
Journal of Intelligent Manufacturing (2023) 34:181–196
https://doi.org/10.1007/s10845-022-01998-x

Recursive encoder network for the automatic analysis of STEP files

Victoria Miles1 · Stefano Giani1 ·Oliver Vogt1

Received: 13 December 2021 / Accepted: 15 July 2022 / Published online: 7 August 2022
© The Author(s) 2022

Abstract
Automated tools which can understand and interface with CAD (computer-aided design) models are of significant research
interest due to the potential for improving efficiency in manufacturing processes. At present, most research into the use of
artificial intelligence to interpret three-dimensional data takes input in the form of multiple two-dimensional images of the
object or in the form of three-dimensional grids of voxels. The transformation of the input data necessary for these approaches
inevitably leads to some loss of information and limitations of resolution. Existing research into the direct analysis of model
files in STEP (standard for the exchange of product data) format tends to follow a rules-based approach to analyse models of a
certain type, resulting in algorithms without the benefits of flexibility and complex understanding which artificial intelligence
can provide. In this paper, a novel recursive encoder network for the automatic analysis of STEP files is presented. The encoder
network is a flexible model with the potential for adaptation to a wide range of tasks and finetuning for specific CAD model
datasets. Performance is evaluated using a machining feature classification task, with results showing accuracy approaching
100% and training time comparable to that of existing multi-view and voxel-based solutions without the need for a GPU.

Keywords Artificial intelligence · Recursive neural network · Computer-aided design · STEP files

Introduction

The manufacturing industry is rapidly changing. With the
increasing availability of intelligent systems, the industry is
embracing smart solutions in all areas to move towards man-
ufacturing processes which are flexible, high quality and cost
effective in the modern world (Zhong et al., 2017). The start-
ing point for all such processes is the design stage, and central
to this stage is the production of a computer-aided design
(CAD) model.

CAD models are used to represent complex geometries,
which must then be replicated physically through manufac-
turing processes. To manufacture a part, the complex CAD
model must be reduced to a series of manufacturing (or
machining) features, such as slots or holes, which represent
the processes necessary to reproduce the part. Much of the

B Victoria Miles
victoria.s.miles@durham.ac.uk

Stefano Giani
stefano.giani@durham.ac.uk

Oliver Vogt
oliver.vogt@durham.ac.uk

1 Department of Engineering, Durham University, Stockton
Road, Durham DH1 3LE, UK

existing literature investigating intelligent analysis of CAD
files focuses on the automatic recognition of machining fea-
tures, with the goal of increasing automation in the transition
from CAD model to manufacturing processes.

Intelligent systems which can make smart suggestions
during the design process have the potential for further
improvements in efficiency through additional applications.
A smart solution which can categorise CAD models based
on the model geometry and identify similarity between mod-
els could lead to increased standardisation of parts, as part
designs with similarity to existing parts within a database
could be flagged. This is increasingly relevant in an ever-
changing market in which manufacture must be flexible and
part lifetimes can be very short and so increased standardisa-
tion of simple parts could cause significant improvements
in manufacturing efficiency. Solutions which can operate
directly on model files are especially desirable due to the
potential for time-saving early in the design process, before
parts are combined to create complex 3D models, as well as
increasing the simplicity of overall systems by not requiring
transformation from model data to another form.

When discussing intelligent systems for the analysis of
complex data, solutions fall into two primary categories:
rules-based approaches and learning-based approaches.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-01998-x&domain=pdf
http://orcid.org/0000-0002-2268-1471
http://orcid.org/0000-0002-8190-9958
http://orcid.org/0000-0002-5746-4493

182 Journal of Intelligent Manufacturing (2023) 34:181–196

In a rules-based approach, detailed understanding of the
data is necessary, as rules dictating how specific features are
to be extracted and used by the model must be written. These
systems require a high level of expertise and a large amount
of manual input from the designer and are generally difficult
to adapt to new tasks or datasets.

In a learning-based (or deep learning) approach, the
designer does not intentionally code specific behaviour into
the model. Instead, neural networks are built, comprised of
algorithms containing matrices of weight values, which are
randomly initialised then continually updated during a train-
ing periodwith the goal of converging towards a final solution
with the desired behaviour. As the sets of learned weights
can be large, multi-dimensional matrices, and a neural net-
work can contain many layers of operations, this can result
in highly complex behaviour, without the need for manually
coding an exhaustive set of rules. Neural networks can also
easily be adapted by simply retraining the network for a new
task or dataset, to learn weights which will better suit the
new application. The advantages of using a learning-based
approach are many; deep learning models are flexible, do not
require expert level knowledge of the data to design or adapt
and have been proven to perform well at complex tasks such
as image classification (Krizhevsky et al., 2012) andmachine
translation (Cho et al., 2014).

Existing work on the application of deep learning to 3D
models can be categorised based on the form of input data
used. These forms include multiple 2-dimensional images of
the model from different angles, volumetric ‘voxel’ based
representation and mesh data. Each of these approaches has
some advantages but all involve some degree of transfor-
mation from the original data format when analysing CAD
models. Work which does focus on analysis of model files
directly tends to utilise rules-based techniques to extract fea-
tures from the models and so tends to be tailored towards
very specific applications.

One approach which has not yet been widely explored is
the direct application of a neural network to a STEP (Stan-
dard for the Exchange of Product Data) file. The STEP file
format is an ISO standard (ISO, 2016), supported by allmajor
CAD software. STEP files are simple text files which define a
model architecture by using coordinates to define points and
directions and using these to define lines and curves which
are in turn used to define edges and faces and build up to an
entire model geometry.

Related work

Automatic analysis of 3D data

Early attempts to apply neural networks to 3D data relied
heavily on the related field of computer vision; the use

of artificial intelligence solutions for the understanding of
image data. With the introduction of the convolutional neu-
ral network, or CNN (Krizhevsky et al., 2012), 2D computer
vision became the largest research area within the field of
AI, meaning availability of high performance, pre-trained
networks which could easily be adapted to different appli-
cations. Therefore, the most obvious approach to analysis of
3D data involves taking advantage of these existing resources
by converting the 3D data into 2D data.

