
Advances in Engineering Software 171 (2022) 103147

Available online 13 June 2022
0965-9978/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research paper

An open source hp-adaptive discontinuous Galerkin finite element solver for
linear elasticity

Thomas Wiltshire , Robert E. Bird , William M. Coombs , Stefano Giani *

Department of Engineering, Lower Mountjoy, South Rd, Durham DH1 3LE, UK

A R T I C L E I N F O

Keywords:
Open source software
MATLAB
Discontinuous galerkin finite elements
Linear elasticity
hp-Adaptivity
Researcher development

A B S T R A C T

Open source codes are a key ingredient to greater research integrity and accountability in computational science
and engineering. However, many of these codes have not been developed with modification of the base code as
their primary consideration. Existing codes may provide an environment for researchers to quickly test out their
ideas under different physical conditions in a high level way but they are not always ideal for those interested in
the development of numerical methods. The majority of existing open source discontinuous Galerkin finite
element codes are written in C++ and there is a significant learning curve for junior researchers to adopt, un
derstand and modify the underlying code/routines. This paper presents an open source hp-adaptive discontin
uous Galerkin finite element code written in MATLAB that has been explicitly designed to make it easy for users,
especially MSc/PhD-level researchers, to understand the method and implement new ideas within the core code.
Although the code is focused on solving problems in linear elasticity, it is straightforward to modify it to solve
other physical equations.

1. Introduction

Open source codes are essential for the health of research in
computational science and engineering as they provide a route-in for
researchers to start working with numerical methods without having to
implement hundreds (often tens of thousands) of lines of computer code.
Open source code also promotes collaboration between researchers and
transparent inspection of numerical results - resulting in greater
research integrity and accountability [1]. There are already available
many open source codes to solve specific engineering problems like for
example fractures in materials [2,3] or simulating structures using plates
and shells [4,5].

The majority of numerical methods for solving partial differential
equations (PDEs) can be divided into two categories; those based on
meshes partitioning the physical domain and those not using meshes.
Meshless methods [6] were invented to mitigate some of the difficulties
associated with resolving the geometry of physical domains with
meshes. In common with methods based on meshes like finite element
methods (FEMs), meshless methods use shape functions to approximate
the solutions but not as interpolants as in FEMs, rather than as
approximants. Partition of unity methods is another class of methods not
based on standard meshes but on a coverage of the physical domain with

overlapping patches [7,8]. The category of methods based on meshes is
dominated by FEMs and their variations. One of the most prominent
classes of FEMs is multiscale methods [9,10] in which the approximated
solution is decomposed into coarse and fine-scale solutions. This is
achieved by rewriting the PDE model into a pair of coupled macroscopic
and microscopic models. Other classes of methods were invented to
overcome some of the aspects of classical FEMs. Isogeometric analysis
breaks free from the limitations of polygonal and polyhedral shaped
elements and polynomials of integer order shape functions [11].
Extended and enriched FEMs allow adding to the approximation spaces
functions incorporating specific knowledge of the solution [12,13]. Cut
FEMs eliminate the difficulties to fit complex or implicit surfaces with
standard meshes [14,15]. A lot of effort has been made in studying ways
to control the error in FEMs [16–18]. A very popular approach is
adaptivity as a way to improve the accuracy of computed solutions in
many fields adapting meshes without leaving the FEM framework
[19–21].

There are of course methods not easily classifiable in these two
categories like numerical methods based on Taylor-series [22].

However, the solution of partial differential equations in engineering
analysis is dominated by the continuous Galerkin (CG) variant of FEM.
There are a huge number of open source codes based on conventional CG

* Corresponding author.
E-mail address: stefano.giani@durham.ac.uk (S. Giani).

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

https://doi.org/10.1016/j.advengsoft.2022.103147
Received 23 December 2021; Received in revised form 31 March 2022; Accepted 13 May 2022

mailto:stefano.giani@durham.ac.uk
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2022.103147
https://doi.org/10.1016/j.advengsoft.2022.103147
https://doi.org/10.1016/j.advengsoft.2022.103147
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103147&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Advances in Engineering Software 171 (2022) 103147

2

finite elements (for example, see [23–28], amongst many others). An
alternative to the conventional CG formulation is the family of discon
tinuous Galerkin (DG) finite element methods and there are many rea
sons that researchers may wish to adopt a DG modelling framework,
such as:

(i) their ability to easily allow for adaptive mesh refinement,
hanging nodes and different polynomial orders in adjacent ele
ments due to the relaxation of the compatibility between
elements;

(ii) that, unlike CG elements, DG elements can handle excessive
aspect ratios without degradation of their predictive capabilities;

(iii) that, unlike CG methods, degrees of freedom are not shared be
tween elements, making easier to split a mesh on several
computing nodes;

(iv) that, unlike CG methods, boundary conditions are imposed
weakly, making easier to incorporate complicated boundary
conditions into models;

(v) more freedom in choosing shape functions since no continuity
across elements is needed.

There are several variants of DG finite element methods, categorised
by the inter-element communication technique used to couple adjacent
elements. In this paper we adopt a symmetric interior penalty DG (SIPG)
approach. Despite their advantages, there are far fewer DG finite
element open source codes (compared to CG-based methods) and the
majority of these codes have not been developed with understanding
and modification of their core code as their primary focus. To the best of
the authors’ knowledge, the following open-source DG codes are freely
available (grouped by underpinning implementation language):

C++ based: hpGEM [29], DUNE (Python binding) [30], DoGPack
(Python/MATLAB post-processing possible) [31],
NEKTAR++, FreeFEM [32], MFEM [33] and FEniCS
(Python front-end available) [34];

Python based: PyFR [35] and Nutils [36].
FORTRAN based: SPEED [37] and SEISOL [38].

It is clear that the majority of these codes are based on C++ for
computational efficiency. However, several researchers are interested in
the development of methods rather than the analysis of large-scale
problems. For these researchers, being able to easily access and under
stand the underlying source code is essential and these C++ imple
mentations may be off-putting or a complete barrier to using these open
source codes to develop their ideas. Python, being open-source to its
very core, is a credible alternative and several of the C++ codes have
Python front ends and/or processing environments, as identified above.
However, in the authors’ opinion, within mathematical and technical
computing, MATLAB is the dominant tool taught to engineers and sci
entists whilst at university and MATLAB has been specifically designed
with these users in mind [39]. The documentation, help and debugging
environment offered by MATLAB is unparalleled and this allows re
searchers (especially junior scientists/engineers) to quickly develop
their scientific ideas whilst minimising the syntax barrier.

