problem formulated as a linear 0-1
bilevel program (Alekseeva et al., 2015). This data set is
considered to be one of the hardest data sets in the discrete
(r|p)-centroid problem, because the computational time
for some instances can blow up to several hours. In this
paper, we adopt 10 structured problem data with nonhomo-
geneous (weighted) demand. The reference numbers are
111w, 211w, 311w,…,1011w. For these problems, |R| = 1,|I| = |J| = 100. In addition, cj = gk = 1, meaning that the
budget constraints become

∑
j∈J xj ≤ Bl,

∑
k∈K yk ≤ Bf . To

facilitate our discussion, we set B = Bl = Bf . Moreover,
to adjust the data for our problem, we generate aj and b̃k
from a uniform distribution between 1 and 5. lij and l̃ik
are measured by the Euclidean distance in 100 units. The
gravity-based utilities are characterized by power decay as
uij = aj∕(lij + 1) and vik = b̃k∕(l̃ik + 1).

5.2 Result analysis under FEF

We start by discussing the computational results under FEF.
To model the attraction of outside option oi, we use the
following equation:

oi = 𝛼 ⋅ (ū + v̄), (36)

where ū and v̄ are the average values of uijr and vikr,
respectively. Parameter 𝛼 ≥ 0 controls the magnitude of the
attraction of the outside option. If 𝛼 = 0, then oi = 0, such
that the market size is inelastic and attains its maximum
value di.
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5.2.1 CFLDP results

By considering three values of 𝛼, that is, 𝛼 = {0, 1, 3}, we
report the results of the generated 42 instances in Table 1.
For each instance, the computational time for the approach
that achieves the best performance (i.e., the smallest t[s]
among VF-OA, VF-CP, EVF-OA, and EVF-CP) is highlighted
in boldface. Given the table, we conclude the following
observations.

(i) Despite requiring additional iterations, the EVF-based
approaches are more efficient than the VF-based ones in
terms of computational time by orders of magnitude. All
instances can be solved within 4 min by the EVF-based
approaches, whereas the VF-based approaches typically
require substantially long time and even fail to solve
some instances optimally (i.e., reach the time limit of
3600 s). In particular, VF-OA cannot finish even one
single iteration for most unsolved instances (i.e., #Itr
is 0). This result implies that solving the nonconvex
REHPP(Υ) is so challenging that it renders Algo-
rithm 1 computationally prohibitive to address these
medium-scale problem instances. By contrast, our pro-
posed Algorithm 2 mitigates the challenging REHPP(Υ)
and instead handles a convex master problem MP(Υ).
Underpinned by the convexity, Algorithm 2 appears to
be comparatively efficient for the CFLDP data set as one
can observe shorter computational times for EVF-OA and
EVF-CP.

(ii) Applying CP reformulation leads to faster computation
than employing the branch-and-cut OA algorithm. In
particular, when 𝛼 = 0, VF-CP can solve all instances,
whereas VF-OA fails in 12 out of 14 instances. Moreover,
EVF-CP is the fastest approach for solving 31 instances
(out of 42). Nevertheless, when the B&C-OA algorithm
is used in Algorithm 2, the resultant approach EVF-OA is
still rather powerful, as illustrated in Table 1.

(iii) When 𝛼 = 0, BCFL-VM is the same as the model pro-
posed by Kochetov et al. (2013). We observe that the
leader’s objectives Π in the last column of Table 1 match
the best known objectives (provided in the benchmark
library) because our algorithms are exact and can gener-
ate proven optimal solutions. The performance indicates
that EVF-based approaches work rather efficiently. For
EVF-CP the maximum computational time among these
14 instances is only 6.4 s. Therefore, Algorithm 2 signif-
icantly outperforms the metaheuristic approach reported
in Kochetov et al. (2013), as the latter cannot verify the
solution quality and also requires more than 1 h for some
difficult instances.

5.2.2 COMP results

Next, we investigate the performance of the approaches on
the COMP data set. Here, we use 10 structured problem

data (i.e., 111w, 211w,…,1011w). For each data, we consider
𝛼 = {1, 10} and B = {3, 5, 10}. Therefore, the total number
of instances are 60.

Figure 3 presents the computational results of the 60
COMP instances. Specifically, Figure 3a shows the percent-
age of instances that are solved optimally (the y-axis) within a
given time (the x-axis). A point in Figure 3 with coordinates
(x, y) thus indicates that for y% of the instances, t[s] is less
than x s. The figure demonstrates that EVF-CP outperforms
the others: The red solid line is consistently above the others,
meaning that given the same computational budget, EVF-CP
can solve more instances. In total, 95.0% of the instances
can be solved optimally within the time limit using EVF-CP,
followed by EVF-OA, which solves 83.3% of the instances.
By contrast, the performance of VF-based approaches is not
satisfactory. In particular, VF-OA can only manage to solve
33.3% of the instances. Similarly, Figure 3b depicts the per-
centage of instances solved within a given rgap with a time
limit of 3600 s. A point in the figure with coordinates (x, y)
thus indicates that for y% of the instances, rgap at termi-
nation is less than x%. The maximum rgap for EVF-CP is
only 0.33%, showing that all instances are solved within a
small relative gap. Besides that, the EVF-based approaches
dominate the VF-based approaches as we can observe major
differences between them in Figure 3b.

Through the above discussion, we can conclude that the
proposed Algorithm 2 is very effective for BCFL-VM under
FEF. In particular, EVF-CP is substantially more efficient than
the VF-based approaches. Thus, we recommend EVF-CP as a
primary methodology to solve such a problem.

