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The direct detection and imaging of exoplanets requires the use of high-contrast adaptive optics (AO). In these
systems quasi-static aberrations need to be highly corrected and calibrated. To achieve this, the pupil-modulated
point-diffraction interferometer (m-PDI) was presented in an earlier paper. This present paper focuses on m-PDI
concept validation through three experiments. First, the instrument’s accuracy and dynamic range are character-
ized by measuring the spatial transfer function at all spatial frequencies and at different amplitudes. Then, using
visible monochromatic light, an AO control loop is closed on the system’s systematic bias to test for precision and
completeness. In a central section of the pupil with 72% of the total radius, the residual error is 7.7 nm rms. Finally,
the control loop is run using polychromatic light with a spectral FWHM of 77 nm around the R-band. The control
loop shows no drop in performance with respect to the monochromatic case, reaching a final Strehl ratio larger than
0.7.
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1. INTRODUCTION

The future of optical astronomy poses a series of technical
challenges, some of which are inherent to new telescope tech-
nologies. For example, all future extremely large telescopes
(ELTs), some 10 m class telescopes, such as the Gran Telescopio
Canarias, and even the James Webb Space Telescope have
segmented primary mirrors. To perform as single monolithic
mirror telescopes, active optics and wavefront sensing systems
are required [1–3]. Other challenges are related to the new sci-
entific cases these telescopes enable, when used in conjunction
with technologies such as extreme adaptive optics (XAO). One
of the most prominent of these cases is the study of exo-planets.
It has been estimated that, in systems such as the Gemini Planet
Imager [4], non-common path aberrations (NCPAs) between
the imaging arm and the wavefront sensor (WFS) would have to
be corrected to less than 10 nm rms within the first 100 modes to
achieve direct exo-planet detection. Furthermore, XAO systems
need to achieve contrast levels of between 10−7 to 10−8 around
50 mas and at rates of 2–4 kHz [5,6]. In turn, for contrasts of
10−7 to 10−9, estimations indicate that the wavefront error
(WFE) would have to be lower than λ/280 and λ/2800, respec-
tively, where λ denotes the wavelength [7]. This is equivalent to
6.0 nm rms and 0.6 nm rms in the H-band (λ= 1.65 µm).

Point-diffraction interferometers (PDIs) such as the Zernike
WFS (ZWFS) [8] and the self-referenced Mach–Zehnder [9]
have been proposed to tackle some of these challenges. Instead
of performing indirect sensing like Shack–Hartmanns (SHs),
which reconstruct the wavefront from slope data, PDIs directly
measure the phase without numerical reconstruction. Due to
this, they have been found to be robust against optical vortices
and other discrete phase errors [10] and are therefore well suited
to measuring random piston and tip–tilt differences between
telescope segments [11,12]. Indeed, when phasing segments,
ESO’s active phasing experiment showed them to be more
robust than pyramid WFSs, SHs, and curvature sensors with
respect to seeing, to be able to perform both piston and tip–tilt
corrections, and to achieve one of the lowest residual errors
[13,14].

Due to their nano-metric accuracy, PDIs have also been
suggested to address the problem of accurately measuring and
correcting quasi-static aberrations [8,15,16]. For this purpose,
some have been successfully tested on telescope-based systems,
such as ZELDA at the VLT-SPHERE instrument [17]. ZELDA
in particular is located at the focal plane, having similar advan-
tages to focal plane WFSs such as the self-coherent camera [18].
Finally, it has been proposed that PDIs can help correct aber-
rations produced by atmospheric turbulence in XAO [9,19],
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but testing is for the most part still limited to correction of static
phase masks in the laboratory, under monochromatic condi-
tions [20,21]. This leaves XAO as one of the main challenges
where PDIs are yet to produce promising laboratory and on-sky
results.

The main drawback that so far prevents PDIs from becoming
the main WFS in XAO systems is their small dynamic range,
due to phase ambiguity. Without sufficient dynamic range,
an AO system cannot overcome the initial phase aberrations
imposed by atmospheric turbulence, thus preventing closing
the control loop. Methods such as the multiwavelength sweep
[22,23] can be used to extend the dynamic range of PDIs up to
several micrometers, but they do so by taking multiple acquisi-
tions of the same phase aberration, each with different narrowly
defined wavelengths. Both these requirements are difficult to
achieve when measuring atmospheric turbulence with a natural
guide star, making a single-frame large dynamic range WFS
advantageous.