In this paper we present a MATLAB-based open-source symmetric
interior penalty DG finite element code that has been designed to make
the method accessible to early career researchers, such as final year
undergraduates, MSc and PhD students as well as post-doctoral re
searchers moving into this area of research. This point is emphasised by
the fact that the first author of this manuscript was a final year MEng
student during the development of this paper and associated code.
Another point of novelty of this paper is the inclusion of error estimate
driven hp-adaptivity, where the code automatically refines the back
ground mesh in terms of element size (h) or polynomial order (p) of
specific elements based on the estimate error in each element. This
provides a powerful stress analysis tool which is able to achieve extreme

accuracy (errors less than 10− 10) with modest computational effort and
on resources that are commonly available to early career researchers
(standard laptop/desktop PCs). The physical problem focus of the code
is linear elasticity, however once the structure of the code is understood,
it is straightforward to modify the code to analyse other physical
problems, include alternative element formulations, test out different
adaptivity routines, etc.

Following this introduction, the layout of the rest of the paper is as
follows: Section 2 outlines the considered model problem and key details
of the symmetric interior penalty DG finite element method (including
the error estimate and adaptivity algorithm), Section 3 explains how to
install and test the method, Section 4 details the structure of the program
and demonstration problems are show in Section 5. Finally, brief con
clusions are included in Section 6. All of the code and associated
documentation is available from https://github.com/Robert-Bird/Disco
ntinuous-Galerkin-MATLAB.

2. The method

In this section, we detail the numerical analysis aspects of the
implemented method. The model problem and numerical methods
implemented in the code are analysed in [40] where in-depth analysis
can be found.

2.1. Model problem

The problem implemented in the code is linear elasticity with a va
riety of boundary conditions: Let Ω be a bounded polygonal domain in
R2 with ∂Ω = ΓD ∪ ΓN ∪ ΓT, where ΓD, ΓN and ΓT are disjoint sets, and let
u the solution of

− ∇⋅σ(u) = f in Ω
u = gD on ΓD

σ(u)⋅n = gN on ΓN
u⋅n = gT ⋅n on ΓT

t(u)⋅n‖ = 0 on ΓT ,

(1)

where n = (nx, ny) is the unit vector perpendicular to the boundary of Ω
and pointing out and n‖ is the tangential unit vectors to the boundary,
t(u) is the traction component of the stress, i.e.

t(u) := σ(u)⋅n.

The functions f, gD, gN and gT specify the rhs and the values along the
boundaries and they are respectively in [L2(Ω)]

2, [H1/2(ΓD)]
2, [L2(ΓN)]

2

and [H1/2(ΓT)]
2. We define the strain tensor for a displacement v as

ϵ(v)ij :=
1
2 (∇jvi +∇ivj) and the stress as σ(v) = Dϵ(v) where the matrix

D ∈ R3×3×3×3.
The set ΓD may be empty. In this case, problem (1) may not have a

unique solution if rigid motions are in the kernel [41]. Therefore, the
natural choice of space to enforce a unique solution for problem (1) is
u ∈ S := [H1(Ω)]

2
\R, where R is the space containing all rigid motions.

In case the prescribed boundary conditions define a problem with rigid
motions in the kernel, the well-definiteness of the problem can be
enforced using the average boundary condition to remove rigid motions
[42]. Such a case happens for example when only Neumann boundary
conditions are used, see problem 3 in Section 3.2. The code automati
cally applies the average boundary condition if needed.

2.2. Symmetric interior penalty discontinuous Galerkin method

In this section we introduce our DG method used in the code to solve
problem (1). We assume that the computational domain Ω can be par
titioned into a shape regular mesh T of triangular and affine elements
and we denote with K a generic element of T . We allow for irregular
meshes with a maximum of one hanging node per edge. Due to our

T. Wiltshire et al.

https://github.com/Robert-Bird/Discontinuous-Galerkin-MATLAB
https://github.com/Robert-Bird/Discontinuous-Galerkin-MATLAB

Advances in Engineering Software 171 (2022) 103147

3

assumption that the initial mesh is shape regular, allowing at most one
hanging node per edge implies that the diameters of the elements in all
refined meshes are of bounded variation for any pair of neighbouring
elements. We denote E (T) and E int

(T)⊂E (T) the set of all edges of
the mesh T and the subset of all interior edges respectively and by
E

BC
(T)⊂E (T) the subset of all boundary edges. The set E BC

(T) is
partitioned in the three subsets E D

(T), E N
(T) and E T

(T) that are the
sets containing the edges forming the three portions of the boundary ΓD,
ΓN and ΓT . We define hK and hE to be the diameter of the element K and
the length of the edge E respectively.

In the implementation, we allow to vary the polynomial degrees
across elements under the constraints that the variation is at most equal
to one for any pair of neighbouring elements. This is enforced during
mesh adaptation, too. For each element K of the mesh T we associate a
polynomial degree pK ≥ 1 and we introduce the degree vector p = { pK :

K ∈ T } and we define pmin as the minimum of pK on the mesh T . For
any E ∈ E (T), we introduce the edge polynomial degree pE by

pE =

{
max(pK , pK′), if E = ∂K+ ∩ ∂K − , E ∈ E

int
(T),

pK , if E = ∂K ∩ ∂Ω, E ∈ E (T)\E
int
(T),

(2)

where + and - denote the two elements sharing the face E. Hence, for a
given partition T of Ω and a degree vector p on T , we define the
hp-version DG finite element space by

Vp(T) =
{

v ∈
[
L2(Ω)

]2
\R : v|K ∈

[
P pK (K)

]2
, K ∈ T

}
, (3)

where P pK (K) is the space of polynomials of degree at most pK and R is
the set of rigid motions. We also use + and - to denote all quantities
related to the elements. Given an edge E ∈ E

int
(T) shared by two ele

ments K+ and K− , we define the jump [[⋅]] operator and the average {⋅}
operator on vectors and tensors as:

[[v]]ij = v+
i n+

Kj − v−
i n+

Kj

[[σ]]i = σ+
ij n+

Kj − σ−
ij n+

Kj

{σ(v)} =
1
2
(σ(v)+ + σ(v)−)

(4)

where n+
K = (n+

x , n+
y) the outward unit normal on the boundary ∂K+ of an

element K. Such definitions are modified on edges along the boundary of
the domain, i.e. E ∈ E

BC
(T)⊂E (T), along the boundary we set

{σ(v)} = σ(v), [[σ]]i = σijn+
Kj and [[v]]ij = vin+

j . Thus, the DG approximation
problem (1) reads as follows: Find uh ∈ Vp(T) such that

aDG(uh, vh) = l(vh) ∀vh ∈ Vp(T) (5)

where the bilinear form

aDG(u, v) :=
∑

K∈T

∫

K
σ(u) : ϵ(v) dx

−
∑

E∈E int(T)∪E D(T)

∫

E
{σ(u)} : [[v]] + {σ(v)} : [[u]] ds

+
∑

E∈E int(T)∪E D(T)

γp2
E

hE

∫

E
[[u]] : [[v]] ds

−
∑

E∈E T(T)

∫

E
(t(u)⋅n)(v⋅n) + (t(v)⋅n)(u⋅n) ds

+
∑

E∈E T(T)

γp2
E

hE

∫

E
(u⋅n)(v⋅n) ds

and the linear form

l(v) :=
∑

K∈T

∫

K
f⋅v dx

−
∑

E∈E D(T)

∫

E
gD⋅σ(v)⋅n ds +

∑

E∈E D(T)

γp2
E

hE

∫

E
gD⋅v ds

+
∑

E∈E N(T)

∫

E
gN ⋅v ds

−
∑

E∈E T(T)

∫

E
(gT ⋅n)(t(v)⋅n) ds +

∑

E∈E T(T)

γp2
E

hE

∫

E
(gT ⋅n)(v⋅n) ds

where γ is the penalty constant. As proved in [43], the penalty term γp2
E

hE

adjust for any variation in h or p in the mesh. This means that the penalty
constant γ is mesh independent and the only condition that γ must satisfy
is to be big enough as stated in [43]. In the authors’ experience, γ = 10 is
big enough for most problems. For more complicated PDEs, the defini
tion of the penalty term can be modified in view of [44] to take into
account varying coefficients in the second order term of the PDE, see for
example [45–50].