5.3 Result analysis under EEF

We now proceed to the analysis of the results under EEF.
Without loss of generality, we set 𝜆 = 𝜆i, ∀i ∈ I, that is,
the elasticity parameter is identical for all customer zones.
Note that under EEF (except that of the special case where
𝜆 = ∞), only EVF-OA is applicable. Therefore, we only test
EVF-OA here.

5.3.1 CFLDP results

Table 2 reports the computational results of the CFLDP
instances. Here, we use MS[%] to denote the market size,
computed by the summation of the leader’s objective and the
follower’s objective and then divided by the maximum pos-
sible market size, that is, MS = (Π+ Φ)∕

∑
i∈I di × 100%.

According to the table, the performance of EVF-OA is impres-
sive because all instances can be solved optimally, and the
maximum computational time is only 416 s. However, com-
pared to the FEF instances, the number of iterations seems
to be more unstable. It turns out that #Itr can go up to
more than 24. Nevertheless, thanks to the convexity and
powerfulness of the proposed framework, it is indeed not
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TA B L E 1 Results of the 42 CFLDP instances under FEF

t[s] #Itr

𝜶 Bl Bf VF-OA VF-CP EVF-OA EVF-CP VF-OA VF-CP EVF-OA EVF-CP 𝚷

0 20 40 115.1 47.1 4.3 3.3 2 2 2 2 78.9

30 60 3600.0 3229.8 7.3 4.3 0 3 3 3 78.6

30 70 3600.0 186.5 6.9 4.6 0 2 3 3 69.9

30 90 3600.0 138.4 4.1 3.6 0 2 2 2 57.6

40 20 337.0 135.5 3.8 2.9 2 2 2 2 174.9

40 50 3600.0 588.8 3.9 2.5 0 2 2 2 110.0

40 80 3600.0 199.0 6.5 3.9 0 2 2 2 80.8

40 90 3600.0 210.5 6.0 4.2 0 2 2 2 75.0

50 40 3600.0 320.1 7.5 5.4 0 2 3 3 143.7

60 30 3600.0 142.8 6.1 3.4 1 2 2 2 173.4

70 30 3600.0 340.7 8.9 3.2 0 2 2 2 183.8

80 40 3600.0 694.7 13.6 3.7 0 2 2 2 173.0

90 30 3600.0 605.6 37.6 5.6 0 3 3 3 195.0

90 40 3600.0 1641.5 36.2 6.4 0 3 3 3 178.4

1 20 40 18.8 29.9 3.8 2.3 1 1 1 1 45.3

30 60 146.4 172.1 10.9 14.6 1 1 3 3 51.4

30 70 164.0 184.8 14.1 6.9 1 1 2 2 48.9

30 90 457.3 215.7 18.3 11.0 1 1 2 2 43.5

40 20 72.6 56.2 2.7 1.9 2 2 1 1 97.4

40 50 375.7 239.8 45.7 100.0 1 1 7 7 71.4

40 80 784.9 228.0 21.7 24.3 1 1 2 2 59.8

40 90 3600.0 389.9 37.0 45.8 0 1 3 3 57.1

50 40 625.0 160.8 23.7 14.0 2 2 4 4 96.3

60 30 263.3 116.7 6.1 6.0 2 2 2 2 118.7

70 30 524.4 405.7 5.6 4.0 2 2 1 1 127.6

80 40 692.4 261.6 37.2 6.4 1 1 2 2 128.4

90 30 679.7 239.5 10.6 3.2 1 1 1 1 144.1

90 40 1055.0 265.8 105.8 53.7 1 1 3 3 135.3

3 20 40 16.2 24.7 3.3 2.4 1 1 1 1 26.4

30 60 641.2 54.9 9.9 7.7 1 1 3 3 32.9

30 70 339.6 141.0 9.6 8.3 1 1 3 3 32.2

30 90 414.5 276.2 10.7 11.4 1 1 3 3 30.0

40 20 28.2 29.0 2.3 1.3 1 1 1 1 58.2

40 50 164.0 151.2 6.1 6.3 1 1 2 2 45.7

40 80 523.9 184.1 31.2 99.7 1 1 4 4 41.4

40 90 1987.5 592.5 78.7 113.9 2 2 6 6 39.3

50 40 337.1 79.0 17.5 16.3 1 1 5 5 62.0

60 30 76.8 44.3 6.1 5.9 1 1 2 2 76.8

70 30 146.7 185.6 9.5 6.5 1 1 3 3 83.8

80 40 730.4 452.7 91.8 128.9 1 1 7 7 86.0

90 30 359.9 646.3 86.5 202.0 1 1 10 10 97.3

90 40 1001.2 452.9 108.0 159.0 1 1 6 6 92.8
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F I G U R E 3 Computational results of the 60 COMP instances under FEF [Color figure can be viewed at wileyonlinelibrary.com]

TA B L E 2 Results of the 42 CFLDP instances under EEF

𝝀 = 0.5 𝝀 = 1.0 𝝀 = 2.0

Bl Bf t[s] #Itr 𝚷 𝚽 MS[%] t[s] #Itr 𝚷 𝚽 MS[%] t[s] #Itr 𝚷 𝚽 MS[%]

