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Domain walls arise in theories where there is spontaneous symmetry breaking of a discrete symmetry 
such as ZN and are a feature of many BSM models. In this work we consider the possibility of detecting 
domain walls through their optical effects and specify three different methods of coupling domain walls 
to the photon. We consider the effects of these couplings in the context of gravitational wave detectors, 
such as LIGO, and examine the sensitivity of these experiments to domain wall effects. In cases where 
gravitational wave detectors are not sensitive we examine our results in the context of axion experiments 
and show how effects of passing domain walls can be detected at interferometers searching for an axion 
signal.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

It was pointed out in Ref. [1] that gravitational wave detectors, 
such as LIGO, can be used to search for potential signals of cos-
mological domain walls [2]. The LIGO detector was built with the 
purpose of testing general relativity by searching for gravitational 
waves [3]. However, it was shown by Jaeckel et al. that domain 
walls could leave an optical signal at an interferometer-based ex-
periment that is not caused by gravity but is triggered instead by 
an effective interaction between the domain wall and the photon. 
Domain walls arise naturally in theories when a discrete symme-
try is broken; such discrete symmetries occur frequently in many 
beyond the Standard Model (BSM) settings in particle physics and 
are readily seen in the literature. Simple Z2 symmetries are pop-
ular in the context of two Higgs doublet models [4,5] and aspects 
of domain walls in these models were specifically studied in [6,7]. 
Many other discrete symmetries arise in many different areas of 
physics such as flavour physics [8] and dark matter [9].

In this paper we extend on the work of [1] by considering dif-
ferent types of interactions between the domain walls sector and 
QED and also accounting for the effect of cavities in interferome-
ters. We couple the domain wall to the photon in three different 
ways and show that in each case the signal in an interferometer 
is quite different and, in fact, an experiment sensitive to one type 
of coupling is not in general sensitive to the others. It should be 
emphasised that many previous papers have considered gravita-
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tional waves in the context of domain walls, see e.g. Refs. [10–12], 
but in general these earlier studies considered gravitational waves 
sourced by annihilations between domain walls. In this paper we 
do not examine gravitational waves themselves but the signal at 
a gravitational wave interferometer which is actually generated by 
the interaction of the domain wall and the photon and not by the 
distortion of the Minkowski metric.

For the domain wall itself we will use the generic simple model 
of Ref. [13],

LDW = 1

2

(
∂μφ

)2 − 2m2 f 2

N2
φ

sin2
(

Nφφ

2 f

)
(1)

which has domain wall solutions,

φcl (z) = 4 f

Nφ

tan−1 (
emz) . (2)

The Lagrangian (1) is invariant under the shift symmetry φ →
φ + 2π

Nφ
f which is the consequence of the ZNφ symmetry of the 

underlying theory of a complex scalar field �(x) = S(x) eiφ(x)/ f . 
Since the domain wall field φ is the phase of a complex scalar �, 
it is a pseudo-scalar, and hence the model (1) and the correspond-
ing classical solution (2) describe pseudo-scalar (and for small m) 
light domain walls. The plot on the left in Fig. 1 shows the do-
main wall solution (1) as a function of the normal distance z to 
the domain wall in km.

We will consider three types of interactions between the do-
main wall field and the photon field in QED that encompass 
couplings to all photon operators of dimension ≤ 4. These cor-
respond to an effective photon mass-term coupling, L ⊃ 1

2 m2
0
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Fig. 1. The profile of the domain wall field (2) (left) and the function sin2
(

N A φ
f

)
(right) plotted as functions of the distance z for m = 1 neV, f = 1 GeV and N A = 20, Nφ = 4.
×sin2
(

N Aφ
f

)
Aμ Aμ , an axion-like coupling, L⊃ 1

4 g̃DW (φ/ f )Fμν F̃ μν

and a coupling to the canonical photon kinetic term, L ⊃
1
4 gDW (φ/ f )2 Fμν F μν . The photon mass-term coupling is consid-
ered in Section 2, the domain wall axion-like coupling is dealt with 
in Section 3, and in Section 4 we compute the effects of the photon 
kinetic term coupling to domain walls. Conclusions are presented 
in Section 5.