An early attempt to apply a neural network to a 3D model
in this manner was presented by Qin et al. (2014), in which
multiple two-dimensional images of a model are used as
input to the deep learning classifier. This approach aims to
mimic the process through which an engineer would identify
a CAD model, by viewing the model at multiple angles to
build up an understanding of the overall geometry. Su et al.
(2015) present multi-view CNN , in which a view-pooling
layer is used to intelligently combine information from mul-
tiple views into one classifier.

The second traditional approach to analysing 3D data is
the use of 3D occupancy grids containing arrays of ‘voxels’
(the 3D equivalent of a pixel). This approach also makes use
of existing research into computer vision, by adapting regular
2D CNN networks into 3D CNNs by simply adding an extra
dimension and taking a 3D grid of voxels as input rather than
a 2D grid of pixels.

A voxel-based approachwas proposedwith 3DShapeNets
(Wu et al., 2015), in which 3D models are represented by
binary grids of voxels and classified using a convolutional
deep belief network. In the work of Maturana and Scherer
(2015), voxelised models are classified using a 3D CNN. In
both papers the input occupancy grid is of size 30× 30× 30.
This resolution is a major limitation of the voxel approach;
30 pixels in each dimension is not sufficient to accurately
represent complex geometries but higher resolution would
result in impractically large model sizes. Riegler et al. (2017)
addressed this issue with the introduction of OctNet, which
partitions the 3D space into unbalanced octrees, making use
of the natural sparsity of the input data and allowing for
higher-resolution representation of model geometries.

Of these two traditional approaches, the multi-view
approach tends to be more successful. The voxel-based
approach, while seemingly a logical method, has persistent
and severe restrictions due to the issues of data resolution and
network size, which can be addressed to an extent but will
always impose limitations on performance. The multi-view
approach lacks some of these limitations. However, when
considering analysis of CAD models rather than general
shape recognition, some issues are clear. Firstly, the multi-
view network’s reliance on image data means that features
of the model must be visible in an image in order for the net-
work to recognise them. It is logical to conclude that details
which appear on the inside of models or are small compared

123

Journal of Intelligent Manufacturing (2023) 34:181–196 183

to the model size are likely to cause problems as all actual
3D data is lost and the network must rely on images. Further-
more, careful consideration must be given to the set of 2D
images which are selected as network inputs. Multiview net-
works take multiple 2D images and combine the information
from all of them to build up an idea of the 3D shape but it
is not possible to include images taken from every possible
angle and, even using a sophisticated algorithm to make this
decision, there is always a possibility that a crucial angle for
a given model, in which certain features are visible, will be
missed.

The potential advantages of developing a network which
can work directly on model data are significant. The issue
of resolution can be entirely eliminated if all model data is
maintained and there is no chance of features in less visibly
prominent positions being ignored. In short, no feature of
the model, no matter how small, will be lost when directly
working with model data.

More recent work has explored the possibility of working
more directly on 3D data. For example,MeshNet (Feng et al.,
2019) is a classification model which takes a mesh file as
input. However, existing research into the direct use of model
files, such asSTEPfiles, as input tends to focus on rules-based
approaches for performing specific tasks. Venu et al. (2018)
recognise b-spline surface features using features extracted
from a STEPfile. Kiani and Saeed (2019) extract information
about spotwelding features. Both use rules-based approaches
to extract the relevant features.

Al-wswasi and Ivanov (2019) present an approach for
recognising features using STEP data as input, with the
goal of developing integrated manufacturing systems with
connections between CAD designs and manufacturing pro-
cesses. This is a fairly thorough approach in which a large
range of features is identified. However, the approach is still
limited by a degree of rigidity, as the data is transformed
away from the actual tree structure found in a STEP file and
hard rules are relied on to analyse the geometric information.

No existing approach seeks to apply artificial intelli-
gence techniques directly to data from a STEP file without
first using rules-based techniques to extract features. This
approach has the potential to result in a model with more
flexibility, which can be trained to perform a variety of
tasks without the necessity of coding a new set of rules for
each application. It also avoids the common issue for image
or voxel-based approaches of resolution, as in a STEP file
enough detail is included to recreate all elements of a model,
regardless of the scale of a feature.

Language processing

As STEP is a text format, the analysis of a STEP file can be
approached as a language processing task. A major research
area in the field of artificial intelligence, natural language

processing (NLP) refers to the processing of text in human
languages, such as English. Due to the prevalence of the
field, there are numerous high-performing neural networks
designed to performNLP tasks which can be applied directly
to processing artificial language, such as STEP data, with lit-
tle or no adaptation. To the best of our knowledge, no existing
research has investigated the possibilities of analysing STEP
file data using language processing deep learning techniques.

In theory, artificial language processing tasks should be
simpler for neural networks to perform than NLP tasks. Arti-
ficial language, unlike natural language, has no ambiguity
and follows a stricter set of rules. It is not necessary to develop
a complex understanding of language as humans use it, as
the text being interpreted is already in a form designed to be
comprehensible to computers.

Traditionally the field of NLP has been dominated by
the use of recurrent neural networks (RNNs). An RNN
can take a sequence of any length (such as a sentence) as
input and repeatedly apply the same set of weights to each
input in the sequence, with the output hidden state from
each cell being applied as an input to the next cell in the
sequence. The introduction of the long short term memory
(LSTM) cell (Hochreiter & Schmidhuber, 1997) improved
this architecture by introducing a system for storing long
term information, addressing the vanishing gradient problem
in which gradients become vanishingly small during training
and so information from early in the sequence is lost by the
time a final output is produced.