20 40 2.9 1 30.8 67.0 38.5 6.4 2 45.3 97.9 56.4 4.0 1 64.9 132.0 77.5

30 60 10.1 3 39.0 91.8 51.5 9.9 3 54.6 122.7 69.8 18.7 4 72.0 153.3 88.7

30 70 6.4 2 38.5 99.8 54.4 7.1 2 52.5 136.4 74.4 18.2 4 63.9 167.0 90.9

30 90 11.1 3 36.3 118.1 60.8 21.2 3 47.6 156.2 80.2 56.0 5 55.1 184.1 94.2

40 20 1.6 1 67.1 30.7 38.5 1.7 1 97.9 45.3 56.4 2.3 1 131.2 62.3 76.2

40 50 14.9 5 53.9 75.3 50.9 63.4 11 74.7 100.7 69.1 416.0 29 94.9 131.7 89.3

40 80 28.0 4 49.8 102.4 59.9 56.9 4 65.3 136.8 79.6 71.4 5 76.3 161.9 93.8

40 90 91.5 9 47.4 114.0 63.5 59.7 4 62.7 145.7 82.0 53.2 4 72.2 169.5 95.2

50 40 16.5 5 73.7 53.8 50.2 13.0 4 103.3 76.7 70.9 4.9 1 130.6 97.8 89.9

60 30 2.3 1 91.8 39.0 51.5 19.2 6 124.3 53.9 70.2 2.9 1 157.3 71.1 89.9

70 30 12.1 4 99.8 38.5 54.4 3.1 1 137.7 51.2 74.4 5.8 1 164.8 66.1 90.9

80 40 358.3 24 103.4 46.8 59.1 25.6 2 141.2 63.5 80.6 307.5 7 163.1 77.8 94.8

90 30 61.9 10 118.1 36.3 60.8 11.0 1 158.4 46.3 80.6 18.9 1 181.6 57.2 94.0

90 40 107.3 9 111.9 48.0 63.0 54.4 3 149.3 59.8 82.3 315.3 4 170.9 71.1 95.3

computationally expensive to solve both MP(Υ) and FSP(xp).
Therefore, despite requiring a large number of iterations for
some instances, the algorithm is still rather efficient.

5.3.2 COMP results

We then look at the COMP instances. Here, we use four
structured problem data (i.e., 111w, 211w, 311w, and 411w).
For each data, we consider 𝜆 = {0.1, 0.3, 0.5,∞} and B =
{3, 5, 7, 10}. The number of instances are 64. The results are
reported in Table 3 where each row shows the summary statis-
tics of the four structured problem data. Π̂ and M̂S are the
average leader’s objective and market size.

We observe that the computational difficulty changes with
𝜆: When 𝜆 is relatively small (i.e., 𝜆 = 0.1 and the demand
is extremely elastic) or large (i.e., 𝜆 = ∞ and the demand is
inelastic), the instances are easy to handle and require lim-
ited iterations (the maximum #Itr is only 3). However, the
instances become challenging when the demand elasticity is

at medium levels (𝜆 = 0.3 and 𝜆 = 0.5). Despite that, the
EVF-OA still remains effective: when 𝜆 = 0.3, all instances
are solved within 1 h; when 𝜆 = 0.5, except for the instances
under B = 10, we can reach an rgap that is less than 1%
upon termination.

In fact, although some instances are not solved to their opti-
mality within the time limit, the optimal solutions could have
been found. This statement is based on the observation that,
nearly for all instances, LB quickly grows to the true optimal
value of the leader’s objective in only a few iterations, and
thus most of the computational budget is consumed on reduc-
ing UB to prove the optimality of the solution. Figure 4 shows
the convergence curves of two instances that require a large
number of iterations. It is clear that LB levels off starting from
iteration 2-3, and the large #Itr is owing to the slow movement
of UB. In other words, the proposed Algorithm 2 provides
an effective framework to generate an optimal leader solu-
tion. Therefore, despite the existence of exit gaps for some
instances, it is reasonable to believe that high-quality (even
optimal) solutions have been found.



LOCATING FACILITIES UNDER COMPETITION AND MARKET EXPANSION 3037
Production and Operations Management

TA B L E 3 Results of the 64 COMP instances under EEF using EVF-OA

t[s] rgap[%] #Itr

𝝀 B Avg Max Avg Max Avg Max �̂� M̂S[%]

0.1 3 1.6 1.7 0 0 1.0 1 670.4 14.6

5 1.8 2.1 0 0 1.0 1 1036.6 22.4

7 5.2 10.5 0 0 2.0 3 1362.6 29.2

10 3.0 5.8 0 0 1.4 3 1780.1 38.0

0.3 3 5.4 11.4 0 0 1.8 3 1618.5 34.7

5 60.5 155.5 0 0 5.8 11 2330.0 49.8

7 332.7 1208.8 0 0 8.3 26 2873.0 61.2

10 1080.4 2582.7 0 0 16.0 36 3446.6 73.2

0.5 3 26.8 83.7 0 0 4.3 11 2268.1 48.7

5 938.2 1515.3 0 0 19.5 29 3096.3 65.8

7 1575.4 3600.0 0.25 0.98 8.5 16 3634.8 77.0

10 1970.1 3600.0 0.60 1.56 4.3 11 4111.1 87.1

∞ 3 4.0 6.9 0 0 1.3 2 4755.7 100.0

5 9.9 11.0 0 0 1.5 2 4734.4 100.0

7 21.7 31.7 0 0 1.5 2 4729.5 100.0

10 39.6 74.8 0 0 2.0 2 4736.9 100.0

F I G U R E 4 The convergence curves of two 111w instances that require a large number of iterations under EEF [Color figure can be viewed at
wileyonlinelibrary.com]

In summary, through the previous computational tests, we
conclude that the EVF-OA is indeed effective to solve BCFL-
VM under EEF.