2. Signal from a photon mass term coupling

In this section, we review the results of [1] and extend this 
work by accounting for the Fabry-Perot cavities used in LIGO. The 
interaction of the domain wall field φ with the lowest dimension 
(d = 2) photon field operator is given by the effective mass term 
for the photon sourced by the domain wall field. We thus consider 
the modified QED Lagrangian,

L = LQ E D + 1

2
m2

0 sin2
(

N Aφ

f

)
Aμ Aμ . (3)

The mass parameter m0 will ultimately be taken to be in the sub-

neV regime and the domain wall-induced function sin2
(

N Aφ
f

)
is 

plotted in Fig. 1 (plot on the right). Note that computed on the 
domain wall solution, this function vanishes far from the centre of 
the domain wall as long as N A/Nφ is integer or half-integer, so 
that the photon mass is non-vanishing only in the vicinity of the 
domain wall. This changes the dispersion relation of light which 
becomes,

ω2 = k2 + m2
0 sin2

(
N Aφ

f

)
, (4)

where k = |k| is the magnitude of the photon 3-momentum.
To briefly explain the detector geometry, a typical Michelson 

interferometer, as shown in Fig. 2, consists of two arms perpen-
dicular to each other, an effect then induces a phase difference 
between light in the two arms causing a variation in the power 
output at the point where the arms join due to the superposition 
of the two beams. Note, that an ideal mirror produces an over-
all phase shift of π which will cancel between the two arms. In 
this section we take the angle α to be the angle the domain wall 
makes with the x-axis (and we assume the normal is perpendic-
ular to the z-axis) and we align our and x- and y-axes with the 
detector arms. The domain wall profile is given by

φ = φcl(x · n − z0 − vt) , (5)
2

where n = (sinα, cosα) is the unit normal vector to the wall, z0 is 
the distance from the wall to the origin at t = 0, v is the velocity 
of the domain wall and φcl is the domain wall solution profile (2).

We can now use the dispersion relation (4) to find the phase 
velocity v P = ω/k of the photon. For a light domain wall, m � k, 
we have,

v P = ω

k
= 1 + m2

0

2k2
sin2

(
N Aφ

f

)
. (6)

Recalling that v P = dx
dt , we can then integrate both sides of this 

equation to get

2L = t − t0 + m2
0

2ω2

t∫
t0

dt sin2
(

N Aφ

f

)
, (7)

where t0 is the initial time when the light emitted by the laser 
arrives at the beam splitter at the beginning of the detector arm 
of length L, and t is the time when the light returns to the beam 
splitter having travelled along the detector arm to the mirror and 
back (thus covering the overall distance 2L). Note that we have 
replaced k by ω in the second term as to zeroth order in m0, ω = k. 
Now also note that to zeroth order in m0, t0 = t − 2L so if we only 
wish to account for O

(
m2

0

)
effects then in the limits of the integral 

we can replace t0 by t − 2L since this term is already proportional 
to m2

0. Hence we have,

2L = t − t0+

m2
0

2ω2

t−L∫
t−2L

dt′ sin2
(

N A φcl((t′ − t + 2L) sinα − vt′)
f

)
+ (8)

m2
0

2ω2

t∫
t−L

dt′ sin2
(

N A φcl((t − t′) sinα − vt′)
f

)
, (9)

where we have accounted for the fact that the photon is travelling 
along the X-arm of the detector, hence in the domain wall profile 
(5) we take x to be the distance of a photon from the beam splitter 
at time t , we take y = 0, and we placed the wall at the origin at 
t = 0, hence z0 = 0. Also note the necessity of splitting the domain 
of the integral into the region where the light is travelling away 
from/towards the detector.