Another type of neural network, the recursive neural net-
work, is similar to the recurrent neural network but with
cells organised in a tree structure rather than as a sequence.
A recursive neural network was first presented by Socher
et al. (2011), with suggested applications including natural
language parsing as well as semantic scene segmentation.
The concept behind this research was that both images of
scenes and natural language sentences have inherent struc-
tures in which simple components combine to form more
complex structures and so both images and text data could
be represented using a hierarchical (or tree) structure. The
recursive neural network attempts to learn this structure and
apply learned weights throughout the resulting data tree in
order to interpret the sentence or image. In practical terms this
makes the network somewhat more complex than an RNN
as each cell of the network could, in theory, be fed by the
output of any number of cells from the previous level of the
tree, and the structure of the data tree must be learned by the
network. An improved model for NLP was presented by Tai
et al. (2015). This model replaced the simple cell with an
LSTM cell, modified to take multiple inputs as necessary for
a recursive network.

Although these networks have seen some success in the
field of NLP, further research into the potential of recursive
networks has been limited. This lack of active research can

123

184 Journal of Intelligent Manufacturing (2023) 34:181–196

likely be attributed to the continued success of RNN (Cho
et al., 2014; Chung et al., 2015; Sutskever et al., 2014) and
transformer (Devlin et al., 2019;Vaswani et al., 2017)models
on NLP tasks. As recursive networks are more complex and
were not seen to significantly outperform these other network
types, they have seen limited popularity in recent years and,
in the field of NLP, have been largely abandoned as an active
branch of research. However, recursive networks have been
suggested more recently for tasks outside of NLP. Chen et al.
(2018) adapted the network proposed by Tai et al. (2015) for
the task of translation between programming languages. In
this case the input data was code, a form of artificial language
with an inherent tree structure, meaning that the structure did
not need to be learned by the network. The recursive network
developedwas shown to significantly outperform other exist-
ing solutions at the time of publication, an indication of the
untappedpotential of recursive networks for applications out-
side of NLP. However, such revivals of the recursive network
remain rare and thus far no attempt has been made to apply
a recursive network to the understanding of the data present
in a 3D model file.

As shown in Fig. 1, STEP files have an inherent hierarchi-
cal structure; low level features are combined to form more
complex features and so on until, at the top level of the struc-
ture, the entire model architecture is represented by a single

node. This tree structure means that a STEP file input is per-
fectly matched to a recursive neural network. Moreover, the
tree structure is explicit in the input data and so will not need
to be learned by the network, making the operation of the
recursive network significantly less complex.

Methodology

In this section a two-stage process for the automatic analysis
of STEP files will be outlined:

Step 1: Design of aSTEPparserwhich transforms raw input
from a STEP file into a processed data tree which
can be used as input to the recursive encoder. This
involves creating a node for each relevant line from
the file, adding extra nodes containing coordinate
point information, encoding the overall structure of
the tree and filtering out irrelevant nodes. The pro-
cess is outlined in detail in the ‘Parsing STEP Files’
section. The effects of taking coordinate points to
a lower precision or ignoring coordinate point data
entirely at this stage is investigated, with the results
presented in the ‘Evaluation of the Significance of
Coordinate Value Precision’ section.

Fig. 1 Typical hierarchical structure representing the geometric data
for a simple CAD model; connections show how low-level features are
combined to form complex shape representations, the shaded region

represents the portion of the tree which will be used as input for the
neural network

123

Journal of Intelligent Manufacturing (2023) 34:181–196 185

Step 2: Development of a recursive encoder network for
the analysis of processed data trees. The encoder
network is based on the Child-Sum Tree-LSTM
network first presented by Tai et al. (2015). It oper-
ates by working through the encoded tree structure,
applying a set of learned weights at each node.
This operation is described in detail in the ‘Recur-
sive Encoder Network’ section. The performance of
the recursive encoder network will be assessed on
a machining feature classification task in order to
demonstrate feasibility of the presented approach.

Parsing STEP files

For the recursive encoder to process aSTEPfile, all geometric
informationmust first be extracted and converted into a useful
formwith an explicit tree structure. To this end a STEP parser
is designed to process the STEP data and convert it into a
hierarchical structure of vectorswhich canbeused as network
inputs.

Generation of hierarchical data structures

STEP files, even those defining very simple CAD models,
contain hundreds of lines of information. An example seg-
ment of a STEP file is presented in Fig. 2. Each line is
assigned a unique ID number, preceded by ‘#’, which starts
the line. The information contained in the line consists of a
category and any number of parameterswhichmay be the IDs
of other lines, coordinate point values or additional flags. For
example, in Fig. 2, the first line has ID number 1, category
CARTESIAN_POINT and takes three coordinate values as
parameters (− 0.4…, 0.17…, 0.00), representing a single 3D
point. An example of a line taking another line as a param-
eter can be seen in the line with ID number 3 and category
EDGE_CURVE, which takes lines with ID numbers 50, 156
and 220 as parameters.

The data lines within a STEP file may be organised in any
order and lines may take other lines which appear higher or
lower as parameters. As a result, applying a language pro-
cessing network, such as an RNN or transformer network,
directly to STEP file data is not feasible, as such networks
rely on the sequence of input information conveying mean-
ing. Instead, the inherent hierarchical structure of the input
data has been exploited to generate the input for a recursive
network. The STEP file is used to produce a tree structure,
with each line from the STEP file represented by a single
node and connections between parent and child nodes speci-
fied, where the children of a node are the other lines given as
parameters in the STEP line. An example of the tree struc-
ture containing all geometric information for a simple STEP
file is presented in Fig. 1, where each line of the file is rep-
resented by a single node and direct connections are shown
between parent and child nodes.

Converting a STEP file into a useful hierarchical structure
compatible with a recursive network is a two-step process:

Step 1: Convert each data line from the STEP file into an
instance of the node class, represented using the
node’s ID number and category.

Step 2: Attach a list of child nodes to each node in the tree.
Parse through the tree structure, updating all nodes
to have a record of parent nodes as well as child
nodes.

Additional consideration must be given to the method of
encoding coordinate point values into the data tree as several
forms of representation are feasible. The process chosen will
be discussed in detail in the ‘IncorporatingCoordinateValues
into the Tree’ section.

