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A B S T R A C T

The estimation of parameters and model structure for informing infectious disease response has become a focal
point of the recent pandemic. However, it has also highlighted a plethora of challenges remaining in the fast and
robust extraction of information using data and models to help inform policy. In this paper, we identify and dis-
cuss four broad challenges in the estimation paradigm relating to infectious disease modelling, namely the Un-
certainty Quantification framework, data challenges in estimation, model-based inference and prediction, and
expert judgement. We also postulate priorities in estimation methodology to facilitate preparation for future pan-
demics.

1. Introduction

Efficient and timely estimation in parametric models of epidemio-
logical processes for real-world systems is highly challenging, but fun-
damental to scientific understanding, forecasting and decision-making
under uncertainty (Shea et al., 2020). There are different dimensions to
the estimation paradigm that can be conducted independently, includ-
ing parameter estimation, quantification of uncertainty and sensitivity
and model structure uncertainty, but ideally should be united in a sin-

gle coherent framework due to their dependence on each other. Estima-
tion approaches should incorporate all major sources of uncertainty,
otherwise estimates may be biased and/or overly precise. Key sources
of uncertainty include inherent variation in natural systems and our
lack of knowledge about these systems, typically broken down into: ob-
servation error or bias (where the process of data collection is imper-
fect); stochastic uncertainty (where inherent randomness in the trans-
mission process impacts outcomes of interest); parameter uncertainty
(where data are insufficient to fully identify model inputs); structural
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uncertainty (where the choice of model structure is unknown); and
model discrepancy (reflecting differences between the reality and the
mathematical approximation to it that the model provides). Adequate
treatment of uncertainty increases robustness of forecasts, predictions
and decisions, facilitating a robust description and understanding of the
processes involved. The uncertainty estimates can either be a natural
by-product of statistical inference procedures, or a quantity of statisti-
cal interest in their own right.

Statistical inference for mechanistic infectious disease models is
challenging for many reasons, which has been discussed extensively in
Lloyd-Smith et al., 2015) and accompanying papers. Chief amongst
these is the fact that the transition processes (e.g., transmission, recov-
ery etc.) depend on the numbers of individuals in each epidemiological
state at any given time. In practice, these are only partially observed.
For example, infection times must be inferred from events such as on-
set-of-symptoms, which are also uncertain and recorded with error.
These issues are exacerbated by asymptomatic infections, as seen often
seen in infectious diseases, including recently for Covid-19. Therefore,
statistical methods are combined with data to infer these missing vari-
ables alongside parameter values in the underlying transmission model.
Especially in the case of emerging diseases, typically it is also unclear
how to structure models e.g., in terms of disease progression, or what
spatial and temporal heterogeneities should be accounted for (Marion
et al., 2021). Therefore, and regardless of whether a model is determin-
istic or stochastic, statistical inference is used to quantify uncertainty in
model structures, assess and select models, and handle multi-model en-
sembles. If these models are used to support decisions, then these chal-
lenges also need to be addressed in real-time.

Deterministic, state-and-transition transmission models can be fitted
relatively efficiently to data, by assuming transitions between states are
a continuous process, ignoring intrinsic uncertainty associated with the
underlying epidemiological history. Methods such as least-squares fit-
ting are often used to find a set of input parameters that minimise the
residual error between simulated event curves and observed data. More
sophisticated methods, such as using explicit stochastic observation
processes that account for discrepancies between the simulated event
curves and the observed data points can also be used to construct likeli-
hood functions that (depending on how they are implemented) can pro-
duce exact inference for a given transmission/observation model
(Wilkinson, 2013). However, deterministic models are at best an ap-
proximation to the average behaviour of an underlying stochastic sys-
tem, and as such are applicable only in certain scenarios, for example,
with high infection levels in large, well-mixed populations. In highly
heterogeneous populations, such as those with spatial or network struc-
tures (Eames et al., 2015), these models are less appropriate, or indeed
when the numbers of infections are low, then predictions from these
models can deviate dramatically from their stochastic counterparts.

Stochastic transmission models offer more realism at the cost of sig-
nificant increases in computational complexity. Here events are mod-
elled probabilistically. For example, models of livestock infections such
as foot-and-mouth disease or E coli might choose to model transmission
between herds, or alternatively at the individual animal-level, with
coupled processes modelling within- and between-herd spread
(Touloupou et al., 2020). Similar considerations apply to human dis-
eases. Some frameworks model individual-level interactions, while oth-
ers model transmission among and between groups, such as meta-
population models. Since transmissions are rarely observed, the amount
of missing information that needs to be imputed in the inference
process is linked to the model, so that an individual-based model for
every individual in the UK would correspond to many millions of unob-
served stochastic events, making inference and predictions highly com-
putationally intensive.

It is clear that there are multiple challenges to developing timely
epidemiological models. One challenge that seems common to all ap-
proaches is the need to develop infrastructure to conduct more compre-

hensive uncertainty analyses in real-time, whether through availability
of more efficient algorithms, general software, computational power or
knowledge and expertise. This in turn will facilitate urgent decision-
making, so simple and fast estimation procedures will remain desirable.
In all circumstances, decisions must be made in the face of considerable
uncertainty and often at speed, and this uncertainty needs to be com-
municated effectively to enhance decision making by those (typically
non-quantitative experts) responsible. Thus, uncertainty quantification
also presents challenges for expert elicitation, and communication (in-
cluding visualisation).

In this paper, to prepare for future pandemics, we highlight a series
of key challenges pertaining to estimation, uncertainty quantification
and expert elicitation that are relevant to pandemic modelling. In
Section 2, we outline challenges in the Uncertainty Quantification para-
digm for estimation of uncertainties and sensitivities coupled with
model calibration for large-scale pandemic models. Section 3 identifies
challenges of using real-world data in estimation procedures in real-
time. Section 4 suggests challenges for parameter estimation and model
selection in pandemic modelling, and finally, Section 5 discusses the
challenges of using expert judgement in pandemics when evidence and
data are less readily available than is required by the models.

2. UQ for estimation

As mentioned above, one of the principal aims of estimation is to
measure and account for the various aspects of potential bias and uncer-
tainty inherent in the mathematical and statistical modelling of real-
world systems. We begin by discussing the UQ framework, which in its
fullest interpretation is a formal set of statistical methodologies ac-
counting for the discrepancies present in the use of computer models to
represent the real world, and their associated calibration to data and
forecasting for future outcomes. Aspects of UQ are applicable at all
stages of the modelling process, specifically pre-, during- and post-
pandemic, and can therefore underpin or inform the sections that fol-
low. Here we focus predominantly on the use of Gaussian Processes for
emulation, as these are used most commonly as the basis for emulation.
However, there remain challenges in alternative emulator models that
may be more appropriate in cases where responses are non-Gaussian,
such as non-symmetric or multimodal outputs. In these instances, we
point the reader to other papers where alternatives including multiple
emulators (Caiado and Goldstein, 2015) or quantile emulation (Fadikar
et al., 2018) are discussed.

