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Abstract

This paper studies supersymmetric ground states of 3d N = 4 supersymmetric gauge
theories on a Riemann surface of genus g . There are two distinct spaces of supersym-
metric ground states arising from the A and B type twists on the Riemann surface, which
lead to effective supersymmetric quantum mechanics with four supercharges and su-
permultiplets of type N = (2, 2) and N = (0, 4) respectively. We compute the space of
supersymmetric ground states in each case, graded by flavour and R-symmetries and
in different chambers for real mass and FI parameters, for a large class of supersym-
metric gauge theories. The results are formulated geometrically in terms of the Higgs
branch geometry. We perform extensive checks of compatibility with the twisted index
and mirror symmetry.
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1 Introduction

This paper studies the supersymmetric ground states of 3d N = 4 gauge theories on R×Σ,
where Σ is a Riemann surface of genus g. There are two distinct spaces of supersymmetric
ground states depending on which R-symmetry is chosen to twist along the Riemann surface
Σ. They are referred to as the A-twist and B-twist and are exchanged by three-dimensional
mirror symmetry.

The strategy, following a similar philosophy in [1, 2], is to introduce an effective super-
symmetric quantum mechanics on R that captures the supersymmetric ground states of the
system. The type of supersymmetric quantum mechanics depends on the twist:

• The A-twisted supersymmetric ground states are captured by an A-type N = 4 quantum
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mechanics, with supermultiplets obtained by dimensional reduction of 2d N = (2, 2)
vectormultiplets and chiral multiplets.

• The B-twisted supersymmetric ground states are captured by a B-type N = 4 quantum
mechanics, with supermultiplets obtained by dimensional reduction of 2d N = (0, 4)
vectormultiplets, hypermultiplet and twisted hypermultiplets.

In this paper, we consider unitary quiver gauge theories with generic real FI-parameters,
whose Higgs branch X is a smooth algebraic symplectic variety. We further assume that for
generic real mass parameters, the fixed locus of corresponding C∗ actions on X consists of
isolated fixed points. Under these assumptions, we will be able to determine the effective su-
persymmetric quantum mechanics exactly and compute the spaces of supersymmetric ground
states, graded by a R-symmetries and global symmetries.

The Witten index of the effective supersymmetric quantum mechanics must reproduce
limits of the supersymmetric twisted index on S1×Σ. This can be computed by supersymmetric
localisation, leading to elegant expressions involving JK residue formulae or a summations
over solutions to Bethe equations [3–8]. This provides a non-trivial consistency check on our
computations. Alternative localisation schemes that lead to geometric interpretation of the
supersymmetric twisted index will underpin the constructions in this paper [9–11].

The spaces of supersymmetric ground states are closely related to the Hilbert space of the
Rozansky-Witten topological twist [12] and its mirror on a Riemann surface Σ. In supersym-
metric gauge theories, the relationship is subtle due to non-compactness of the target space.
Our construction overcomes this difficulty by introducing real FI and mass parameters that
break the R-symmetry necessary to perform a full A- and B-type topological twist on a generic
three-manifold M3 but are perfectly compatible on the specific background M3 = R×Σ.

1.1 A-twist

In the A-twist, the N = 4 supersymmetric quantum mechanics can roughly be understood as
sigma model whose target space M is the moduli space of twisted quasi-maps Σ→ X , where
X is the Higgs branch understood as an algebraic symplectic quotient.

In a supersymmetric gauge theory with compact connected gauge group G, the moduli
space M decomposes as a disjoint union of topologically distinct components Md labelled
by the topological class d ∈ π1(G) of the G-bundle on Σ. Under some assumptions, each
connected component Md is finite-dimensional and compact, but may be singular. In such
cases, the supersymmetric ground states with topological charge d ∈ π1(G) are captured by a
finite-dimensional N = 4 supersymmetric quantum mechanics with target Md .

The space of supersymmetric ground states is given by the hyper-cohomology

HA =
⊕

d∈π1(G)

ξd H•(Md , Pd) , (1)

where Pd is a canonical perverse sheaf on Md . The supersymmetric ground states are weighted
by a formal parameter ξ that keeps track of their charge under the topological or Coulomb
branch global symmetry. The hyper-cohomology admits a pure Hodge structure or double
grading that captures of the R-charges of supersymmetric ground states.

In many cases, especially when all the components of the degree d ∈ π1(G) is large com-
pared to the genus g, the components Md are smooth. In this case, the hyper-cohomology
reduces to the de Rham cohomology of Md with its Hodge decomposition, which recovers the
supersymmetric ground states of a smooth N = 4 supersymmetric sigma model.

For the purpose of computations, it is convenient to introduce real masses for flavour sym-
metries that act by isometries of the moduli spaces Md . This corresponds to introducing a real
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superpotential in the supersymmetric quantum mechanics, given by the moment map for the
isometry of Md . Under some assumptions, this is a perfect Morse-Bott function with critical
loci of the form

Symn1(Σ)× · · · × SymnkΣ ⊂ Md , (2)

where (n1, . . . , nk) ∈ Zk and k is the rank of the gauge group. In such cases, the space of
supersymmetric ground states may be computed explicitly from knowledge of the de Rham
cohomology of symmetric products of the curve Σ.

1.2 B-twist

In the B-twist, the effective N = 4 supersymmetric quantum mechanics involves vectormul-
tiplets, hypermultiplet and twisted chiral multiplets. However, under some assumptions, the
vectormultiplet and twisted hypermultiplet moduli spaces are lifted, leaving an N = 4 su-
persymmetric quantum mechanics with hyper-Kähler target space given by the Higgs branch
X .

The space of supersymmetric ground states is a priori given by L2 harmonic forms on X
twisted by g copies of exterior powers of the tangent bundle TX . If X were compact and the
supersymmetric quantum mechanics gapped, this would have a cohomological description

HB = H0,•
∂̄
(X , (∧•TX )

g) (3)

as in Rozansky-Witten theory [12].1 However, the Higgs branch X of a supersymmetric gauge
theory is non-compact and correspondingly the supersymmetric quantum mechanics is not
gapped, so this is subtle and a cohomological description is not immediately available.

In this paper, we introduce real mass parameters for Higgs branch global symmetry corre-
sponding to tri-hamiltonian isometries of X . If the fixed locus of the isometry is compact, the
spectrum of the supersymmetric quantum mechanics becomes gapped and a cohomological
description opens up in terms of the cohomology of a Dolbeault operator, deformed by the
moment map for the isometry. This has an algebraic description in terms of a Cousin spectral
sequence, which captures instanton corrections to perturbative supersymmetric ground states
localised around fixed loci [14–17].

Under some assumptions, the fixed locus consists of an isolated set of points p ∈ X . In this
case, the supersymmetric ground states are built from Fock spaces attached to each fixed point
together with potential instanton corrections. However, we argue that there are no instanton
corrections with this amount of supersymmetry. The exact supersymmetric ground states in
the B-twist are then given by

HB =
⊕

p

ÔSym• Vp , (4)

where Vp is a vector space graded by R-symmetries and Higgs branch global symmetries encod-
ing hypermultiplet fluctuations around the fixed point p. The hat denotes symmetric tensor
powers, normalised by a factor of (det Vp)1/2.

1.3 Outline

The outline of the paper is as follows. In section 2, we summarise the general properties of
spaces of supersymmetric ground states such as gradings by global and R-symmetries, which
are determined by the supersymmetry algebra. In section 3 we summarise the class of super-
symmetric gauge theories we consider and state clearly our assumptions. In sections 4 and 5
we construct the effective supersymmetric quantum mechanics and compute them in exam-
ples in the A-twist. In sections 6 and 7 we construct the effective supersymmetric quantum

1See also [13] for a related discussion.

4

https://scipost.org
https://scipost.org/SciPostPhys.12.2.072


SciPost Phys. 12, 072 (2022)

mechanics and compute them in examples in the B-twist. In section 8, we discuss the match-
ing of supersymmetric ground states under mirror symmetry. Finally, in section 9, we discuss
relations to other work and potential future directions.

2 Cohomological Structures

In this section we outline homological structures involved in computing supersymmetric ground
states of N = 4 supersymmetric quantum mechanics that arise from 3d N = 4 theories twisted
on R × Σ. These constructions depend only on the supersymmetry algebra, the existence of
global symmetries, and appropriate constraints to ensure a gapped spectrum. In sections 4
and 6, we will then construct supersymmetric ground states in the A-twist and B-twist that are
compatible with these structures.

2.1 Twisted 1d N = 4 Supersymmetry

We consider a 3d N = 4 supersymmetric theory with R-symmetry SU(2)H×SU(2)C and global
symmetry GH ×GC , where GH couples to vectormultiplet and GC to a twisted vectormultiplet.
The supersymmetry algebra in euclidean R3 is

{QAȦ
α ,QBḂ

β }= ε
ABεȦḂ Pαβ − εαβεAB Z ȦḂ − εαβεȦḂ ZAB . (5)

The central charges are
ZAB = ζAB · JC , Z ȦḂ = mȦḂ · JH , (6)

where JC , JH denote Cartan generators of the global symmetry and mȦḂ and ζAB are scalar
expectation values for background vectormultiplets and twisted vectormultiplets respectively.
In a supersymmetric gauge theory, they are mass and FI parameters respectively.

In what follows, we set m1̇1̇ = 0 and ζ11 = 0 and rename the remaining real parameters
by m := m1̇2̇ and ζ := ζ12 respectively. This fixes unbroken maximal tori U(1)H × U(1)C and
TH × TC of the R-symmetry and global symmetry respectively.

We consider the twisted reduction of this supersymmetry algebra on R×Σ, where Σ is a
closed Riemann surface of genus g. The twist is performed using either the U(1)H or U(1)C
R-symmetry to preserve an N = 4 supersymmetric quantum mechanics on R. We refer to
these two choices as the A-twist and B-twist respectively. Starting from euclidean coordinates
{x1, x2, x3} we twist in the x1,2-plane, which is then replaced by Σ. This leads to a supersym-
metric quantum mechanics in the x3-direction.

2.1.1 A-Twist

There are four supercharges that commute with the diagonal combination of U(1)H and rota-
tions in the x1,2-plane, which are

QȦ :=Q1Ȧ
1 , eQȦ :=Q2Ȧ

2 . (7)

After the twist, they are scalar on the x1,2-plane and generate the 1d N = 4 supersymmetry
algebra

{QȦ,QḂ}= 0 ,

{QȦ, eQḂ}= εȦḂ(H − ζ · JC)−mȦḂ · JH ,

{eQȦ, eQḂ}= 0 ,

(8)
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where we have defined the Hamiltonian H := P3. We note that the form of the Hamiltonian
H may also depend on the parameters m and ζ. The supercharges act on the Hilbert space of
the supersymmetric quantum mechanics in such a way that (Q1̇)† = eQ2̇ and (Q2̇)† = −eQ1̇.

Recalling we set the complex mass parameter m1̇1̇ = 0, it is convenient to decompose
the supersymmetry algebra into a pair of commuting N = 2 subalgebras with non-vanishing
anti-commutators

{Q+,Q†
+}= H − ζ · JC −m · JH ,

{Q−,Q†
−}= H − ζ · JC +m · JH ,

(9)

where Q+ :=Q1̇ and Q− := eQ1̇. It will also be useful to consider the diagonal N = 2 subalgebra

{Q,Q†}= 2(H − ζ · JC) (10)

generated by Q := Q+ +Q−. In the absence of the FI parameter ζ, the combination Q defines
a fully topological A-twist or mirror Rozansky-Witten twist on R × Σ that is compatible with
the mass parameters m.

2.1.2 B-Twist

There are four supercharges commuting with the diagonal combination of U(1)C and rotations
in the x1,2-plane,

QA :=QA1̇
1 , eQA :=QA2̇

2 . (11)

After the twist, they are scalar on the x1,2-plane and generate a 1d N = 4 supersymmetry
algebra

{QA,QB}= 0 ,

{QA, eQB}= εAB(H −m · JH)− ζAB · JC ,

{eQA, eQB}= 0 ,

(12)

where the supercharges again act on the Hilbert space of the supersymmetric quantum me-
chanics in such a way that (Q1)† = eQ2 and (Q2)† = −eQ1.

Recalling we set the complex FI parameter ζ11 = 0, it is again convenient to decompose
the supersymmetry algebra into a pair of commuting N = 2 subalgebras with non-vanishing
anti-commutators

{Q+,Q†
+}= H −m · JH − ζ · JC ,

{Q−,Q†
−}= H −m · JH + ζ · JC ,

(13)

where Q+ :=Q1 and Q− := eQ1. It will also be useful to consider the diagonal N = 2 subalgebra

{Q,Q†}= 2(H −m · JH) (14)

generated by Q := Q+ + Q−. In the absence of the mass parameter m, the combination Q
defines a fully topological B-twist or Rozansky-Witten twist on R×Σ that is compatible with
the FI parameters ζ.

2.1.3 Comment on Notation

The above notation is designed so we can discuss both twists in parallel by interchanging
H ↔ C and ζ↔ m. In the remainder of this section, we will write formulae explicitly for
the A-twist, with the understanding that those in the B-twist are obtained by performing the
above substitution. It is useful to note that Q = Q11̇

1 is a common supercharge preserved by
both twists.
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2.2 Gradings

Let Ω denote the full Hilbert space of the effective N = 4 supersymmetric quantum mechan-
ics. This transforms as a unitary representation of the R-symmetry U(1)H × U(1)C and global
symmetry TH × TC left unbroken by generic real mass and FI parameters. We discuss the
R-symmetry first and the flavour symmetry second.