Filtering out irrelevant information

Not every line in a STEP file contains useful geometric infor-
mation, as can be seen in Fig. 2. Many nodes, such as the

Fig. 2 Sample data lines from a STEP file; lines which do not contain geometric information are highlighted

123

186 Journal of Intelligent Manufacturing (2023) 34:181–196

‘PERSON_AND_ORGANISATION’ node, will not connect
to the data tree representing the geometry as they contain
information irrelevant to the model itself. Other nodes, such
as the ‘UNIT’ node will connect to the tree as they do contain
information necessary to recreate the CAD model, but they
are not necessary for the purposes of analysing the shape of
the model and features present.

Therefore, it is necessary to filter out any nodes which
do not connect directly to the geometric data tree and desir-
able to trim the tree to leave the simplest possible structure
which still contains all the geometric information necessary
to recreate the model.

This is achieved by identifying an appropriate node which
will be the singular highest-level node of the data tree and
removing any nodes which this top-node does not directly
depend on. It can be seen in Fig. 1 that all lower-level
geometric nodes feed directly into the ‘CLOSED_SHELL’
node and so, for the model represented by this diagram,
‘CLOSED_SHELL’ is an appropriate top-node. The result-
ing reduced data tree is shown in the shaded region of Fig. 1.
Throughout the work presented in this paper, the choice was
made to set ‘CLOSED_SHELL’ as the top node in order to
keep the model trees as simple as possible.

Vector encoding of node categories

Data inputs for a neural network must take the form of vec-
tors or matrices of values which the network can process. In
the case of language processing networks, this means that a
vocabulary of vector terms must be defined to represent each
word which could be present in the raw data. In the case of
our network the ‘words’ in the data are the node categories
taken from the STEP lines, such as ‘CARTESIAN_POINT’
or ‘EDGE_CURVE’. To define a fixed vocabulary for the
network, each unique category must be assigned a unique
vector representation.

To encode categories into vectors, one-hot vector encod-
ing is utilised. This method converts categories into vectors
with length equal to the number of categories in the dataset.
Each unique category in the dictionary is assigned an index
between zero and the dictionary size. To encode a category
as an input, every value in the vector is set to zero, except for
the value at the index assigned to the relevant category which
is set to one. As the input vectors will have length equal to the
dictionary size, it is desirable to keep the dictionary of node
categories as small as possible, as keeping the input vectors
small will minimise the model size and limit the number of
computations necessary.

Incorporating coordinate values into the tree

One possible approach to incorporating coordinate point val-
ues into the treewould be to represent each unique coordinate

value seen in the STEPfile as a new instance of the node class,
representing the entire numerical value. However, while this
would be a functional method of including the values, it
would be problematic for two key reasons. Firstly, adding a
new node category for every different unique number would
greatly increase the dictionary size, leading to larger input
vectors and a larger model overall, or potentially leading
to a situation where one-hot vector encoding is no longer
appropriate and more complex encoding is necessary. This
would also mean that the majority of categories in the dictio-
nary would represent different coordinate points, potentially
exaggerating their importance to the network. The second
issue with this method is that the numerical values them-
selves would not convey any meaningful information to the
neural network, other than which numbers are exactly the
same. In order to aid the encoder in developing an under-
standing of the data it is desirable to incorporate coordinate
points in a form which provides context about relative simi-
larity of values.

For the above-mentioned reasons, it was decided to
represent coordinate points using strings of nodes, each rep-
resenting a single digit of the coordinate value. The first digit
in each string is either + or − followed by a node for each
digit, with each node taking the node representing the previ-
ous digit as a child and the node representing the subsequent
digit as a parent. The final digit in the string is set as the child
of any STEP nodes with that coordinate value as a parameter,
with each unique numerical string processed by the network
only once and the outputs reused wherever that value appears
in the data tree. An example of the node string structure is
presented in Fig. 3, using the first coordinate value seen in
Fig. 2.

This method of including coordinate values limits the dic-
tionary size as only 13 new node categories need to be added
in order to encode any numerical value. It also provides more
context to the numerical values themselves as the model
should be able to identify similarity between numbers which
startwith the same digits. Another advantage of this approach
is that the precision at which coordinate points are taken can
be adjusted. Reducing the number of decimal places to take
the value to will result in a data tree with less levels and so
speed up computations. Increasing the number of decimal
places allows for smaller features to be identified reliably.

The final size of the dictionary, including values for coor-
dinate points, is 32,meaning that inputs to the neural network
will be one-hot vectors of length 32.

The full list of node classes present in the dataset is
included in the Appendix.

Recursive encoder network

In this section a recursive encoder network is proposed for the
automatic analysis of data trees generatedby theSTEPparser.

123

Journal of Intelligent Manufacturing (2023) 34:181–196 187

Fig. 3 The node string produced
to represent the value − 0.415,
the first coordinate value seen in
Fig. 2 when taken to three
decimal places, with parent–child
connections shown to the two
lines in Fig. 2 which reference
this value

In order to demonstrate the performance of the encoder, a
simple classifier is applied to the output, and the resulting
network trained to perform a feature classification task.

The recursive encoder makes use of the Child-Sum Tree-
LSTM network first presented by Tai et al. (2015). In this
network, amodified LSTMcell is applied to inputs organised
in a tree structure. The term recursive refers to the repeated
application of the same processes, in this case the repeated
application of an identical treeLSTM cell to every node in
the tree structure. The input tree structure could take any
shape and have any number of nodes, each with any num-
ber of children. The one constraint on the shape of the tree
is that there will always be one single top-level node, rep-
resenting the input data as a whole. The recursive encoder
itself does not have a fixed structure; in a way, it consists of a
single cell containing several sets of learned weights which
will be applied repeatedly to each new input as the network
works through the data tree from leaf (the lowest-level infor-
mation e.g. coordinate values) to root (the single top-level
node, in this case ‘CLOSED_SHELL’). Figure 4 shows how
the LSTM cell might be applied to a simple data tree. As
the LSTM cell applied to each node is identical, the neural
network is able to adapt to fit the shape of any data tree it is
applied to and the network is kept small as the same sets of
learned weights are applied at every node in the tree, limiting
the total number of learned parameters by ensuring that the
model size remains the same regardless of how complex the
input data tree is.