For our purposes it is more useful to say that if a beam of light 
is detected at time t then it must have been emitted at a time:
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Fig. 2. A simplified representation of a Michelson interferometer used in gravitational wave detectors such as LIGO and VIRGO. Note that ideal mirrors produce an overall 
phase shift of π which will cancel between the two arms. We also show here the detector geometry and the definition of the angle α. We also point out here that the 
domain wall has a finite width ∼ 2/m ∼ few km for the masses considered in this paper. This means that the domain wall may cause additional effects in the detector 
apparatus (this is addressed in Section 4).
t0 = t − 2L+
m2

0

2ω2

t−L∫
t−2L

dt′ sin2
(

N A φcl((t′ − t + 2L) sinα − vt′)
f

)
+ (10)

m2
0

2ω2

t∫
t−L

dt′ sin2
(

N A φcl((t − t′) sinα − vt′)
f

)
. (11)

Importantly, gravitational wave interferometers make use of 
Fabry-Perot cavities and as a result light makes more than one 
round trip down the detector arms. The mean number of round 
trips in the cavity is related to the finesse, where, for LIGO, we 
have F = 450 [15]. We may also work with the mean amount 
of time light spends in the cavity, known as the storage time, 
τs = LF

πc . Assuming the plane-wave representation for the photon 
electric field, E ∝ e−iωt , we see that the phase difference induced 
by the domain wall for the light travelling along the X-arm of the 
detector is,1


ϕx(t) = m2
0

2ω

t∫
t−τs

dt′ sin2
(

N A φcl(x(t′) sinα − vt′)
f

)
, (12)

and for the Y -arm it is,


ϕy(t) = m2
0

2ω

t∫
t−τs

dt′ sin2
(

N A φcl(y(t′) cosα − vt′)
f

)
, (13)

with the domain wall solution given by (2). Note that by x(t) and 
y(t) we mean the position of the light in the respective cavity, 
which will involve an appropriate splitting of the domain of the 
integral into regions where the light is moving away from/towards 

1 Note that more accurately the observed light is a superposition of beams of 
light which have made different numbers of round trips but we neglect this effect 
here.
3

Fig. 3. The photon phase difference, 
ϕ , between the X- and Y-arms of gravitational 
waves detectors induced by the domain wall-photon mass term interaction (1). The 
phase difference is plotted as a function of time with the domain wall assumed to 
be at the origin at t = 0. The chosen parameters are m0 = 0.1 neV, N A = 20, Nφ =
4, v = 3 × 10−3, ω = 1 eV, L = 4 km, α = π/2.2, F = 450 and m = 0.1 neV. Note 
that the result is independent of the value of f .

the detector as in Eq. (8). The observable at LIGO is then the pho-
ton phase difference between the X- and Y-arms of the detector,


ϕ = 
ϕx − 
ϕy . (14)

The difference between the two arms arises due to different dis-
tances to the domain wall.

Finally, before presenting results we briefly discuss the value 
of various parameters. We take v ∼ 10−3, as a generic galactic 
velocity, in all scenarios considered in this paper f cancels and 
therefore the signal is independent of f . However it should be 
noted that that f should be less than ∼ 1 TeV to avoid some as-
trophysical constraints and, similarly, we require m0 � few neV for 
astrophysical reasons as discussed in [1]. We plot the results in 
Fig. 3.

We also wish to examine in which areas of parameter space 
LIGO is sensitive to a domain wall signal. In [1], it was shown 
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that LIGO is sensitive to phase shifts of order ∼ 10−10. Again, as 
in [1], we can make the transformation x̂ = mx and ŷ = my in 
Eqs. (12)-(13) so that our integration variables are dimensionless. 
We then see that the phase shift is proportional to m2

0
mω . So in or-

der for a particular domain wall model to produce an observable 
signal at LIGO we would require m2

0
mω � 10−10.