Let RH , RC denote integer generators of U(1)H , U(1)C . We then have a Z×Z grading on Ω
from the decomposition into eigenspaces of RH , RC . It is sometimes convenient to define the
following combinations in the A-twist,

R+ :=
1
2
(RC − RH) ,

R− :=
1
2
(RC + RH) ,

(15)

which, by at most a constant half integer shift, also have integer eigenvalues. The notation is
chosen such that Q± commutes with R∓, as summarised in table 1.

We now introduce yet another pair of combinations

F := RC ,

R :=
1
2
(RC − RH) ,

(16)

defining an Z× 1
2Z grading. For reasons discussed in more detail below, we refer to F as the

“primary" or “cohomological" grading and R as the “secondary" grading. Correspondingly, we
denote the contribution from a state in cohomological degree f and secondary degree r by

t rC[− f ] , (17)

where we use a formal parameter t to keep track of the secondary grading. The weights of the
supercharges are again summarised in table 1.

Table 1: Summary of supercharges weights under R-symmetry generators in the A-
twist.

RH RC F R
Q+ −1 1 1 0
Q− 1 1 1 1
Q ∗ 1 1 ∗

Let us now return to the global symmetry. This commutes with the R-symmetry so each
weight space of the above double grading transforms as unitary representation of the un-
broken global symmetry TH × TC . The contribution from a state transforming with weight
(γH ,γC) ∈ Hom(TH × TC , U(1)) is denoted by

xγHξγCC , (18)

where we introduce formal parameters (x ,ξ) ∈ TH × TC .
Finally, it may happen that the cohomological grading F = RC is incompatible with inter-

preting (−1)F as the usual Z2 fermion number in three dimensions. In the A-twist, this happens
because monopole operators are bosons but may have odd R-charge f . This is ameliorated by
introducing a new R-symmetry of the form

eRC = RC −λ · JC , (19)
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for some co-character λ ∈ Hom(U(1), TC) and defining instead

F := eRC ,

R :=
1
2
(eRC − RH) .

(20)

There is an analogous potential redefinition in the B-twist where a new R-symmetry eRH is
formed by mixing with the global symmetry TH . This kind of redefinition was discussed in the
context of the Rozansky-Witten twist in [18].

2.3 Supersymmetric Ground States

2.3.1 Definitions

We are interested in the space H of supersymmetric ground states annihilated by all four super-
charges Q+, Q†

+, Q−, Q†
−. This inherits gradings by F , R and TH×TC . From the supersymmetry

relations (9) and unitarity, supersymmetric ground states satisfy

E − ζ · γC = 0 , m · γH = 0 , (21)

where E denotes the eigenvalue of H. Supersymmetric ground states in the A-twist are there-
fore uncharged under TH for generic mass parameters m. Similarly, supersymmetric ground
states in the B-twist are uncharged under TC for generic FI parameters ζ.

The space of supersymmetric ground states has a number of equivalent definitions that are
useful in different circumstances. First, it is convenient to introduce an intermediate space of
half-BPS states H1/2 annihilated by Q+, Q†

+, which satisfy

E − ζ · γC −m · γH = 0 . (22)

A consequence of this definition and the unitary bound arising from (10) is that states in H1/2
obey m · γH ≥ 0 and this inequality is saturated by supersymmetric ground states. Namely,

H =H1/2 ∩ ker(m · JH) . (23)

In other words, for generic mass parameters m, supersymmetric ground states are states in
H1/2 that are uncharged under the global symmetry TH .

2.3.2 Cohomological Construction

As usual in supersymmetric quantum mechanics, it is helpful to introduce a cohomological
description of supersymmetric ground states. Let us assume that the spectrum of H − ζ · JC
is gapped. This is typically a condition on the theory and the parameters m and ζ, which we
discuss further in section 2.5.

By a standard argument, the space of supersymmetric ground states can then be identified
with the cohomology of the supercharge Q generating the diagonal subalgebra (10). In more
detail, let Ω f denote the space of states of cohomological degree f . Then

H f = H f (Ω•,Q) (24)

is the space of supersymmetric ground states of cohomological weight f . A downside of this
construction is that Q does not transform with a definite weight under R, so this does not
immediately yield the secondary grading on supersymmetric ground states. To reproduce the
secondary grading in a cohomological framework, there are various way to proceed.
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One method is to note that Q does preserve the filtration

F rΩ f =
⊕

r ′≤r

Ω f ,r ′ , (25)

where Ω f ,r ⊂ Ω denotes states with cohomological weight f and secondary weight r. It is
straightforward to see from table 1 that the supercharge Q is compatible with the filtration
and defines a differential Q : F rΩ f → F rΩ f +1. We can then pass to cohomology

F rH f = H f (F rΩ•,Q) , (26)

which is a filtration on the space of supersymmetric ground states. The secondary grading is
then recovered from the associated graded of this filtration,

H f ,r =
F rH f

F r−1H f
. (27)

This can be rephrased in terms of the spectral sequence associated to this filtration. The first
step is to note that the intermediate space H1/2 admits a cohomological description

H f ,r
1/2 = H f (Ω•,r ,Q+) , (28)

in which the secondary grading is manifest because Q+ commutes with R. This is the E1-page of
the spectral sequence associated to the filtration (25) and abuts to the space of supersymmetric
ground states. The secondary grading remains intact on each page of the spectral sequence
and therefore recovers the secondary grading on H.

Finally, we could simply restrict to states annihilated by m · JH from the beginning. The
subalgebras (9) and (10) act in the same way on this subspace and the space of supersymmetric
ground states is the cohomology of any linear combination of Q± on states annihilated by m·JH .
In particular, we can choose to represent supersymmetric ground states as

H f ,r = H f (Ω•,r ∩ ker(m · JH),Q+) (29)

to manifest the secondary grading. Equivalently, upon on restriction to the kernel of m · JH ,
the aforementioned spectral sequence collapses at the E1-page.

2.4 Recovering the Twisted Index

The supersymmetric twisted indices are defined as Witten indices of theN = 4 supersymmetric
quantum mechanics and may also be regarded as partition functions on S1 ×Σ.

We start from the following expression in the A-twist,

I = TrΩ(−1)F e−βH e−iβaRRe−iβ iaC ·JC e−iβaH ·JH , (30)

where we have introduced constant background connections aR, aH , aC around S1 for R, TH ,
TC respectively and the circumference of the circle is β . A standard argument shows that this
receives contributions only from the subspace H1/2 annihilated by Q+, Q†

+. The index can
therefore be expressed more succinctly as

I = TrH1/2
(−1)F tR x JHξJC , (31)

where
ξ := e−β(ζ+iaC ) , x := e−β(m+iaH ) , t := e−iβaR . (32)
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This notation is designed to be compatible with that introduced in section 2.2. Note that a
redefinition of the R-charge as in equation (19) is implemented by ξ→ (−t−

1
2 )λξ.

In the limit t → 1, the twisted index only receive contributions from supersymmetric
ground states in H, which are not charged under the flavour symmetry TH . We therefore
find that the limit

lim
t→1

I = TrH(−1)FξJC (33)

counts supersymmetric ground states graded by (−1)F and JC .

2.5 Parameter Dependence

The space of supersymmetric ground statesH depends on various deformation parameters pre-
serving the 1dN = 4 supersymmetry algebra. This includes expectation values for background
vectormultiplets and twisted vectormultiplets, such as mass parameters m, FI parameters ζ,
and certain background connections on Σ. This dependence is captured by a supersymmetric
Berry connection. They type of supersymmetric Berry connection relevant in this context have
been studied in references [19–22].

We content ourselves here with describing the dependence on the real parameters m, ζ.
The mass parameters m are expectation values for the real scalar components of a background
vectormultiplet for TH . The supercharges depend on them in such a way that

∂mQ+ = −[OH ,Q+] , ∂mQ†
+ = +[OH ,Q†

+] ,

∂mQ− = −[OH ,Q−] , ∂mQ†
− = +[OH ,Q†

−] ,
(34)

where OH is some operator in the quantum mechanics that plays the role of a moment map for
the symmetry TH . This means that ∂m+OH commutes with any linear combination of Q+, Q−
and induces a complex flat Berry connection on both H1/2 and the space of supersymmetric
ground states H. The conclusion is the same for the FI parameters ζ.

This argument is only valid if the spectrum is gapped and H1/2 and H can be computed
in cohomology. Under the assumptions to be outlined in section 3, the spectrum of the super-
symmetric quantum mechanics is gapped provided the parameters m, ζ lie in the complement
of certain hyperplanes. Namely,

m ∈ tH −
⋃

λ

Hλ ,

ζ ∈ tC −
⋃

µ

eHµ ,
(35)

where
Hλ = {m ∈ tH | 〈λ, m〉= 0} ,
eHλ = {t ∈ tH | 〈µ, t〉= 0}

(36)

are hyperplanes labelled by weights λ, µ of TH , TC . A more precise statement is therefore that
we obtain complex flat Berry connections on the complement of these hyperplanes.2

The hyperplanes typically cut the parameter spaces tH , tC into chambers. Throughout this
paper, we denote such a pair of chambers by cH , cC . In practise, the existance of a flat Berry
connection means we can assign graded vector spaces H1/2 and H to each pair of chambers
cH , cC in the space of mass and FI parameters.

Let us now discuss how this parameter dependence translates to the twisted index. From
the perspective of a path integral on S1 ×Σ, the mass and FI parameters are complexified by

2If we were to introduce complex masses m11̇ and work with harmonic representatives of cohomology classes the
Berry connection would lift to a solution of the generalised Bogomolnyi equations on tH ⊗R3 with Dirac monopole
singularities along codimension-three loci Hα ⊗R3.
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background connections aH , aC around S1. The twisted index I is then a rational function of
the fugacities introduces in (32):

ξ= e−β(ζ+iaC ) , x = e−β(m+iaH ) . (37)

Let us compare this with the definition of the twisted index as a trace. We can imagine com-
puting separate twisted indices for each pair of chambers,

TrH1/2
cH ,cC
(−1)F tR x JHξJC , (38)

which begin life as different formal Laurent series in x , ξ. However, as a consequence of
the holomorphicity of the index, they are expansions of the same rational function I when
the parameters are chosen such that − log |x | ∈ cH , − log |ξ| ∈ cC . Conversely, expanding the
twisted index I in the region with parameters − log |x | ∈ cH , − log |ξ| ∈ cC will reproduce the
trace over H1/2 in the chamber cH , cC .

Finally, we have seen that supersymmetric ground states H are those states in H1/2 that
are annihilated by m · JH . Combining this with the above paragraph provides a way to gain
information on the secondary grading of supersymmetric ground states from the twisted index.
In particular, let us consider the limit m→∞ in the A-twist with m ∈ cH . This corresponds to

xλ→

¨

0 〈λ, m〉> 0 for all m ∈ cH

∞ 〈λ, m〉< 0 for all m ∈ cH
. (39)

In this limit
lim
cH

I = TrHcH
(−1)F tRξJC , (40)

which receives contributions only from supersymmetric ground states in the chamber cH . This
will provide a useful consistency check on the secondary grading of supersymmetric ground
states.

3 Supersymmetric vacua and Assumptions

A 3d N = 4 supersymmetric gauge theory is specified by compact gauge group G together
with a linear quaternionic representation, which we assume of the form N := T ∗M with
G ⊂ USp(M). An example are unitary quiver gauge theories, where G =

∏

I U(nI) and T ∗M
is built from fundamental and bifundamental representations of the factors.

The theory has an abelian topological global symmetry TC = Hom(π1(G), U(1)), which
may be enhanced in the IR to a non-abelian symmetry GC . In addition, there is a global
symmetry GH acting on the hypermultiplets,

GH = NUSp(M)(G)/G . (41)

The mass and FI parameters correspond to constant expectation values for background vec-
tormultiplets and twisted vectormultiplets respectively. As in section 2, we restrict here to real
parameters

m := m1̇2̇ , ζ := ζ12 , (42)

with the remaining parameters to zero when not otherwise specified. We assume these pa-
rameters are generic and break the flavour and R-symmetries to their respective maximal tori
TC , TH , U(1)H , U(1)C .

Correspondingly, we decompose the hypermultiplet scalars X A into complex components
(X , Y ) and the vectormultiplet scalars σȦḂ into real and complex components σ, ϕ, ϕ†. The
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Table 2: Fields and charges

G RH RC

σ Adj 0 0
φ Adj 0 +2
X M +1 0
Y M∗ −1 0

charges of these fields under the unbroken maximal torus of the R-symmetry are shown in
table 2.

Such theories are endowed with an intricate moduli space of vacua that may include Higgs,
Coulomb and mixed branches. Of particular importance to this paper is the Higgs branch,
which we denote by X . This receives no quantum corrections and can be determined classically.
It takes the form of a hyper-Kähler or algebraic symplectic quotient.