The network as proposed by Tai et al. (2015) learns not
only the weights necessary to analyse the input tree but also
those necessary to determine the correct structure of the tree
itself. This is because the focus of the research is on natural
language processing and, while natural language does have
inherent structure, this structure is not specifically codified
in the text and so must be determined. In contrast, the STEP
file format is an example of artificial language, in which the
structure is explicitly codified and therefore does not need to
be learned. Thismakes the encoder’s task of learning amean-
ingful representation of the data significantly less complex
as the structure of the data can be defined in a data processing
step and does not need to be decided by the neural network.

An LSTM cell uses three gates, each with a set of learned
weights, to maintain a long-term memory state known as the
cell state, in addition to the short-term memory carried from
the previous cell, known as the hidden state. The forget gate
controls which information carried from the previous cell
state should be kept and which should be forgotten, based on
the previous hidden state and the current input. The input gate
controls how much information from the previous hidden
state and the current input should be written to the cell state.
The output gate controls what information should be output
to the next hidden state, which is also the output of the cell.
Each of the three gates has an associatedweight matrix; these
same weights are repeatedly applied for each new input the
network encounters. During training, the values in theweight
matrices are continuously updated with the goal of learning

123

188 Journal of Intelligent Manufacturing (2023) 34:181–196

Fig. 4 Example application of the treeLSTM cell to a simple tree structure, where c is the output cell state, h the output hidden state and x the new
input for each node

sets of weights which produce meaningful outputs for any
given input.

The key difference between a standard LSTM cell and a
treeLSTM cell is the number of potential previous states. As
a standard LSTM cell is designed to be part of a linear string
of cells, only one input hidden state and one input cell state
is necessary whereas the treeLSTM cell must be able to take
multiple previous states, as a node in the tree can have any
number of children. Figure 4 shows how the output states for
child nodes are passed to the input of parent nodes for a very
simple structure. A node having multiple children, and so
taking multiple previous states as input, results in the need
for multiple forget gates so the information from each of
the previous cells can be separately considered to be kept or
removed. Once the forget gate outputs have been calculated,
the sum of the previous hidden states is taken, allowing the
input and output gates to function as with a standard LSTM
cell. Although it is possible to have any number of previous
states, each cell has only one output cell state and one output
hidden state, both of fixed length. The hidden state is taken
as the output of the cell. Figure 5 shows the processes within
a treeLSTM cell.

The equations used togovern theLSTMcell are as follows,
where the children of node j are denoted as C(j), the input
gate is ij, forget gates are f jk , output gate is oj, output cell
state is cj, output hidden state is hj and the input vector at
node j is denoted by xj:

˜h j =
∑

k∈C(j)

hk (1)

i j = σ
(

W (i)x j +U (i)
˜h j + b(i)

)

(2)

f jk = σ
(

W (f)x j +U (f)hk + b(f)
)

(3)

o j = σ
(

W (o)x j +U (o)
˜h j + b(o)

)

(4)

u j = tanh
(

W (u)x j +U (u)
˜h j + b(u)

)

(5)

c j = i j � u j +
∑

k∈C(j)

f jk � ck (6)

h j = o j � tanh
(

c j
)

. (7)

W and U represent the sets of learned weights which are
applied to the input vector and the previous hidden state
respectively for each gate at every node of the tree and b is
a set of learned bias terms, used to shift the activation func-
tion outputs to better fit the data. � refers to the operation of
element-wise multiplication.

The hidden size of the encoder was set to 300, meaning
that the output cell and hidden states from the LSTM cell
are vectors of length 300. This value was selected to be large
enough for sufficient complexity but to be as small as possible
to limit the number of parameters in the network. As the
top level of the data tree consists of a single node, the final
encoder output for a singleSTEPfile is the output hidden state
for this node, a single vector of length 300. The dimensions
of inputs, outputs and learned parameters are given in Table
1. The total number of learned parameters for the encoder is

123

Journal of Intelligent Manufacturing (2023) 34:181–196 189

Fig. 5 The processes within a treeLSTM cell; c is cell state, h is hidden state, x is input vector, U andW are weights and f , i and o are forget, input
and output gates respectively

Table 1 The dimensions of parameters within the recursive encoder cell

Parameter notation Function Shape

c j , h j Cell memory states (300)

x j Input vector (32)

W (i), W (f), W (o), W (u) Learned weights (32, 300)

U (i), U (f), U (o), U (u) Learned weights (300, 300)

b(i), b(f), b(o), b(u) Learned bias terms (300)

less than 400,000.
The recursive encoder network extracts features from the

data, in the form of an output vector of length 300 represent-
ing each input data tree. Since we want to consider model
performance for a classification task, this vectormust be used
to produce a single class prediction for each CAD model.

To this end, the output vector is fed into a fully connected
layer, a neural network layer in which every possible con-
nection between neurons is included; every output value will
depend on the value of every input. The fully connected layer
uses the entire output vector from the encoder network to pro-
duce a score for each class of feature present in the dataset,
using the following equation:

yi =
n

∑

j=1

x jwi j + bi (8)

for encoder output of length n, where yi is the score for class
i, x is the input vector and w and b are the weights and bias
terms for the layer. The output of the fully connected layer
for a single input data tree is a vector with length equal to
the number of feature classes, in this case 24, containing the
score for each class.

To convert this vector of class scores into a vector of prob-
abilities for each class, the Softmax function is applied as
follows:

pi = eyi
∑n

j=1 e
y j

(9)

for n classes, where pi is the Softmax probability for class i
and y is the output of the fully connected layer.

The network is trained with the objective of minimising
cross-entropy loss, which is defined as:

LCE = −
n

∑

i=1

ti log(pi) (10)

for n classes, where ti is the ground truth and pi the Soft-
max probability for class i. TheAdamoptimisation algorithm
(Kingma & Ba, 2015), an adaption of stochastic gradient
descent, is used during training. The model is implemented
using PyTorch.