Remark 2. Table 1 and Table 3 reveal that the EVF-based
algorithms are extremely powerful to solve the instances with
inelastic demand (i.e., oi = 0 and 𝜆 = ∞). Actually, we have
verified its efficiency on a larger scale data set and deferred
the numerical results to Supporting Information EC.5.2.

6 MANAGERIAL IMPLICATIONS

This section conducts experiments to investigate the proper-
ties of the BCFL-VM model and draw insightful observa-

tions. Throughout this section, the discussion is conducted
on the CFLDP data set.

6.1 Win–win scenario

This subsection intends to elaborate on the adaptivity of opti-
mal decisions to the changing business environments. In fact,
Table 2 has presented that when one company unilaterally
raises the budget, both companies may increase the revenue
simultaneously. For example, under 𝜆 = 0.5 and Bf = 40, if
the leader’s budget Bl increases from 80 to 90, the leader’s
objective will increase from 103.4 to 119.9, and the follower’s
objective will increase from 46.8 to 48.0. Therefore, under
the bilevel market expansion effect, it is possible that both
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F I G U R E 5 “Win–win” and “Raiser dominates” scenarios under 𝜆 = 0.5. The numbers in the parenthesis (x, y) indicate that the leader’s budget is x and
the follower’s budget is y [Color figure can be viewed at wileyonlinelibrary.com]

companies can benefit from the one-side raising budget
activity. We refer to this phenomenon as a win–win scenario.

We now investigate how the win–win scenario occurs using
the CFLDP data set under EEF. Based on “who raises the
budget,” we classify the win–win scenarios into two types:
Type I win–win, in which a win–win scenario happens when
the leader raises the budget, and Type II win–win, in which
a win–win scenario occurs as the follower raises the budget.
By contrast, if the win–win scenario does not occur, that is,
the revenue of the company that raises the budget increases
but the competitor’s decreases, we define such a scenario
as raiser dominates, or win–lose (Zhang & Swaminathan,
2020).

We further present the competitive revenue changing
details of different scenarios under 𝜆 = 0.5 in Figure 5. In
total, there are 180 unilateral budget-raising cases (i.e., 180
arrows in the figure). Among them, we have identified six
Type I win–win scenarios and five Type II win–win scenarios,
indicating that the win–win scenario occurs at a probabil-
ity of approximately 6%. In addition, we have the following
detailed findings.

(i) The Type I win–win occurs mainly when the follower’s
budget is at a low level (left side of the figure), while the
Type II win–win occurs mainly when the leader’s budget
is at a low level (lower side of the figure). This observa-
tion states that when one company does not invest a lot
in the market and only opens a small number of facil-
ities, the unilateral budget-raising activity of the other
company will have a small cannibalization effect on
its revenue and, to some extent, even lead to improve-
ment in its revenue due to the overall market expansion
effect. In other words, given a low budget level, the
unilateral action will allow both companies to cannibal-

ize customers from the outside options in the expanded
market. The spillover effect is then more likely to dom-
inate the cannibalization effect, thereby leading to the
win–win outcomes.

(ii) When both the leader’s and the follower’s budgets are
at high levels, the win–win scenarios rarely happen (i.e.,
all arrows in the upper right corner of the figure are
blue). The reason can be traced back to the concavity
of the market size function. If both companies set large
budgets to offer services, the customers have already per-
ceived high utilities. Given this, the market size has been
developed to a rather high level, and the marginal incre-
mental of market size induced by raising budget will
be insignificant according to the concavity of the EEF.
Consequently, the unilateral action will make the canni-
balization effect dominate the spillover effect and, thus,
the budget-raising company will cannibalize customers
from the rival in the almost unchanged market.

The above findings suggest that win–win scenarios are
more likely to happen in a market where there are imbal-
anced budgets (positions) between two competing companies
(e.g., a large and a small company). Essentially, this result
reflects the revenue trade-off between cannibalization and
spillover effects caused by raising budgets. Generally, when
the spillover effect is significant, we have more chances to
witness the win–win outcome, and vice versa. In the extreme
case where the market size is fixed, a win–win scenario
will never occur as the “gain” of one company means the
cannibalized “loss” of the other.

Note that the significance of the spillover effect is also
affected by the parameter 𝜆. If 𝜆 is higher, then the mar-
ket size shows lower elasticity, and win–win scenarios are
expected to happen less often. Table 4 reports all win–win
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TA B L E 4 Seventeen win–win scenarios under one-side budget raising

Type 𝝀 (Bl,Bf ) (𝚷,𝚽)

I 0.5 (10,10) → (20,10) (17.9,17.9) → (33.5,18.5)

0.5 (50,20) → (60,20) (83.5,26.2) → (92.4,27.2)

0.5 (60,10) → (70,10) (98.1,14.0) → (107.3,14.6)

0.5 (80,40) → (90,40) (103.4,46.8) → (111.9,48.0)

0.5 (90,10) → (100,10) (126.2,12.6) → (134.1,13.5)

0.5 (90,20) → (100,20) (122.3,22.3) → (130.4,24.0)

1.0 (50,20) → (60,20) (117.1,38.5) → (126.1,39.5)

1.0 (60,10) → (70,10) (138.2,20.9) → (151.4,21.3)

1.0 (80,20) → (90,20) (156.1,34.1) → (163.7,34.5)