In our previous paper, we presented a novel concept, to the
best of our knowledge, called the pupil-modulated PDI (m-
PDI) [24]. In this paper, we present experimental validations
for this concept, embodied as the complex amplitude WFS
(CAWS). In Section 2, we give a brief overview of the instru-
ment’s working principle. Section 3 presents the design of the
CAWS, as well as the experimental conditions provided by
the CHOUGH [25] bench. Section 4 introduces a new ana-
lytical formula to compute the instrument’s dynamic range.
The experiments performed on this bench were aimed at test-
ing four different aspects of the CAWS: accuracy, dynamic
range, completeness, and chromatic bandwidth. In Section 5,
we measure the spatial transfer function to test our model on
the dynamic range and to quantify the instrument’s accuracy.
Then, Section 6 explores the CAWS’ completeness by using it to
compensate for CHOUGH’s systematic biases in closed-loop.
Section 7 confirms that the CAWS can accurately estimate
wavefront aberrations with broadband light, by closing the same
control loop with polychromatic light.

2. WORKING PRINCIPLE

We briefly recall the m-PDI principle [24] on which the CAWS
instrument relies to measure wavefront aberrations. For sim-
plicity, this introduction considers only the monochromatic
case; the polychromatic case is studied in later sections. At the
entrance pupil, the aberrated wavefront is split into at least two
by a small-angle beam splitter, as presented in Fig. 1. In the
CAWS, this element is a diffraction grating that produces an
infinite number of diffraction modes. These modes are focused
onto a focal plane filter mask that allows only mode 0 (M0) and
mode+1 (M+1) through. Furthermore, M0 is filtered by a nar-
row pinhole in the mask to produce a flat reference beam. M+1

goes through a larger aperture that filters all spatial frequencies
to prevent cross-coupling, resulting in the test beam. Both
beams are collimated and then interfered at the exit pupil on
plane C.

The resulting interferogram comprises fringes modulated by
the incoming wavefront. This is due to the test beam arriving at
a tilt and resulting in spatial carrier-frequency interference. The
simplified expression for the intensity of the interferogram is
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Fig. 1. Layout of the pupil-modulated point-diffraction interfer-
ometer. The grating splits the beam into modes. Mode 0, shown in
a solid red line, goes through a point-diffraction pinhole in the focal
plane. Mode+1 goes through a larger aperture. The pupils and lenses
are located as per a 4-f imaging relay, the basis for this design.

IC (x , y )= P 2
0 +

1

π2
P 2
+

2P0

π
P cos

(
2π

T
x − ϕLP(x , y )

)
,

(1)
where P and ϕLP are, respectively, the amplitude and low-pass
filtered phase of the electric field90 at the entrance pupil, P0 is
the average amplitude of the reference beam, and T is the period
of the interference fringes. Note that T is proportional to the
period of the grating and is the same for any wavelength; P0 is in
turn computed as

P0 = P b0

√
S, (2)

where S is the Strehl ratio (SR) on the focal plane, and b0 is a
number between zero and one representing the fraction of the
total amplitude, determined by the geometry of the pinhole and
by the small-angle beam splitter. To retrieve the phase ϕLP, the
interferogram’s intensity IC can be demodulated by performing
a Fourier transform and retrieving a sideband. Performing a
further Fourier transform on this sideband yields an estimation
of the electric field, from which the phase ϕLP can be computed
[26]. It is worth noticing that although the amplitude P (x , y )
can also be extracted from the electric field, this publication
focuses exclusively on phase estimation.

3. SYSTEM DESCRIPTION

Figure 2 shows the optical layout of the CAWS. The small-
angle beam splitter is a Ronchi diffraction grating that fits
52.7 line-pairs in the pupil of diameter DA = 10.54 mm, as
provided by CHOUGH. This gives it a spatial sampling of
17.5 cycles/pupil. To put this into context, this is approximately
the resolution of a 34-×-34 SH, which on a 4.2 m telescope such
as the WHT would have 12.4 cm subapertures. The camera at
the exit pupil has 7.4 µm pixels, resulting in an oversampled
6.8 pixel/line-pair sampling.