3. Signal from an axion-like coupling

In this section we consider an axion-like interaction of the 
domain wall with the photon given by the φ coupling to the 
dimension-4 photon operator via,

Lint = g̃DW

4 f
φ Fμν F̃ μν , (15)

where F̃ μν = 1
2 εμνρσ Fρσ is the dual field-strength tensor. The 

Euler-Lagrange equations for the QED photon field modified by the 
interaction Lagrangian (15) are given by

∂μ

(
F μν + g̃DW φ

f
F̃ μν

)
= 0. (16)

This is equivalent to modified Maxwell’s equations of the form,

∇ · B = 0 , (17)

∇ × E + Ḃ = 0 , (18)

∇ · E = g̃DW

f
∇φ · B , (19)

∇ × B − Ė = g̃DW

f

(
E × ∇φ − Bφ̇

)
. (20)

It was shown in [16] that this leads to the rotation of the plane of 
polarisation of linearly polarised light. However for our purposes 
it is more useful to instead find the different dispersion relations 
for left and right circular polarisations which cause this rotation as 
was done in a similar search for axions [17]. We will consider an 
experiment of the form proposed in [17] in this section where one 
arm of the detector consists of right circularly polarised light and 
the other arm left circularly-polarised light.

With these new Maxwell’s equations the wave equations for the 
electric and magnetic fields become [18],

�Ei + g̃DW

f

(
∂tφ ∂t Bi − ∂ jφ ∂ j Bi

) = 0 , (21)

�Bi + g̃DW

f

(
∂tφ ∂t Ei − ∂ jφ ∂ j Ei

) = 0 . (22)

Note that the derivation of these equations requires the assump-
tion that second derivatives of the domain wall field are negligible 
compared to first derivatives, and similarly first derivatives squared 
are negligible. We shall examine this assumption at the end of this 
section. Substituting the usual plane-wave ansatz for the electric 
and magnetic fields ∝ e−iωt+ik.x into these equations leads to a set 
of equations of the form,

M(k,ω)(E,B)T = 0 (23)

for a particular matrix M . This equation has non-trivial solutions 
only when det M=0. Imposing this condition yields the relation 
[18]:

ω2 − k2 = ± g̃DW
(ω∂tφ + k.∇φ). (24)
f

4

These are our two solutions for left and right circular polarised 
light, giving the phase velocity (cf. (6)),

v P = 1 ± g̃DW

2 f k2
(ω ∂tφ + k.∇φ) . (25)

Now we have v P = dx
dt so for a single round trip integration 

around the detector arm we have,

2L∫
0

dx =
t∫

t0

dt

(
1 ± g̃DW

2 f k2 (ω ∂tφ + k.∇φ)

)
. (26)

Noting that the second term of the right hand side is a total deriva-
tive ( dφ

dt = ∂tφ + ∇φ.n̂ where n̂ is a unit vector in the direction of 
propagation, k/k in this case) and performing the integration we 
obtain,

2L = t − t0 ± g̃DW

2 f k
(φcl(vt) − φcl(vt0)) , (27)

where L is the length of a detector arm, t is the time light is de-
tected and t0 is the time of emission. Using a similar argument as 
that leading to Eq. (12) we obtain:


ϕx/y = ± g̃DW

2 f
(φcl(vt) − φcl(vt − vτs)) , (28)

with the ± applying to the different arms of the detector and the 
observable 
ϕ being the difference between the two. Note that 
here it is the different polarisations of light that lead to the phase 
difference and not the different distances to the domain wall since 
the observable depends only on the field strength at the observa-
tion/emission points. It is worth bearing in mind here that since 
different polarisations of light do not interfere, we must use a 
waveplate to change our circularly polarised light to linearly po-
larised light before interfering the beams. There are also some 
other waveplates required in this new setup to account for the 
effects of reflection upon polarisation, for details see [17].

Let us also consider any constraints on g̃DW . One might expect 
that many of the constraints on a similar axion coupling would 
also be applicable here, however the most stringent axion con-
straints come from the CAST experiment [19] which examines the 
solar axion flux. Although we would not expect domain walls to 
be produced in the sun, we would expect excitations of the φ field 
to be produced. These excitations would then have the possibil-
ity to convert into photons, the effect which is searched for by the 
CAST experiment. Therefore in presenting results we will take into 
account CAST constraints of g̃DW / f � 10−10 GeV−1. Results calcu-
lated using Eq. (28) are presented in Fig. 4. It is worth pointing out 
here that these results are independent of the direction of domain 
wall propagation since Eq. (28) only contains the value of the do-
main wall field at the detector. In Fig. 5 we show a plot examining 
the values of m and g̃DW to which we are sensitive.