2.0 (80,20) → (90,20) (190.2,41.4) → (191.7,44.2)

II 0.5 (10,10) → (10,20) (17.9,17.9) → (18.5,33.5)

0.5 (10,60) → (10,70) (14.0,98.1) → (14.6,117.2)

0.5 (10,90) → (10,100) (12.6,126.2) → (13.5,134.1)

0.5 (20,60) → (20,70) (24.9,94.6) → (26.1,104.7)

0.5 (50,90) → (50,100) (59.1,106.8) → (59.3,111.3)

1.0 (10,60) → (10,70) (20.9,138.2) → (21.3,151.4)

1.0 (20,90) → (20,100) (30.9,164.5) → (31.2,172.3)

scenarios under one-side budget expansion. We can observe
that the number of win–win scenarios clearly decreases with
𝜆. In particular, only one scenario is observed when 𝜆 = 2.

6.2 Opportunity revenue loss of market size
function

We now discuss the choice of market size function and its
impact on the leader’s revenue loss to shed light on the value
of unifying two types of market size functions into an inte-
grated modeling framework. This is a key concern for the
decision maker as the market size function is a fundamen-
tal input for the BCFL-VM model. To address the concern,
we assume that the leader is provided with real data points
about the market size and utility from marketing department.
Moreover, the leader is facing two possible choices, FEF and
EEF, but she is not sure which one is true when only relying
on the given data set. Therefore, she has to gamble by choos-
ing one type of function according to her experience, either
FEF or EEF, estimating the relevant parameters from the data,
and then adopting the selected function for the BCFL-VM
model. If the leader’s choice is correct, the company will not
incur revenue loss; otherwise, a revenue loss may arise due to
her fault.

Obviously, there are four possible combinations between
the true market size function and the leader’s choice: (FEF,
FEF), (FEF, EEF), (EEF, FEF), and (EEF, EEF), where the
first element in each bracket pair represents the true market
size function and the second element indicates the leader’s
choice. Among the four pairs, only the scenarios (FEF, EEF)
and (EEF, FEF) would lead to leader’s revenue loss as she

has chosen the wrong function, whose loss will be analyzed
in this subsection.

6.2.1 Scenario (FEF, EEF)

The true market size function follows FEF but the leader
chooses to use EEF. Thus, EEF is going to be estimated with
a few data points sampled from the true function FEF. Note
that both market size functions only have one distinct param-
eter: 𝛼 for FEF in (36) and 𝜆 for EEF. Therefore, given a
true value of 𝛼 = �̂�, we can sample a set of data points fol-
lowing FEF and then estimate the value of 𝜆∗ for EEF with
the generated data set. For conciseness, we discuss the details
of sampling data points and estimating parameters in Sup-
porting Information EC.7. Moreover, we denote the leader’s
revenue obtained by solving BCFL-VM under the true mar-
ket size function as optimal revenue Π. Similarly, we denote
that revenue under the estimated market size function as esti-
mated revenue Πe and the leader’s solution as xe. Given xe,
we solve FSP(xe) under FEF to derive the actual response
of the follower ya. Then, the actual revenue of the leader
Πa can be evaluated based on the solution (xe, ya) under
FEF. Therefore, the opportunity revenue loss is defined as
Δ = (Π −Πa)∕Π × 100%, which reflects the relative loss of
revenue caused by an incorrect choice of the leader.

Given the case (FEF, EEF), Table 5 reveals the opportunity
revenue loss under different �̂� values and the correspond-
ing estimated 𝜆∗ values. We have the following observations
from the table: (i) Revenue loss indeed exists due to the incor-
rect choice of market size function and, for some instances,
such a loss can be substantial. The maximum Δ reaches
9.24%, indicating that when EEF is mistakenly adopted,
the decision could significantly deviate from that employ-
ing the correct FEF. (ii) On average, such deviation becomes
more significant (Δ : 0.47% → 2.12%) as the demand elastic-
ity increases. Moreover, the revenue estimation error |Πe −
Π| also increases in �̂�, which can be explained by the error of
the market size function estimation as shown in Supporting
Information EC.7; that is, the error shows a positive relation-
ship with the demand elasticity. (iii) Surprisingly, the revenue
estimation error will be rather significant for certain cases.
For example, given �̂� = 5, the average values of Πe and Π are
33.0 and 43.8, respectively, indicating that the leader under-
estimates the revenue by as much as 24.66%. Consequently,
if the leader misinterpreted the true market size function
FEF as EFF, the decisions would be overconservative when
planning the budget level required for facility open and dec-
oration decisions in the initial stage, thereby dampening the
company’s incentive to invest on expansion.

6.2.2 Scenario (EEF, FEF)

The true market size function follows EEF but the leader
chooses FEF. The leader will estimate 𝛼∗ given true 𝜆 = �̂� to
obtain the estimated FEF for the BCFL-VM model (also see
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TA B L E 5 The leader’s revenue and opportunity loss under the scenario (FEF, EEF)

�̂� = 0.5, 𝝀∗ = 1.405 �̂� = 1, 𝝀∗ = 0.702 �̂� = 3, 𝝀∗ = 0.239 �̂� = 5, 𝝀∗ = 0.155

Bl Bf 𝚷e 𝚷a 𝚷 𝚫[%] 𝚷e 𝚷a 𝚷 𝚫[%] 𝚷e 𝚷a 𝚷 𝚫[%] 𝚷e 𝚷a 𝚷 𝚫[%]