The natural norm for problem (5) is the DG norm:

‖ |u ‖ |T :=

(
∑

K∈T

‖ ϵ(u) ‖2
0,K +

∑

E∈E int(T)

γp2
E

hE
‖ [[u]] ‖2

0,E +
∑

E∈E D(T)

γp2
E

hE
‖ u ‖2

0,E

+
∑

E∈E T(T)

γp2
E

hE
‖ u⋅n ‖2

0,E

⎞

⎠1/2,

(6)

where ‖ ⋅ ‖0,K and ‖ ⋅ ‖0,E are respectively the L2-norm on an element K
and on an edge E.

2.3. Error estimator

This section defines the error estimator implemented in the code. In
[40] the reliability and efficiency proofs of the error estimator are
presented.

The error estimator is defined as

ηerr =
̅̅̅∑

K∈T

(
η2

R,K + η2
J,K + η2

F,K
)√
, (7)

where the three terms under the sum are defined as

η2
R,K :=

h2
K

p2
K
‖ fh +∇⋅σ(uh) ‖

2
0,K ,

η2
J,K :=

1
2
∑

E∈E int(K)

γ2p3
E

hE
‖ [[uh]] ‖

2
0,E +

∑

E∈E D(K)

γ2p3
E

hE
‖ uh − gD,h ‖

2
0,E

+
∑

E∈E T(K)

γ2p3
E

hE
‖ uh⋅n − gT,h⋅n ‖

2
0,E,

η2
F,K :=

1
2
∑

E∈E int(K)

hE

pE
‖ [[σ(uh)]] ‖

2
0,E +

∑

E∈E N(K)

hE

pE
‖ σ(uh)⋅n − gN,h ‖

2
0,E

+
∑

E∈E T(K)

hE

pE
‖ t(uh)⋅n‖ ‖

2
0,E

where fh and gN,h are the L2 projections of f and gN onto the finite
element space and where gD,h and gT,h are piecewise polynomial
approximated of traces of functions in H1(Ω) as in [51].

2.4. Adaptivity

The code supports arbitrary high order triangular elements as

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

4

defined in Section 2.2.3 in [52]. The hp-adaptive strategy used here was
originally proposed in [53] and consequently used in [54]. The elements
are chosen for either h or p refinement using Algorithm 1.

The marking strategy in Algorithm 1 uses two threshold values δ1
and δ2, with δ2 ≥ δ1, to determine what elements to refine in h and what
elements in p. All the elements satisfying η2

K > δ2η2
max, where η2

max =

maxK∈T η2
K, are marked for h − refinement and all elements satisfying

δ2η2
max ≥ η2

K > δ1η2
max are marked for p − refinement. The remaining el

ements are not marked for refinement at all. To only apply h-adaptivity
set δ2 = δ1 ∕= 0. Similarly, to only apply p-adaptivity, set δ2 = 1 and
δ1 ∕= 0. To uniformly refine in h set δ2 = δ1 = 0 and to uniformly refine
in p set δ2 = 1 and δ1 = 0.

3. Installation and testing

3.1. Installation

The only MATLAB add on that SIPG Linear Elastic uses is the Sym
bolic Math Toolbox™, which can be downloaded from mathworks.com.
To begin the installation, clone or download the repository from GitHub.
Discontinuous-Galerkin-MATLAB is a MATLAB directory environment
that contains main functions, placed in the top directory, that can be run
directly, the path_add.m script to add folders to the MATLAB search path,
and folders containing routines that perform the analysis. The package
has the functionality to support mesh generation with the MESH2D, a
MATLAB based Delauney mesh generator for two-dimensional geome
tries [55,56] which can be downloaded from the MathWorks® website.
If the user wishes, this package can be integrated into the program by
copying the MESH2D file into the SIPG Linear Elastic directory. Care
should be taken to ensure that the folder containing the package is added
to the MATLAB search path, so it is advised that the user edits line 28 of
path_add.m as appropriate. The three problems described in Section 5 can
be run without MESH2D. The code analytical_problem.m needs MESH2D.
Table 1 describes the subfolders in SIPG_linear_elastic_v1.0.

The reference manual can be generated automatically using the
M2HTML toolbox [57]:

m2html(’mfiles’, ’SIPG_dir’, ’htmldir’,’doc_dir’, ’recursive’,’on’);
where SIPG_dir is the relative path to the folder Discontinuous-Galerkin-
MATLAB and doc_dir is the relative path to the folder where the user
wants the reference manual to be saved. All functions in the Discontin
uous-Galerkin-MATLAB code are integrated with the MATLAB help sys
tem. The installation consists in running the script path_add.m to add the
necessary folders to the MATLAB search path.

3.2. Testing

After installation, the user should call the function tests.m in the

command window. The function tests.m is based on the unit test
framework used in Matlab. This is used to check that the program is
working as expected on the user’s computer by performing a set of four
simulations, listed in Table 2, and thereby testing critical routines. By
comparing the values from this simulation with a set of expected values
stored in .txt files, the function checks that all routines are performing
nominally.

Apart from the global stiffness matrix calculation DG_algorithm.m and
the volumetric integral of the body force force_integration_vol.m, other
routines common to all test problems are the error estimation algorithms
error_calc_ele.m and the calculation of the L2 and DG norms. Depending
on the boundary conditions defined, different subroutines within the
error estimation and the calculation of the DG norm will be executed and
tested by tests.m.

The primary role of test problem 1 is to verify that the mesh adap
tivity algorithms are functioning correctly. To achieve this, the program
solves the problem with the displacement solution shown in Table 2 with
five different mesh adaptivity methods: uniform h, uniform p, adaptive
h, adaptive p and adaptive hp. Test problems 2, 3, and 4 establish that the
force surface integral functions associated with each type of boundary
condition are performing as expected. When executing a problem with
only Neumann boundary conditions, the problem is indeterminate and
rigid body motion is possible. To prevent rigid body motion, such that all
displacements and rotations are zero, for instance, test problem 3, it is
necessary to generate Lagrangian force components to cause the system
to act in a deterministic manner. This is performed in the UV_ave_bc.m
and rot_ave_BC.m, which are additional algorithms whose performance is
checked by test problem 3.