Finally let us examine our requirement that higher order deriva-
tives (and higher powers of first derivatives) are negligible. This is 
equivalent to the requirement that [18]∣∣∣∣∂μφ

φ

∣∣∣∣ � ω. (29)

Taking the domain wall field in Eq. (2) and assuming propagation 
parallel to the z-axis (a change in direction will just introduce fac-
tors of cos/sin α, where α is the angle between the direction of 
propagation and the z-axis) we obtain

∂zφcl

φ
= m sech(m(z − vt))

arctan
(
em(z−vt)

) (30)

cl
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Fig. 4. The value of the photon phase difference 
ϕ to be observed in the interfer-
ometer for the case of the axion-like interaction (15) between the domain wall and 
photons using an experimental setup similar to that suggested in [17]. 
ϕ is plot-
ted as a function of time for v = 3 ×10−3, Nφ = 4, L = 0.04 km, g̃DW = 10−10, F =
450 and m = 0.1 neV. Note that the result is independent of the value of f .

Fig. 5. A plot showing the sensitivity of the proposed interferometer (L = 40 m) to 
domain walls for various values of the domain wall velocity, v . Note that the plot 
levels off at high masses; this is when the domain wall becomes thin enough such 
that a photon experiences the full passage of the domain wall in its storage time 
and so going to higher masses does not increase the phase shift past this point. 
Note that a interferometer with longer arms would improve the sensitivity to low 
mass domain walls. The precise value of the CAST constraint depends on the value 
of f (whereas our phase shift doesn’t) but one should bear in mind that we also 
require g̃DW

f � 10−10 GeV−1.

∂tφcl

φcl
= mv sech(m(z − vt))

arctan
(
em(z−vt)

) . (31)

In Fig. 6, we plot sech(x)/arctan(ex) to show that it is always 
less than two. Hence the requirement that 

∣∣ ∂μφ

φ
| � ω is equiv-

alent to requiring that 2m � ω. This is easily satisfied for the 
range of m and ω considered in this paper. Note that the deriva-
tive with respect to t simply introduces an extra factor of v and, 
since v =O(10−3), this does not affect the argument.

4. Signal from a canonical kinetic term coupling

Now we consider the signal from an interaction of the domain 
wall with the photon kinetic term,

Lint = gDW

4 f 2
φ2 Fμν F μν . (32)

Note that since the domain wall field is a pseudoscalar, the cou-
pling to the canonical kinetic term can involve only even powers 
5

Fig. 6. A plot of sech(x)/arctan(ex).

of φ/ f . Here for simplicity we concentrate on the φ2 interactions, 
but our analysis below can be easily applied to the general case of 
any even function of φ/ f . We also note that the contribution from 
φ2 is not necessarily negligible in the EFT expansion since we ex-
pect φ/ f =O(1) (cf. Eq. (2)). The Euler-Lagrange equations for the 
photon now read:

∂μ

((
−1 + gDW

f 2
φ2

)
F μν

)
= 0. (33)

Such interactions were considered for a fundamental particle in a 
strong magnetic field in e.g. [20,21] but here we attempt to de-
rive more general results which may be applied to interferometers 
where there is no magnetic field present. Instead we start, as in the 
previous section, with the modified Maxwell’s equations resulting 
from the interaction in (32),

∇.B = 0 , (34)

∇ × E + Ḃ = 0 , (35)

∇.

((
1 − gDW φ2

f 2

)
E
)

= 0 , (36)

∇ ×
((

1 − gDW φ2

f 2

)
B
)

= ∂

∂t

((
1 − gDW φ2

f 2

)
E
)

. (37)

As in the previous section we neglect second derivatives and the 
square of first derivatives. We can then obtain the wave equa-
tions for the electric and magnetic fields (cf. our earlier equa-
tions (21)-(22) for axion-like interactions):

�Ei − gDW

f 2

(
∂tφ

2∂t Ei − ∂ jφ
2∂ j Ei

)
= 0 , (38)

�Bi − gDW

f 2

(
∂tφ

2∂t Bi − ∂ jφ
2∂ j Bi

)
= 0 , (39)

where j runs over spatial indices and there is an implied summa-
tion over j.