20 40 53.7 55.6 55.6 0 36.9 45.3 45.3 0 20.0 26.4 26.4 0 14.7 19.9 19.9 0

30 60 61.7 62.2 62.2 0 46.2 51.4 51.4 0 25.4 32.8 32.9 0.30 19.3 25.2 25.2 0

30 70 58.7 57.2 57.2 0 45.4 48.9 48.9 0 24.8 32.2 32.2 0 18.3 24.7 24.7 0

30 90 52.1 49.8 49.8 0 42.0 43.5 43.5 0 23.6 28.5 30.0 5.00 18.0 21.8 22.6 3.54

40 20 114.5 121.9 121.9 0 81.5 97.4 97.4 0 41.5 58.2 58.2 0 30.1 42.8 42.8 0

40 50 84.8 84.7 85.5 0.94 63.5 64.8 71.4 9.24 34.8 45.7 45.7 0 26.0 34.8 34.8 0

40 80 71.5 68.4 68.4 0 57.6 59.8 59.8 0 32.4 41.4 41.4 0 25.2 31.5 31.5 0

40 90 68.1 64.7 64.7 0 55.9 57.1 57.1 0 31.9 38.7 39.3 1.53 25.0 30.6 30.6 0

50 40 121.4 113.1 116.1 2.58 87.2 96.2 96.3 0.10 47.7 62.0 62.0 0 35.4 46.9 47.4 1.05

60 30 143.9 139.9 140.9 0.71 107.8 117.2 118.7 1.26 56.6 72.3 76.8 5.86 41.3 55.3 56.1 1.43

70 30 152.5 147.9 147.9 0 118.5 125.5 127.6 1.65 64.9 82.2 83.8 1.91 45.5 58.5 63.5 7.87

80 40 153.5 145.9 146.0 0.07 120.9 124.6 128.4 2.96 68.6 85.5 86.0 0.58 51.1 66.5 67.2 1.04

90 30 172.5 163.9 163.9 0 140.7 144.1 144.1 0 75.6 93.6 97.3 3.80 56.2 70.4 74.8 5.88

90 40 162.4 151.0 152.8 1.18 129.9 129.0 135.3 4.66 75.3 92.8 92.8 0 56.3 71.9 72.7 1.10

Average 105.1 101.9 102.4 0.47 81.0 86.1 87.5 1.67 44.5 56.6 57.5 1.55 33.0 42.9 43.8 2.12

TA B L E 6 The leader’s revenue and opportunity loss under the scenario (EEF, FEF)

�̂� = 0.1, 𝜶∗ = 9.237 �̂� = 0.3, 𝜶∗ = 2.280 �̂� = 0.5, 𝜶∗ = 1.276 �̂� = 1.0, 𝜶∗ = 0.608

Bl Bf 𝚷e 𝚷a 𝚷 𝚫[%] 𝚷e 𝚷a 𝚷 𝚫[%] 𝚷e 𝚷a 𝚷 𝚫[%] 𝚷e 𝚷a 𝚷 𝚫[%]

20 40 13.5 10.4 10.4 0 30.4 23.1 23.1 0 40.8 29.7 30.8 3.57 52.5 45.3 45.3 0

30 60 17.6 14.3 14.3 0 37.5 29.1 29.1 0 47.4 39.0 39.0 0 59.3 53.1 54.6 2.75

30 70 16.8 13.1 13.9 5.76 36.5 28.6 28.6 0 45.4 38.5 38.5 0 55.1 52.5 52.5 0

30 90 16.2 13.9 13.9 0 33.6 25.6 26.5 3.40 40.8 36.3 36.3 0 48.3 47.6 47.6 0

40 20 28.3 21.3 21.3 0 67.6 48.5 48.5 0 88.3 67.1 67.1 0 115.4 97.9 97.9 0

40 50 23.9 18.9 18.9 0 52.1 40.1 40.1 0 65.8 53.8 53.9 0.19 81.9 74.7 74.7 0

40 80 22.2 18.5 18.5 0 46.3 36.9 36.9 0 56.1 49.8 49.8 0 66.3 65.3 65.3 0

40 90 21.9 18.4 18.4 0 43.2 33.9 36.2 6.35 53.7 46.5 47.4 1.90 62.8 62.7 62.7 0

50 40 32.8 25.1 25.5 1.57 70.6 54.5 55.2 1.27 88.8 73.1 73.7 0.81 111.7 101.7 103.3 1.55

60 30 38.6 29.8 30.3 1.65 87.0 65.1 65.4 0.46 108.6 91.8 91.8 0 135.7 124.3 124.3 0

70 30 42.5 33.3 34.3 2.92 95.0 70.9 75.0 5.47 119.1 97.6 99.8 2.20 142.9 137.7 137.7 0

80 40 46.3 36.7 38.3 4.18 96.0 78.8 78.8 0 120.7 103.4 103.4 0 141.7 140.7 141.2 0.35

90 30 51.2 41.1 42.4 3.07 109.9 86.0 89.4 3.80 135.4 114.8 118.1 2.79 158.3 157.4 158.4 0.63

90 40 50.9 40.7 42.1 3.33 103.7 86.3 86.3 0 126.6 110.5 111.9 1.25 148.5 149.3 149.3 0

Average 30.2 24.0 24.5 2.04 65.0 50.5 51.4 1.63 81.3 68.0 68.7 1.00 98.6 93.6 93.9 0.35

Supporting Information EC.7). Table 6 reports the revenue
and opportunity loss under different �̂� and corresponding
estimated 𝛼∗. We conclude similar findings as the previ-
ous scenario: The maximum loss Δ can reach 6.35% when
�̂� = 0.3 and (Bl,Bf ) = (40, 90). Besides, Δ increases as �̂�
decreases, showing that the opportunity loss becomes larger
when customers’ demand is more elastic. In addition, the
revenue estimation error could also be significant. Specifi-
cally, under �̂� = 0.3, the average values Πe and Π are 65.0

and 51.4, respectively, given which, the revenue is overesti-
mated by 26.46%. Therefore, if the leader misinterpreted the
true market size functions EEF as FEF, the decisions would
be over aggressive when determining the expansion plan,
thereby amplifying the investment risk.