123

190 Journal of Intelligent Manufacturing (2023) 34:181–196

Evaluation of the significance of coordinate value
precision

To evaluate the significance of coordinate values and the
effects of varying precision, three versions of the encoder
model were trained to perform a feature classification task:
(1) with all coordinate values replaced with a single place-
holder token, (2) with all coordinate values taken to five
decimal places and (3) with a mixed precision dataset: the
number of decimal points in the coordinates was randomly
set a value between one and five for eachmodel in the dataset.

Machining features dataset

The dataset generated for the feature classification task is
comprised of models of blocks, each with a single machin-
ing feature added. The features chosenwere a list of common
machining features, as suggested in Zhang et al. (2018).
Examples of the 24 feature categories are shown in Fig. 6.

Using the benchmark dataset developed by Zhang et al.
(2018) would be ideal. However, this was not possible due
to the lack of available data in STEP format. Reconstructing
model files from the mesh formats available would involve
too much manual input to be feasible. Therefore, it was
decided to generate an equivalent dataset to the benchmark
containing the same number of randomly generated models
in each category.

The base model the features are added to is a cuboid with
the longest side equalling 1 unit. As units are ignored by
the encoder network, this will normalise all coordinate val-
ues between 0 and 1. The machining features are added to a
random face of the model, with parameters for size and posi-
tion of the feature also assigned random values. This dataset
is not entirely equivalent to the benchmark dataset as some
increased randomisation was added to make the models as
general as possible, such as using an irregular starting block
instead of a cube, and allowing for both larger and smaller
relative feature sizes.

The STEP dataset contains a total of 24,000 models, 1000
examples of each of 24 categories of machining feature. The
dataset has been divided into train, test and validation subsets
at a ratio of 7:2:1.

Experiment 1: how necessary are coordinate values?

In this experiment, the performance of the model trained
without any coordinate points (model 1) is compared with
that of the model trained using coordinates taken to five dec-
imal places (model 2). In the case of model 1, the scale and
location of features is unknown but the network still has
access to geometric information such as number of edges
and faces.

The confusion matrix for model 1 is shown in Fig. 7a. As
can be seen, the model is capable of accurately identifying
22 out of the 24 classes based on shape alone.

The exceptions are the ‘rectangular through slot’ class
which is consistently mislabelled as ‘rectangular blind slot’
and the ‘slanted through step’ classwhich is consistentlymis-
labelled as ‘rectangular through step’. These represent the
two sets of two classes which cannot be reliably separated
based on geometric components alone and which require
additional spatial information to distinguish. The similarity
between the rectangular and slanted through step classes is
clear to see, as there is no difference between the classes
when coordinate values are not considered. The rectangular
through and blind slots, however, seem visibly distinct even
when coordinates are not included. The reason these classes
cannot be separated is because they consist of the same set of
faces, simply resized and arranged differently; both consist
of two u-shaped faces and eight rectangular faces. The ori-
entation, position and scale of these faces differ between the
two classes but without coordinate point values, this infor-
mation is not represented in a STEP file, resulting in the two
classes being confused.

The high accuracy for all other classes demonstrates the
potential of the recursive encoder network; the validation
accuracy across all classes is 91.67%. As spatial coordinates
are not necessary to reliably separate most classes, feature
size and resolution are not an issue for the network, meaning
that the model can identify very small features relative to the
model size with the same reliability as large features. This is
a clear advantage when comparing to image or voxel-based
approaches.

As can be seen in Fig. 7b, when allowing the model to use
actual coordinate points, the remaining uncertainty between
the two pairs of similar classes is removed and accuracy
approaches 100%.

Experiment 2: the impact of varying coordinate precision

An important factor to consider in relation to the precision
of the coordinate points in the data is whether the whole
dataset contains coordinate points at the same precision or if
the precision can vary. To investigate the significance of this,
the performance of the fixed precision model (model 2) is
compared with that of the variable precision model (model
3).

Figure 8 shows the accuracy of the two models when pre-
sented with varying precision datasets.

Model 2 (trained with a fixed precision) performed poorly
when presented with a different precision dataset, regardless
of whether more or less decimal places were included. In
contrast, model 3 (the mixed precision model) was shown
to perform consistently well, even when presented with data
containing points taken to a much greater precision than was

123

Journal of Intelligent Manufacturing (2023) 34:181–196 191

Fig. 6 Machining features present in the dataset, as suggested by Zhang et al. (2018)

included in the training datasets. This indicates the robust-
ness of the mixed precision model and the superiority of this
approach.

The final accuracy of the mixed precision model on a val-
idation set with precision matching that of the training set
was 99.96% and when the precision of the input data was
increased to a maximum of 10 decimal places, the model
accuracy only dropped to 99.04%.

Model performance evaluation (results)

The recursive encoder-based network has been trained to per-
form classification for the 24 classes of machining feature
shown in Fig. 6.

In this section, existing work on machining feature recog-
nition will be described, and the performance of our network
compared with two existing machining feature classifiers.
Both comparison networks utilise traditional multi-view and

123

192 Journal of Intelligent Manufacturing (2023) 34:181–196

Fig. 7 Confusion matrices
showing number of occurrences
of predicted class against ground
truth when evaluating using the
validation dataset. a Model 1:
trained with coordinate points all
represented by single ‘COORD’
token. bModel 2: trained using
actual coordinate point values

123

Journal of Intelligent Manufacturing (2023) 34:181–196 193

Fig. 8 Validation accuracy
against precision of coordinate
values in the dataset for model 2
(trained with 5dp precision) and
model 3 (trained with mixed
precision)

voxel-based approaches, meaning that they do not work
directly on model files and require a GPU for fast perfor-
mance.

Details on existing solutions

FeatureNet

Themachining features dataset reproduced for this work was
first presented by Zhang et al. (2018) as the dataset used to
train FeatureNet, a 3D CNN-based classification model.