4. Program structure

4.1. Mesh data structures and flags

We now consider the format used in the program. The initial mesh of
all simulations must be a conforming mesh, i.e. no hanging node must be
present. The coordinates of the nodes are stored in the variable coord and
element topology information is stored in the variable etpl.mat, dis
cussed below.

The elements used are triangular with an anticlockwise local node
numbering convention, and the global node index begins at one. Global
nodal coordinates are stored in the variable coord, an [x,y] list with di
mensions nodes× 2, where nodes is the number of nodes in the mesh.
Nodes are shared between elements if they are not hanging nodes.
However, in DG methods, degrees of freedom are not shared between
elements. Element topology information is stored in the MATLAB
structure array etpl, which initially contains the fields mat, poly and tree;
an additional field, ed_recalc, is calculated at the start of each adaptivity
loop and is not required as an input. A description of each field, their
input format and array dimensions is shown in Table 3.

In the mat field, the element faces are defined by stepping
Algorithm 1. hp-refinement strategy: For parameters δ1, δ2

with 1 ≥ δ2 ≥ δ1 ≥ 0.

Table 1
Subfolders ofSIPG_linear_elastic_v1.0.

adaptivity Functions to adapt the mesh.

boundary_conditions Functions to apply average boundary condition.
error_calculation Functions to compute the a posteriori error estimator.
example_problems Functions to set up the example problems.
mesh_generation Functions to generate the meshes.
norms Functions to compute the norms of the errors of the computed

solutions.
plotters Functions to plot the solutions.
problem_set_up Functions to set up the example problems.
rhs Functions to compute the rhs of the linear system
solvers Functions to solve the linear system.
stiffness_matrix Functions to compute the DG stiffness matrix of the linear

system.
tests Functions to perform the tests.

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

5

anticlockwise around the local nodes, indexed by their global node
number (row position in coord). Elements in the mesh are indexed ac
cording to their row position in etpl.mat, and are assigned a polynomial
order in etpl.poly. As for the first generation of elements every element is
active, etpl.tree should be initialised by setting all rows as [1,0,0]; storing
information about the history of elements using this variable facilitates
adaptation of the code to include mesh derefinement, which may be of
interest to advanced users.

The final data structure describing the mesh is the element face to
pology matrix etpl_face, which has the format [element 1,element 2,local

face 1, local face 2,normal x,normal y,face type]. In the code it is enforced
that element 1 is an element for which the face is a complete face. In case
of hanging nodes, element 2 with an hanging node in the middle of the
face. This variable stores information about face connectivity for all
faces in the mesh, illustrated in Fig. 1.

The local face value ranges between one and three, indexed in an
anticlockwise direction around each element; normal x, normal y describe
the outward facing normal vector orientation; face type is a flag used to
indicate whether the face is internal, and, if it is external, the boundary
condition to be imposed. Table 4, below, outlines the flagging conven
tion used in the face type column of etpl_face. If a face is external then the
value in the relevant row for element 2 in etpl_face is set to zero, as is the
value of local face 2.

The mesh data structure format that SIPG Linear Elastic uses is
compatible with the mesh generation algorithm MESH2D. Conse
quently, if additional information is desired by the user about the data
structures discussed in this section, this can be found in the MESH2D
documentation.

4.2. Creation of data structures and flags

The data structures and their respective fields required to solve the
SIPG problem are etpl, coord and etpl_face. They are either hardcoded as.
txt files, as in the case of problems 1-to-4 in Table 2 or generated with
MESH2D. There are two stages in creating the data structures if MESH2D
is used, this is highlighted with the analytical_problem.m example. First,
the mesh input data for MESH2D is defined, in this case in analy

tical_problem_generator.m. Second the input data is used by MESH2D to
create an element topology which is then restructured into coord, etpl

and etpl_face; this happens with the routine seed_mesh_square.m.
The input data required for MESH2D is, node, edge and BC, and in this

example are defined in analytical_problem_generator.m. node is structured
as a list of n domain boundary coordinates [x,y], with size [n× 2], and
edge is a list of contiguous set of edges that combine to form the
boundary of the domain. Each edge in edge is defined by 2 boundary
domain coordinate numbers, e.g. [n-1,n], and has the size [n× 2]. Last, BC

is defined, it is of size [n×3] with the first two columns the same as edge,
the third column is a face type flag which defines the type of boundary
condition for each edge in edge.

Once the input data has been defined by the user, seed_mesh_square.m

is called. The first operation of which is to call the routine refine2, of
MESH2D, which takes node and edge as in inputs and outputs a mesh in
the form of an element topology and coordinate matrix, respectively
stored in etpl.mat and coord. Additionally, the list conn is also outputted
of size [number of external edges× 2], each row is 1 edge and contains 2
global node numbers. It is then extended by the finding_the_boundary.m

routine to have a third column that contains the face flags for each edge.
finding_the_boundary.m operates on the basis that the node numbers for
each external edge in BC also exist in conn. Hence there exists a set of
edges in conn that link between the nodes defining a boundary edge in
BC, these edges thus all have the same face flags defined in BC. Now that
the element topology of the initial conforming mesh has been created,
the fields poly and tree of etpl can be defined as in the previous section.
etpl.tree is initialised by setting all rows to [1,0,0] and etpl.poly is ini
tialised by setting the rows to [row number,initial polynomial order]. The
next stage to seed_mesh_square.m is creating etpl_face with two steps, both
of which are called by etpl_face_square_func.m. First, create etpl_face for all
internal faces and second, for all external faces. Both are dependent on
etpl.mat and coord created by MESH2D, whilst the latter also depends on
conn.

The creation of the internal faces is performed by etpl_face_all.m and is
described with Algorithm 2. It loops over all the elements in the mesh
nels and their local face numbers, 1-to-3, on lines 2 and 3. If the element
el and its local face number f have not been stored in etpl_face, controlled
by the if statement on line 4, the face counter face_count is increased by 1
and etpl_face_index is updated to indicate the element, el and face f have
been seen by the algorithm. Then, el, f and the outward normal n to the
face are stored in etpl_face on line 8. Next, a search of etpl.mat is per
formed to find an neighbour element el_n, this is defined as an element
which shares two nodes with el. If el_n exists, then it and the local face
number that contains the shared nodes are stored in etpl_face, addi
tionally etpl_face_index is updated to indicate the element, el_n and face f_n
have been seen.

Algorithm 2 will find all faces in the domain and store them in
etpl_face, however the last column of the etpl_face will not be defined for
the external faces. This occurs in etpl_face_ext_find_square.m, described by
Algorithm 3, and uses conn to assign the face flag to the external faces of
etpl_face.

The last data structure to be created is ed which stores for each
element its degrees of freedom and steers the local element stiffness
matrices into the global matrix. It is created during the accumulation of

Table 2
Test problems and main routines used.