2.1. Simulators and emulation

The mathematical and statistical analysis of complex numerical
models or simulators and their connection to the real world, is often re-
ferred to as Uncertainty Quantification (UQ). Although the modelling of
pandemics faces clear challenges that could be addressed by using these
methods, with a few exceptions (Andrianakis et al., 2015; McCreesh et
al., 2017; McKinley et al., 2018; Gugole et al., 2021), there has been lit-
tle application of UQ methodology to epidemic models. A major such
challenge is that of estimation, in UQ often referred to as model calibra-
tion (sometimes model tuning). Nonetheless, the problem being solved
is the same: can real-world data corresponding to model outputs (say
hospital admissions) be used to tell us something about the model in-
puts (transmission rates, say), and how can this be achieved efficiently
within a coherent framework that incorporates all appreciable sources
of uncertainty?

One of the main tools employed in complex UQ tasks is an emulator,
often a Gaussian (or second order) process. A Gaussian Process (GP) is a
stochastic process that gives smooth continuous functions that can be
fitted to model runs as a surrogate for the true (unknown) analytical so-
lution to the model. The key here is speed: such GP emulators are typi-
cally several orders of magnitude faster to evaluate than the epidemio-
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logical model they are mimicking, and hence they facilitate otherwise
infeasible UQ calculations, including a comprehensive exploration of
the model’s parameter (input) space and behaviour. A second substan-
tial advantage of GPs over other possible surrogate models (such as
polynomials) is that the GP includes an estimate of its own uncertainty.
This can be formally included in any subsequent calculation, inflating
any uncertainty calculations to account for the fact that a surrogate
model has been used rather than the true model. The fit of the GP and
the validity of its estimated uncertainty can be tested using additional
model runs (Bastos and O’Hagan, 2009). The GP emulator has many ap-
plications in the analysis of computer models, for instance predicting a
new value (with uncertainty) and performing sensitivity and uncer-
tainty analyses efficiently.

2.2. Sensitivity analysis

An additional stage of the UQ framework is sensitivity analysis, in
which the impact of changes to inputs or parameters of the model on
the outputs of that model are studied. This can be done as part of the
model construction process (Marion et al., 2021) but can also be useful
in estimation. In particular, it can be useful in reducing the dimension
of the estimation problem, by avoiding focus on parameters that have
little importance for the model; in determining important parameters to
focus estimation and calibration procedures on; or highlighting areas
where data may be particularly useful in obtaining inference or uncer-
tainty reduction. Frequently this sensitivity is not done as a routine part
of the estimation procedure, meaning that time can subsequently be
wasted on non-identifiable or nuisance parameters that are of little sta-
tistical interest. Sensitivity analyses of stochastic models also cause
computational and algebraic challenges that can be prohibitive for their
general uptake.

2.3. Calibration and history matching

One substantial difference between the UQ and more conventional
estimation approaches is explicit acknowledgement that the model will
never be a perfect representation of the real world, no matter what
model parameters are used. This has profound implications. For exam-
ple, simply using a method such as least squares with no discrepancy
term will ‘overfit’ the model and have poor predictive performance. In-
cluding a structural model discrepancy term, in both the past and in the
future, can result in vastly improved predictions. This solves two prob-
lems: overfitting in the past and being overly confident in the future.
The inclusion of model discrepancy elevates the analysis from that of
the model to the analysis of the real world itself and provides a (partial)
defence against the question “Why should we use these models to make
decisions?”.

There are two current methods for calibrating models. The first
builds an emulator for the model and an emulator for the discrepancy
simultaneously (Kennedy and O’Hagan, 2001). If the interest is only in
prediction, then the Kennedy and O’Hagan method works well, but
there is an identifiability problem between the two emulators. Their
sum can be estimated but the two components are difficult to separate
(Brynjarsdottir and O’Hagan, 2014). Several solutions to this problem
have been proposed but are subject to severe limitations.

An alternative is termed history matching (HM—Vernon et al.,
2010). HM aims to identify those inputs that give predicted model out-
puts so far removed from the data that they can be regarded as implau-
sible. HM proceeds by producing and validating an emulator, that is
trained on a carefully-designed set of model runs (using theory from op-
timal experimental design). Then the distance between the data and
emulated model output (called the implausibility) is calculated and
scaled by three ‘variance’ terms: the emulator variance (which is
known), the data variance (supplied by the data collector) and a model
discrepancy term (elicited from the model developer, in combination

with a series of carefully-designed experiments on the model, see
Section 5 below). If this implausibility is greater than a defined thresh-
old the set of model inputs is ruled implausible. It is worth noting that
the implausibility measure is a normalised unimodal variable, and as
such these cut-off thresholds can be informed by theory, most notably
Pukelsheim’s three-sigma rule (Pukelsheim, 1994). By adding extra
model runs, as a new wave, inside the not ruled out yet (NROY) region,
increasingly more accurate emulators can be produced, which reduce
the NROY region further. Eventually, either the NROY space becomes
so small that further reduction is unhelpful (adding extra waves makes
no difference to the NROY space, and better data are needed to reduce
it any further), or the NROY space vanishes as all sets of model inputs
are implausible. The implication of the latter is that, regardless of the
model inputs, the model cannot be made to agree with the data. Ana-
lysts then need either to find another model, or a higher tolerance value
for the model discrepancy is required (Runge et al., 2016). Common us-
age of conventional estimation methods can miss the fact that the
model may not fit the data well. This is especially problematic because,
as the number of model runs is increased, the estimated uncertainty on
a bad fit can be reduced: in essence bad model fits can lead to mislead-
ingly tight posterior distributions.

Such methods for model calibration from the UQ field offer many
advantages over conventional estimation methods. The use of fast GP
emulators allows the use of Monte Carlo or other sampling-based meth-
ods that would be impossible with a full model. The inclusion of model
discrepancy in the calibration/estimation methodologies acknowledges
that models are not perfect representations of the real world, in the
same way that data are not—both contain biases and uncertainties.

2.4. Model discrepancy

Formal separation of model and reality within the UQ framework
opens many further possibilities, including construction of an overarch-
ing framework that incorporates multiple epidemiological models in a
coherent fashion (Goldstein and Rougier, 2009). This is virtually impos-
sible without such structural model discrepancy terms. This framework
allows the predictive power of multiple models to be combined coher-
ently, while acknowledging their various strengths, weaknesses and dif-
ferences. Similarly, fast, simple models (for which many runs can be
evaluated to train the emulator with high accuracy) can be combined
with slower, more detailed models (for which far fewer runs are avail-
able). Furthermore, these methods allow separation of the inference
and simulation frameworks, so that the same techniques can be used to
fit a wide range of different models, without having to make fundamen-
tal changes to the nature of the inference algorithm. Hence such a sepa-
ration could represent a step change in epidemiological analysis.

The major challenges for using these approaches for real-time pan-
demic modelling are:

1. Efficient Model Calibration support: the provision of efficient
and robust UQ methods and code to aid the epidemiologists’
model calibration efforts. The efficiency is achieved via the use of
emulation, allowing epidemiologists to calibrate current models,
and to explore more complex/higher-dimensional models when
needed.

2. Acknowledging the difference between the model and
reality: calibration methods should be robust in the sense that
they incorporate structural model discrepancy, and hence guard
against the dangers of treating an imperfect model as perfect.
They should also exhibit robustness to (mis-)specification of
distributional forms in the likelihood and associated error
structures.