Let us first set m= 0. Then the classical vacuum equations are

µR = ζ , [ϕ,ϕ†] = 0 ,

µC = 0 , [σ,ϕ] = 0 ,

σ · X = 0 , σ · Y = 0 ,

ϕ · X = 0 , ϕ · Y = 0 ,

(43)

where vectormultiplet scalars act in the appropriate representation and

µR = X · X † − Y † · Y , µC = X · Y (44)

are the real and complex moment maps for the G action on T ∗M . In writing the real moment
map equation, we identify ζ with an element of g∗ through tC

∼= Z(g∗) ⊂ g∗.

3.1 Assumptions

In this paper, we will assume that for generic values of the FI parameter ζ, the gauge sym-
metry is broken to at most a discrete subgroup and therefore σ = ϕ = 0. This means
µ−1
C (0) ∩ µ

−1
R (ζ) ⊂ T ∗M has no continuous stabilisers for generic ζ. This is a constraint on

the data G, M .
If we restrict attention to unitary quivers, discrete stabilisers cannot appear (see e.g. [23],

section 4). The assumption is then equivalent to the statement that the gauge symmetry is
completely broken or µ−1

C (0) ∩ µ
−1
R (ζ) has no non-trivial stabilisers. Although not strictly

necessary for this paper, to avoid some technicalities we restrict attention to this case.
With this understood, the remaining equations in (43) describe the Higgs branch as a

smooth hyper-Kähler quotient,

X ∼= µ−1
C (0)∩µ

−1
R (ζ)/G , (45)

which is a Nakajima quiver variety. In our assumption, a generic FI parameter means

ζ ∈ tC −
⋃

µ

eHµ , (46)

where the real hyperplanes eHµ ⊂ tC correspond to values of the real FI parameter where
there is an unbroken gauge symmetry and non-trivial stabilisers. The hyperplanes split the
parameter space into chambers as in section 2.5. We typically fix a chamber ζ ∈ cC .
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In this paper, it is convenient to introduce an alternative description of the Higgs branch
as an algebraic symplectic quotient

X ∼= µ−1
C (0)//ζ GC , (47)

where the real moment map equation is replaced by a stability condition depending in a piece-
wise constant manner on the FI parameter ζ and the quotient is now by complex gauge trans-
formations. The stability condition and the resulting smooth algebraic symplectic variety X
depends only on the chamber cH . Our assumption can then be summarised as follows:

• Assumption I: for generic a FI parameter ζ ∈ cH , the Higgs branch X is a smooth alge-
braic symplectic variety.

Let us now introduce a real mass parameters m, which replaces σ→ σ+m in the vacuum
equations (43). From an algebraic point of view, the mass parameters generate a C∗m ⊂ TH,C
action on X preserving the holomorphic symplectic form and the solutions of the vacuum
equations now correspond to fixed loci of this action. We will further assume that for generic
mass parameters m, the fixed locus is a set of isolated points, which will abstractly index by I

XC
∗
m =

⊔

I
{pI} . (48)

This is again a condition on the data G, M . In our assumption, a generic mass parameter means

m ∈ tH −
⋃

λ

Hλ , (49)

where the real hyperplanes Hλ ⊂ tH correspond to mass parameters where the C∗ action no
longer has isolated fixed points. They can be described explicitly as

Hλ = {m ∈ tH | 〈λ, m〉= 0} , (50)

where λ runs over all weights in the TH weight decompositions of the tangent space TpX for
all fixed points p. The hyperplanes split the parameter space into chambers as in section 2.5.
We typically fix a chamber ζ ∈ cC . Our assumption can be summarised as follows:

• Asssumption II: for generic mass parameters m ∈ cH , the corresponding C∗m action on
the Higgs branch X has isolated fixed points.

Let us illustrate these assumptions in the case of supersymmetric QCD with G = U(k) and
N hypermultiplets in the fundamental representation. In this case the flavour symmetries are
TH = U(1)N/U(1) and TC = U(1) and we can turn on real mass parameters (m1, . . . , mN ) with
∑

j m j = 0 and a real FI parameter ζ.
This satisfies assumptions I and II provided N ≥ k. First, the Higgs branch is then smooth

and isomorphic to X ∼= T ∗G(k, N)whenever ζ 6= 0. It therefore therefore satisfies Assumption I
with two chambers cC = {ζ > 0} and cC = {ζ < 0}. Second theC∗m action generated by generic
mass parameters with mi 6= m j for i 6= j also has isolated fixed points. The theory therefore
satisfies Assumption II with N ! chambers cH corresponding to orderings of N distinct mass
parameters. This is a little weaker than the theory being good, which requires N ≥ 2k [24].

Other examples of unitary quiver gauge theories satisfying both assumptions I and II are
T[SU(N)] and the ADHM quiver.
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3.2 Fixed Points

Under assumptions I and II, we can give a more concrete description of the isolated fixed
points. This description is related to the Jeffrey-Kirwan prescription for the supersymmetric
twisted index, which is familiar in the context of supersymmetric localisation computations.

Notice that at a fixed point, the gauge group must be completely broken. This means in
particular that the vacuum equations (43) in the presence of a real mass m (that is with the
substitution σ 7→ σ+m) must uniquely fix σ. This requirement is equivalent to the choice of
a set of k := rank(G) weights {ρ1, . . .ρk} ∈ t∗ such that

• only hypermultiplet scalars transforming with these weights are non-vanishing;

• the set of weights {ρ1, . . .ρk} must span t∗.

Furthermore, the real moment-map equation implies that

• the positive cone of these set of weights must contain the FI parameter ζ.

ζ ∈ Cone+({ρ1, . . .ρk}) . (51)

This corresponds to the data of a non-degenerate, projective singularity that enters the def-
inition of the Jeffrey-Kirwan residue prescription3. Finally, since we require the absence of
discrete stabilisers, the square-matrix formed by the set of weights must be unimodular. These
properties will be important for the computation of supersymmetric ground states, see in par-
ticular sections 5.4 and 7.4.

3.3 Tangent weights

Let us finally discuss the weight decomposition of the tangent space TpX of the Higgs branch
at a fixed point p. We keep track of the weights in the manner introduced in section 2.2. First,
for a given mass parameter m there is a decomposition

TpX = N+p ⊕ N−p (52)

into positive and negative weight spaces for the corresponding C∗m action. This decomposition
depends only on the chamber cH . The weights λ or summands xλC appearing in the TH
weight decomposition of N± obey ±〈λ, m〉> 0. Second, the algebraic symplectic form Ω on X
transforms with degree

F(Ω) =

¨

0 A-twist

2 B-twist
, R(Ω) =

¨

−1 A-twist

+1 B-twist
, (53)

which implies that

(N+p )
∨ =

¨

t−1N−p A-twist

tN−p [−2] B-twist
. (54)

This will play an important role in our construction of the space of supersymmetric ground
states in subsequent sections.

3In addition, notice that since automorphisms of the gauge group are ruled out at the fixed points, in our
assumptions the various components of σ cannot coincide. In terms of supersymmetric localisation computations
of the twisted index, these would correspond to vectormultiplet poles.
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4 Localisation in the A-Twist

The aim of this section is use supersymmetric localisation to reduce the A-twisted theory on
R × Σ to an explicit N = 4 supersymmetric quantum mechanics that captures the space of
supersymmetric ground states H. The method is supersymmetric localisation. Following our
previous work [9–11], we will choose a Higgs branch type localisation scheme leading to an
algebro-geometric interpretation of the space of supersymmetric ground states.

4.1 Decomposing Supermultiplets

In the A-twist, 3d N = 4 supermultiplets decompose into 1d N = (2,2) supermultiplets. A
3d N = 4 gauge theory of the type introduced in section 3 can be regarded as an infinite-
dimensional gauged supersymmetric quantum mechanics as follows.

First, let P denote a principal G-bundle on Σ with connection A. Then we have the follow-
ing multiplets in the supersymmetric quantum mechanics:

• A 1d N = (2, 2) vectormultiplet for the infinite-dimensional group of gauge transforma-
tions or automorphisms of P. The bosonic components are A3, σ, ϕ, and an auxiliary
field

D1d := D− i ∗ FA , (55)

where FA is the curvature of A and ∗ is the Hodge star operator on Σ.

• A 1d N = (2,2) chiral multiplet ∂̄A parametrising the complex structure on vector bun-
dles associated to P. In local coordinates (z, z̄) on Σ, the bosonic component is Az̄ .

• 1d N = (2, 2) chiral multiplets (X , Y ) transforming as sections of S⊗(P×G T ∗M), where
S is a spin structure on Σ.

A crucial ingredient is a 1d N = (2,2) superpotential

W =

∫

Σ

X ∂̄AY , (56)

which incorporates kinetic terms for the chiral multiplets along Σ and the complex moment
map constraint from the perspective of the supersymmetric quantum mechanics.

4.2 Localisation to Vortices

To perform supersymmetric localisation, it is convenient to use 1d N = (2,2) supersymmetric
Lagrangians corresponding to the three bullet points above. Let LV, LC and LW denote exact
Lagrangians for the 1d N = 4 vectormultiplet, chiral multiplet and superpotential.

We will also need to decompose the 3d FI parameter ζ into language of N = (2,2) super-
symmetric quantum mechanics. The Lagrangian is given by

LF I =
iζ
2π

D

=
iζ
2π

D1d +
ζ

2π
∗ FA ,

(57)

where we have used the relation (55) between the vectormultiplet auxiliary fields. The first
summand in the second line is a 1d FI parameter. The second is a coupling between ζ to the
supersymmetric generator of the topological symmetry and is responsible for the grading by
the topological symmetry. We will denote these two terms by LF I ,1d and Lζ respectively. The
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1d FI parameter LFI,1d is exact with respect to the combinations Q++Q†
+ and Q−+Q†

−. On the
other hand, the coupling Lζ is not exact.

Finally, we will need to introduce a Lagrangian Lm for mass parameters, by coupling to
a background 1d N = (2, 2) vectormultiplet and turning on expectation values for the real
scalar. As with Lζ, the Lagrangian Lm is not exact.

Our starting point for supersymmetric localisation is

L =
1
t2

�

1
e2

LV + LC + LFI,1d

�

+
1
g2

LW + Lζ + Lm , (58)

where we have introduced positive constants t2, g2 in front of linear combinations of exact
Lagrangians. The notation e−2 is shorthand for a fixed inner product g × g → R appearing
in the vectormultiplet Lagrangian. Provided the supersymmetric quantum mechanics remains
gapped, we can scale the parameters t2, g2 to compute the space of supersymmetric ground
states.

Let us first set the mass parameters to vanish, m= 0. In the limit t2, g2→ 0, the action is
minimised by solutions of the following system of equations on Σ,

1
e2
∗ FA+µR = ζ , [σȦḂ,σĊ Ḋ] = 0 , dAσ

ȦḂ = 0 ,

σȦḂ · X = 0 , σAB · Y = 0 ,

∂̄AX = 0 , ∂̄AY = 0 , µC = 0 . (59)

In the absence of real mass parameters, it is convenient to use SU(2)C covariant notation σȦḂ

for the vectormultiplet scalars. The first two lines arise from saddle points of the combination
multiplying t−2 and the final line from the superpotential contribution multiplying g−2.

Under Assumption 1 in section 3 and assuming ζ is chosen generically in some chamber,
solutions will completely break the gauge symmetry and σȦḂ vanishes identically. We may
then focus on solutions of the symplectic vortex equations

1
e2
∗ FA+µR = ζ ,

∂̄AX = 0 , ∂̄AY = 0 , µC = 0 . (60)

It is now convenient to introduce a dimensionless parameter

eζ :=
e2vol(Σ)

2π
ζ ∈ t , (61)

where we view the gauge coupling here as a map e2 : g∗ → g. Integrating the first equation
in (60) overΣ leads to a number of important conclusions. First, if eζ is a co-character of G then
there will be additional Coulomb branch solutions with unbroken gauge symmetry. Second,
at finite eζ, there is a bound on the degree or vortex number. These conclusions are related to
the wall-crossing phenomena studied in [10].

In this paper, we therefore want to avoid these phenomena by passing to the infinite-tension
limit. Concretely, this is the limit

|eζ| →∞ , (62)

with ζ ∈ cC in a fixed chamber. This can be regarded as an infrared or strong coupling limit
implemented by e2vol(Σ)→∞ with fixed ζ ∈ cH . This limit is important to obtain supersym-
metric ground states that can be mapped under mirror symmetry.

To determine the effective supersymmetric quantum mechanics, one must understand the
moduli space of solutions (60) and determine the massless fluctuations of all fields around
solutions. In the following, we consider a formal approach to the moduli space as an infinite-
dimensional quotient, before introducing a concrete finite-dimensional model to perform com-
putations.

16

https://scipost.org
https://scipost.org/SciPostPhys.12.2.072


SciPost Phys. 12, 072 (2022)

4.3 An Infinite-dimensional Model

Let us now consider massless fluctuations around a solution of the symplectic vortex equa-
tions (60). For the bosonic fields, this is done by linearising the equations around a solution.
For fermions, one can expand Yukawa couplings around a solution to determine the massless
fermions.

To simplify our notation, let us define

PX := S ⊗ PM ,

PY := S ⊗ PM∗ ,
(63)

where PR := Pg ×G R is an associated vector bundle in representation R and S is a choice of
spin structure, S2 ∼= KΣ. The vector bundles PR are equipped with a hermitian metric from the
inner product e−2 in the vectormultiplet Lagrangian. This extends to a hermitian metric on
PX , PY by combining with a hermitian metric on S.