In the focal plane filter mask, M0 is filtered by the pinhole
resulting in the reference beam of the interferometer, and M+1

goes through the larger sideband aperture, which allows higher
spatial frequency information through, resulting in the test
beam. The diameter of the pinhole d0 is 16µm, or 2.5 f1λ0/DA

with the pupil size delivered by CHOUGH and for a central
wavelength λ0 = 675 nm. With this pinhole size, b0 = 0.42.
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(a) (b)

Fig. 2. CAWS’ (a) optical layout and (b) diagram of the pinhole and aperture on the focal plane filter mask. In the red vignette, vertical black lines
over M0 and M+1 represent the pinhole and aperture, respectively. TG is the grating’s period, and f1 is the focal length of lens `1. The optical layout
does not show more diffraction modes other than M0 and M1. The pinhole and aperture diagram in (b) is not to scale.

From combining Eqs. (1) and (2), when S ' 1, the visibility of
interference fringes is

V =
2b0

πb2
0 + 1/π

= 0.96. (3)

This first implementation of the instrument has a low
throughput. From Eqs. (1) and (2), the average intensity of the
output is

ÎC =

(
b2

0 +
1

π2

)
P 2, (4)

which for b0 = 0.42 is ÎC ' 0.28P 2, resulting in a throughput
η' 0.28. Note that half the light is lost on the Ronchi ruling,
meaning the throughput of the focal plane mask is twice this
value, or 0.56. This value also considers light lost to higher
diffraction modes. Future iterations could more than double the
throughput by implementing special transmission gratings.

From our previous paper, the side of aperture M+1 is
B = 2a/3, where a = f1λ0/TG , resulting in B = 2 f1λ0/3TG

[24]. Because of chromatic dispersion produced by the grat-
ing on diffraction mode M+1, long and short wavelengths are
pushed up and down, respectively, when viewed as presented in
Fig. 2(a). Consequently, the shortest and longest wavelengths
to fall inside the side aperture are λmin = 2λ0/3= 450 nm and
λmax = 4λ0/3= 900 nm, resulting in a maximum chromatic
bandwidth of 66% with respect to λ0. A concern with shorter
and longer wavelengths is that as they approach the edge of the
side aperture, they are filtered asymmetrically by it. This will be
discussed in Section 7.

The CAWS was hosted by the CHOUGH bench to pro-
duce the results presented in this paper. CHOUGH’s layout is
presented in Fig. 3. The system comprises a 32-×-32 Boston
Micromachines Kilo-DM (deformable mirror), which is used
to both introduce and correct aberrations. Three instruments
are located in a closed-loop setup with the DM: the narrow-
field science imager (NFSI), high-order WFS (HOWFS), and
CAWS. The HOWFS is a 31-×-31 SH reconfigured to have
a subaperture sampling of 9.8 pixel/subaperture. The main
purpose of this WFS is to calibrate the results when measuring
the CAWS’ accuracy. Both the HOWFS and the CAWS are
conjugated to the DM. The NFSI is an imaging camera that
operates between wavelengths 640<λ< 880 nm. The func-
tion of this imager is to provide absolute independent correction

source

DM

HOWFS

NFSI

CAWS

dichroic BS mirror

Fig. 3. Schematic optical layout of the CHOUGH high-order AO
system. The longpass dichroic is centered around 647 nm. Both the
HOWFS’ lenslet array and the CAWS’ grating are conjugated to the
deformable mirror (DM).

measurements during closed-loop correction tests. Due to a
small leak on the 647 nm longpass dichroic, all instruments can
be illuminated using a 633 nm He–Ne laser to feed the fiber.
This is the main light source for monochromatic operations.
Broadband illumination is provided by a halogen lamp.

4. DYNAMIC RANGE

Besides testing the instrument’s accuracy, precision, and com-
pleteness, this paper also seeks to validate our models regarding
the interaction of the sideband with aperture M+1. From our
previous paper [24], we know that the largest spatial frequency
the instrument can sample is κmax = 1/3T in m−1, and that for
this to be possible, the aperture’s size B = 2a/3= 2λ0 f1/3T,
where f1 is the focal length of lens `1. But apart from defining
the spatial sampling, our models suggest that the aperture’s size
adds two extra limitations.