Substituting in a plane-wave ansatz for the E and B fields,

E = E0 e−iωt+ik.r , B = B0 e−iωt+ik.r , (40)

gives the dispersion relation,

ω2 − k2 = i
gDW

f 2

(
ω∂tφ

2 + k.∇φ2
)

. (41)

Solving for ω yields:

ω = |k| + i
gDW

2

(
ω∂0φ

2 + k.∇φ2
)

. (42)

2kf
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Substituting this into the usual plane-wave ansatz we obtain

E = E0 e
gDW
2kf 2

(
ω∂0φ2+k.∇φ2)

t
e−i|k|t+ik·r. (43)

It can clearly be seen that this is an ordinary plane-wave with 
an exponentially growing amplitude. To aid in our treatment of 
cavities we employ the same approach as in the previous sections 
and calculate the phase velocity as:

v P = 1 + i
gDW

2k2 f 2

(
ω∂0φ

2 + k.∇φ2
)

. (44)

Integrating as in the previous section gives

2L = t − t0 + i
gDW

2kf 2

(
φ2

cl(vt) − φ2
cl(vt0)

)
, (45)

or

t0 = t − 2L + i
gDW

2kf 2

(
φ2

cl(vt) − φ2
cl(vt0)

)
. (46)

Note that here we cannot speak of a phase difference anymore 
but substituting this solution into a plane-wave ansatz (E ∝ e−iωt ) 
gives:

E = E0 e
gDW
2 f 2 φ2

cl|tt−τs (47)

or equivalently, the power in the detector,

P = |E2
x + E2

y| ∝ e
gDW

f 2 φ2
cl|tt−τs . (48)

In the presence of a domain wall, the interaction term in Eq. (32)
gives an exponentially growing power (although as we will dis-
cuss shortly, gDW must be small so the exponential enhancement 
will not be all that large). In order to examine this, in Fig. 7 we 
plot P/P0 − 1 where P0 is the observed power in the absence of 
domain walls (we subtract one in order to better see the small 
deviations in the power). Also note that this extra energy is sup-
plied/absorbed (depending on the sign of 
φ2) by the kinetic en-
ergy of the domain wall.

In an interferometer such as those considered in the previous 
sections, the light in the two different arms will be affected equally 
(and the two different polarisations no longer obey different dis-
persion relations). This will produce a fluctuation in the power 
output at the detector but it will in general not be possible to 
distinguish this signal from one such as in Section 2. However a 
coupling of this form will uniquely produce a power change in a 
single beam of light since the change in power output is an in-
trinsic property of the domain wall and not a consequence of a 
phase change. This would be one possible method of determining 
the form of the coupling.

Before presenting results let us first examine some constraints 
on the value of gDW . Adding an interaction term of the form 
Eq. (32) leads to a change in the QED coupling constant:

α → α

1 − gDW
φ2

f 2

. (49)

Since we can expect φ/ f to be O(1), this can result in very large 
changes to the value of the fine structure constant. Furthermore, 
since a domain wall is an “event” rather than a continuously vary-
ing field, this would lead to the value of the fine structure constant 
on Earth changing value every time a domain wall passed. Clearly 
this would be catastrophic; to avoid this issue we choose gDW so 
that the change in α falls within the current uncertainties of its 
measurement. Since α is currently known to a precision of approx-
imately one part in 1010 we take gDW = 10−10. As in the previous 
section these results are independent of the direction of domain 
wall travel.
6

Another way to avoid the change of the fine structure con-
stant would be to replace φ2/ f 2 by some function which vanishes 
far from the domain wall. Taking inspiration from Section 2 we 
choose:

Lint = gDW

4
sin2

(
N Aφ

f

)
Fμν F μν (50)