With this notation in hand, it was shown in our previous work [9] that the massless fluc-
tuations around a solution of the generalised vortex equations (60) are encoded in the coho-
mology of the following complex

t
1
2Ω0 (PX )⊕ t

1
2Ω0(PY ) tΩ0

�

KΣ ⊗ Pg∗
�

Ω0(Pg)
α0

−→ ⊕
α1

−→ ⊕
α2

−→ tΩ1
�

KΣ ⊗ Pg∗
�

,

Ω1(Pg) t
1
2Ω1 (PY )⊕ t

1
2Ω1(PX )

(64)

where each summand represents a supermultiplet for the 1d N = 2 subalgebra generated by
Q+. The summands in the complex are given explicitly as follows:

• The N = (2, 2) vectormultiplet has been decomposed into a field strength Fermi multi-
plet Ω0(Pg) generating infinitesimal gauge transformations and a chiral multiplet
Ω1(KΣ ⊗ Pg∗) parametrising fluctuations of ϕ 4.

• The N = (2,2) chiral multiplet ∂̄A has been decomposed into a chiral multiplet Ω1(Pg)
and a Fermi multiplet Ω0(KΣ ⊗ Pg∗).

• The N = (2,2) chiral multiplet X has been decomposed into a chiral multiplet Ω0(PX )
and a Fermi multiplet Ω1(PX ). Similarly for Y .

The cohomological grading is represented horizontally here with the complex concentrated in
degrees F = −1, 0,1, 2, while the secondary grading represented as in section (2.2) by powers
tR. In particular, 1d N = 2 chiral multiplets appear in even cohomological degrees F = 0, 2
and Fermi multiplets in odd degree F = −1, 1.

The differentials α0, α1, α2 in the complex are given by infinitesimal gauge transformations
and derivatives of the superpotential W . Explicitly,

λ · X ⊕λ · Y
α0 : λ −→ ⊕

∂̄Aλ

, (65)

δX ⊕δY δX · Y + X ·δY
α1 ⊕ −→ ⊕

δĀ (∂̄AδY +δĀ · Y )⊕ (∂̄AδX +δĀ · X )
, (66)

4This more accurately corresponds to fluctuations of the Hodge dual ∗ϕ†.
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Λ

α2 : ⊕ −→ X ·ηX + Y ·ηY + ∂̄AΛ

ηX ⊕ηY

. (67)

It is straightforward to check that this is indeed a complex, namely α0 ◦α1 = α1 ◦α2 = 0, on
solutions of the generalised vortex equations (60).

This is a standard deformation-obstruction complex for the symplectic vortex equations
(60). It can be regarded as representing the tangent complex TM of a derived moduli space M

parametrising solutions to the generalised vortex equations modulo gauge transformations.
The complex has an important symmetry as a consequence of the isomorphism

Ωq(E)∼= Ω1−q(KΣ ⊗ E∗) , (68)

using the Hodge star operator and hermitian metric on a vector bundle E. Namely, if one takes
the dual or cotangent complex and applies this isomorphism, one recovers the original tangent
complex but shifted in cohomological and secondary degree,

T∨M
∼= t−1TM[1] . (69)

In particular, this means that M is (−1)-shifted symplectic with respect to the cohomological
grading F . This structure is a general feature of 1d N = (2, 2) quantum mechanics and will
play an important role in constructing the space of supersymmetric ground states.

A useful way to understand this fact is to realise M as a derived critical locus. This origin
of this picture is the description of vortex moduli spaces as infinite-dimensional quotients [25]
and more specifically in the context of 3d N = 4 supersymmetric gauge theories [26,27]. The
starting point is the infinite-dimensional affine space

F = Ω0(PX )⊕Ω0(PY )⊕Ω1(Pg) , (70)

parametrised by the top components of the chiral multiplets X , Y , ∂̄A. This is equipped with
a flat Kähler metric using the standard inner product on forms and the hermitian metric on
the bundles PX , PY , Pg. This space is acted on by the infinite-dimensional group of gauge
transformations Aut(P) with moment map

1
e2
∗ FA+µR(X , Y ) . (71)

The superpotential W is invariant under gauge transformations and descends to a function
on the infinite-dimensional Kähler quotient. The moduli space M is then identified with the
derived critical locus of the superpotential W on the Kähler quotient.

This construction is of course infinite-dimensional and so perhaps unsuitable for a rigorous
definition of the space of supersymmetric ground states as it stands. We now introduce a finite-
dimensional algebro-geometric model of M.

4.4 A Finite-Dimensional Model

We first note that there is a decomposition

M=
⊔

d∈π1(G)

Md (72)

as a disjoint union of components labelled by the topological degree d ∈ π1(G) of the gauge
bundle. Under Assumption I and for generic values of ζ, this is expected to be a derived
scheme.

We now introduce a finite-dimensional algebro-geometric description of each component
Md using a Hitchin-Kobayashi type correspondence. Namely, Md has an algebraic description
parametrising
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1. a holomorphic GC-bundle E of degree d,

2. a holomorphic section (X , Y ) of K1/2
Σ ⊗ (E ×G T ∗M) subject to µC(X , Y ) = 0,

subject to a stability condition depending in a piecewise constant way on eζ. As mentioned
above, we consider the infinite-tension limit |eζ| →∞, with fixed ζ ∈ cC . Then Md is the de-
rived moduli space parametrising eζ-stable twisted5 quasi-maps Σ→ X of degree d. The study
of quasi-maps to GIT quotients has been pioneered in and their application to enumerative
geometry explored in. The particular instance of twisted quasi-maps to algebraic symplectic
quotients described above was introduced in [28].

From an algebraic perspective, massless fluctuations around a solution (E, X , Y ) are given
by the cohomology of the complex

t
1
2 H0 (EX )⊕ t

1
2 H0(EY ) tH0

�

KΣ ⊗ Eg∗

�

H0(Eg) −→ ⊕ −→ ⊕ −→ tH1
�

KΣ ⊗ Eg∗

�

H1(Eg) t
1
2 H1 (EX )⊕ t

1
2 H1(EY )

. (73)

The interpretation of the various summands in terms of chiral and Fermi multiplets is
identical to that in equation (64). The difference is we now parametrise holomorphic sections
from the outset, so the summands are finite-dimensional vector spaces and the differentials no
longer involve covariant derivative ∂̄A. This construction can be globalised using a universal
construction as in [28] to give the tangent complex of Md .

A downside of this construction is that Md can no longer be realised as a derived critical
locus on global quotient in a finite-dimensional setting. Nevertheless, as a consequence of
Serre duality

H0(E)∼= H1(KΣ ⊗ E∗)∗ (74)

it remains true that
T∨M
∼= t−1TM[1] (75)

and the derived moduli space is (−1)-shifted symplectic. This implies that the bosonic or clas-
sical truncation Md (obtaining by discarding the Fermi multiplet fluctuations) has a symmetric
obstruction theory. This is the symmetric obstruction theory introduced in [28].

This leads to a natural proposal for the space of supersymmetric ground states, following
a common theme in the realm of categorification of enumerative invariants. The (−1)-shifted
symplectic structure ensures the existence of a canonical perverse sheaf Pd on the classical
truncation Md . The proposal is then that the space of supersymmetric ground states coincides
with the hyper-cohomology

H =
∑

d∈π1(G)

ξd H•(Md , Pd) . (76)

The topological symmetry grading is manifest in this formula. The cohomological and sec-
ondary gradings arise from the Hodge structure on this hyper-cohomology.

To gain some familiarity, let us explain how it reproduces the expected result from super-
symmetric quantum mechanics when the moduli space is smooth. Suppose that

Md = T ∗[−1]Md , (77)

where Md is a smooth projective variety. This corresponds to an N = (2,2) supersymmetric
quantum mechanics which is a smooth sigma model with target Md . In this case, the perverse
sheaf in question is the constant sheaf with shifted cohomological degree,

Pd = CMd
[dim Md] . (78)

5The adjective twisted refers to the K1/2
Σ appearing in the definition of the holomorphic sections.
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Using the standard resolution of the constant sheaf by the de Rham complex

0→ CX → Ω
0
X → Ω

1
X → ·· · , (79)

we find
H =

∑

d∈π1(G)

ξd H•(Md ,CMd
[dim Md])

=
⊕

d∈π1(G)

ξd H•(Md ,Ω•Md
)[dimMd]

=
⊕

d∈π1(G)

ξd H•dR(Md ,C)[dimMd] .

(80)

The cohomological grading is now manifest, while the secondary grading comes from the
Hodge decomposition of de Rham cohomology. To be specific, a (p, q)-form cohomology class
has cohomological and secondary degree

F = p+ q− dim Md , R= p−
1
2

dim Md . (81)

This coincides precisely with the space of supersymmetric ground states of a smooth N = (2, 2)
sigma model [29] and so our proposal passes a consistency check. The general proposal (76)
is a natural extension of this result to singular targets.

Finally, it is necessary to define a new R-symmetry eRC = RC − λ · JC as in section 2.2 so
that monopole operators are compatible with the fermion number (−1)F , the cohomological
and secondary gradings are shifted by an amount proportional to d,

H =
∑

d∈π1(G)

(t−
λ
2 ξ)d H•(Md , Pd)[λ · d ] . (82)

4.5 Mass Parameters

Let us now consider introducing real mass parameters m. If the moduli space Md is already
compact and the supersymmetric quantum mechanics is gapped, introducing mass param-
eters does not change the supersymmetric ground states. More accurately, as explained in
section 2.5, there is a flat Berry connection over the space of mass parameters. However, it
is frequently the case that the moduli space Md is not compact. In this case, it is essential to
introduce mass parameters and the definition of supersymmetric ground states (76) must be
modified accordingly.

Introducing mass parameters m modifies the vortex equations such that

(σ+m) · X = 0 , (σ+m) · Y = 0 , (83)

where σ, m are understood to act in the appropriate representations of T , TH . This restricts
solutions of the symplectic vortex equations invariant under the U(1)m ⊂ TH generated by m.
From the perspective of supersymmetric quantum mechanics, if Md is smooth, this introduces a
perfect Morse-Bott function given by the moment map for U(1)m. The supersymmetric ground
states are then given by a Morse-Witten complex, which reduces to de Rham cohomology of
the fixed locus.

We would now like to propose how this statement is generalised when Md is singular. For
this purpose, we follow an algebraic perspective. The mass parameters will now generate a
C∗m action on Md with fixed locus

Fd =
⊔

I
Fd,I , (84)
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with disjoint components Fd,I and corresponding attracting and repelling sets M±d,I . This de-
composition depends only on the chamber cH .

We now propose that the algebraic counterpart of introducing mass parameters in super-
symmetric quantum mechanics is hyperbolic localisation [30]. In particular, there is a hyper-
bolic restriction functor Φd : Dc(Md) → Dc(Fd) for C∗m-equivariant constructible sheaves on
Md . The space of supersymmetric ground states can then be computed by hyperbolic localisa-
tion,

H =
∑

d∈π1(G)

ξd H•(Md , Pd)

=
∑

d∈π1(G)

ξd H•(Fd ,Φ(Pd)) .
(85)

As mentioned above, if Md is not compact, the first line should be discarded and the second
line considered a definition of the supersymmetric ground states. In this case, the space of
supersymmetric ground states H will depend on the chamber cH .

Let us check consistency with standard results in supersymmetric quantum mechanics and
Morse theory. We consider again the simplest situation where Md = T ∗[−1]Md with Md a
smooth projective variety and Pd = CMd

[dim Md]. In this instance, the hyperbolic restriction
functor acts as follows,

Φ(CMd
) =

⊕

I
CFd,I

[−νd,I] , (86)

where
νd,I = dim M+d,I − dim Fd,I . (87)

Then
H•(Md , Pd) =

⊕

I
H•(Fd,I ,CFd,I

[dim Md − νd,I ])

=
⊕

I
H•dR(Fd,I ,C)[dim Md − νd,I ] .

(88)

Let us compare this result with an N = (2, 2) supersymmetric quantum mechanics to Md
with the perfect Morse-Bott function given by the moment map for U(1)m. In this case, there
are no instanton corrections and supersymmetric ground states coincide with the de Rham
cohomology of the fixed locus with the degrees shifted by the Morse index νd,I . In particular,
for a (p, q)-form de Rham cohomology class on Fd,i , the corresponding supersymmetric ground
state has

F = p+ q+ νd,I − dim Md , R= p+
νd,I

2
−

1
2

dim Md . (89)

The Morse indices νd,i for the moment map of a U(1)m action on a compact Kähler mani-
fold Md coincide with the formula (87) and therefore we find a perfect match. The general
proposal (85) is a natural generalisation to the case when Md is singular.

This construction will be exceptionally useful to allow explicit computation of supersym-
metric ground states. One reason is that the fixed loci Fd,I may be smooth, even when Md is
not, allowing the computation to be reduced to the de Rham cohomology of Fd,I . Moreover,
for theories satisfying the assumptions of section 3, the fixed components take the form of
quasimaps to a point I , which can be rewritten as

Fd,I =
⊔

d∈Λ
|d|=d

SymρI ,1(d)+(g−1)Σ× · · · × SymρI ,k(d)+(g−1)Σ . (90)

Here Λ is the co-character lattice of G, | · | is the projection of this lattice onto π1(G), whereas
{ρI ,1, . . . ,ρI ,k} are the weights in t∗ (of the G action on T ∗M) selected at fixed point I . The de
Rahm cohomology of this fixed locus is completely understood. This will enable a complete
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determination of the space of supersymmetric ground states, which we build up in steps in
section 5.