The first limitation is on the m-PDI’s dynamic range, or more
precisely, on the largest wavefront slope it can sense. For any
local slope s where the absolute value |s |> B/2 f1 = λ0/3T,
locally the wavefront has a tilt that makes the majority of the
light propagate outside the aperture M+1, leading to its not
being sensed. This effect is similar to the one used in pyramid
WFSs, where the local slope determines the proportion of
light in each quadrant [27]. Aperture M0 is less sensitive to
local tilts due to diffraction. Coming back to aperture M+1,
for a slope to stay within the dynamic range, it must follow
|s|<λ0/3T. This means that reducing the period T of the
grating not only increases the sampling, but also increases the
dynamic range. For the case of a spatially sinusoidal wavefront
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ϕm(x , y )= Am cos(2πκx ), where κ is the spatial frequency
and Am is the amplitude measured in meters, the absolute value
of the slope is at most max(|∂ϕm/∂x |)= 2πκ Am . For the
instrument to correctly sense such a wavefront, then

Am <
λ0

6πTκ
. (5)

This equation will be tested in Section 5.
The second limitation is on the sensitivity to high spa-

tial frequencies. Coming back to a sinusoidal wavefront
ϕr(x , y )= Ar cos(2πκx ), where this time Ar = Am(2π/λ0)

and is measured in radians, Taylor’s expansion of the electric
field90 = e iϕr is

90 =

∞∑
j=0

(i Ar cos(2πκx )) j

j !
. (6)

This expression gives us access to different harmon-
ics. For j = 1, we get the first harmonic i Ar cos(2πκx ),
whereas for j = 2, and by using the trigonometric iden-
tity cos2(θ)= (1+ cos(2θ))/2, we get access to the second
harmonic−A2

r cos(4πκx )/4.
The ratio of amplitudes between the second and first har-

monics is Ar /4. This means that for larger values of Ar , the
contribution of the second harmonic increases relative to that of
the first one. This second harmonic is filtered by the M+1 aper-
ture for κ > 1/6T = κmax/2. In other words, for all frequencies
above half the maximum frequency, the second harmonic gets
filtered out, reducing the instrument’s sensitivity to them. For
example, with Ar = 1 rad, the ratio between them is 0.25,
which in turn translates to a drop of about 20% in the amplitude
of the observed wavefront. This drop was first observed on the
theoretical transfer functions presented in our previous paper
[24], where it remained unexplained. We seek to reproduce this
phenomenon in the following section, hence validating our
models.

5. SPATIAL TRANSFER FUNCTION

The spatial transfer function is a representation of the instru-
ment’s accuracy regarding different spatial frequencies. In
principle, its measurement is simple: a pure tone of known
amplitude, i.e., a single spatial frequency, is produced, in this
case by the DM, and then measured by the instrument. This spa-
tial frequency, which has the shape of a sinusoid across the pupil,
is held static for the duration of the detector’s exposure. The
transfer function for any given frequency is the ratio between
the measured amplitude of that frequency and the amplitude of
the input generated by the DM.

Before performing this experiment with CHOUGH, ref-
erence fringes are acquired to measure systematic biases and
calibrate the data. Figure 4 shows monochromatic interference
fringes and the corresponding demodulated phase. The data
were obtained with the He–Ne light source (λ= 633 nm) and
with the DM sent to its zero position. Note that this position is a
flat command on the DM at the middle of its range, which does
not guarantee a flat shape. On the phase data, values go beyond
the ±π/2 and ±π limits, which are characteristic to interfer-
ometers. This extension is achieved with a fast unwrapping
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Fig. 4. (left) Interference fringes produced with the DM in its zero
position and (right) the corresponding demodulated reference phase.
The light source is a He–Ne laser at λ= 633. The physical scale of
both images is the same as they span the length of the pupil, but the
sampling is lower on the demodulated phase. The reason for this is
that a line-pair is being sampled by approximately seven pixels, and the
width of three line-pairs equals the width of two phase data points.

algorithm [28], which allows us to make full use of the CAWS’
dynamic range. 2D single-frame phase unwrapping can be
reliably achieved with a variety of algorithms for interferometers
with a dynamic range of±π [29], which gives us an advantage
over other PDIs with ranges between ±π/2. In this particular
case, the peak-to-valley (PtV) value of the measured phase is
5.1π rad, which is>2.5 times larger than the±π limit and more
than five times larger than for the±π/2 one. This shows that a
good approach to increasing the small dynamic range of PDIs is
to use a working principle that allows for a±π range, such as the
m-PDI, therefore facilitating single-frame phase unwrapping.