Problem
Number

Boundary Condition Type Expression Main Routines Used

1 Homogenous Dirichlet u = sin(πx)sin(πy)
v = sin(πx)sin(πy)

h_adapt.m, p_adapt.m, hp_adapt.m, DG_algorithm.m, force_integration_vol.m

2 Inhomogenous Dirichlet u = sin(πx)sin(πy)
v = cos(πx)sin(πy)

DG_algorithm.m, force_integration_vol.m, force_integration_Dirichlet.m

3 Inhomogenous Neumann u = sin(2πx)sin(2πy)
v = cos(2πx)sin(2πy)

DG_algorithm.m, force_integration_vol.m, UV_ave_bc.m, rot_ave_BC.m, force_integration_Neumann.m

4 Inhomogenous Dirchlet/
Neumann

u = x
v = y

DG_algorithm.m, force_integration_vol.m, force_integration_Neumann.m,
force_integration_Dirichlet_Neumann.m

Table 3
Fields in etpl.

Field Description Format Dimensions

mat Element topology
matrix

[node1,node2,node3] [nels × 3]

poly Element polynomial
order

[element number,polynomial order] [nels × 2]

tree Element tree
structure

[active flag, generation number,

parent element]

[nels × 3]

ed_recalc Flags for refined
elements

[flag] [nels]

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

6

the volumetric part of the stiffness matrix calculation in vol_int.m and has
size [nels× max(NDOF)], where each row corresponds to an element
number and max(DOF) is the maximum number of local degrees of
freedom1that an active element in the mesh has. It’s creation is sum
marised in Algorithm 4, where DOF is degrees of freedom and, NDOF is
the number of degrees of freedom.

It is important to highlight three aspects of the DOF storage in ed.
First, elements which are not active will have only zeros in their row, as
controlled by the if statement. Second, the DOF only increases with
active elements, this ensures that no rows and columns with zero values
will appear in the global stiffness matrix when the local element

matrices are steered into the global matrix. Last, ed is reset to zero after
each adaptive step to account for different elements that have become
active or changed polynomial order. This therefore means it is possible

Fig. 1. Example of three elements in a 2D DG Mesh. Arrows indicate the outward normal direction, values in boxes are the element number and values on the edge
are element face number (c.f. Fig. 2 of [58]).

Fig. 2. Unit square domain initial mesh.

Table 4
Face type flags.

Face Type Flag in etpl_face

Internal Faces 1
Homogenous Dirichlet BC 2
Nonhomogenous Dirichlet BC -2
Homogenous Neumann BC 3
Nonhomogenous Neumann BC -3
Homogenous Mixed Dirichlet/ Neumann BC 4
Nonhomogenous Mixed Dirichlet/Neumann BC -4

Algorithm 2. Internal face creation.

1 Defined by the polynomial order.

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

7

for the DOF for an element to change during an adaptivity step.

4.3. Modification of data structures during adaptivity

During the adaptive step the mesh is adapted through changes in the
size and polynomial order of elements in the mesh. When the changes
occur, the element topology structure etpl, node coordinate list coord and
face connectivity and boundary matrix etpl_face need to be updated. The
changes to these datasets occur in mesh_refine_topology_marking.m, the
structure of which is provided by Algorithms 5 and 6.

mesh_refine_topology_marking.m is governed by the for loop on line 2 of
Algorithm 5, it loops over the possible element ages in the mesh from
oldest to youngest; a younger element is the result of more refinements
compared to an older element. This ensures that during the refinement
process a maximum of one hanging node can exist on a face. The second
loop on line 3 loops over the elements that are marked for h-refinement,
within this loop new nodes, elements and faces are created. The first

stage of the algorithm updates etpl and coord with homogeneous
h-refinement on element el_ref. For homogeneous refinement midside
nodes are required, these are either created resulting in updates to coord,
or retrieved as they may exist already, on line 5 using the coor

d_check_new.m routine2. The node numbers for the vertices are then
stored in Nn1,Nn2 and Nn3, the midside nodes Nn4,Nn5 and Nn6, which
are combined to create four new elements on line 9

etpl.mat(nel+1,:) = [N1 N4 N6];

etpl.mat(nel+2,:) = [N4 N2 N5];

etpl.mat(nel+3,:) = [N6 N5 N3];

etpl.mat(nel+4,:) = [N6 N4 N5];

where nel is the number of elements in the mesh. The assignment of the
node numbers in these way ensures that the local face numbers of the
new elements coincide with el_ref. Elements nel+1-to-nel+3 use a com
bination of vertex nodes and midside nodes, nel+4 is a formed from only
midside nodes. Next on line 10 new elements are assigned their parent
polynomial order, and the active element tree etpl.tree is updated on line
11. This is followed by an updating the face connectivity matrix for all
faces corresponding to el_ref on line 12 with Algorithm 6.

The update to etpl_face is split into two steps in Algorithm 6, the first
step is defined with the for loop which spans lines 4–15, corresponding
to the elements nel+1-to-nel+3 as these elements will have faces which
interact with element and face information that already exists. The
second step occurs with the for loop on lines 16–18 since the faces of
element nel+4 are shared only with the newly created elements and
hence new face information has to be created. The first section of the
algorithm starts by finding the faces that correspond to el_ref and storing
these in etpl_face_current_el. The local faces j=1:3 of el_ref are then search
for in etpl_face_current_el, for a j they stored in etpl_face_current_face. If
there is only one row in etpl_face_current_face, then the new elements that
share face j with el_ref are assigned the face information of etpl_face_

current_face and stored in etpl_face. If there are two rows of etpl_face_

current_face then the face j of el_ref has a hanging node, each new element

Algorithm 3. External face creation.

Algorithm 4. ed creation.

Algorithm 5. Mesh adaptivity Algorithm, etpl.

Algorithm 6. Mesh adaptivity Algorithm, etpl_face.

2 When using the coord_check_new.m routine it is important to highlight that
the node check is performed using element topology rather nodal position

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

8

on j is then assigned the row of etpl_face_current_face. The row which they
are assigned is found by finding which row contains an opposite element
that it share two nodes with. Last the face information for nel+4 is found
and stored in etpl_face on lines 16–18, this achieved using a similar an
algorithm similar to Algorithm 2.

When storing new information in etpl_face it is important to highlight
that all the new element numbers go into the first column, and all new
local face numbers are stored in the third column. This ensures that the
element and face information of the smaller element on the face is al
ways in the same columns.

4.4. Description of example codes

In this section, we briefly describe the structure of the code analy

tical_problem.m. The structures of the other examples example_problem_1.

m, example_problem_2.m and example_problem_3.m are similar. The defi
nition of the problem under consideration is done between lines 38 and
39. For each problem, multiple simulations with different choices of
parameters can be done sequentially with a single call to analy
tical_problem.m. The loop running all simulations span from line 42 to
line 138. Inside the loop, eight steps are executed:

1. Generation of the mesh (line 46): see the description of the data
structures in Section 4.1.

2. Entering the adaptivity loop (line 56): this loop applies several
adaptive steps until the variable exit is set to 1.

3. Calculating the global stiffness matrix (line 66): this step assembles
the global matrix in the linear system.

4. Calculating the global rhs (lines 71–75): each type of contribution to
the global rhs is computed on a different line. On line 75, all
contribution are assembled.