3. Scaling: the current GP based emulators do not scale well to large
numbers of parameters or outputs (unless treated independently).
Appropriate methods exist when these parameters correspond to
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spatial fields or time series. Increasing the number of inputs via a
hierarchy of models, for example, by adding spatial effects to a
non-spatial model as described in (5) below, is a possible simple
solution.

4. Uptake of these methods: a substantial challenge is the
paradigm shift required for the uptake of these methods. Going
from traditional ideas of statistical model fitting to ideas such as
using fast emulators or representing all major sources of
uncertainty in and around the models, including the structural
model discrepancy terms, is hindered by widely available
infrastructure, so it is not surprising if take up is slow during a
pandemic when time is short. It also requires that modellers
become familiar with fitting and validating (GP) emulators,
which are currently not widely taught. This is exacerbated by the
lack of suitable easy-to-use software or a lack of familiarity with
software that is available, an issue addressed by point 1). An
expository paper is currently in preparation for publication in
this series to assist with the adoption of these methods (Dunne et
al., 2021) and an application to HIV can be found in Andrianakis
et al., 2015).Other more sophisticated challenges, of no less
importance are:

5. Multilevel Model Emulation and Calibration: the
incorporation of multiple levels of fidelity of epidemiological
model (e.g., using fast, medium and slow versions) within a UQ
emulation and calibration framework. This, as described above, is
the most efficient way to emulate and calibrate very detailed
epidemiological models (Craig et al., 1997; Kennedy and O’Hagan,
2000; Cumming and Goldstein, 2010).

6. Coherent Overarching Structure for Combining Multiple
Models: the provision of techniques to aid the combination of
models from multiple research groups into a coherent structure to
give more powerful predictions and subsequent decision support,
underpinned by more realistic uncertainty statements. While
some progress has been made on this front during the SARS-CoV2
pandemic, far more must be done. Suitable UQ frameworks for
this, are ready to be employed (Rougier et al., 2013; Goldstein
and Rougier, 2009).

7. Generalising UQ to Stochastic Models: UQ methodology was
traditionally designed with deterministic models in mind. While
much of it has been generalised to stochastic models, a setting
closer to traditional statistics where many more tools are
available, key challenges remain, e.g., issues around bi-modality
and quantile emulation in complex stochastic models, motivating
further research into the set of requisite statistical methods.

We have focused here on estimation/calibration, but the above chal-
lenges and UQ solutions also pertain to the critical issues of prediction
and decision support (Marion et al., 2021; Hadley et al., 2021).

3. Data challenges for estimation during a pandemic

Mathematical modelling works by simulating historic behaviour to
understand better the current behaviour of the system, which can be
used to make estimates and future predictions. The level of uncertainty
in estimates and model outputs depends on several aspects, often
closely related to the data. In this section, we describe some key estima-
tion challenges that arise from use of data available during a pandemic.
This discussion is general but draws on experience of the SARS-CoV2
pandemic.

3.1. Data availability and indirectness

During a pandemic, particularly in the early stages, scarcity of data
can make it challenging to fit models and estimate parameters. How-
ever, during these early stages, policy decisions must be made despite

scarce data, requiring models and estimation to use the data available
efficiently, typically entailing a compromise between model complexity
and parsimony, to make best use of available data whilst not running
into issues of non-identifiability. As more data are collected, across
multiple layers, models can be refined and complexity can be increased,
if required. If models are non-identifiable in the early stages, further at-
tention needs to be given to exploring the parameter space. This can be
computationally intensive but is vital to ensure correct communication
of limitations and uncertainty in estimation.

Typically, even when scarce, epidemiological data can inform indi-
rectly on the transmission process; however, complex data imputation
techniques are needed even in the presence of abundant data. A major
challenge is computational complexity and time. Care is needed to as-
sess how much information the data contain about the parameters of in-
terest, to ensure that the data are driving estimates (Section 4).

Inferences of the transmission process may be biased by missing
data. During the early stages of an epidemic, when outbreaks are spa-
tially distinct, estimation of epidemiological parameters can be biased
by factors such as travel out of outbreak areas (Overton et al., 2020),
which may result in cases being missed, or inconsistent reporting rates
across spatial regions, leading to different estimates of relationships be-
tween observed data and the underlying epidemic.

Using multiple layers of data can help to reduce uncertainty, such as
combining sequencing data with surveillance data to obtain more direct
estimates of a chain of transmission events. In the SARS-CoV-2 pan-
demic, appearance of different strains brought the possibility of higher
relative transmissibility. This is hard to measure without detecting
cases among contacts of an infected person, which relies on contact
tracing or sequencing data. Challenges here relate to both the availabil-
ity of data and accounting for biases in these. For example, there may
be no systematic testing, producing challenges in what data to calibrate
to or test model predictions against. If it is not possible to collect these
data within the necessary timeframe, the challenge arises of how to deal
with biases in predictions that may depend on these missing data. Al-
though data collection from contact tracing and contact patterns are
continuously improving, challenges remain in how to estimate the level
of risk associated with different types of contact (Kretzschmar et al.,
2021).

The pandemic has given rise to may new sources of data, each bring-
ing their own challenges in estimation. One example is the use of phone
apps that allow users to submit symptoms or movement activities on a
daily basis. These data provide resolution that would not be possible
through more direct experimental designs, but such ‘community/citi-
zen science’ data is known to come with many issues in potential biases
(Dickinson et al., 2010). The use of waste water to sample for genetic
viral material has also come to light, having previously been used to de-
tect presence or absence of polio (O’Reilly et al., 2020). Individual host
variation in shedding is a specific challenge in developing more accu-
rate prevalence of infection in populations, as is the tracking of the orig-
inal source of the genetic material.

Even when the right type of data is available in sufficient quantities,
it might not be at the correct resolution. For example, most mathemati-
cal epidemiology is based on continuous-time models, but in practice
data are always discrete, so a choice of whether to use a discrete-time
model or how to discretise a continuous-time model is important. Con-
tinuous-time models may help with issues of censored data (see below).
Similarly, time series data could be weekly rather than daily or fluctu-
ate based on weekly reporting patterns, so the choice of how to aggre-
gate or smooth data will affect estimation, requiring models that are ro-
bust to these systematic data issues. Resolution can also affect defini-
tions at data used, such as whether to count all deaths where the patient
tested positive for a pathogen, or only those where it was the primary
cause of death. Discrepancies across regions can make it hard to esti-
mate consistent fatality rates. Similarly, hospital occupancy data may
count occupancy from time of admission or from time of returning a
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positive test, which can lead to challenges in estimating length of stay.
To address these issues, better meta-data is needed to provide clarity
into the definitions used. Data missingness can substantially affect the
benefits of high-resolution data. For example, during the COVID-19
pandemic, high volumes of testing data have been collected. However,
high levels of missingness in the numbers of negative cases make the
data challenging to use, due to changes in testing rates over time
(Shadbolt et al., 2021).

3.2. Noisy data, truncation and aggregation

Noisy signals arise from imperfections in observations and fluctua-
tions in natural and human-mediated processes, requiring models to
separate trends from residual effects. Aggregating over short time scales
is prone to significant noise or delays, but if a signal is strong enough,
the increased resolution may increase the usefulness of estimates. Ag-
gregating over longer time scales can provide more stable estimates and
less uncertainty, but estimates are affected by older data points so sig-
nal can be more “delayed”, and rapid changes in signal can be missed. It
is important to determine a suitable balance between flexibility and
timeliness of estimates, and robustness and reliability of such estimates.