In this work, models from the machining features dataset
are converted into normalised binary-valued voxel grids of
maximum size 64 × 64 × 64. These voxelised models are
used as input for a 3D CNN, consisting of four convolutional
layers, followed by amax pooling layer and a fully connected
layer, with a Softmax function producing the final output
class probabilities for each feature category. The total number
of learned parameters for this model is around 34 million,
several orders of magnitudes larger than our model of around
400,000 parameters.

A key factor in the performance of FeatureNet is the res-
olution of the voxelised models. The highest resolution used
(64 × 64 × 64 voxels) results in models with higher accu-
racy but which are slow to train and run whereas the lowest
resolution (16 × 16 × 16 voxels) results in a smaller, faster
network but with the cost of a significant loss in accuracy.

MsvNet

InMsvNet (Shi et al, 2020), a multi-view approach is applied
to feature recognition. 3D models are represented using 12
images, resized to a maximum of 64 × 64 pixels, created
by making random cuts into the model to obtain random
sectional views, with the goal of including information on
the interior of models.

To perform feature classification using the 2D sectional
views, a VGG-11 model (Simonyan & Zisserman, 2015) is
adapted, a 2D CNN consisting of eight convolutional lay-
ers and three fully connected layers and pre-trained on the
ImageNet database. In MsvNet, the CNN is first fine-tuned
to the dataset by performing classification based on a sin-
gle sectional view, before incorporating a view-pooling layer
between the convolutional and fully connected layers to com-
bine information from multiple sectional views.

In the paper presenting this network, an extremely thor-
ough investigation of model performance at the machining
feature classification task is carried out. Results are presented
for varied resolution of input data and number of training
samples, with comparison to FeatureNet included.

Performance comparison

In this section, the performance of our network for feature
classification will be compared to the optimal performance
reported of the two comparison networks.

Our recursive network is trained with batch size set to 32
and learning rate initialised at 0.001. A full training period
consists of 10 epochs of training. Results presented are those
for the model trained using variable precision of coordinate
points, as outlined in the ‘Evaluation of the Significance of
Coordinate Point Precision’ section.

In Table 2, accuracy and training time for our final net-
work is presented, with results from FeatureNet and MsvNet
included for comparison. All computations for our network
were carried out using a PC with Intel Core i5-9500 CPU
and no GPU. Comparison data is as reported for optimal
performance of the networks by Shi et al. (2020), in which
computations were carried out on a PC with Intel Core i9-
9900X CPU and NVIDIA GeForce RTX 2080 TI GPU.

123

194 Journal of Intelligent Manufacturing (2023) 34:181–196

Table 2 Validation accuracy and training time comparison with existing solutions as reported by Shi et al. (2020)

FeatureNet (GPU)
Zhang et al. (2018)

MsvNet (GPU)
Shi et al. (2020)

Ours (CPU)

Resolution 16 × 16 × 16 64 × 64 × 64 16 × 16 × 16 64 × 64 × 64 N/A

Accuracy 91.91% 98.17% 94.88% 99.67% 99.96%

Training time 78.70 min 2139.55 min 712.35 min 871.23 min 699.04 min

Number of training models per class 4096 4096 4096 4096 700

As the two comparison networks work at variable reso-
lutions the highest and lowest voxel resolutions reported are
included for comparison.

Discussion and future work

In the previous sections, the development of a recursive
encoder network for the analysis of 3D CAD models was
described, and the process of training the network and mea-
suring performance at a machining feature classification task
outlined. Details on the performance of our network, com-
pared with those of two other machining feature recognition
models are presented in Table 2.

Our network is capable of outperforming both compari-
son networks in terms of accuracy, regardless of resolution
of the other networks. It also trained faster than all but the
lowest performing comparison network without the need for
a GPU. This is a key result as the intention is to develop a
versatile network which can be easily adapted to new tasks
and retrained for operation using different types of data as a
more flexible alternative to rules-based systems. A fast train-
ing time on CPU indicates the potential as a network which
can be very easily adapted and trained for a new application
using any hardware.

While the accuracy achieved by our network is only a
slight increase from the already very high performance of
existing solutions, there are two key considerations which
make this result significant.

Firstly, the highest accuracy achieved by MsvNet was
dependent on using the highest resolution of the network
and based on a dataset in which feature size was fixed to not
be extremely small compared to the model size. In contrast,
our model has been shown to perform well across 22 out of
24 classes evenwhen no spatial information is included, indi-
cating that the high performance is not dependent on feature
scale and has no limitations based on resolution.

Secondly, both FeatureNet and MsvNet represent the
application of existing artificial intelligence techniques for
the analysis of 3D data to the machining feature recogni-
tion task. Our network, on the other hand, represents an
entirely new approach to the analysis of CAD models, with

a focus on effectively utilising all geometric information
by interfacing directly with model files, and the machin-
ing feature classification task was merely selected as an
appropriate initial test of the feasibility of the encoder net-
work. Outperforming existing solutions, even by a small
margin demonstrates the potential of the encoder as a unique
approach to 3D model analysis, using artificial intelligence
techniques directly applied to model data.

The recursive encoder network developed in this work is
designed to have the flexibility to be adapted to a wide range
of tasks relating to the analysis of CAD models. The next
step in this research, therefore, is to design and train mod-
els incorporating the encoder for more complex tasks than
single-feature classification, such as multi-feature recogni-
tion and assessment of general similarity in more complex
CAD models.

Conclusions

This paper presents a novel recursive encoder network for the
automatic analysis of STEP files without the need for rules-
based feature extraction. The performance of the encoderwas
evaluated based on the task of machining feature classifica-
tion.

It was found that the classification network was capable
of recognising 22 out of 24 simple machining features and
achieving overall accuracy of 91.67% when the network was
trained using only basic geometric components without any
spatial information. When spatial information was included
the classification accuracy of the network reached 99.96%
across all 24 classes of feature.