After calibrating the biases, the CAWS is fed sinusoidal spatial
aberrations in the x direction with the DM, spanning its full
range of spatial frequencies, of up to 16 cycles/pupil, and open-
loop commanded amplitudes from 0 to 1.3π rad (2.6π rad
PtV). The amplitudes actually achieved by the DM are deter-
mined by the HOWFS. In other words, the input amplitudes
are calibrated with the HOWFS to compensate for the DM’s
non-linearities. Then, the transfer function is computed as the
ratio between the CAWS’ and HOWFS’ amplitude estimations,
as shown by the contour plot in Fig. 5.

The first thing to note in the figure is that there are no data
points at high frequencies or high amplitudes; hence, the top-
right half of the figure is empty. This happens because the DM
cannot access these amplitudes for those frequencies. Therefore,
in the contour plot, the frontier between the void and non-void
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Fig. 5. CAWS’ monochromatic transfer function, calibrated by the
HOWFS for λ= 633 nm. The red dashed line marks the theoretical
prediction of the CAWS’ dynamic range as described by Eq. (5).
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part of the figure marks the maximum amplitude the DM
can deliver. The decrease in maximum amplitude at higher
frequencies is due to the inter-actuator coupling at high spatial
frequencies, which prevents the DM from delivering these
amplitudes. Above around three cycles/pupil, the maximum
amplitude produced with the DM decreases proportionally to
the frequency.

It is possible to observe a tendency for the ratio to decrease
from values above 0.9 and near one in the yellow area at the
lower end of frequencies, down to values between 0.9 and 0.7 in
the green at the higher end. The total end-to-end drop of up to
30% is in part due to a step drop taking place between six and
eight cycles/pupil, or about half way through the instrument’s
frequency range. This effect and the overall drop is in accordance
with the loss of sensitivity predicted by the second diffraction
order being filtered out, as presented in Section 4.

A small exception to this tendency seems to take place at a
frequency of 15 cycles/pupil, where the ratio increases back to
above 0.9. From the raw data, it is concluded that this small
exception is due to local aliasing effects beginning to appear in
both WFSs as they approach their spatial frequency limits. It
is important to remember that local aliasing effects can occur
at certain phases despite still satisfying Nyquist’s sampling cri-
terion. Since the CAWS can sample slightly higher frequencies
than the HOWFS, it is less affected by aliasing at this particu-
lar frequency. In other words, this effect is produced by the
HOWFS calibration of the data.

The last thing to note is that the ratios in the figure drop
almost to zero alongside the red dashed line, which predicts
the CAWS’ dynamic range, as described by Eq. (5). The
model matches the data for frequencies between four and
16 cycles/pupil. Below these frequencies, the DM does not
provide sufficient amplitude to cover the dashed lined and test
our model. In fact no physical DM can fully cover the dashed
line at low frequencies, as doing so would require infinitely large
amplitudes. Regardless of these limitations, the DM had suffi-
cient range and spatial resolution to allow successful measuring
of the instrument’s dynamic range and accuracy through the
construction of the spatial transfer function.

6. CLOSED-LOOP

To assess the CAWS’ completeness of measurements, the fol-
lowing experiment will test whether the CAWS can be used in
closed-loop with CHOUGH’s DM to correct for static aberra-
tions. All tests in this section are performed monochromatically
with the He–Ne laser. For every control frame k, actuator
commands−→ak are computed using the control law

−→ak =
−→a k−1 + αCmat

−→sk , (7)

where α is the loop’s gain, Cmat is the control matrix, and−→s are
WFS measurements. This matrix is built by poking all actua-
tors simultaneously with an independent sinusoidal temporal
frequency [30], and then producing the pseudo-inverse of the
resulting interaction matrix using singular value decomposition.
Figure 6 shows the singular values obtained, sorted in decreasing
order, and the threshold set by the conditioning. As can be seen
in the figure, 779 out of 1020 (total number of actuators: active
and inactive) singular values are kept after thresholding. This
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Fig. 6. Normalized singular values, sorted from highest to lowest.
The left panel shows the 15 largest values in detail, and the right panel
shows the rest.

threshold was iteratively found to produce the lowest residual
error after closing the loop. With 801 active (illuminated) actu-
ators, keeping 779 singular values means that we almost reached
the maximum number of singular vectors that can contribute
more useful information than they do noise. This is a sign that
the CAWS measures signals from the DM with a high degree of
fidelity.