To summarize, if an inappropriate market size function is
selected for the BCFL-VM problem, it is risky to incur sub-
stantial revenue loss. Meanwhile, the company may be misled
to overaggressiveness/conservativeness in its expansion plan
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and may put itself in a dilemma. In practice, the market size
function is going to be estimated from industrial/business
data. It is, of course, not possible to find a type of function
that perfectly fits all scenarios given different business envi-
ronment, but it is indeed meaningful to provide alternatives
in response to various practical applications. Our methodol-
ogy exactly unifies two types of market size functions into an
integrated framework, allowing the company to select the one
that yields a better estimation performance, thereby boost-
ing the chance to achieve optimal decisions and reducing the
risk/magnitude of revenue loss.

7 DISCUSSION AND CONCLUSION

We studied a BCFL-VM where two companies (a leader and
a follower) open and design facilities sequentially to max-
imize their own revenue. The total market size is elastic
and depends on the utility jointly provided by the leader’s
and the follower’s facilities. Given the facilities, customers
determine which one to patronize following the proportional
choice rule. The problem is to search for the best location
and design strategy for the leader upon anticipating the fol-
lower’s reaction. We formulated the problem as a nonlinear
0-1 bilevel program. To date, there exists no exact algo-
rithm for BCFL-VM. Motivated by this gap, we proposed
two exact frameworks. The first one is based on the value-
function–based approach, where we first restated the bilevel
model into a single-level model and then developed an iter-
ative algorithm that alternates between an upper bounding
problem and a lower bounding problem. However, the upper
bounding problem is in general nonconvex, which causes a
significant inefficiency in the framework. To avoid handling
such a complicated problem, we proposed a new bounding
problem that possesses a convex structure. We then designed
general and customized approaches to solve both bound-
ing problems. Through extensive computational studies,
we demonstrated that the solution approaches are effec-
tive in addressing BCFL-VM. In particular, our proposed
algorithm can tackle instances with hundreds of location
variables.

By leveraging the design parameters in computational
tests, our research leads to several important insights for
(chained) business management. First of all, we know that
if either company (leader or follower) raises the budget level,
intuitively, the overall market size would get expanded such
that both companies will benefit from a larger market size.
However, numerical tests show that such a “win–win” out-
come rarely happens. On the contrary, it is rather common
to observe that the budget-raising company indeed not only
acquires additional new market size but also slightly can-
nibalizes the original market size from the competitor. We
intend to provide a reasonable explanation for this phe-
nomenon: When the leader and follower are in imbalanced
positions (i.e., a large and a small company, respectively),
raising the budget has more opportunities to reach the win–
win outcome as the spillover effect would dominate the

cannibalization effect in the expanded market. By contrast,
if both companies are in similar positions, the budget-
raising action would cause the cannibalization effect over the
spillover effect, thereby resulting in the “raiser dominates”
consequence. If so, the leader’s manager should squeeze the
potential budget improvement space of the follower when
they make the initial decisions. Moreover, depending on the
different types of market size function, the optimal decisions
seem more challenging to achieve under EEF than FEF as
the FEF-based model can possibly be reformulated into a
model with the standard proportional rule (see Supporting
Information EC.5.1). Therefore, in practice, if both EEF and
FEF present similar fitting performance on real data sets,
then we recommend managers to adopt FEF for customer
preference description as it shows better computationally
adaptivity. However, if both functions exhibit different fit-
ting behaviors, then we also show that the misapplication
of the market size function would result in substantial rev-
enue loss and may further mislead the expansion plan in
an overaggressive/conservative way. Finally, apart from the
location and design decisions, our proposed approaches are
easily generalizable to address broader choice-set decisions.
For example, regarding decisions on new product develop-
ment, in 2015, Apple Inc. first introduced the Apple Watch
into the wearable devices market and it quickly became the
best selling product of the year (Paul, 2016). Witnessing the
success, several months later, other companies such as Sam-
sung and Huawei immediately joined this competition and
unveiled their own wearable products to capture the grow-
ing market share. By defining the utility appropriately, for
example, incorporating the features of product design, qual-
ity, and price, our approach can support the leader company
(i.e., Apple) in acquiring more revenue when launching new
products with certain advanced demand information.

There are also limitations and potential future directions
regarding the current work. We assumed that customers fol-
low the proportional choice rule. Although the usage of such
a rule is prevailing, it is often argued that not all facilities will
be considered by customers. In other words, given a set of
open facilities, customers will only show interest in a subset
of the open facilities. They form a “consideration set” subject
to certain conditions. Only facilities in the set will be chosen
with positive probability. We point out that when customers
are forming the consideration set, there might be an embed-
ded optimization problem. BCFL-VM may then become a
trilevel model, where the leader makes the location decision
in the first level, the follower reacts accordingly in the sec-
ond level, and customers form the consideration set and select
which facility to visit in the third level. Naturally, the trilevel
problem is extremely challenging, and we would like to leave
this aspect for future research.
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Ljubić, I., & Moreno, E. (2018). Outer approximation and submodular cuts
for maximum capture facility location problems with random utilities.
European Journal of Operational Research, 266(1), 46–56.