4.6 Recovering the Twisted Index

Let us now revisit the A-twisted index and provide a geometric interpretation of this observable
using the above proposal.

First consider the limit of the twisted index defined in equation (39), which scales the
parameters x associated to the TH flavour symmetry in a way that depends on the chamber
cH . Recall that in this limit, the index only receives contributions from the supersymmetric
ground states H in the chamber cH . We find that

lim
cH

I =
∑

d∈π1(G)

ξd
bχt(Md , Pd) , (91)

where
bχt(Md , Pd) :=

∑

p,q

(−1)p+q t php,q(H•(Md , Pd)) (92)

and hp,q denotes the dimensions of the graded components of the Hodge structure. When Md
is a smooth projective variety and Pd = CM [dim Md],

bχt(Md , Pd) =
dim Md
∑

p,q=1

(−1)p+q t p
�

(−1)dim Md t−
dim Md

2 hp,q(Md)
�

= (−1)dim Md t−
dim Md

2

dim Md
∑

p,q=1

(−1)p+q t php,q(Md)

= (−1)dim Md t−
dim Md

2 χ−t(Md)

=: bχt(Md) ,

(93)

which is a symmetrised version of the standard Hirzebruch genus of Md . The index in (92) is
then a natural generalisation to singular Md .

Finally, in the limit t → 1 the result is automatically independent of the parameters x
associated to the flavour symmetry TH without taking a further limit, and the result reproduces
the generalised Euler number

lim
t→1

I =
∑

d∈π1(G)

ξd
be(Md , Pd) , (94)

where

be(Md , Pd) =
dim Md
∑

p,q=1

(−1)p+qhp,q(H•(Md , Pd)) . (95)

When Md is a smooth projective variety and Pd = CM [dim Md],

be(Md , Pd) = (−1)dim Md

dim Md
∑

p,q

(−1)p+qhp,q(Md)

= (−1)dim Md e(Md)

=: be(Md) ,

(96)

which is a shifted version of the standard Euler number.
These limits of the index further decompose as sum of generalised Hirzebruch genera of

Euler numbers of the fixed loci Fd,I . In view of (90), this will turn out to be exceptionally
powerful when the assumptions spelled out in 3.1 are imposed. We illustrate this in examples
in section 5.
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5 A-twist examples

In this section, we compute the space of supersymmetric ground states in the A-twist in a series
of examples, building up to a general result for theories satisfying the assumptions of section 3.

5.1 Hypermultiplet

Although outside of the class of theories defined in section 3.1, it is convenient to investigate
the free hypermultiplet. This will introduce the charge assignments and geometric interpre-
tation of supercharges that will become crucial later on. The free hypermultiplet has flavour
symmetry TH

∼= U(1) and a real mass parameter m ∈ R with two chambers: c±H = {±m> 0}.
To compute supersymmetric ground states, it is convenient to introduce an extra ingredi-

ent: a background holomorphic line bundle L of degree d on Σ associated to the symmetry.
This is compatible with the four supercharges preserved in the A-twist. Let us fix a choice of
spin structure S = K1/2

Σ and define the numbers

nX := h0(Σ, K1/2
Σ ⊗ L) , nY := h0(Σ, K1/2

Σ ⊗ L−1) , (97)

where nX − nY = d by Serre duality.
The effective N = (2,2) supersymmetric quantum mechanics consists of nX+nY free chiral

multiplets. Keeping track of the secondary grading and global symmetry, this can be regarded
as a sigma model with target

M = x t−
1
2CnX ⊕ x−1 t−

1
2CnY . (98)

From the perspective of the subalgebra generated by Q+, each chiral multiplet decompose into
an N = (0, 2) chiral multiplet and an N = (0, 2) Fermi multiplet, which we can regard as an
N = (0, 2) quantum mechanics with target M= T ∗[−1]M .

Supersymmetric ground states are L2-harmonic (p, q)-forms on M . Due to the non-
compactness, the quantum mechanics is not gapped as it stands. This is cured by introducing
a real mass parameter, which deforms the supercharges to

Q+ = e−h ∂̄ eh , Q− = e−h∂ eh, (99)

where h is the moment map for the U(1)m action on M . Let us introduce coordinates xa, ya′

on M with a = 1, . . . , nX and a′ = 1, . . . , nY . Then

h= m

� nX
∑

a=1

|xa|2 −
nY
∑

a′=1

|ya′ |2
�

. (100)

There is now a single supersymmetric ground state in each chamber, with Gaussian wavefunc-
tion of the form

e−m
�

∑nX
a=1 |xa|2+

∑nY
a′=1
|ya′ |2

�
nY
∏

a′=1

d ya′ ∧ d ȳa′ , m> 0 ,

e+m
�

∑nX
a=1 |xa|2+

∑nY
a′=1
|ya′ |2

�
nX
∏

a=1

d xa ∧ d x̄a , m< 0 .

(101)

These are harmonic representatives of L2-cohomology classes on M with respect to the de-
formed de Rham supercharge Q = e−h d eh.

The cohomological grading is given by

F = ν−
1
2

dimRM , (102)
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where

ν= p+ q =

¨

2nY m> 0

2nX m< 0
, (103)

is the real Morse index of h at the origin. The supersymmetric ground state therefore has
fermion number F = ∓d when ±m> 0. The secondary grading is given by

R= p−
1
2

dimCM (104)

and therefore the supersymmetric ground state has R = ∓d/2 when ±m > 0. Finally, as
expected on general grounds, the supersymmetric ground state is uncharged under the global
symmetry. In summary, using the notation introduced in (17)

H =
¨

t−
d
2C[+d] m> 0

t+
d
2C[−d] m< 0

. (105)

Note that this result depends on the holomorphic line bundle L only through its degree d, and
does not depend on the choice of spin structure K1/2

Σ .
Finally, let us check compatibility with the twisted index. The general A-twisted index

counting states in the cohomology of Q+ is in our conventions

I = TrH1/2(−1)F tR x JH =

�

x − t−
1
2

1− x t−
1
2

�d

. (106)

The contribution of supersymmetric ground states to the twisted can be extracted by sending
|m| → ∞ in the appropriate chamber. This corresponds to taking the limit x±1 → 0 in the
chamber c±H = {±m> 0}. The result is

lim
x±1→0

I = (−1)d t∓
d
2 (107)

in complete agreement with our computation of the supersymmetric ground states. Alterna-
tively, the limit guaranteed to count supersymmetric ground states is

lim
t→1

I = (−1)d , (108)

providing a slightly weaker check.

5.2 SQED, 1 hypermultiplet

Now consider G = U(1) with one hypermultiplet of charge +1. There is now a topological
flavour symmetry TC

∼= U(1) with real FI parameter ζ and two chambers cC = {±ζ > 0}.
Provided the normalised FI parameter is such that eζ /∈ Z, the system localises onto solutions

of the symplectic vortex equations (60), which become

1
e2
∗ FA+ |X |2 − |Y |2 = ζ , (109)

X Y = 0 , ∂̄AX = 0 , ∂̄AY = 0 , (110)

where
X ∈ Γ (Σ, K1/2

Σ ⊗ P), Y ∈ Γ (Σ, K1/2
Σ ⊗ P−1) (111)

and P denotes the principle U(1) bundle on Σ. We are interested in the moduli space of solu-
tions to these equations in the infinite-tension limit e2vol(Σ)→∞ (or equivalently |eζ| →∞)
with fixed FI parameter ζ in a given chamber.
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The moduli space is a disjoint union of components labelled by the topological degree d ∈ Z
of P. Each component Md is the moduli space of solutions to the abelian vortex equations,

ζ > 0 :
1
e2
∗ FA+ |X |2 = ζ , ∂̄AX = 0 , Y = 0 ,

ζ < 0 :
1
e2
∗ FA− |Y |2 = ζ , ∂̄AY = 0 , X = 0 ,

(112)

which is a smooth compact Kähler manifold. This has a standard algebraic description as a
symmetric product

Md = SymnΣ , (113)

with

n=

¨

+d + g − 1 ζ > 0

−d + g − 1 ζ < 0
. (114)

The symmetric product parametrises a holomorphic line bundle L of degree d, together with a
non-vanishing holomorphic section of K1/2

Σ ⊗ L when ζ > 0 or K1/2
Σ ⊗ L−1 if ζ < 0. If n< 0 then

that component of the moduli space is empty. In this example Md is smooth and the derived
moduli space is simply Md = T ∗[−1]Md .

The effective supersymmetric quantum mechanics is a smooth N = (2, 2) sigma model
with target Md . Since the target is compact Kähler, supersymmetric ground states are har-
monic (p, q)-forms on Md , or equivalently de Rham cohomology supplemented with the Hodge
decomposition.

Ordinarily, supersymmetric ground states coming from (p, q)-forms on a space of complex
dimension d would have cohomological and secondary grading

F = p+ q− n , R+ = p−
n
2

(115)

under the identifications F = RC and R+ =
1
2(RC − RH). However, in this instance this assign-

ment is incompatible with (−1)F as the fermion number because bosonic monopole operators
u± in the three-dimensional theory would have F = 1.

The solution is to define a new R-symmetry

eRC = RC − JC (116)

and instead identify F = eRC and R+ =
1
2(eRC − RH). This ensures that the monopole operators

u+, u− have even fermion number F = 0, 2, while leaving the assignments of the elementary
fields unchanged. This modifies the grading of supersymmetric ground states such that a
(p, q)-form cohomology class has weight

F = p+ q− en , R+ = p−
en
2

, (117)

where en := n± d in the chambers ±ζ > 0, since supersymmetric ground states arising from
cohomology classes on Md carry topological charge ∓d.

The space of supersymmetric ground states therefore consist of all (p, q)-form cohomology
classes of symmetric products SymnΣ for n ≥ 0, with the cohomological and secondary grad-
ings determined as in the previous paragraph. The cohomology of symmetric products is well
understood from [31] and summarised in appendix A. From equation (196), we find

H =
¨

(ξt−
1
2 )1−g (Sym•V ) [1− g] ζ > 0

(ξt−
1
2 )g−1

�

Sym•V∨
�

[g − 1] ζ < 0

=

¨

ÔSym•V ζ > 0
ÔSym•V∨ ζ < 0

,

(118)
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where
V = ξ

�

C⊕ t−1Cg[1]⊕Cg[1]⊕ t−1C[2]
�

(119)

and
ÔSym•V := (det V )

1
2 · Sym•V . (120)

Note that the space of supersymmetric ground states is manifestly a Fock space. The generators
can be thought of as the descendants of monopole operators u+ (when ζ > 0) and u− (when
ζ < 0) integrated over homology classes on Σ.

Computing the trace over supersymmetric ground states in either chamber, we find

TrH(−1)F tRξJC =











∑

d≥0

(−t−
1
2ξ)d−g+1

bχt(SymdΣ) ζ > 0
∑

d>0

(−t
1
2ξ−1)d−g+1

bχt(SymdΣ) ζ < 0

= (−t−
1
2ξ)1−g(1− ξ)g−1(1− t−1ξ)g−1 ,

(121)

where
bχt(M) := (−t−

1
2 )dim Mχ−t(M) (122)

is the normalised Hirzebruch genus. Despite the existence of supersymmetric ground states
with arbitrarily large topological charge, the trace is a finite Laurent polynomial due to

bχt(SymdΣ) = 0 if d > 2g − 2 . (123)

This is a consequence of the fact that the symmetric product SymdΣ is a smooth fibre bundle
over the torus Picd(Σ)∼= T2g when d > 2g − 2.

Since symmetric products are smooth compact Kähler, the Hodge to de Rham spectral
sequence collapses and H1/2 ∼= H. The above expression should therefore coincide with the
full twisted index I. Indeed, taking into account the shifted R-symmetry eRC , the contour
integral for the twisted index is

I = −(t
1
2 − t−

1
2 )g−1

∑

d∈Z
(−t−

1
2ξ)d

∫

Γ

dz
2πiz

�

z − t−
1
2

1− zt−
1
2

�d �
(1− t−1)z

(1− zt−
1
2 )(z − t−

1
2 )

�g

, (124)

where Γ evaluates the residue at zt−
1
2 = 1 when ζ > 0 and minus the residue at zt

1
2 = 1 when

ζ < 0. The sum of residues at z = 0 and z =∞ vanishes and this reproduces the above result
as an expansion in either chamber.

5.3 SQED, N hypermultiplets

We now extend this computation to G = U(1) and N hypermultiplets of charge +1. The
topological symmetry is TC

∼= U(1) and we introduce a real FI parameter ζ with two chambers
cC = {ζ > 0} and {ζ < 0}. There is now a flavour symmetry TH = U(1)N/U(1) transforming
the hypermultiplets and real mass parameters (m1, . . . , mN ) satisfying

∑

j m j = 0, with N !
possible chambers labelled by the ordering of distinct parameters. Our default chambers are
cC = {ζ > 0} and cH = {m1 > m2 > · · ·> mN}.