Figure 7 shows the phase measured with the CAWS before
and after closing the control loop on the systematic biases and
waiting until it converges. CHOUGH’s initial static aberra-
tions, as measured by the CAWS, have a rms value of 237.0 nm.
If the entire pupil is considered, after closing the control loop
the final rms value of residual aberrations is 47.7 nm, or 0.075
wavelength cycles. Note that most residual aberrations are
located near the top and bottom edges of the pupil. In these
regions, the DM is fixed to its mount, and so it cannot achieve
the same range as with other actuators. This can be addressed
by masking the reconstructed pupil to reduce its radius by∼4.5
actuators, or by 28% of the total area as shown in the right panel.
Then the value of residual aberrations drops by more than a
factor of six down to 7.7 nm, or 0.012 cycles. This is equivalent
to sensing and correcting an offset of 1.2% rms in the position of
the interference fringes or 0.08 pixels at a sampling of 6.9 pixels
per line-pair, which is very encouraging for the first laboratory
demonstration setup.

Since the ultimate goal of AO is not to reduce the aberrations
measured with a WFS, but rather to increase the angular resolu-
tion and brightness of focal plane images, then the best way to
assess the performance of the control loop is by directly observ-
ing the value of metrics describing the quality of these images.
This can be achieved by simultaneously acquiring images with
CHOUGH’s NFSI, and then estimating their SR. Figure 8
shows NFSI images before and after closing the control loop.
The central panel shows the last image acquired after letting the
control loop converge and its corresponding SR. The average SR
of the last 10 images is 0.73. The increase in SR from the original
0.15 in the left panel of the figure confirms that the control loop
is indeed removing sensed aberrations.

An advantage of the SR is that it can be estimated from rms
aberrations through the use of Maréchal’s approximation [31].
This way, the aberrations on the NFSI’s path can be com-
pared to those on the CAWS. To estimate the SR on the NFSI
using CAWS phase measurements, tip–tilt must be subtracted
from them and non-common path defocus compensated for.
Working under the assumption that the CAWS is difficult
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Fig. 7. CAWS phase measurements of (left) the initial static aberrations, (center) final aberrations the system converges to after closing the control
loop, and (right) a section at the center of the pupil for those central aberrations.
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Fig. 8. NFSI focal plane images with (left) the initial static aberrations, (center) final aberrations the system converges to after closing the control
loop, and (right) the synthetic PSF used as reference to calculate SR, for comparison. All three images have been normalized to have the same cumula-
tive intensity, and have been centered around a single pixel.

to focus before an observation, whereas the NFSI is easier to
do so, then the NFSI’s initial defocus can be considered to be
negligible, and any defocus seen by the CAWS before closing
the loop would be non-common to both instruments. Hence,
Maréchal’s approximation can be extended so that the SR can be
estimated by the CAWS for any frame i as

Si = e
−(σ 2

i +(di−d0)
2)
(
λc
λn

)2

, (8)

where σi is the rms value of all aberrations seen by the CAWS for
frame i , minus tip–tilt and defocus, di and d0 are the amplitudes
of the defocus term seen by the CAWS at frames i and before
closing the loop, respectively, and λc and λn are the central
wavelengths on the CAWS and the NFSI, respectively. Note
that in this particular case, λn equals λc . Conversely, Eq. (8) can
be rearranged to estimate the rms value of aberrations on the
CAWS using a combination of NFSI SR measurements and
CAWS defocus terms, so that√

σ 2
i + d2

i =

√
−
λ2

n

λ2
c

log(Si )+ 2d0di − d2
0 . (9)

Figure 9 shows the temporal evolution of both the rms aberra-
tions and the SR after closing the loop, as estimated using both
the CAWS and NFSI.