Lozano, L., & Smith, J. C. (2017). A value-function-based exact approach for
the bilevel mixed-integer programming problem. Operations Research,
65(3), 768–786.

Luce, R. D. (2012). Individual choice behavior: A theoretical analysis.
Courier Corporation.

Lyu, G., & Teo, C. P. (2022). Last mile innovation: The case of the locker
alliance network. Manufacturing & Service Operations Management,
Forthcoming.

Mallozzi, L., D’Amato, E., & Pardalos, P. M. (2017). Spatial interaction
models. Springer.

Mitsos, A. (2010). Global solution of nonlinear mixed-integer bilevel
programs. Journal of Global Optimization, 47(4), 557–582.

Paul, L. (2016). Apple watch sales hit 12 million in 2015. https://www.
wareable.com/smartwatches/apple-watch-sales-hit-12-million-in-2015-
2279

Statista. (2021). Number of retail stores of the Adidas group worldwide from
2008 to 2020, by store type. https://www.statista.com/statistics/268442/

Suhara, Y., Bahrami, M., Bozkaya, B., & Pentland, A. S. (2021). Validating
gravity-based market share models using large-scale transactional data.
Big Data, 9(3), 188–202.

Tahernejad, S., Ralphs, T., & DeNegre, S. (2020). A branch-and-cut
algorithm for mixed integer bilevel linear optimization problems and
its implementation. Mathematical Programming Computation, 12(4),
529–568.

Tiwari, R., Jayaswal, S., & Sinha, A. (2021). Alternate solution approaches
for competitive hub location problems. European Journal of Operational
Research, 290(1), 68–80.

Wang, R. (2021). Consumer choice and market expansion: Modeling,
optimization, and estimation. Operations Research, 69(4), 1044–1056.

Wu, D., Luo, C., Wang, H., & Birge, J. R. (2016). Bi-level programing
merger evaluation and application to banking operations. Production and
Operations Management, 25(3), 498–515.

Xiong, J., Wang, S., & Ng, T. S. (2021). Robust bilevel resource recovery
planning. Production and Operations Management, 30(9), 2962–2992.

Ye, J. J. (2006). Constraint qualifications and KKT conditions for bilevel
programming problems. Mathematics of Operations Research, 31(4),
811–824.

Zhang, Y., & Swaminathan, J. M. (2020). Warehouse location in an
emerging country: A win–win proposition? Production and Operations
Management, 29(6), 1487–1505.

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Lin, Y. H., Tian, Q., &
Zhao, Y. (2022). Locating facilities under competition
and market expansion: Formulation, optimization, and
implications. Production and Operations
Management, 31, 3021–3042.
https://doi.org/10.1111/poms.13737

http://www.math.nsc.ru/AP/benchmarks/Design/design_en.html
http://www.math.nsc.ru/AP/benchmarks/Competitive/p_med_comp_tests_eucl_eng.html
http://www.math.nsc.ru/AP/benchmarks/Competitive/p_med_comp_tests_eucl_eng.html
https://costhack.com/nike-franchise-cost/
https://costhack.com/nike-franchise-cost/
https://www.pivotalretailmarketing.co.uk/index.php/2019/07/04/nike-town-on-the-road/
https://www.pivotalretailmarketing.co.uk/index.php/2019/07/04/nike-town-on-the-road/
https://www.wareable.com/smartwatches/apple-watch-sales-hit-12-million-in-2015-2279
https://www.wareable.com/smartwatches/apple-watch-sales-hit-12-million-in-2015-2279
https://www.wareable.com/smartwatches/apple-watch-sales-hit-12-million-in-2015-2279
https://www.statista.com/statistics/268442/
https://doi.org/10.1111/poms.13737

	Locating facilities under competition and market expansion: Formulation, optimization, and implications
	Abstract
	1 | INTRODUCTION
	1.1 | Related literature
	1.2 | Our contributions

	2 | PROBLEM DESCRIPTION
	2.1 | Basic setting
	2.2 | Model formulation
	2.3 | Market size function

	3 | VALUE-FUNCTION-BASED ALGORITHM
	4 | ENHANCED VALUE-FUNCTION- BASED ALGORITHM
	4.1 | Overall framework
	4.2 | General branch-and-cut approach for MP() and FSP()
	4.2.1 | Solving MP()
	4.2.2 | Solving FSP()

	4.3 | Customized conic approach under FEF
	4.3.1 | CP approach for MP()
	4.3.2 | CP approach for FSP()


	5 | COMPUTATIONAL EXPERIMENTS
	5.1 | Testbed
	5.2 | Result analysis under FEF
	5.2.1 | CFLDP results
	5.2.2 | COMP results

	5.3 | Result analysis under EEF
	5.3.1 | CFLDP results
	5.3.2 | COMP results


	6 | MANAGERIAL IMPLICATIONS
	6.1 | Win-win scenario
	6.2 | Opportunity revenue loss of market size function
	6.2.1 | Scenario (FEF, EEF)
	6.2.2 | Scenario (EEF, FEF)


	7 | DISCUSSION AND CONCLUSION
	ACKNOWLEDGMENTS
	ENDNOTES
	REFERENCES
	SUPPORTING INFORMATION