5. Computing the solution (line 81): the MATLAB implementation of
the back-slash is used for the task.

6. Error estimation (lines 87–94): the L2 and the DG norm of the dif
ference between the true solution and the computed solution are
calculated. If the analytical solution is not available then it is set to
zero. Also the a posteriori error estimator of the computed solution is
calculated in this step.

7. Mesh refinement (line 100): the mesh is refined using the specified
adaptive algorithm.

8. Postprocessing (lines 110–134): a series of plots are generated.

The definition of the problem is performed setting the variables in
Table 5. Examples of such procedures are: analytical_problem_generator.m,
analytical_problem_1_generator.m, analytical_problem_2_generator.m and ana

lytical_problem_3_generator.m.
In the code, two ways to set up the mesh are used. In analytical_pro

blem.m, the routine seed_mesh_square is used which calls MESH2D. In
analytical_problem_1_generator.m, analytical_problem_2_generator.m and ana

lytical_problem_3_generator.m, the routines squaremesh, Lmesh and crack

mesh are used. Such routines read the mesh from files.

4.5. How to set up a custom problem

The easiest way to set up a new problem is to make a copy of ana

lytical_problem.m and modify the code accordingly. The two main steps
are:

1. Define the new problem defining all the variable in Table 5.
2. Define the mesh to use either loading it from file or generating using

MESH2D, see Section 4.4. The user may also decide to write routines
to import meshes saved in existing formats.

Optionally, the postprocessing section of the code may be changed to
display the information in the requested format.

5. Example problems

In this section, we present three example problems that demonstrate
the capabilities of the package. These examples serve as a guide to
problem set up by showing how the problems outlined in [40] can be
analysed. These are a problem with a smooth solution on a unit square
domain, a non-smooth problem on an L-shaped domain, and a crack in a
plate problem, performed by executing the .m scripts example_problem_1.
m, example_problem_2.m and example_problem_3.m respectively. These
problems do not use the set up scripts for use with MESH2D discussed
above to generate the mesh.

5.1. Problem with an analytical solution on unit square domain

The first example, example_problem_1.m, considers a small strain
linear elastic problem on (x, y) ∈ Ω = (0, 1)2 where x and y are in me
ters, see Fig. 2. The problem acts in plane strain with Young’s modulus
EY = 5

2Pa and a Poisson’s ratio ν = 1
4. As discussed in [40], the right-hand

side f of Equation (1) should be selected such that the exact analytical
solution is

u =

{
sin(2πx)sin(2πy)
sin(2πx)sin(2πy)

}

.

For this problem, the boundary condition is homogeneous Dirichlet
(zero displacement) along the whole boundary. Fig. 2 shows the mesh
used for this example.

In the file analytical_problem_1_generator.m all parameters to run this
example are defined. For example, on line 73, the type of boundary
conditions are defined. The value 2 corresponds to homogeneous

Table 5
Set up script variables.

Input Description Notes

node Vertices of the desired domain
(used for mesh generation)

Number of vertices by 2 array of
the [x,y] coordinates of the vertices
of the domain

edge Defines the connections between
the domain vertices, indexed
according to their row position in
nodes

Number of edges by 2 topology
matrix of the connections between
the domain vertices

BC Imposed boundary conditions See Table 4
av_bc Flag to indicate if the average

boundary condition is used
See [42]

d_2 Delta 2 coefficient Array containing one value for
each simulation defining the
marking strategy to use, see
Section 2.4

d_1 Delta 1 coefficient Array containing one value for
each simulation defining the
marking strategy to use, see
Section 2.4

loop_end Number of adaptivity loops 1 by number of simulations array
defining the no. adaptivity loops
for each simulation

sim_end Number of separate simulations -
E Young’s Modulus (Pa) -
nu Poisson’s ratio -
u, v Displacement expression in the x,y

directions
Problems with an analytical
solution: Symbolic expression for
the displacement solution across
the domain Problems without
known solutions: Symbolic
expression for the imposed non-
homogenous dirichlet boundary
condition

traction Array containing expressions for
the imposed traction in the [x,y]
directions

Problems without known solution

fx,fy Expressions for the imposed body
force in the [x,y] directions

Problems without known solution

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

9

Dirichlet. The scalar material constants for E, Young’s modulus (Pa) and
v, Poisson’s ratio are set on line 75. on lines 77 and following lines, we
define the number of simulations to perform by setting sim_end=3, and
then choose the number of adaptivity loops for each simulation by
setting the values in loop_end=[11 4 3], i.e. 11 hp-adaptivity loops, 4
h-adaptive loops and 3 pure-h loops. The penultimate step is to select the
d_1 and d_2 parameters for each simulation, achieved by inputting the
chosen values into the relevant columns in each array. For this example,
the desired δ values are d_2=[0.7, 0.07, 0] and d_1=[0.07, 0.07, 0]. An
overview of the variables used in setting up the script is given in Table 5.
The program determines the analytical body force from the analytical
displacement solution, and then imposes the analytical body force across
the domain. These tasks are performed on lines 105 through 123 using
the MATLAB symbolic toolbox. This is done in three steps:

1. Differentiating the displacement with respect to area to find the
strain components across the domain

2. Multiplying the strain vector by the elastic stiffness matrix De to find
the stress across the body

3. Differentiating the stress with respect to area to find an expression
for the body force

To perform the simulations, the user should enter the command
example_problem_1. The program will output a table detailing the prog
ress of the mesh generation algorithm, for each adaptivity loop infor
mation about the time taken to calculate important parts of the DG
algorithm, and the error estimate in the command window. Addition
ally, for each simulation the program will produce three figures: the first
shows a colour coded plot of the boundary conditions applied to the
external faces, the second is a log-log plot of the error estimate and the
DG and L2 norm convergence, and the third is a surface plot of the von
Mises stress across the domain.

An important difference between SIPG Linear Elastic and the pro
gram used in [40] is that the former initialises the simulation with an

unstructured mesh, and the latter initialises with a structured mesh.
Despite this, comparing the convergence plot for the square problem
produced with SIPG Linear Elastic, Fig. 3, to Fig. 1 of [40] it is clear that
the magnitude of the error estimator, ηerr, the error in the DG norm, ‖ |u
-uh‖ |, are similar for a given number of degrees of freedom, and the
convergence patterns also show similarities.