As the encoder network developed is not reliant on any
hard rules to extract features from STEP files, it has the
potential to be adapted for a wide range of tasks relating
to shape recognition and fine-tuned to work across any spe-
cific dataset of model files. As there is no translation of the
model data into alternate forms, excepting some basic data
processing of the input files, the network is suitable for direct
implementation during the design process.

Funding This study was funded by the Engineering and Physical Sci-
ences Research Council (EPSRC).

123

Journal of Intelligent Manufacturing (2023) 34:181–196 195

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix: List of node classes

The full list of node classes present in the dataset is presented
in Table 3.

Table 3 Full list of node classes present in the dataset

Node class

*

+
−
.

.F

.T

0

1

2

3

4

5

6

7

8

9

ADVANCED_FACE

AXIS2_PLACEMENT_3D

CARTESIAN_POINT

CIRCLE

CLOSED_SHELL

CYLINDRICAL_SURFACE

DIRECTION

EDGE_CURVE

Table 3 (continued)

Node class

EDGE_LOOP

FACE_BOUND

FACE_OUTER_BOUND

LINE

ORIENTED_EDGE

PLANE

VECTOR

VERTEX_POINT

References

Al-wswasi, M., & Ivanov, A. (2019). A novel and smart interactive
feature recognition system for rotational parts using a step file.
The International Journal of Advanced Manufacturing Technol-
ogy, 104, 261–284.

Chen, X., Liu, C., & Song, D. (2018) Tree-to-tree neural networks for
program translation. In:Proceedings of the 32nd international con-
ference on neural information processing systems (pp. 2552–2562)

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014)
On the properties of neural machine translation: Encoder–decoder
approaches. In:Proceedings of the 8thworkshop on syntax, seman-
tics and structure in statistical translation (pp. 103–111)

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2015) Gated feedback
recurrent neural networks. In: Proceedings of the 32nd interna-
tional conference on machine learning (pp. 2067–2075)

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019) BERT:
Pre-training of deep bidirectional transformers for language under-
standing. In: Proceedings of the 2019 conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human language technologies (pp. 4171–4186)

Feng, Y., Feng, Y., You, H., Zhao, X., & Gao, Y. (2019). Meshnet:
Mesh neural network for 3D shape representation. Proceedings of
the AAAI Conference on Artificial Intelligence, 33, 8279–8286.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9, 1735–1780.

ISO. (2016). ISO 10303–21:2016. RetrievedMarch, 2022, from https://
www.iso.org/standard/63141.html

Kiani, M. A., & Saeed, H. A. (2019) Automatic spot welding feature
recognition from step data. In: 2019 international symposium on
recent advances in electrical engineering (RAEE) (pp. 1–6)

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic opti-
mization. In: Proceedings of the 3rd international conference on
learning representations, (ICLR)

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012) ImageNet classi-
fication with deep convolutional neural networks. In: Proceedings
of the 25th international conference on neural information pro-
cessing systems (pp. 1097–1105)

Maturana, D., & Scherer, S. (2015) Voxnet: A 3D convolutional neural
network for real-time object recognition. In: IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS)
(pp. 922–928)

Qin, F., Li, L., Gao, S., Yang, X., & Chen, X. (2014). A deep learn-
ing approach to the classification of 3D CAD models. Journal of
Zhejiang University-Science C, 15, 91–106.

Riegler, G., Osman Ulusoy, A., & Geiger, A. (2017). Octnet: Learning
deep 3D representations at high resolutions. In: Proceedings of

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.iso.org/standard/63141.html

196 Journal of Intelligent Manufacturing (2023) 34:181–196

the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 3577–3586)

Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X. (2020). A novel
learning-based feature recognition method using multiple sec-
tional view representation. Journal of Intelligent Manufacturing,
31, 1291–1309.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional net-
works for largescale image recognition. In: Proceedings of the
3rd international conference on learning representations (ICLR)
(pp. 1–14)

Socher, R., Lin, C. C. Y., Ng, A. Y., & Manning, C. D. (2011). Parsing
natural scenes and natural language with recursive neural net-
works. In: Proceedings of the 28th international conference on
machine learning (pp. 129–136)

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-
view convolutional neural networks for 3D shape recognition. In:
Proceedings of the IEEE international conference on computer
vision (ICCV) (pp. 945–953)

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence
learning with neural networks. In: Proceedings of the 27th inter-
national conference on neural information processing systems
(pp. 3104–3112)

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic
representations from tree-structured long short-term memory net-
works. In: Annual meeting of the association for computational
linguistics (ACL) (pp. 1556–1566)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., & Polosukhin, I. (2017) Attention is all you
need. In:Proceedings of the 31st conference on neural information
processing systems (pp. 6000–6010)

Venu, B. K., Rao, V., & Srivastava, D. (2018). Step-based feature recog-
nition system for b-spline surface features. International Journal
of Automation and Computing, 15, 500–512.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao,
J. (2015) 3D ShapeNets: A deep representation for volumetric
shapes. In:Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR) (pp. 1912–1920)

Zhang, Z., Jaiswal, P., & Rai, R. (2018). FeatureNet: Machining feature
recognition based on 3d convolution neural network. Computer-
Aided Design, 101, 12–22.

Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent
manufacturing in the context of industry 4.0: A review. Engineer-
ing, 3, 616–630.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Recursive encoder network for the automatic analysis of STEP files
	Abstract
	Introduction
	Related work
	Automatic analysis of 3D data
	Language processing

	Methodology
	Parsing STEP files
	Generation of hierarchical data structures
	Filtering out irrelevant information
	Vector encoding of node categories
	Incorporating coordinate values into the tree

	Recursive encoder network
	Evaluation of the significance of coordinate value precision
	Machining features dataset
	Experiment 1: how necessary are coordinate values?
	Experiment 2: the impact of varying coordinate precision

	Model performance evaluation (results)
	Details on existing solutions
	FeatureNet
	MsvNet

	Performance comparison

	Discussion and future work
	Conclusions
	Appendix: List of node classes
	References