Provided the normalised FI parameter is such that eζ /∈ Z, and setting the mass parameters
to zero, the system localises onto solutions of the symplectic vortex equations (60), which
become

1
e2
∗ FA+

∑

j

|X j|2 − |Yj|2 = ζ, (125)

∑

j

X j Yj = 0, ∂̄AX j = 0 , ∂̄AYj = 0 . (126)
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The moduli space M is a disjoint union of components Md labelled by the topological degree
d ∈ Z. Each component has an algebraic description parametrising:

• a holomorphic line bundle L of degree d,

• holomorphic sections X j ∈ H0(K1/2
Σ ⊗L) and Yj ∈ H0(K1/2

Σ ⊗L−1) subject to the constraint
∑

j X jYj = 0 and a stability condition depending on ζ.

This is the moduli space of eζ-stable twisted quasi-maps Σ→ T ∗CPN−1 of degree d.
In general, the moduli space has a complicated dependence on the parameters g, ζ and

d. As usual, we consider the infinite-tension limit |eζ| → ∞ with ζ fixed. To streamline the
presentation, we will present intermediate steps in the chamber cC = {ζ > 0}. There are then
three distinct regions for the degree d, which we analyse in turn. We summarise a uniform
result for the supersymmetric ground states at the end.

Region I: d < g − 1

When d < g −1, a vanishing theorem ensures X j = 0 for all j = 1, . . . , N . This is incompatible
with equation (125) when ζ > 0 and thereforeMd = ;. There are therefore no supersymmetric
ground states with d < g − 1 in the chamber ζ > 0.

Region II: d > g − 1

In the opposite region, d > g − 1, a vanishing theorem ensures Yj = 0 for all j = 1, . . . , N .
This is leads to a dramatic simplification such that Md = T ∗[−1]Md where Md parametrises
solutions to the abelian vortex equations

1
e2
∗ FA+

N
∑

j=1

|X j|2 = ζ , ∂̄AX i = 0 . (127)

This is a smooth compact Kähler manifold of complex dimension

n= Nd + g − 1 , (128)

which is a fiber bundle over Picd(Σ) ∼= T2g with fiber CPNd−1. From an algebraic perspec-
tive, it is a projective variety parametrising twisted quasi-maps Σ → CPN−1 of degree d, or
equivalently a holomorphic line bundle L of degree d, together with N holomorphic sections
of K1/2

Σ ⊗ L that do not simultaneously vanish.
The effective quantum mechanics is therefore a smooth N = (2,2) sigma model and su-

persymmetric ground states coincide with de Rham cohomology of Md . It is again necessary
to define a new R-symmetry eRC = RC − NJC such that the monopole operators u+, u− have
even fermion number F = 0, 2N . A supersymmetric ground state coming from a (p, q)-form
cohomology class on Md then has weights

F = p+ q− en , R+ = p−
en
2

, (129)

where en := n+ Nd.
To compute the ground states explicitly we turn on real masses m = (m1, . . . , mN ). This

introduces a real superpotential given by the moment map for the U(1)m ⊂ TH action on Md
generated by the mass parameters. Provided the masses are generic, meaning mi 6= m j for
i 6= j, critical points on X = CPN−1 correspond to choices I = {i} of fields X i that have a non-
zero VEV, all the others being set to zero. The I -th component of the critical locus parametrises
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solutions of the abelian vortex equations where X j = 0 for j 6= i. This corresponds to quasi-
maps Σ→ pI ⊂ CPN−1. Thus

(Md)
TH =

N
⊔

I=1

SymnIΣ , (130)

where
nI = d + g − 1 . (131)

Following the standard procedure in supersymmetric quantum mechanics, we construct
perturbative ground states from cohomology classes on the critical locus. The gradings of
these states depend on the Morse index of the components of the critical locus. Let us fix the
chamber cH = {m1 > m2 > · · ·> mN}. Then the real Morse index of the I -th fixed component
(corresponding to the field X i) is

νI = 2(N − i)d (132)

and a perturbative ground state arising from a (p, q)-form on the I -th component is

F = p+ q− enI , R+ = p−
enI

2
, (133)

where
enI = nI − νI . (134)

Since the Morse function h is the moment map for a hamiltonian U(1) isometry of a smooth
Kähler manifold, the Morse indices are even and there are no instanton corrections. So these
are honest supersymmetric ground states.

Region III: |d|< g − 1

In this region, Md is singular and Md is not a shifted cotangent bundle. The supersymmetric
ground states should then be computed from the hyper-cohomology

H•(Md , Pd) , (135)

where Pd is the perverse sheaf induced by the shifted symplectic structure on Md .
However, turning on generic mass parameters (m1, . . . , mN ) restricts to configurations

where either X j = 0 or Yj = 0 individually for each j = 1, . . . , N . This fixed locus is there-
fore a disjoint union of smooth components parametrising abelian vortices,

Fd =
N
⊔

I=1

Fd,I , Fd,I = SymnIΣ . (136)

Our general proposal for the supersymmetric ground states is then the hyper-coholomogy of
Φd(Pd), where Φd : Dc(Md)→ Dc(Fd) is the hyperbolic restriction functor. The fixed locus Fd
is smooth and lies away from singularities in Md , such that the normal bundle is identical to
region II. We then expect that

Φ(CMd
) =

⊕

I
CFd,I

[−νd,I] , (137)

where νd,I coincide with the Morse indices (132). We therefore propose that the result for
supersymmetric ground states from region II is extrapolated without change to d ≥ 1− g.
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Summary

We can now re-cycle our result from the computations of supersymmetric ground states from
the de Rham cohomology of symmetric products in the case N = 1, with degree shifts. The
result for the space of supersymmetric ground states in the chambers cC = {ζ > 0} and
cH = {m1 > m2 > · · ·> mN} is given by

H =
N
⊕

I=1

(ξt
1
2−i)1−g(Sym• VI)[(1− g)(2i − 1)]

=
N
⊕

I=1

ÔSym• VI ,

(138)

where
VI = ξt−i (C⊕Cg[−1]⊕ tCg[−1]⊕ tC[−2]) [2i] . (139)

The results in other chambers can be obtained by conjugating VI and permuting their assign-
ment to fixed points.

The character of the space of supersymmetric ground states is

TrH(−1)F tR+ξJC =
N
∑

j=1

(−t j− 1
2ξ)1−g(1− t1− jξ)g−1(1− t− jξ)g−1 . (140)

In the limit t → 1, the contribution from each fixed point becomes identical and

TrH(−1)FξJC = N(−ξ)1−g(1− ξ)2g−2 . (141)

Let us check compatibility of these results with the A-twisted index, which has the contour
integral representation

I = −(t−
1
2 − t

1
2 )g−1

∑

d∈Z
((−1)N t−

N
2 ξ)d

∫

Γ

dz
2πiz

N
∏

j=1

 

zx j − t−
1
2

1− zx j t−
1
2

!d

H g , (142)

where H is the Hessian. Here x i = e−β(mi+iaC ) and Γ evaluates the residues at zt−1/2 x j = 1 in
the chamber ζ > 0 and minus the residues at zx j t

1/2 = 1 in the chamber ζ < 0. In the limit
t → 1 that is guaranteed to receive contributions from supersymmetric ground states only, it
is straightforward to check that

lim
t→1

I = N(−ξ)1−g(1− ξ)2g−2 (143)

in perfect agreement with our construction of supersymmetric ground states. We can make
a more detailed comparison by keeping t but scaling the masses to manually project onto
supersymmetric ground states. We do this by sending the mass parameters to infinity in the
chamber cH = {m1 > m2 > · · ·> mN}. The result is

lim
|m|→∞

I =
N
∑

j=1

(−t j− 1
2ξ)1−g(1− t1− jξ)g−1(1− t− jξ)g−1 , (144)

in agreement with the supersymmetric ground states.
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5.4 General class

We can now readily generalise the discussion and compute the space of supersymmetric ground
states of theories satisfying Assumptions I and II of section 3.1. We fix an FI parameter ζ ∈ cC
and associated Higgs branch X .

First, recall that fixed points I on X are labelled by collections of weights {ρ1, . . .ρk} ∈ t∗

specifying the non-vanishing hypermultiplet fields. They satisfy conditions summarised in
section 3.2. The components of the fixed locus of the moduli space Md are labelled in the
same way and take the form of symmetric products

Fd,I =
⊔

d∈Λ
|d|=d

k
∏

a=1

SymρI ,a(d)+(g−1)Σ . (145)

Here d is a GNO flux valued in the co-character lattice Λ of G, and | · | denotes the projection
of this lattice onto π1(G). The symmetric products parametrize the zeros of the sections cor-
responding to these weights. The fixed components Fd,I correspond to twisted quasi-maps of
degree d to a fixed point pI on X .

Under our assumptions, we can reduce the problem to multiple copies of supersymmetric
QED with one hypermultiplet. The idea is to disentangle the powers of the symmetric products
in (145) by setting

(ρI ,1(d) + (g − 1), · · · ,ρI ,k(d) + (g − 1)) := (n1, · · · , nk) (146)

and then make use of (118).
In practice, the procedure works as follows. Let ρI be the k × k matrix whose rows are

the weights {ρI ,1, . . .ρI ,k} associated to the fixed point I . Since the weights {ρI ,1, . . .ρI ,k} are
linearly independent, we define the inverse matrix

ωI := ρ−1
I . (147)

We now define ωI ,a to be the a-th row of the inverse matrix, which is an element of the
co-character lattice Λ, and form the monomial

ξI ,a := ξ|ωI ,a| . (148)

Let Λ± ⊂ Λ correspond to those elements of the co-character lattice whose pairing with the FI
parameter ζ is positive and negative respectively. We can collect

C+I :=
⊕

ωI ,a∈Λ+
ξI ,aC⊕

⊕

ωI ,a∈Λ−
ξ−I ,a t−1C[2] ,

C−I :=
⊕

ωI ,a∈Λ−
ξI ,aC⊕

⊕

ωI ,a∈Λ+
ξ−I ,a tC[−2]

(149)

and set
VI := t−d̃I/2

�

C+I ⊕
�

C−I
�∨ ⊕

�

C+I [1]⊕
�

C−I [1]
�∨�⊗Cg

�

[d̃I] . (150)

Here d̃I are shifts that depend on the Morse index of the fixed locus. It is easily checked that
the above expression encodes the expansion of the cohomologies of k products of symmetric
products. We have arranged terms in a slightly counter-intuitive way so that comparison with
the B-twist will be immediate. Then in view of (118) we have

H =
⊕

I

ÔSym•VI . (151)
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Based on this expression it is straighforward to compute the index. For simplicity, we do
this in the t → 1 limit. Using the formula (198)

∑

d∈N
xd

� d
∑

k=0

(−1)kHk
dR

�

Symd(Σ)
�

�

= (1− x)2(g−1) , (152)

and we find

lim
t→1

I =
∑

I

k
∏

a=1

(−1)(1−g)edI

�

ξI ,a/2

1− ξI ,a

�2−2g

. (153)

The resummation is possible because the selected weights satisfy the JK condition (51).

6 Localisation in the B-Twist

6.1 Decomposing Supermultiplets

In the B-twist, 3d N = 4 supermultiplets decompose into 1d N = (0, 4) supermultiplets. A
supersymmetric gauge theory can be regarded as an infinite-dimensional gauged supersym-
metric quantum mechanics as follows. As before, let P denote a principle G-bundle on Σ with
connection A. We have the following supermultiplets:

• A 1d N = (0, 4) vectormultiplet for the infinite-dimensional gauge group of automor-
phisms of P. The bosonic components are A3, σ, and auxiliary fields DAB

1d .

• A 1d N = (0,4) twisted hypermultiplet (∂̄A,ϕ) with ϕ transforming as a section of
Ω1(Pg).

• A 1d N = (0,4) hypermultiplet (X , Y ) transforming as sections of (P ×G T ∗M).

• A 1d N = (0,4) Fermi multiplet transforming as sections of (P ×G T ∗M).

The supermultiplets are accompanied by superpotential couplings from an N = (0, 2) per-
spective that are necessary to ensure enhancement to N = (0,4) supersymmetry. The relevant
superpotentials are very similar to those that arise in the decomposition of 2d N = (4, 4)
supermultiplets into 2d N = (0,4) supersymmetry [32].

6.2 Localising to the Higgs Branch

For localisation, it is again convenient to use 1d N = (0,4) Lagrangians for the supermultiplets
introduced above. We introduce exact Lagrangians e−2 LV, e−2 LtH, LH, LF for the vectormulti-
plet, twisted hypermultiplet, hypermultiplet and Fermi multiplet respectively.

We will again need to decompose the 3d FI parameter Lagrangian

LFI =
iζ
2π

D12

=
iζ
2π

D1d,12 +
ζ

2π

�

∗ FA+ 2[ϕ,ϕ†]
�

.
(154)

The remaining Lagrangians Lm and Lζ are the contributions from mass and 3d FI parameters
and are not exact.