Lack of information due to gaps in data in space and/or time creates
uncertainty in data streams. In these cases, imputation or smoothing be-
tween points relies on good understanding of biological processes to
avoid introducing bias resulting from poor mechanistic representation
and model discrepancy. Attention should be given to ensure that infor-
mation is not being lost in the interpolation – for example on behaviour
from mobility data if smoothing the relevant curve or from aggregating
time series data (all cases vs age or risk-group stratified data). When an
outbreak is unmitigated, such aggregation may be reasonable since the
relative contribution across different units may be constant. However,
for example, interventions may affect spatial or demographic groups
differently.

The choice of aggregation level reflects which sources of hetero-
geneity are considered (Marion et al., 2021). Many parameters, such as
symptom duration and outcome probabilities, vary substantially with
factors such as age, sex, socio-economic context or ethnicity. Aggrega-
tion across multiple covariates provides bigger sample cohorts, so esti-
mates can be generated with seemingly lower uncertainty. If important
covariates are not accounted for, estimated trends may be misleading.
For example, data might suggest temporal changes in some parameter
estimates that are driven by demographic changes over time. Data may
be aggregated at a regional or national level, but this may fail to cap-
ture local heterogeneity, and local outbreaks might be very severe even
if other areas are still apparently unaffected. However, disaggregating
with multiple covariates may result in small sample sizes, inflating un-
certainty, which could cause identifiability issues if estimates are used
as model inputs.

During a pandemic, reporting events such as the transition from in-
fection to hospital admission (Pellis et al., 2020) or from hospital ad-
mission to death is often subject to significant delays. This leads to
many observations being incomplete, lacking information regarding the
duration of the delay and which outcome is observed. Such bias needs
to be carefully adjusted for when estimating key epidemiological para-
meters (Commenges, 1999). It is possible only to consider cases where
all events of interest have been observed. However, this introduces a
truncation bias, whereby observed distributions are shortened as they
approach the most recent time points (Kalbfleisch and Lawless, 1991;
Sun, 1995). The effect of delayed information on measures of uncer-
tainty often is overlooked. Estimation will produce larger uncertainty
intervals for recent events and even larger intervals when forecasting,
which can make decision making more complex and subjective. To ac-
count for this, one can use data based on date of report rather than date
of occurrence. However, this can lead to further complications in esti-
mation. For example, hospital admission time-series may not be

recorded by date of admission but by date of returning a positive test
(https://coronavirus.data.gov.uk/), whereas length of stay estimates
may be generated from the time of admission (Vekaria et al., 2021). Fit-
ting a relationship between time-series for admissions and bed occu-
pancy will be inconsistent with hospital length of stay estimates.

3.3. Multiple data streams

Data collected during an outbreak may be generated as part of the
emergency response, rather than a regular data collection process,
which can lead to inconsistencies. This is particularly pertinent when
data are requested from multiple sources. For example, during the
Covid-19 pandemic, each NHS trust in England returned daily data on
hospital admission and occupancy. However, being a novel request, it
took a few months to ensure consistent data streams across the country.
Such labour-intensive data are unlikely to be retrospectively corrected.
Statistical models account for such issues, but more robustly when
sources of errors are known. For example, if a model fitted to multiple
data streams, a known bias in a data stream can be built into the model
uncertainty. Many countries have different definitions of what mea-
surements relate to, such as different measures of mortality or different
numbers in the tested population (Shadbolt et al., 2021). Random ef-
fects or latent variables can be used to account for individual variations
in the data sources and there is increasing literature on integrated mod-
els combining data streams. One of the major estimation challenges
here is developing methods that are sufficiently general to be of use to a
wide range of scenarios.

When using multiple data streams, which are inevitably interre-
lated, a relationship between the streams (both observed and unob-
served) can be estimated (De Angelis et al., 2015). However, as an epi-
demic progresses, interventions and policy changes can alter this rela-
tionship. Interventions such as vaccination may alter the age distribu-
tion of cases, thereby changing hospitalisation/mortality risk. Simi-
larly, treatment could reduce mortality in infected individuals. Dimen-
sion reduction techniques can be used to address this, however the in-
terpretation of these procedures is often challenging. A further chal-
lenge might arise when attempting to provide a country-wide reproduc-
tion number, as one could aggregate potentially de-synchronised data
streams from different regions or combine regional reproduction num-
bers. If these variations are not properly accounted for, inference about
infections/prevalence may be biased. If a model does not accurately
capture the impact of an intervention, inference regarding the transmis-
sion process may be inaccurate (Kretzschmar et al., 2021). However,
there may be insufficient data to quantify vaccine impacts on transmis-
sion/disease prevention accurately, creating a substantial modelling
challenge.

3.4. Challenges

In preparing for future pandemics, methods for dealing with the fol-
lowing estimation challenges should be considered:

1. Due to the indirectness of data streams, a challenge lies in
assessing how much information the available data contains about
the parameters of interest.

2. Discrepancies in data collection procedures between spatial
regions leads to different relationships between observed data and
the underlying epidemic. If this is not correctly accounted for,
estimates can be severely biased.

3. Data may not be at the desired resolution, so a challenge lies in
aligning model complexity to the available data or making the
model robust in accounting for aggregated data.

4. Temporal aggregation creates a challenge in how to determine
the right balance between flexibility and timeliness of current
estimates, and the robustness and reliability of such estimates.
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This is important when investigating whether an apparent
deviation from the previous trend should be considered trend or
noise.

5. Aggregating across demographic/regional groups may
obscure important trends in the data. For example, the
effectiveness of a stay-at-home order may correlate with
sociodemographic deprivation and therefore failing to account for
deprivation may bias estimation of the impact of such orders.

6. Models and statistical methods need to account for
incompleteness in recent data, due to censoring and reporting
delays.

7. When using multiple levels of data, challenges remain in
connecting the various levels of data and accounting for potential
biases.

8. A challenge for future pandemics is accounting for
inconsistencies between different data streams in estimation
procedures to provide more accurate and robust quantification.

9. Interventions and policy changes during a pandemic can alter
relationships between data streams. This needs to be understood
and appropriately accounted for when developing estimation
models and quantifying uncertainty.

4. Model-based inference and prediction/forecasting

At different stages in a pandemic, some types of estimation are more
feasible than others. In data sparse periods at the start of the pandemic,
reliance may be on formal model analysis or expert elicitation. Reliance
on data can be more robust as the pandemic evolves and data sources
grow and extend. The choice of how to account for uncertainty is made
more complex by the fact that there is a general lack of understanding
of different types of uncertainty, as discussed in detail above. These dis-
cussions notwithstanding, the principal estimation challenge is how to
deal with large amounts of missing data and hidden states (e.g. pre-
symptomatic infections) that are inherent in the modelling of epi-
demics.