As is shown in the figure, independent estimations of the
rms aberrations and of the SR show good agreement after
the first iteration of the control loop. This is strong proof of
the completeness of the CAWS as a WFS, showing that there
are no significant aberrations not seen by it. With respect to
the initial disagreement, this is due to the system being in a
low SR regime (0.15) where, as shown by [32], Maréchal’s
approximation underestimates the rms value of aberrations.
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Fig. 9. Temporal evolution of residual rms aberrations (black)
and SR (blue) from the moment the control loop is closed until it
converges. The SR was computed using NFSI images (dotted blue
line) and estimated using CAWS phase measurements (solid blue
line) minus tip–tilt and compensated for non-common path defocus.
Residual tip–tilt was also subtracted from CAWS phase measurements
before computing their rms values (black solid line). Finally, NFSI SR
measurements and CAWS non-common path defocus estimations
where combined using Eq. (9), to translate SR into rms aberrations on
the CAWS’ path (black dotted line).

7. BROADBAND SPECTRUM

After successfully tuning and closing the loop with monochro-
matic light, the same task was carried out with polychromatic
broadband light produced with a halogen lamp. In combination
with the 647 nm dichroic, the resulting spectrum was centered
aroundλC = 687 nm and had a FWHM of1λFWHM = 77 nm,
or about 18% of the total theoretical bandwidth of 450 nm.
This is about half the bandwidth of the R-band and is centered
around a comparable wavelength.

A concern was all but the central wavelength would be asym-
metrically filtered by M+1, the consequences of which have not
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Fig. 10. Temporal evolution of (black) residual rms aberrations
and (blue) SR from the moment the control loop is closed until it
converges. These results correspond to the same experiment presented
in Fig. 9, but with a broadband halogen lamp rather than a He–Ne
laser. The equivalent central wavelength is 687 nm, and the bandwidth
is 77 nm.

yet been theoretically modeled. By limiting the bandwidth to
18%, we expect to limit the effects of this asymmetrical filtering.

Another chromatic consideration is that for a wavelength
independent OPD, the wavefront’s phase can be rewritten as
ϕLP =OPD · λ/2π . When replaced into Eq. (1), this makes
the modulation of interference fringes a function of the wave-
length. Fortunately and as modeled in our previous paper [24],
this should not have an effect on the estimated phase when all
wavelengths have the same intensity.

To measure the SR, the NFSI was fitted with a narrowband
filter centered around 655 nm and with a bandwidth of 15 nm.
Results are presented in Fig. 10. As shown in the figure, the final
values for the SR and the rms residual aberrations of 0.74 and
51 nm, respectively, are almost identical, as they were in the
monochromatic case. The last 10 frames’ average SR is also 0.74.
This shows that the CAWS can accurately and precisely sense
aberrations with at least this chromatic bandwidth.

8. DISCUSSION

Besides introducing the first experimental demonstration of
the m-PDI, this paper presents the results of three experiments
aimed at empirically validating this concept. The characteriza-
tion of the transfer function determines the CAWS’ accuracy,
the closed-loop experiment tests its precision and complete-
ness, and the polychromatic measurements confirm that the
instrument can perform accurate and precise broadband light
wavefront sensing.

With respect to the characterization of the transfer function,
our measurements confirm both our original hypotheses regard-
ing the dynamic range being limited by the sideband aperture
size, and the drop in sensitivity at high spatial frequencies due to
the filtering of the second harmonic. The most important conse-
quence of these phenomena is that both the dynamic range and
the sensitivity at high frequencies can be extended by increasing
the size of the sideband aperture M+1. This would of course also
increase the instrument’s spatial sampling, which would have to
be accompanied by an increase in the number of pixels across the
pupil by the same factor.

In the closed-loop tests, the final residual aberrations seen by
the CAWS across the entire pupil and inside a central section

were 47.7 nm rms and 7.7 nm rms, respectively. This result is
significant, as it places the CAWS alongside other PDIs capa-
ble of achieving nanometric accuracy, but with an extended
single-frame dynamic range and chromatic bandwidth.

Finally, the ultimate goal of validating the CAWS’ chromatic
bandwidth is to show it can perform wavefront sensing on a
natural guide star without needing narrowband filtering (of a
few nanometers wide), which would restrict the instrument’s
overall throughput. The next step is then to attempt such mea-
surements at the back of an AO system with XAO capabilities
and ample room for visiting instruments.
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