Our starting point for supersymmetric localisation will be the Lagrangian

L =
1
t2

�

1
e2
(LV + LtH) + LH + L1dFI

�

+ Lζ + Lm , (155)
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where we have introduced a positive constant t2 in front of a particular combination of exact
Lagrangians. Let us first set the mass parameters to vanish, m = 0. In the limit t2 → 0, the
supersymmetric quantum mechanics localises onto solutions of

µAB = ζAB , [σ,ϕ] = 0 , dAσ = 0 ,
1
e2
∗ FA+ 2[ϕ,ϕ†] = 0, ∂̄Aϕ = 0 ,

σ · X A = 0 , ϕ · X A = 0, σ · X †A = 0 , ϕ · X †A = 0 ,

∂̄AX A = 0 , ∂̄AX †A = 0 . (156)

We have used SU(2)H covariant notation such that the hypermultiplet components are
X A = (X , Y †) and X †A = (Y,−X †). This symmetry is broken to a maximal torus U(1)H by
a non-vanishing FI parameter ζ := ζ12 but it is nevertheless convenient to manifest this struc-
ture in the equations.

The moduli space of solutions to this system of equations has an intricate structure de-
pending on the data (G, R). This can involve hypermultiplet branches parametrised by (X , Y ),
twisted hypermultiplet branches parametrised by (∂̄A,ϕ) and various mixed branches. There
can also be branches with continuous unbroken gauge symmetry parameterised by the vector-
multiplet scalar σ.

In spite of this complexity, there are two important features that can be noticed. First, the
1d N = (0,4) twisted hypermultiplet (∂̄A,ϕ) obeys Hitchin’s equations. In particular, the real
equation implies that the degree vanishes, d = 0. Second, the 1d N = (0,4) hypermultiplet
is now covariantly constant, dAX = dAY = 0, and obey the same moment map constraints
defining the Higgs branch X .

It is convenient to pass to an algebraic description where ∂̄A parametrises the complex struc-
ture on a complex vector bundle E with structure group GC and the hypermultiplets transform
as covariantly constant sections of the associated vector bundle in the representation T ∗M . The
stability condition on (X , Y ) from the real moment map equation will require a certain num-
ber of linearly independent, covariantly constant, holomorphic sections of E. This requirement
translates into the existence of a holomorphically trivial subbundle spanned by those sections.

Under Assumption I of section 3 and with a generic FI parameter ζ ∈ cH , the whole bundle
E is trivialised and with it the underlying principal bundle P. Then we can choose dA = d,
Hitchin’s equation becomes trivial, the hypermultiplet fields are constant and the entire system
reduces to the equations defining the Higgs branch X ,

µAB = ζAB . (157)

In summary, the FI parameter forces the supersymmetric quantum mechanics onto a pure
hypermultiplet branch. We focus here on this case only, leaving the a more general description
to future work.

Let us now consider massless fluctuations around a point p ∈ X on the Higgs branch. There
are of course 1d N = (0,4) hypermultiplet fluctuations transforming in TpX . In addition,
there are 1d N = (0,4) Fermi multiplet fluctuations, which are found by expanding Yukawa
couplings around p to obtain fermion mass terms. This shows that the remaining massless
Fermi fluctuations obey the same linearised equations as the hypermultiplets. However, since
the Fermi multiplets transform as 1-forms on Σ, they generate g copies of the tangent space
TpX .

It is convenient to introduce a derived moduli space M whose tangent complex at a point
reproduces the massless fluctuations of both 1d N = (0,4) hypermultiplets and Fermi multi-
plets. Let us write E := Cg ⊗ TX . Then

M= Spec Sym•(E∨[1]) (158)
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such that the tangent complex
TM = TX ⊕ E[−1] (159)

reproduces the correct fluctuations of hypermultiplets and Fermi multiplets, including the cor-
rect shift of cohomological degree for the Fermi multiplets. In more standard terminology,
the effective supersymmetric quantum mechanics is a smooth N = (0, 4) sigma model with
hyper-Kähler target X and hyper-holomorphic vector bundle E .

6.3 Supersymmetric Ground States

Let us now consider the supersymmetric ground states. Since we are restricted to the flux-zero
sector, supersymmetric ground states are uncharged under the topological symmetry TC and
γC = 0. We then consider the supersymmetric ground states of the N = (0,4) supersymmetric
quantum mechanics with target X and vector bundle E .

The states of the supersymmetric quantum mechanics consist of L2-normalisable sections
of

Ω
0,•
X ⊗F , (160)

where
F =

p

KX ⊗ÔSym•(E[−1]) . (161)

The supercharges act on sections by

Q+ = ∂̄F ,I Q− = (∂̄F ,−I)
† , (162)

where I is the default complex structure with holomorphic coordinates (X , Y ) and−I is the con-
jugate complex structure with holomorphic coordinates (Ȳ,−X̄ ). The supersymmetric ground
states are in principle L2 forms annihilated by all four supercharges or equivalently harmonic
forms for the Dolbeault Laplacian twisted by F .

If the target space X were compact, the supersymmetric quantum mechanics would be
gapped and supersymmetric ground states could be understood as the cohomology of any one
supercharge. In particular, considering the cohomology of the supercharge Q+, we could drop
the L2 condition and write

H = H0,•
∂̄
(X ,F) . (163)

However, the Higgs branch X is non-compact and, as it stands, the spectrum of this supersym-
metric quantum mechanics is not gapped and a cohomological description is not available. To
remedy this situation, we now turn back on the mass parameters m.

6.4 Mass Parameters

Let us now introduce mass parameters m. This effectively shifts the real vectormultiplet scalar
σ → σ + m, such that the supersymmetric quantum mechanics localises to solutions of the
same equations (156) except that now

(σ+m)X A = (σ+m)X †A = 0 . (164)

This remaining solutions are those invariant U(1)m ⊂ TH action generated by the mass parame-
ter. Under Assumption I, this corresponds to the U(1)m fixed locus on X . Under Assumption II,
for generic mass parameter m ∈ cH , this fixed locus is an isolated set of points pI . We then
expect the supersymmetric ground states to be obtained by quantising the hypermultiplet and
Fermi multiplet flutuations around the points pI .
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Let us re-phrase this from the perspective of the finite-dimensional supersymmetric quan-
tum mechanics with hyper-Kähler target space X . The real mass corresponds to introducing a
perfect Morse-Bott function

h= m ·µR,H , (165)

which is the real moment map for action of U(1)m on X . This has the effect of conjugating the
supercharges in the supersymmetric sigma model such that

Q+ = e−h∂̄F ,I e
h := ∂̄m , Q− = e−h∂̄ †

F ,−I e
h . (166)

The supersymmetric ground states are now tri-harmonic forms for the mass-formed Dolbeault
Laplacians. Provided the fixed locus X U(1)m is compact, the spectrum of the supersymmetric
quantum mechanics is gapped and supersymmetric ground states can be identified with the
cohomology of Q+, namely

H = H0,•
L2,∂̄m
(X ,F) . (167)

Although this result is reasonable, it is not suitable for computation.
A useful computational approach involves sending the real mass parameters m to infinity

in a given chamber. Intuitively, in this limit the wavefunctions are localised around the fixed
points pI , leading to a Fock space of exact perturbative ground states attached to each pI by
quantizing a massive sigma model with target TpI

X and trivial hyperholomorphic bundle Fp.
This should then be supplemented by holomorphic instanton corrections. This picture origi-
nates from [33] and can be formulated algebraically as a Cousin complex for the stratification
of X induced by the C∗m action [14–17].

We will argue, however, that instanton corrections are absent in models with N = (0, 4)
supersymmetry and therefore the supersymmetric ground states are fully captured by Fock
spaces attached to each pI . The result for a general theory satisfying the assumptions of sec-
tion 3 can therefore be reduced to a computation involving free hypermultiplets parametrising
TpI

X .
For this reason, in the following section we first consider a single free hypermultiplet, SQED

with N hypermutiplets, and finally the general class of theories satisfying the assumptions of
section 3.

7 B-Twist Examples

7.1 Hypermultiplet

For a free hypermultiplet, the effective supersymmetric quantum mechanics contains the fol-
lowing supermultiplets:

• A N = (0, 4) hypermultiplet Φa, from H0(O).

• g N = (0, 4) Fermi multiplets χa
i , from H1(O), i ∈ {1, . . . , g}

both transforming as doublets of GH
∼= SU(2) global symmetry. This is a free supersymmetric

quantum mechanics with target X = T ∗C and E = Cg ⊗ TX .
Let us determine the weights of these fluctuations. First, the cohomological grading F

a priori corresponds to RH . However, for reasons discussed in section 2.2, we define a new
R-symmetry

eRH = RH − JH , (168)

where JH is the generator of the flavour symmetry TH
∼= U(1) and define F := eRH . This

means that the bosonic components of the hypermultiplet φ1 = X , φ2 = Y have weights
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F = 0,2, while the g Fermi multiplet components χ1
i , χ2

i have weights F = −1,+1. This is
now compatible with (−1)F as the fermion number. The secondary grading is then similarly
R+ =

1
2(eRH − RC). The weights of top components of the supermultiplets are summarised in

table.

Table 3: Weights of hypermultiplet fields in the B-twist.

φ1 φ2 χ1 χ2

F 0 +2 −1 +1
R+ 0 +1 0 +1
JH +1 −1 +1 −1

Since this supersymmetric quantum mechanics consists of a free hypermultiplet and Fermi
multiplets, it is possible to determine the supersymmetric ground state wavefunctions exactly
by demanding they are annihilated by all four supercharges. The normalisable ground state
wavefunctions for the hypermultiplet are

X k1 Ȳ k2 e−m(|X |2+|Y |2)dȲ, m> 0 ,

X̄ k1 Y k2 em(|X |2+|Y |2)dX̄ , m< 0 ,
(169)

or equivalently
�

∂

∂ X̄

�k1
�

∂

∂ Y

�k2

e−m(|X |2+|Y |2)dȲ, m> 0 ,

�

∂

∂ X

�k1
�

∂

∂ Ȳ

�k2

em(|X |2+|Y |2)dX̄ , m< 0 ,

(170)

with arbitrary integers k1, k2 ≥ 0. These states are supplemented by wavefunctions for the g
Fermi multiplets, which for the i-th Fermi multiplet take the form

1, χ1
i , χ̄2

i , χ1
i χ̄

2
i , m> 0 ,

1, χ2
i , χ̄1

i , χ2
i χ̄

1
i , m< 0 ,

(171)

where the choice of Fock vacuum is determined by the sign of the mass of each fermion and
omitted from the notation.

Combining the possible wavefunctions from the hypermultiplet and Fermi multiplets and
taking into account the weights in table 3, we find

H =
¨

ÔSym•V m> 0
ÔSym•V∨ m< 0

, (172)

where
V = x(C⊕ t−1Cg[1]⊕Cg[1]⊕ t−1C[2]) . (173)

The space of supersymmetric ground states is a Fock space generated by descendants of X
(when m> 0) and Y (when m< 0) integrating over homology classes of Σ.

Computing the trace over supersymmetric ground states in either chamber, we find

IB = (−t−
1
2 x)1−g(1− x)g−1(1− t−1 x)g−1 , (174)

which coincides with the B-twisted index of a free hypermultiplet with our modified R-charge
assignments [7]. In this instance, H =H1/2 and the general index only receives contributions
from supersymmetric ground states.
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7.2 SQED, 1 hypermultiplet

Now consider G = U(1) with one hypermultiplet of charge +1 and topological symmetry
TC
∼= U(1). Introducing a 1d FI parameter ζ 6= 0, the supersymmetric quantum mechanics

localises to constant configurations for the hypermultiplet fields satisfying

|X |2 − |Y |2 = ζ X Y = 0 . (175)

There is a single solution given by

ζ > 0 : X =
p

+ζ Y = 0 ,

ζ < 0 : Y =
p

−ζ X = 0 ,
(176)

and therefore we expect a single supersymmetric ground state, H = C.
The generic B-twisted index is

I = −(t−
1
2 − t

1
2 )1−g

∑

d∈Z
ξd

∫

Γ

dz
2πiz

�

z − t
1
2

1− t
1
2 z

�d �
t

1
2 z

(1− t
1
2 z)(z − t

1
2 )

�1−g

H g , (177)

where

H =
(1− t)z

(z − t
1
2 )(1− t

1
2 z)

(178)

and evaluates to 1.

7.3 SQED, N hypermultiplets

Now consider G = U(1) with N hypermultiplets of charge +1. The flavour symmetries are
TH
∼= U(1)N/U(1) and TC

∼= U(1). Introducing a 1d FI parameter in the chamber cH = {ζ > 0},
the supersymmetric quantum mechanics localises to constant configurations for the hypermul-
tiplet fields satisfying

N
∑

j=1

�

|X j|2 − |Yj|2
�

= ζ ,
N
∑

j=1

X jYj = 0 . (179)

We therefore have an N = (0, 4) supersymmetric quantum mechanics with target space
X = T ∗CPN−1 and as usual E = Cg ⊗ TX .

As X is non-compact, this supersymmetric quantum mechanics is not gapped. We intro-
duce mass parameters (m1, . . . , mN ) for the flavour symmetry. For generic values of the mass
parameters, there are N isolated fixed points, which are labelled by a choice of hypermultiplet
I = {i}.

Concretely, the fluctuations around a fixed point I consist of

• (N − 1) N = (0,4) hypermultiplets of TH weights x j x
−1
i , j 6= i.

• g × (N − 1) N = (0, 4) Fermi multiplets of TH weights x j x
−1
i , j 6= i.