5.2. Non-Smooth problem on an L-Shaped domain

Next, we consider example_problem_2.m, a linear elastic problem on
(x, y) ∈ Ω = (− 0.5,0.5)2/([0,0.5] ×[− 0.5, 0]) where x and y are in me
ters, acting in plane strain with the same material constants as in
example 1. The exact solution u is chosen such that the problem is sin
gular at (x,y) = (0,0),

u =

{ (
x2 + y2)2/3

(
x2 + y2)2/3

}

.

The relevant .m script for this problem is analytical_problem_2_gener

ator.m, and the domain is shown in Fig. 4a. The structure of the code in
analytical_problem_2_generator.m is similar to the code in analytical_pro

blem_1_generator.m which is discussed in the previous section. Here,
following the same process as in [40], we apply the non-homogenous
Dirichlet boundary condition defined by u to all faces and therefore
all external faces in etpl_face have the flag -2 associated with them and
the symbolic expressions for u,v are set to equal u. We set loop_end=[13 9

3] to perform 13 adaptivity loops for the hp-adaptive simulation, 9 for
adaptive-h refinement, and 3 adaptivity loops for the pure-h refinement
simulation. The material constants and δ values are the same as the
previous example. Again, as this is a problem with a known analytical
displacement solution, the analytical body force is calculated using the
steps outlined in the previous section and then imposed across the
domain.

Calling the poly_plot function found in the plotters folder of SIPG
Linear Elastic with the values of etpl and coord at the end of the first

Fig. 3. Log-linear convergence of the error estimator, error in the DG and L2 norms against mesh refinement using different adaptive strategies for the unit square
domain problem.

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

10

simulation plots a grey-scale colormap of polynomial order distribution
across the refined mesh, as shown in Fig. 4b. After the first simulation
with hp refinement the mesh has been refined in h extensively around
the point x = 0, y = 0. This is because the error estimate for elements
near the singularity surpass the threshold set by the δ2 parameter, and so
are refined in h; the polynomial order, controlled using the δ1 parameter,
is highest for elements close to the singularity due to the large errors
near this location. However, for the bulk of the mesh (where the solution
is smooth) the polynomial order remains low, meaning computational
effort is used more efficiently to focus on problem areas. The conver
gence of the error estimator, ηerr, the error in the DG norm, ‖ |u -uh‖ |,
and the error in the L2 norm ‖ u -uh‖ are shown in Fig. 5, below. Despite
beginning with an unstructured mesh, the results of the simulation

performed with SIPG Linear Elastic are remarkably similar to those re
ported in [40], highlighting the ability of the program to analyse
non-smooth problems effectively.

5.3. Crack in a plate problem

The final example, example_problem_3.m, considers a problem with a
stronger singularity, a crack in a plate with the same material properties
as the previous examples. However, unlike the previous examples there
exists no analytical solution for the displacement across the domain. The
domain of the problem is described as (x,y) ∈ Ω = ((0,1.5)× (− 1.5, −
1.5)/([0,0.5] × 0)), where x and y are in meters, with the crack tip at (x,
y) = (0.5, 0). The boundary of the problem is defined as ∂Ω =

ΓN ∪ ΓD ∪ ΓT, where the subscripts N,D and T denote faces where the

Fig. 4. L shaped domain mesh, before and after hp refinement. (a) L shaped domain initial mesh. (b) Afte the 15th hp refinement step.

Fig. 5. Log-linear convergence of the error estimator, error in the DG and L2 norms against mesh refinement using different adaptive strategies for the L-Shaped
domain problem.

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

11

Neumann, Dirichlet and mixed boundary conditions are applied
respectively. Additionally, ΓN = ΓN1 ∪ ΓN2 , and

σ(u)⋅n = pr⋅n on ΓN1 = ([0, 0.5] × − 1.5)
u = 0 on ΓD = ([0, 0.5] × 1.5)

u⋅n = 0 on ΓT = (0.5 × [− 1.5, 1.5])
t(u)⋅n‖ = 0 on ΓT
σ(u)⋅n = 0 on ΓN2 = ∂Ω\(ΓN1 ∪ ΓD ∪ ΓT)

To set up this problem we consider the choice of variables in the
script nonanalytical_problem_3_generator.m. The initial mesh, shown in
Fig. 6a, is unstructured and finer than that used in [40].

Here, we wish to impose the following boundary conditions: non-
homogenous Neumann between nodes 1 and 2, homogenous mixed
between nodes 2 and 3, homogenous Dirichlet between nodes 3 and 4,
and homogenous Neumann elsewhere. The etpl_face data for this
example, stored in crack_EtplFace.txt, therefore provides an insight into
how the flagging system in column seven of etpl_face can be used to
define a more complex set of boundary conditions. For this example,
d_2=[0.3 0.2 0], d_1=[0.07 0.2 0] (NOTE: The first values are different to
the value reported in the error estimator paper) and loop_end=[15 15 5].

Unlike the previous examples where the right hand side f could be
determined from the analytical displacement solution, for problems
without an analytical displacement solution across the domain f must be
specified manually. Hence, inputs for the symbolic expressions for the
non-homogenous Dirichlet boundary conditions, u and v, non-
homogenous Neumann boundary conditions, traction and body force
to be imposed across the domain, fx and fy are required. A final point to
note is that a zero input to these variables should be expressed as, for
example, traction=[0*X;0*Y]and not[0;0], to conform with the format
expected by the symbolic toolbox. Following these guidelines, a zero
input is used for u,v,fx and fy, and the traction is specified by setting
traction=[0*X; -1].

The convergence of the error estimator for the three adaptive stra
tegies defined by the δ parameters for this problem is shown in Fig. 7.
Note that for problems with a non-analytical displacement solution, the
DG and L2 norms will not converge and are therefore not shown in Fig. 7.

The roughly linear convergence of the hp-adaptive strategy in Fig. 7
indicates exponential convergence of the error estimator, whereas the

rate of convergence of the error estimator for the h-adaptive and
h-uniform strategies decreases as the number of degrees of freedom in
creases, a result also reported in [40]. This example therefore shows
that, by choosing an appropriate adaptive strategy, SIPG Linear Elastic
can also be used to analyse non-linear problems with strong
singularities.

6. Conclusions

The paper presented an open source MATLAB code to solve linear
elasticity using discontinuous Galerkin finite elements with hp-adap
tivity. MATLAB was chosen as the platform for the project because it is
one of the best platforms for prototyping numerical methods.

The code has been consciously designed for developers and re
searchers to be used as a starting point for their projects. The modularity
of the code facilitates modifications like implementing a different
operator or changing the definition of the error estimator. Customisation
can be done without touching the algorithm responsible for the
hp-adaptivity.

As shown in literature, hp-adaptivity can improve accuracy for a
variety of PDE problems but it is still not commonly used due to the
difficulties in implementing it correctly. hp-adaptivity has been included
in the package to allow the users to effortlessly adopt it for their projects.
As shown in the examples in Section 5, the code is capable to deliver
very high accuracy which is better than what many other packages can
deliver and much more than what is requested from a prototype. Given
this, the present package can be used from prototyping a new numerical
method to producing the results to include in publications spanning
through the entire research process.