4.1. Explicit likelihoods and data augmentation

Latent variable approaches (e.g., data-augmented MCMC: Gibson
and Renshaw, 1998; O’Neill and Roberts, 1999) represent unobserved
epidemiological events in the statistical model, and these are estimated
as part of the inference routine. These often Bayesian approaches can,
in theory, use standard methods such as Markov chain Monte Carlo to
explore the joint (high-dimensional) parameter space of hidden vari-
ables and parameters. Extensions, such as reversible-jump methodolo-
gies (Green, 1995) can be employed to allow for unknown numbers of
hidden variables. When applicable, these approaches can yield a huge
amount of information, e.g. by robustly integrating multiple sources of
data including epidemiological observations and genetics (Lau et al.,
2015).

Implementing these techniques requires a close synergy between the
underlying model and the inference algorithm to avoid complexities in
updating the parameter values conditional on the data at each iteration.
Standard random walk updating schemes do not work well with esti-
mating hidden states due to inherent correlation between and within
model components. Often, generic algorithms and poorly implemented
code are extremely slow to explore parameter space. The development
and optimisation of these approaches is thus very challenging and time-
consuming, and for large systems with many hidden states, they can be-
come computationally infeasible. However, some generic updating
schemes have improved performance including non-centred parameter-
isations (Papaspiliopoulos et al., 2003), tempered algorithms (Sacchi
and Swallow, 2021) and model-based proposals (Pooley et al., 2015).
Sometimes, approximate models such as discrete-time models help re-
duce computational complexity, and recent research has exploited so-

phisticated computer hardware, such as Graphics Processing Units, to
help alleviate some of the computational burden. Despite this, for high-
dimensional models, computational efficiency, and the challenges in
implementation and coding, remain a bottleneck that limits practical
application. Some open software implementations of these methods
have been developed, e.g., GEM, (https://gem.readthedocs.io/en/
latest/), however much more is required before these can be widely
used by domain experts.

4.2. Likelihood-free simulation-based approaches

An alternative to using latent variables to capture hidden states, is to
simulate them directly from the underlying model of interest. Ap-
proaches such as maximum likelihood via iterated filtering (Ionides et
al., 2006), Approximate Bayesian Computation (Minter and Retkute,
2019), synthetic likelihoods (Wood, 2010) and particle MCMC
(Andrieu et al., 2010) aim to approximate likelihood functions via sim-
ulations. In some cases, these methods can provide exact inference, con-
ditional on the choice of transmission and observation models, but in
practice the latter must often be replaced by a measure that penalises
large deviations from the observed data in a somewhat arbitrary fash-
ion. The interpretation of these approximations is discussed in more de-
tail in Wilkinson (2013). Despite these issues, these approaches are at-
tractive because they are much more straightforward to implement
than latent variable methods, since coding simulation models is in gen-
eral much easier than using data-augmentation approaches, and gen-
eral-purpose software exists to implement these. Simulation-based ap-
proaches are thus often touted as “plug-and-play”, but, in practice there
are key challenges in scaling up these methods to large-scale systems.

The main challenge is that these approaches can require hundreds-
of-thousands, if not millions of simulation runs to explore the parame-
ter space adequately. If the simulation algorithms are highly stochastic,
then this induces large variability in, for example, estimated likeli-
hoods. Particle filter-based likelihood estimation typically scales poorly
with data complexity. Thus, relative ease-of-implementation in practice
often is superseded by extreme computational loads. Often the only
computationally viable approach is to match to summary measures of
the data, especially if the data are highly complex. This relies on the
generation of informative summary measures, since in many cases it is
not possible to identify and generate sufficient statistics (i.e., those that
preserve the information in the likelihood). This introduces a loss-of-
information, which introduces more uncertainty into parameter infer-
ence and prediction.

As discussed in Section 2, a statistical emulator may alleviate some
of this computational burden by searching the parameter space exhaus-
tively for areas of the space where good fits to the data are likely to be
found, using techniques such as history matching. Alternatively, they
can be used to emulate the likelihood directly. Since emulators are typi-
cally trained on individual outputs, it is necessary to reduce complex
data sets to a lower dimensional set of informative summary statistics.
Furthermore, expertise in fitting and validating emulators is required,
and to date there is no general-purpose software for implementing these
approaches. Moreover, some behaviours seen in stochastic infectious
disease models, such as multimodal outcomes, are hard to emulate us-
ing standard approaches, and remain an area of ongoing research.

4.3. Model structure and inference

At different stages of a pandemic, the decision on which model
structure to use may be forced by time constraints that govern when es-
timates need to be provided or by data availability/quality (Section 3),
constrained by the familiarity of those responsible for model develop-
ment with alternative approaches. However, even when sufficient data
are available, the choice of which model to use and the potential impli-
cations of that decision on estimates of both parameters and uncer-
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tainty bounds are rarely apparent or considered. Stochastic and individ-
ual-based models are more realistic, and more widely applicable than
deterministic models, particularly as more complex structures are intro-
duced, such as meta-populations, spatial structures or network dynam-
ics (Eames et al., 2015). These structures may be critical to answering
policy questions such as concerning contact tracing or vaccination
strategies (Marion et al., 2021). However, these models are inherently
more difficult to fit to data than simpler deterministic models and are
also more data- and computation-hungry. When there is need to quan-
tify properties of an outbreak, to inform public health policy, it is im-
portant that relevant processes are included in the fitted model and that
due consideration is given to the impact of model structure and its po-
tential biases on estimation.

4.4. Model assessment and comparison

As discussed in Section 2, parameter and output uncertainties are
conditional on the specific choice of model, and thus do not account for
the discrepancies between the model and the reality it aims to repre-
sent. Incorporating terms into the model that can account for this dis-
crepancy when conducting inference or predictions is an ongoing area
of research, and although techniques exist for doing this for certain ap-
proaches (including history matching using emulators), these ideas
have not been readily implemented into standard statistical ap-
proaches, such as data-augmented or particle MCMC.

Associated with the idea of model discrepancy is the idea of model
specification. Multiple model structures can be fitted to data, but new
tools are needed to assess model fits, and either select between models
or combine them in meaningful ways. Model assessment is frequently
difficult with complex models, particularly with spatial and/or tempo-
ral components and especially for stochastic models. Latent residuals
for spatio-temporal models of disease spread (Lau et al., 2014) are an
interesting move in this direction but much work is needed to develop
tools that can be routinely applied across a range of models (Gibson et
al., 2018). Improved tools could provide significant advantages in tack-
ling pandemics by identifying key characteristics of novel pathogens,
although this will likely require better quality data than are currently
routinely available in outbreak settings (Shadbolt et al., 2021). Current
methodologies, such as information criteria or calculation of marginal
likelihood, are not well suited to disease transmission models or are
computationally challenging (Pooley and Marion, 2018). For example,
standard cross-validation (CV) methods may smooth over deficiencies
in model structure if not conducted with care, and are difficult to em-
ploy in data sparse scenarios, or across highly structured data such as
time-series, or spatially explicit or regional models. These approaches
are also computationally demanding, since models need to be refitted
multiple times for CV.

There can be a significant difference between models used for expla-
nation and description (Shmueli, 2010; Hanna, 1969) and those used
for prediction or forecasting, both structurally and from a philosophical
perspective. The treatment of uncertainty in each case is potentially dif-
ferent and active consideration needs to be given to what unknowns are
being integrated over and/or which quantities could change beyond the
data used to estimate the parameters. The reality is that in prediction,
model structure and estimated parameter values are often considered to
be constant, which will not be realistic in many settings. It seems that
this distinction is often not made explicit or considered when develop-
ing statistical paradigms for estimation. Consistency across model types
might not be feasible but little attempt appears to have been made to
consolidate this.