We can therefore recycle the results from a free hypermultiplet to compute the space of su-
persymmetric ground states. Let us select the chamber cH = {m1 > m2 > · · ·mN} such that
m j −mi > 0 when j > i. At a fixed point I , the tangent bundle decomposes as

TpI
X = N+I ⊕ N−I , (180)

36

https://scipost.org
https://scipost.org/SciPostPhys.12.2.072


SciPost Phys. 12, 072 (2022)

where
N+I :=

⊕

j>i

x i

x j
C⊕

⊕

j<i

t−1
x j

x i
C[2] ,

N−I :=
⊕

j<i

x i

x j
C⊕

⊕

j>i

t−1
x j

x i
C[2] ,

(181)

encode positive and negative weights for U(1)m ⊂ TH . Here for convenience we have also
made the other gradings manifest.

In view of the result (172) for a free hypermultiplet, the perturbative supersymmetric
ground states arising from each fixed point are

HI =ÔSym•VI , (182)

where
VI := N+I ⊕

�

N−I
�∨ ⊕

�

N+I [−1]⊕
�

N−I [−1]
�∨�⊗Cg . (183)

Since states at different fixed points have different flavour weights, we conclude that there are
no instanton corrections and the space of true supersymmetric ground states is a direct sum
of contributions from each fixed point,

H =
N
⊕

I=1

HI . (184)

We now check compatibility with limits of the twisted index. The general B-twisted index
with our charge assignements is

I = −(t−
1
2 − t

1
2 )1−g

∑

d∈Z
ξd

∫

Γ

dz
2πiz

N
∏

j=1

 

zx j − t
1
2

1− t
1
2 zx j

!d  
t

1
2 zx j

(1− t
1
2 zx j)(zx j − t

1
2 )

!1−g

H g ,

(185)
where H is the Hessian determinant. For ζ > 0, the contour Γ selects the poles at z = t−

1
2 x−1

j
and the index only receives contributions from d > g − 1. Therefore, in the limit ξ→ 0, the
index only receives a contribution from zero flux, d = 0. The result is

lim
ξ→0

I =
N
∑

i=1

∏

j 6=i

�

−t−
1
2

x i

x j

�1−g �

1−
x i

x j

�g−1�

1− t−1 x i

x j

�g−1

. (186)

By the general mechanism described in section 2.5, this contribution is captured by supersym-
metric ground states. Indeed, this result is in perfect agreement with the graded trace over
supersymmetric ground states found above. We note that there are no cancelations between
contributions from each pole z = t−

1
2 x−1

j , which reflects the absence of instanton corrections
to supersymmetric ground states.

7.4 General Class

Let us now consider the general class of theories satisfying the assumptions of section 3. As
always we select a pair of chambers (cH , cC). The FI parameter ζ ∈ cC determines a Higgs
branch X . We assume a reasonable definition of cohomological grading F such that the holo-
morphic symplectic form on X has cohomological degree +2 and secondary degree +1. The
mass parameters m ∈ cH determines a U(1)m isometry with isolated fixed points labelled by
an index I .
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In similarity to the previous example, let us decompose the tangent space at a fixed point
into positive and negative weight spaces for U(1)m

TpI
X = N+I ⊕ N−I , (187)

where
(N+I )

∨ = tN−I [−2] (188)

due the weights of the holomorphic symplectic form on X . By considering the fluctuations
around each fixed point, the perturbative supersymmetric ground states are

H =
⊕

I

ÔSym•
�

N+I ⊕ (N
−
I )
∨ ⊕

�

N+I [−1]⊕ (N−I [−1])∨
�

⊗Cg
�

. (189)

As a sanity check, let us check that this reproduces the result for a hypermultiplet. In the
chamber cH = {m> 0}, we have

N+I = C〈
∂

∂ Y
〉= x t−1C[2] ,

N−I = C〈
∂

∂ X
〉= x−1C

(190)

and therefore
H =ÔSym•

�

x
�

C⊕ t−1C[2]⊕Cg[1]⊕ t−1Cg[1]
��

, (191)

which is consistent with section 7.1.
It remains to be argued that there are no instanton corrections between states associated

to different fixed points. Instanton corrections can occur only between states that share the
same flavour weight. If at a fixed point this weight is positive, at the other it must be negative.
Due to (188), it is impossible for the cohomological supercharge Q+ to relate such states. We
therefore conclude that instanton corrections must be absent.

Finally, from the supersymmetric ground states (189) we can immediately compute limits
of the twisted index, which we do here for simplicity in the limit t → 1. Let Φ+I denote the set
of positive weights at the fixed point I . Then

lim
t→1

I = TrH(−1)F x JH =
∑

I

∏

λ∈Φ+I

(−1)(1−g)dI

�

xλ/2

1− xλ

�2−2g

, (192)

where dI can be obtained by considering the (−1)F grading of the tangent space.

8 Mirror Symmetry

3d N = 4 gauge theories enjoy an infrared duality called mirror symmetry [34]. It relates
pairs of theories (T ,T ∨) that flow to the same superconformal fixed point in the infrared. At
the level of the supersymmetry algebra, the duality acts as an involution that exchanges the
R-symmetries SU(2)H with SU(2)C and the flavour symmetries TH and TC . Mirror symmetry
implies non-trivial relationships between mathematical structures associated to pairs of 3d
N = 4 theories [35–38].

In the context of this paper, mirror symmetry exchanges the A twist of a theory T with the
B twist of its mirror T ∨. In particular, it exchanges the parameters appearing in the twisted
index according to (t, y,ξ)↔ (t,ξ, y). Mirror symmetry for the twisted index reads

IA[T ] (t, y,ξ) = IB[T ∨] (t,ξ, y) . (193)
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In the conventions of section 3, the R-symmetry conjugate to t is defined relative to the twist,
namely R = 1

2(RC − RH) in the A-twist and R = 1
2(RH − RC) in the B-twist. This the parameter

t transforms to itself under mirror symmetry in contrast to [7].
This lifts to a statement about mirror symmetry for supersymmetric ground states,

HA[T ] =HB[T ∨] , (194)

where the double R-symmetry grading is exchanged according to (RH , RC) ↔ (RC , RH), or
equivalently (F, R) ↔ (F, R), the flavour gradings are exchanged TC ↔ TH and finally the
chambers are exchanged according to (cC , cH)↔ (cC , cH).

The computations of supersymmetric ground states in this paper involve strikingly different
mathematical formulations in the A and B twist. Thus mirror symmetry makes non-trivial
predictions of equalities between these constructions.

From the above examples, it can readily be checked that upon fixing chambers cc , cc the
most basic mirror symmetry, relating SQED[1] and the free hypermultiplet, holds at the level
of the Hilbert spaces (as graded vector spaces). The same holds for the self-mirror property
SQED[2]: the A-twist Hilbert space is isomorphic to the B-twist Hilbert space. More generally,
since mirror symmetry implies that the number of fixed points of the Higgs branches of two
mirror theories is the same (they correspond to the same vacua), it is tempting to think the
symmetry pairs the Hilbert spaces associated to fixed points. The formal similarity of the
Hilbert spaces associated to fixed points in the A- and B- twist (see (151) and (189)) further
suggests that this is the case. We show this explicitly for abelian theories at the level of flavour
and topological grading in appendix B, and leave a more general discussion to future work.

9 Discussion

In this section, we discuss connections to other work and directions for future investigation.

• An important next step is to introduce background expectation values for vectormultiplet
and twisted vectormultiplets for the flavour symmetries TH and TC respectively along
the Riemann surface Σ. The task is then to understand and compute the associated
supersymmetric Berry connections for the bundle of supersymmetric ground states in
the N = 4 supersymmetric quantum mechanics.

In the A-twist, one can introduce a holomorphic bundle for TH and a complex flat connec-
tion for TC . On the other hand in the B-twist, one can introduce a holomorphic bundle
for TC and a complex flat connection for TH . The structure of the supersymmetric Berry
connections should follow the constructions of [22,24].

• The computation of supersymmetric ground states can be enriched by adding line oper-
ators at points p ∈ Σ and preserving the same 1d N = 4 supersymmetry algebra as the
A-twist or the B-twist. This class of line operators have been studied in [39,40].

• Coulomb and Higgs branch local operators and their descendents wrapped on cycles
in Σ lead to operators in the effective supersymmetric quantum mechanics that act on
supersymmetric ground states. In future work, we will show that the supersymmetric
ground states HA, HB transform as modules for the factorisation homology on Σ of the
Coulomb and Higgs branch chiral rings respectively.

• It would be interesting to connect the construction of supersymmetric ground states HA,
HB here to spaces of conformal blocks for the vertex algebras VA, VB studied in [22,41,
42]. A key difference is the need in this paper to introduce real FI and mass parameters
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that break the SU(2)H and SU(2)C R-symmetries needed to perform the full topolog-
ical A-twist and B-twist respectively. The breaking is compatible with the 3d N = 2
topological-holomorphic twist discussed in [43].

• Finally, related to the previous points, it would be interesting to understand the space
of supersymmetric ground states in the context of boundary conditions for N = 4 SYM
investigate potential connections to geometric Langlands [44–46]. If a 3d N = 4 su-
persymmetric gauge theory can be realised by compactification on an interval I with
half-BPS boundary conditions BL , BR, the spaces of supersymmetric ground states should
correspond to morphisms between objects associated to BL , BR in the category of bound-
ary conditions in the Kapustin-Witten twist on Σ. Again, our setup departs slightly from
this picture due to the need to introduce boundary FI and mass parameters.
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A Cohomology of Symmetric Products

The cohomology of the symmetric product was studied in ref. [31]. It has 2g fermionic gen-
erators ξi and ξ̃i , i ∈ {1, . . . g} of bidegree (1, 0) and (0, 1) respectively, as well as a bosonic
generator of bidegree (1,1). As a graded vector space, we have for p+ q ≤ n

µpνqH p,q
�

Symd(Σ)
�∼=

min(p,q)
⊕

i=0

S i(µνC)⊗∧p−i (µCg)∧∧q−i (νCg) , (195)

where µ, ν are grading parameters. It follows that

∑

d∈N
xd

�

µν
∑

p,q

H p,q
�

Symd(Σ)
�

�

∼= S•(xC⊕µνxC)⊗∧• (µxCg)∧∧• (νxCg) (196)

for another grading paramter x . By taking a graded trace, we get that hp,q
�

Symd(Σ)
�

is the
coefficient of xdµpνq in the series expansion of

(1+µx)g(1+ νx)g

(1− x)(1−µνx)
(197)

around x = 0. Restricting to the grading by the fermion number, which amounts to setting
µ= ν= −1, we can derive a generating function for the Euler-Poincaré characteristic

∑

d∈N
xd

� d
∑

k=0

(−1)kHk
dR

�

Symd(Σ)
�

�

= (1− x)2(g−1) . (198)

B Abelian Mirror Symmetry

Let us consider abelian theories subject to the assumptions spelled out in (3.1). The number
of hypermulitplets will be denoted by N , the rank by k. In order to be consistent with our
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previous notation, we will denote the charges of their (X , Y ) components by (ρ,−ρ). Notice
that since we are considering quiver gauge theories, all the non-vanishing entries in ρ are ±1.
We will also denote by (λ,−λ) the charges under a maximal torus of the flavour symmetry TH ,
which has rank N − k. Together with the gauge charges, these form a N × N charge matrix

Q=

�

ρT

λT

�

. (199)

The flavour weights λ are only defined up to the gauge weights ρ, and we can set det(Q) = 1.
The relation between charge matrices of two mirror dual abelian theories T and T̃ is

known [47]:
�

eλT

eρT

�

=

�

ρT

λT

�−1,T

. (200)

We can use this to prove that mirror symmetry identifies the A-twist Hilbert space of a theory
T to the the B-twist Hilbert space of a theory T̃ , and vice-versa. Moreover, the isomorphism
maps the contribution from a fixed point to the contribution of a mirror dual fixed point.

Recall that to a fixed point I we associate in particular a selections of k hypermultiplets
such that the submatrix ρI of Q is non-singular. We can split the mirror symmetry relation

�

ρT
I ρT

I∨

λT
I λT

I∨

��

eλI eρI
eλI∨ eρI∨

�

= 1N ,N . (201)

Multiplication of the blocks yields

ρT
I
eλI +ρ

T
I∨
eλI∨ = 1k,k ,

ρT
I eρI +ρ

T
I∨ eρI∨ = 0 ,

λT
I eρI +λ

T
I∨ eρI∨ = 1N−k,N−k ,

λT
I
eλI +λ

T
I∨
eλI∨ = 0 .

(202)

From this we can conclude

eρT
I∨
�

−ρI∨ρ
−1
I λI +λI∨

�

=
�

eρT
I ρI

� �

ρ−1
I λI

�

+ eρT
I∨λI∨

= eρT
I λI + 1N−k,N−k − eρT

I λI

= 1N−k,N−k ,

(203)

where we used the second and third of the equations in (202). Thus

eρ
T,−1
I∨ = −ρI∨ρ

−1
I λI +λI∨ . (204)

The rows of the RHS of this expression correspond precisely to the tangent flavour weights of
theory T at fixed point I . Since the gauge weights in ρI must satisfy the JK condition (51), it
follows that according to the mirror chamber for the masses the flavour weights are positive.
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