This would result in α changing only for a very short time as the 
domain wall passed. It is possible that the current methods used 
to measure α would be sensitive to these variations but we will 
interpret any null result as a constraint on the domain wall event 
rate and not on gDW . Since the derivation of Eq. (48) made no 
assumptions about the form of φ, to obtain a new formula, one 
simply replaces all occurrences of φ2/ f 2 by sin2

(
N Aφ

f

)
. This gives

P ∝ e
gDW sin2

(
N Aφcl

f

)∣∣t
t−τs . (51)

However we must also examine the assumption that second 
derivatives are negligible. Referring to Eq. (29) we arrive at the 
requirement that

4m
N A

Nφ

sech (mx)

tan
(

4 N A
Nφ

tan−1 (emx)
) � ω (52)

To avoid a singularity, we must have 4 N A
Nφ

tan−1
(
emx

)
< π . As 0 <

tan−1
(
emx

)
< π/2 this is equivalent to requiring N A

Nφ
≤ 1

2 . Given 

also our requirement that sin2
(

N Aφcl
f

)
→ 0 as x → ∞, the only 

value of N A
Nφ

which satisfies both requirements is N A
Nφ

= 1
2 . Sub-

stituting this value into Eq. (52) and using some trigonometric 
identities we obtain the requirement that

8m tanh (mx) � ω (53)

which is satisfied for the range of m and ω considered in this pa-
per. Results are presented in Fig. 7.

It should be noted that a change in the fine structure constant 
would lead to a change in the Bohr radius and thus the length of 
various objects as shown in [22,23], which would produce a signal 
independently of the effect calculated above. Here we will briefly 
derive the effect on the power at the detector when one accounts 
for both effects, i.e. simultaneously the power shift coming from 
the intrinsic interaction with the domain wall and the phase shift 
caused by the change in the Bohr radius.

The change in length is given by [22]:

δL ≈ −L
δα

α
. (54)

For the range of velocities and masses considered in this paper we 
can take the change in length to be adiabatic. The length of the 
interferometer cavity is insulated from changes in length by the 
pendulum suspension system used in LIGO [22] and we need only 
worry about the change in size of the beam splitter and of the 
mirrors which will cause a difference in optical path length. The 
change in optical path length is given by [22]:

δ
(
Lx − L y

) ≈ −√
2nl

δα

α
+ 
wx-mirror − 
wy-mirror ≈ (55)

√
2nlgDW

φ2

f 2

∣∣∣∣
beam−splitter

+ wgDW

(
φ2

f 2

∣∣∣∣
y-mirror

− φ2

f 2

∣∣∣∣
x-mirror

)

(56)

where n is the refractive index of the beam-splitter (changes in n
induced by the domain wall are negligible), l is the thickness of 
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Fig. 7. The value of P
P0

− 1 plotted for v = 3 × 10−3, Nφ = 4, L = 4 km, F = 450, gDW = 10−10 and m = 0.1 neV in the case where the domain wall is coupled to the photon 
kinetic term via (left) (32), (right) (50). On the right we additionally have N A = 2. Here P represents the observed power and P0 is the power which would be observed in 
the absence of a domain wall (for a single beam). Note that the result is independent of the value of f .

Fig. 8. The value of 
ϕ plotted for λ = 1064 nm, α = π/2.2, v = 3 × 10−3, n = 1.45, ω = 1 eV, Nφ = 4, L = 4 km, F = 450, gDW = 10−10, l = 6 cm, w = 20 cm, m = 0.1 neV 
in the case where the domain wall is coupled to the photon kinetic term via (left) (32), (right) (50) where we also set N A = 2. Here we plot the phase difference caused by 
the change in size of the beam splitter and mirrors (the power fluctuation caused by the intrinsic interaction is negligible). Note that we obtain a permanent phase shift in 
the left plot due to the permanent change in the value of the fine structure constant after the passage of the domain wall.
the beam-splitter and w is the width of the mirrors. This must be 
summed over the number of round trips each photon takes, for 
each trip evaluating φ at the position of the beam splitter/mirrors 
respectively. This effect turns out to be completely dominant over 
the effect of the change in power. In Fig. 8 we plot the phase shift 
caused by this effect.