4.5. Model ensembles

With a plethora of model types and structures, and many ways of es-
timating parameters within those models, differences in estimates are

almost inevitable. Understanding why these differences occur and how
and whether it is sensible to combine inferences is complex and an on-
going area of research (Berger et al., 2021). Bayesian model averaging
enables model aggregation in a statistically principled way, although it
requires a close synergy between the specific aspects of the inference al-
gorithm and the model. Expert elicitation may be required in this in-
stance (Section 5). Interpretations of parameters might vary between
models, meaning they are not directly comparable and cannot be aver-
aged across models. Forecasts are often more straightforward to aver-
age, although outputs from different models may have different spatial
and/or temporal granularity, precluding sensible averaging. Borrowing
work from other application areas such as local-scale weather and pop-
ulation dynamic models may provide some ideas of how to advance,
but models of pandemics are likely to be much more variable and sto-
chastic than those, for example, that have been used to model long-term
climate trends. Furthermore, the computational and time-constrained
burdens of developing and fitting multiple models often means that in-
dividual research groups work with a single, or small sets of models.

4.6. Limits to formal estimation

Early in pandemics of novel viruses, knowledge about key parame-
ters may be unreliable or non-existent. Data may be sparse or particu-
larly noisy, making estimation of parameters especially challenging
(Section 3). Bayesian inference enables models and data to be combined
with prior distributions representing available information. Nonethe-
less, problems remain. Reliance on assumed knowledge from other
viruses or pathogens may introduce biases. This may, however, be the
only option, and putting a distribution on the range of parameter values
is preferable to fixing the unknowns to take specific values. As such, the
use of systematic prior elicitation techniques (Section 5) to establish
plausible prior distributions will help to inform model simulations in
the early stages of an outbreak. Systematic sensitivity analyses can help
to identify which outputs from the model are sensitive to which para-
meters and thus offer a means of targeting data collection and study de-
sign to identify key parameters better, where possible (Shadbolt et al.,
2021). Emulation and other techniques can also be employed to help
perform systematic sensitivity analyses in high-dimensional systems.

4.7. Challenges

1. The principal challenge across this section is the development
of efficient and more generally applicable approaches to
updating latent states within MCMC frameworks for high-
dimensional models and development of general-purpose
software to implement latent variable approaches.

2. Methodological challenges remain in the development of
likelihood free methods based on informative summary
statistics to conduct inference in high-dimensional and stochastic
systems.

3. Implementation of High Performance Computing (HPC) and
cloud-based procedures for running large numbers of
simulations from stochastic models. A key challenge is putting the
infrastructure in place for groups to be able to respond quickly in
the face of a future pandemic, as those often made available at
institutional level cannot be made sufficiently flexible to be
beneficial for all computational needs.

4. Challenges remain in methodological approaches to model
structure and inference, as well as facilitating the uptake of
these methods by modellers conducting suitable investigations as
part of the estimation process. One important challenge is
generating observation processes that consider causes for
systematic biases in observed data.
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5. Model discrepancy/structural bias: there are remaining
challenges in ensuring model-reality/structural discrepancies are
routinely accounted for within estimation processes.

6. Separation of predictive and descriptive approaches for
conducting inference and estimation. Further challenges arise
on separation of validation and assessment approaches for these
different philosophical approaches.

7. An important challenge is to develop more approaches that
indicate poor fit and point towards aspects of the model that are
most deficient. Further work is also needed to enable routine
application of model comparison methods including marginal
likelihood, suitable information criteria and cross-validation.

8. Models are developed and fitted by different research groups;
hence generic ways of comparing and averaging models that
have been fitted in different ways to different data are an
important challenge. Difficulties remain in estimating weights or
relative beliefs for each of the competing models.

5. Challenges for expert judgement

It will often be the case that decisions or forecasts need to be made
when the evidence base is limited, particularly in the early stages of a
pandemic, or when assessing whether a novel outbreak might lead to a
new epidemic. However, even after many months of experience with
Covid-19 and related data collection, analysis, modelling and scientific
advances, there remain many important questions and data gaps.
Therefore, at various stages during an epidemic, expert judgements
may be required to fill gaps and support decisions; indeed, in some con-
texts this may be the only source of relevant information.

5.1. Roles for expert judgement

Expert knowledge has important roles to play in addressing many of
the challenges of understanding and responding to a pandemic:

1. Early warning to decision-makers: experts often alert
decision-makers to emerging pathogen outbreaks, providing
models to explain the perceived cause-and-effect relationships,
and helping to characterise the potential or relative risks in
relation to other infectious diseases and current policies.

2. Formulating useful and relevant questions. During an
outbreak it is important that policy measures are timely, and that
subsequent research and assessments are focused on providing
information while there is still time to act. However, as was
evidenced by the recent COVID-19 pandemic, recognising all the
relevant factors can be challenging; those involved may not agree
on the formulation or prioritisation of key research questions. This
can lead to unfocused research and conflicting recommendations.
If decisions are to be made on how to act and where to invest in
further research, then decision-makers need to decide on the
problems to be addressed and the objectives of importance. These
decisions often require the balancing of multiple values and
objectives, and are best addressed within a decision-analytic
framework (Shea et al., 2020; Gregory et al., 2012). Here, experts
are most often required to help frame possible actions to meet
objectives, identify information sources to evaluate the
consequences of actions, and estimate parameters and model
structures. Importantly, objectives in decision-making and policy
often extend beyond scientific concerns, to include social,
economic and cultural values. This requires an appropriate pool of
experts and stakeholders (Hadley et al., 2021).

3. Developing models and identifying important parameters.
During an initial outbreak of a new infectious disease, expert
opinion will be crucial to inform both model structure (e.g.,
transmission routes and the stages of the natural history of disease

that should be considered) and parameter quantification (e.g., the
distribution of latency times). Here, the combination of research
question, expert knowledge, and available data will inform the
required level of detail (e.g., explicit transmission networks vs.
homogeneously mixing populations). In addition, expert
knowledge may help disentangle unidentifiable sets of parameters
(e.g., contact rates and transmission probabilities), by informing
model parameters with prior distributions.Uncertainty about the
appropriate model should be taken fully into account, and a range
of models considered. There is increasing use of multiple models in
disease forecasting and scenario projection to aid decision-making
(e.g., Li et al., 2017; Viboud et al., 2018; Ray et al., 2020;
Borchering et al., 2021). Recently there have been moves to
leverage Structured Expert Judgement approaches within multi-
model analyses, to ensure full expression of scientific uncertainty
(i.e., uncertainty about biological processes or parameters, or
about interventions) while reducing linguistic misunderstandings
and minimising cognitive biases in expert elicitation (Shea et al.,
2020). This can be done by a curated discussion between
modelling rounds, during which linguistic uncertainty about data
streams, interventions and objectives can be discussed and
clarified. Embedding these in structured decision-making
approaches (Runge et al., 2020) may also enhance and streamline
the integration of modelling and policy efforts (Shea et al., 2020).

4. Predicting the expected impact of interventions. This
requires assumptions about the effects of postulated interventions,
either in terms of model mechanics (e.g. a reduction in duration of
infectivity due to treatment) or in terms of expected outcomes
(e.g. a decrease in hospital admissions due to quarantining).
Assumptions should be made explicit and informed by data,
where available, and, where necessary, by expert judgement.A
major challenge is that the outcomes of interventions will depend
on the extent to which individuals and demographic groups
participate in, or adhere to, required actions. Predictions about
human behaviour are particularly challenging, especially in new
and undocumented circumstances such as a pandemic. Timeliness
is particularly important as participation and adherence patterns
are likely to drift due to changes in risk perception and “policy
fatigue” in the population.

5. Communicating model assumptions and outputs. Model
predictions best represent what is currently known when they are
based on a foundation of validated knowledge, and properly
incorporate uncertainty. Involving expertise from diverse relevant
disciplines will make model predictions more realistic and
credible. Also, by involving experts from different disciplines,
elements of a common taxonomy and technical language can be
developed with which to discuss research questions across
disciplines; this is particularly important when addressing
emergent pathogen outbreaks and pandemics, which are high-
dimensional, multi-disciplinary problems. Such an approach in
turn can help to communicate underlying assumptions, results,
and their associated uncertainties to policy makers and the public
at large. Ideally, experts should be drawn from a range of
stakeholder communities, to engender transparency and
understanding, leading to increased support for and trust in
models to inform policy. Those with expertise in deliberative
judgement and stakeholder engagement may help to engage
different groups within society to increase awareness, trust and
commitment to action.

5.2. How to capitalise on expertise?

While expert judgement is often required, there can be unease in us-
ing experts to inform decisions of importance, even when the data re-
quired are absent, contradictory or uninformative and even though de-
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cision-makers are quick to draw on trusted sources (e.g., informal dis-
cussions with those they perceive to be reliable experts). To some ex-
tent this unease is justified. Experience has repeatedly demonstrated
that, under such circumstances, people are prone to make poor judge-
ments, to be affected by contextual biases and other cognitive limita-
tions (O’Hagan et al., 2006; Shanteau et al., 2012). Even those with
substantial knowledge and expertise in a domain typically have diffi-
culty in formulating their judgements in precise, unbiased and mean-
ingful ways (Burgman et al., 2011a; Hemming et al., 2018). Real care is
needed to minimise biases, inaccurate judgements and poor decisions.

Even when experts are asked to provide judgements that are limited
to the estimation of facts or outcomes (i.e., not value judgements), they
may reasonably disagree (e.g., because of different background and ex-
pertise) and may offer different estimates. For those relying on experts,
this can be disconcerting.

However, insights from studies of expert judgement have identified
ways to capitalise on expert judgements to generate reliable judge-
ments. Many contextual biases and psychological frailties can be miti-
gated by offering suitable facilitation, training and assistance to ex-
perts, as is done in Structured Expert Judgement (SEJ) protocols (see
below). It is entirely natural that – in the face of real scientific uncer-
tainty – experts will provide apparently divergent judgements; these al-
ternative views are the essence of scientific endeavour and progress,
and should be viewed as an advantage for informed decision support,
especially if they bring different information and understandings to the
table (Cawson et al., 2020; Moon et al., 2019). Eliciting expert knowl-
edge from a diverse panel makes it more likely that the basic elements
required to align research efforts and inform policy are considered. A
variety of methods, including SEJ, for synthesising the range of opin-
ions from an expert panel have been developed, and it has been shown
that such syntheses generally provide more accurate judgements than
less formal approaches (Hemming et al., 2018, 2020a; Colson and
Cooke, 2017).

5.3. What quantities to elicit?

Expert elicitation is most easily focused on meaningful and in princi-
ple measurable outcomes or quantities, such as whether an emergent
novel virus will escape its local area, or how many deaths there will be
in a certain population and time-interval. If the quantity that has been
forecast is later observed, predictive success can be formally evaluated
and used to calibrate future forecasts and rank different forecasters.

In applications it is often desirable to express uncertainty about the-
oretical quantities, such as the basic reproduction number R0, and other
parameters of a model. A challenge is to find good ways to assess such
parameters in terms of meaningful quantities. For instance, in a simple
SIR model, it may be desirable to assess uncertainty about R0, based on
expert opinion on the duration of infectiousness, combined with data
on disease incidence over time during an outbreak, using modelling and
expert judgement about the relationships between these quantities.

5.4. How to express judgements?

It is important for judgements to be expressed probabilistically. It
will seem natural to many practitioners and modellers to give only sin-
gle point estimates of unknown quantities, but these can be very mis-
leading: it is instead vital for experts to be open about the associated
uncertainties and their judgements of these. For example, when faced
with a new infectious disease, information gained from a previous dis-
ease may be all that is available, but its relevance will be questionable,
and this should be represented explicitly. Any projections from such
past experience must be carefully considered, taking into account simi-
larities and differences between the past and the future, and, impor-
tantly, hedged with appropriate, typically high, uncertainty. Such un-

certainty is most usefully expressed as probabilities (O’Hagan and
Oakley, 2004).

It can be useful to conduct expert knowledge elicitation in an itera-
tive fashion, asking experts first to make a private individual estimate,
giving the experts feedback on how their estimates, knowledge and as-
sumptions, and those of others, translate into expected outcomes, and
allowing them to address any apparent discrepancies and misunder-
standings. Feedback and iteration can reveal information or assump-
tions not considered by others and allow experts to see that their views
of the problem, and even their interpretation of terms, may differ from
their colleagues, so helping them to understand better the range of un-
certainty. This is particularly important when experts are unpractised
at expressing their knowledge in probabilistic terms.

5.5. Structured Expert Judgement

“Structured Expert Judgement” (SEJ, also known as “Expert Knowl-
edge Elicitation”) is a broad label for a set of systematic decision sup-
port tools for model development and parameter quantification, for use
when data are absent or incomplete and critical decisions need to be
made. SEJ supplies structured and repeatable methods for the selection
and training of experts, and elicitation and aggregation of their uncer-
tain opinions about parameters and the outcomes of events. It delivers
probabilistic assessments that are realistic, credible, defensible and, im-
portantly, imparts transparency to the process so that it is possible to
critique and review how outcomes based on judgements were derived
(O’Hagan, 2019). There are several well-established implementations
of SEJ, the most widely used being the Cooke (Cooke’s Classical
Method) (Cooke, 1991), SHELF (Sheffield Elicitation Framework)
(Oakley and O’Hagan, 2019; Gosling, 2018) and IDEA (Investigate, Dis-
cuss, Estimate and Aggregate) (Hemming et al., 2018) protocols.

SEJ protocols share a number of features. They emphasise the need
to elicit the judgement of more than one expert, encourage diversity in
the group of experts convened, ask questions about meaningful events
and quantities, request experts to quantify their uncertainty when ex-
pressing their judgements, and encourage open expression of judge-
ments by anonymising the contributions of individual experts. While
aggregation is not required (Morgan, 2015) many protocols provide
processes to derive an aggregate estimate from expert judgements. Vali-
dation studies have shown these aggregated estimates are typically
more accurate and better calibrated than those of a single, well-
credentialled expert (Burgman et al., 2011b; Colson and Cooke, 2017;
Hemming et al., 2018, 2020). While there are many subtle differences
in how the protocols guide experts through an elicitation, the primary
differences relate to the level of interaction between experts, and the
approach for aggregation (Hanea et al., 2022; O’Hagan, 2019). We
briefly elaborate on these differences among the three protocols listed
above.