Finally for completeness we here derive the formula for the 
power observed at the detector in the presence of both effects, 
although as already noted, the effect of the term in Eq. (48) is 
negligible compared to the phase shift induced by the change in 
Bohr radius. The power observed by the detector in the presence 
of a phase difference between the two beams is

P = |A + Aei
ϕ |2 = 2|A|2 (1 + cos (
ϕ)) (57)

where A is the amplitude of each beam. If we now include the 
effect of the intrinsic photon-domain wall interaction then the am-

plitude of each beam is also enhanced by a factor e
gDW
2 f 2 φ2

cl|tt−τs so

P = |Ae
gDW
2 f 2 φ2

cl|tt−τs + Ae
i(
ϕI +
ϕDW )+ gDW

2 f 2 φ2
cl|tt−τs |2 = (58)

2|A|2e
gDW

f 2 φ2
cl|tt−τs (1 + cos (
ϕI + 
ϕDW )) (59)

where 
ϕDW is the phase shift caused by the change in length of 
the beam splitter and mirrors and 
ϕI is a phase shift in the ab-
sence of domain walls which is often included in the experimental 
7

design as, for various technical reasons, it makes detection easier 
(for details see [14]).

The phase shift is given approximately by


ϕ ≈ √
2nlgDW

(
F

2π

)(
2π

λ

)
(60)

as F
2π gives the mean number of round trips that light makes in 

the interferometer. Note that here we have neglected the effect 
coming from the change in width of the mirrors but as the effects 
are of comparable magnitude this should not have a large effect 
on our estimate and we have also taken 
 

(
φ2

f 2

)
= 
 sin2

(
N Aφ

f

)
=

O (1). As usual for LIGO to be sensitive to such a coupling we 
would require 
ϕ � 10−10.

5. Conclusion

We briefly discuss here the prospect of detection at future, 
planned interferometers such as LISA. We again consider the three 
couplings separately. For the case of the coupling considered in 
Sec. 2, the longer interferometer arms proposed in LISA will, in 
general, increase the magnitude of the signal as the integrals in 
Eqs. (12), (13) will grow larger, although as with gravitational 
waves there is a limit to how much sensitivity can be gained 
purely by increasing the size of the interferometer. Similar con-
clusions apply to the coupling considered in Sec. 4.
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For the case of the coupling considered in Sec. 3, it should be 
noted that proposed experiments such as LISA would not be sensi-
tive to this form of coupling since they do not use polarised light. 
However more generally considering the case of a larger interfer-
ometer, we point out at the end of that section that there is a 
maximum phase shift which can be induced by the domain wall. 
Therefore increasing the arm length (or equivalently increasing the 
storage time), is really probing lower values of m.

The other main type of gravitational wave detector is a resonant 
bar detector. Since the domain wall model in this paper couples 
only to the photon it would not induce excitations of a bar as re-
quired by a resonant mass detector. However the changes in the 
fine structure constant could produce a signal in the case of the 
coupling considered in Sec. 4. The change in length of the bar is, 
in principle, large enough to be detected, however the detection 
at a resonant bar is complex and depends on the frequency of the 
signal. Hence whether there is a realistic chance of detection is a 
more involved question requiring more detailed calculation which 
we leave for future work. The detection of domain walls using 
magnetometers was also considered in [13], although in this pa-
per the domain wall was coupled to fermions rather than photons.

In conclusion, we have examined the effect of domain walls on 
the dispersion relation of light and examined the effect of this on 
a signal in a Michelson interferometer. In the case of an axion-like 
coupling, a standard Michelson interferometer using unpolarised or 
linearly polarised light is insensitive to this effect and we proposed 
to use instead detectors designed to search for axions via a similar 
mechanism. The signals calculated here are within reach of current 
gravitational wave detectors and we have examined the parameter 
space for regions which current detectors would be sensitive to.
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