All three protocols begin by asking the experts to make judgements
individually and privately. Cooke then aggregates the individual judge-
ments by forming a weighted average. In order to derive weights, the
experts are also asked for judgements about some additional quantities
called seed variables, whose true values are known to the investigator
but not to the experts. Weights are computed based on how well each
expert’s judgements accord with the known true values. The Cooke pro-
tocol does not include discussion between experts, except possibly to
confirm the aggregated distribution. In contrast, group discussion is a
feature of both SHELF and IDEA, with the objective of exploring differ-
ences in the initial judgements by sharing opinions and interpretations
of the evidence. IDEA then asks the experts to revise their initial judge-
ments, privately, after which they are aggregated, usually by an
equally-weighted average. SHELF, however, asks the experts them-
selves to agree on judgements that will represent what a rational, im-
partial observer would believe after hearing their opinions and their
reasoning.
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An excellent, if slightly dated, overview of SEJ, with detailed practi-
cal guidance, may be found in the 2014 report of the European Food
Safety Authority on Expert Knowledge Elicitation (EFSA, 2014). While
it is targeted to a different field of application, it is relevant to infectious
diseases modelling. For more recent overviews see Dias et al. (2018),
O’Hagan (2019), Hanea et al. (2022), Williams et al. (2021).

SEJ has been applied successfully in a wide range of contexts, in-
cluding for interventions to control spread of wildlife diseases
(Szymanski et al., 2009) and human infectious disease applications
(McAndrew et al., 2021; McAndrew and Reich, 2020).

Some of the epidemiological and infection models developed in the
UK, in response to the Covid-19 pandemic, have – inevitably – had to
make use of expert judgement, in one form or another. But, this said,
most, if not all, of these judgements were elicited informally and were
untested, their sources undocumented, and associated uncertainties
and assumptions not made explicit nor adequately reported. This state
of affairs risks the introduction of serious biases and the lack of open-
ness, transparency and scientific validation that can lead to the under-
mining of public and political trust in expert judgement in an evolving
crisis.

Adopting SEJ in epidemiology would help create more reliable
model assumptions and parameter estimates, would support the ad-
vancement and credibility of the science and provision of scientific ad-
vice and, ultimately, lay foundations for better decisions and public
health outcomes.

5.6. Challenges

1. Building awareness of, expertise in, and familiarity with,
structured expert elicitation in the epidemiological and modelling
communities.

2. Encouraging experts to become engaged in SEJ in a way that
they feel they are contributing for the greater good. During the
Covid-19 pandemic, many people were willing to give of their
time and expertise, but this cannot be taken for granted,
especially if they perceive a risk of being identified personally
and abused on social media

3. Training suitable experts and facilitators so that they are ready
to go when required. This includes having one or more expert
panels, with administrative support available, especially at the
start of an epidemic when a fast response is needed. Standing
panels of facilitators and administrators could also be used for
other kinds of emergencies, though expert panels would need to
be relevant to each specific task.

4. Developing guidelines regarding which elicitation procedures can
best serve different types of questions and uncertainties.

5. Building and regularly updating an expert elicitation manual
and toolbox for emergent zoonotic diseases and viral pandemic
preparedness and rapid response, and ensuring its relevance,
quality and readiness.

6. Developing methods for efficient, appropriate and timely
integration of expert judgements and accruing empirical data,
and – perhaps most critical - continual revision and updating of
estimates as conditions and circumstances vary when policy
changes are implemented, or infection resurgences occur.

7. Identifying formats for the clear presentation of the probabilistic
expressions of knowledge that are the outcomes of SEJ exercises,
and training modellers and decision makers to understand, utilise
and communicate these effectively.

8. Extending and consolidating advice for structured expert
judgement beyond parameter estimation to guidance for full
probabilistic methods, as well as guidance for the elicitation of
multiple or consolidated models from experts.

9. Developing principled methods for quantitative expert
judgement of structural model discrepancy, whether inherent in

the internal configuration of the model itself or reflecting its
limitations in representing the real pandemic.

6. Conclusion

There is a large amount of research on modelling and estimation for
epidemics and pandemics, as well as the development of the appropri-
ate estimation and uncertainty quantification paradigms to conduct
that research. However, the current Covid-19 pandemic has highlighted
many remaining challenges in method development, application and
uptake within the wider epidemiological community that should be
treated as priorities in preparing for future pandemics. Whilst we treat
these four aspects of estimation separately, a challenge of a unified and
robust response to a global challenge such as a pandemic, is to combine
these aspects together to maximise their collective benefits. A two-way
passing of information between estimation mechanisms enables these
to inform, and be informed by, other modelling approaches and data
collection. Uncertainty quantification and sensitivity analysis and ex-
pert judgement are ideally placed to inform modelling and estimation
as preliminary studies, whilst also being incredibly important compo-
nents in their own right. For example, knowing the sensitivity of models
to changes in specific parameters or data streams can help inform
which to focus on (e.g. Swallow et al., 2021).

Collating themes across the dimensions of this paper, major difficul-
ties often revolve around the building of infrastructures necessary for
conducting necessary analyses or communicating results on a large,
rapidly changing and noisy system that rarely follows the format that
ideal simulations prepare researchers for. These infrastructures cover
data accessibility and computational resource availability and software
development that is flexible enough to be useful for the wider commu-
nity. Infrastructure issues also incorporate difficulties of open commu-
nication and knowledge exchange between differing groups, where
there is frequently a conflict between open science and rapid response
and demands of academic careers.

The current pandemic has highlighted the necessity of open commu-
nication routes between researchers, data providers and practitioners in
each of these areas and priorities going forward should be in facilitating
those open pathways, consolidating research engineers and other sub-
ject matter experts within the estimation pipeline, as well as making
open software available such that uptake of robust uncertainty quantifi-
cation and parameter and model estimation can be conducted by a
wider community of epidemiological modellers. This should also be ex-
tended to the publication of negative test results, to allow better esti-
mates of prevalence than is possible relative to presence-only data. Fur-
ther discussion on this important aspect of policy communication is dis-
cussed in Hadley et al. (2021).

Often useful methods exist either within the wider field of epidemi-
ology or in related application areas, but the potential has not come to
the attention of those on the front line. Synthetic reviews, such as the
ones in this special feature that draw on the varied expertise of many
scientists, provide a critical repository of wide-ranging knowledge for
novices and experts alike, and save researchers from having to reinvent
the wheel in times of crisis.

It is impossible to discuss challenges in estimation without also mak-
ing references to challenges in the components that estimation depends
on, namely the mechanistic models and data that feed into estimation
approaches. Challenges within these areas inadvertently have knock-on
effects on the ability of statisticians and modellers to conduct robust es-
timation, and hence challenges in all these areas should not be consid-
ered in isolation. Estimation also feeds into many other dimensions of
pandemic preparedness and response, such as modelling interventions,
informing policy and politics and determining emergence of new
pathogens and/or virus strains. Without combining these different do-
mains, estimation remains a purely academic affair and fails to reach its
full potential in directly or indirectly informing public health responses.
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