CRediT authorship contribution statement

Thomas Wiltshire: Software, Validation, Writing – original draft,
Visualization. Robert E. Bird: Methodology, Software, Validation,
Visualization. William M. Coombs: Conceptualization, Resources,
Visualization, Supervision, Funding acquisition, Project administration.
Stefano Giani: Conceptualization, Resources, Writing – original draft,

Fig. 6. Crack domain mesh, before and after hp refinement. (a) Initial crack mesh. (b) After the 15th hp refinement step.

T. Wiltshire et al.

Advances in Engineering Software 171 (2022) 103147

12

Writing – review & editing, Supervision, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

Robert E. Bird was supported by the Engineering and Physical Sciences
Research Council [grant number EP/K502832/1]. Thomas Wiltshire was
supported by the Department of Engineering, Durham University. All of
the code and associated documentation is available from https://github.co
m/Robert-Bird/Discontinuous-Galerkin-MATLAB.

References

[1] Romer P.. Jupyter, mathematica, and the future of the research paper. https://pa
ulromer.net/jupyter-mathematica-and-the-future-of-the-research-paper/,
[accessed 21/05/2020].

[2] Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T. A computational library for
multiscale modeling of material failure. Comput Mech 2014;53(5):1047–71.

[3] Wu J-Y, Nguyen VP, Nguyen CT, Sutula D, Sinaie S, Bordas SPA. Chapter one -
phase-field modeling of fracture. In: Bordas SPA, Balint DS, editors. Advances in
Applied Mechanics. vol. 53. Elsevier; 2020. p. 1–183.

[4] Hale JS, Brunetti M, Bordas SPA, Maurini C. Simple and extensible plate and shell
finite element models through automatic code generation tools. Comput Struct
2018;209:163–81.

[5] Sutula D, Elouneg A, Sensale M, Chouly F, Chambert J, Lejeune A, et al. An open
source pipeline for design of experiments for hyperelastic models of the skin with
applications to keloids. J Mech Behav Biomed Mater 2020;112:103999.

[6] Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: a review and
computer implementation aspects. Math Comput Simul 2008;79(3):763–813.

[7] Bordas S, Menk A. Partition of unity methods. Wiley; 2022.
[8] Melenk J, Babuška I. The partition of unity finite element method: basic theory and

applications. Comput Methods Appl Mech Eng 1996;139(1):289–314.
[9] Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B. The variational multiscale method-a

paradigm for computational mechanics. Comput Methods Appl Mech Eng 1998;
166(1):3–24.

[10] Ren W, Vanden-Eijnden E. Heterogeneous multiscale methods: a review. Commun
Comput Phys 2007;2(3):367–450.

[11] Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T. Isogeometric analysis: an
overview and computer implementation aspects. Math Comput Simul 2015;117:
89–116.

[12] Agathos K, Ventura G, Chatzi E, Bordas SPA. Well conditioned extended finite
elements and vector level sets for three-dimensional crack propagation. In:
Bordas SPA, Burman E, Larson MG, Olshanskii MA, editors. Geometrically Unfitted
Finite Element Methods and Applications. Springer International Publishing; 2017,
ISBN 978-3-319-71431-8. p. 307–29.

[13] Bordas S, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H. An extended finite
element library. Int J Numer Methods Eng 2007;71(6).

[14] Farina S, Claus S, Hale JS, Skupin A, Bordas SPA. A cut finite element method for
spatially resolved energy metabolism models in complex neuro-cell morphologies
with minimal remeshing. Adv Model Simul Eng Sci 2021;8(1):5.

[15] Burman E, Claus S, Hansbo P, Larson MG, Massing A. Cutfem: discretizing
geometry and partial differential equations: discretizing geometry and partial
differential equations. Int J Numer Methods Eng 2015;104(7):472–501.

[16] Allard J, Cotin S, Faure F, Bensoussan P-J, Poyer F, Duriez C, et al. SOFA–An open
source framework for medical simulation. Stud Health Technol Inform 2007;125:
13–8.

[17] Bui HP, Tomar S, Courtecuisse H, Audette M, Cotin S, Bordas SPA. Controlling the
error on target motion through real-time mesh adaptation: applications to deep
brain stimulation. Int J Numer Method Biomed Eng 2018;34(5):e2958.

[18] Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas SPA. Real-time error control for
surgical simulation. IEEE Trans Biomed Eng 2018;65(3):596–607.

[19] Duprez M, Bordas SPA, Bucki M, Bui HP, Chouly F, Lleras V, et al. Quantifying
discretization errors for soft tissue simulation in computer assisted surgery: a
preliminary study. Appl Math Model 2020;77:709–23.

[20] Cangiani A, Georgoulis E, Giani S, Metcalfe S. Hp-adaptive discontinuous galerkin
methods for non-stationary convection-diffusion problems. Comput Math Appl
2019;78(9):3090–104.

[21] Giani S. Reliable anisotropic-adaptive discontinuous galerkin method for simplified
pn approximations of radiative transfer. J Comput Appl Math 2018;337:225–43.

[22] Jacquemin T, Tomar S, Agathos K, Mohseni-Mofidi S, Bordas SPA. Taylor-series
expansion based numerical methods: aprimer, performance benchmarking and
new approaches for problems with non-smooth solutions. Arch Comput Methods
Eng 2020;27(5).

[23] code_aster: Structures and thermomechanics analysis for studies and research.
www.code-aster.org/; [accessed 21/05/2020].

[24] Kratos multi-physics. www.cimne.com/kratos/; [accessed 21/05/2020].
[25] Feap: A finite element analysis programme. projects.ce.berkeley.edu/feap/,

[accessed 21/05/2020].
[26] CAST3M. http://www-cast3m.cea.fr/, [accessed 21/05/2020].
[27] CALFEM: a finite element toolbox for matlab. github.com/CALFEM/calfem-matlab,

[accessed 21/05/2020].

Fig. 7. Log-linear convergence of the error estimator, against mesh refinement using different adaptive strategies for the crack in a plate problem.

T. Wiltshire et al.

https://github.com/Robert-Bird/Discontinuous-Galerkin-MATLAB
https://github.com/Robert-Bird/Discontinuous-Galerkin-MATLAB
https://paulromer.net/jupyter-mathematica-and-the-future-of-the-research-paper/
https://paulromer.net/jupyter-mathematica-and-the-future-of-the-research-paper/
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0010
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0010
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0022
http://www.code-aster.org/
http://www-cast3m.cea.fr/

Advances in Engineering Software 171 (2022) 103147

13

[28] deal.II - an open source finite element library. www.dealii.org/, [accessed 21/05/
2020].

[29] hpGEM: Software library for discontinuous Galerkin methods. hpgem.org/,
[accessed 21/05/2020]; https://hpgem.org/.

[30] DUNE: Distributed and unified numerics environment numerics. www.dune-
project.org/, [accessed 21/05/2020].

[31] DoGPack: Discontinuous Galerkin package. www.dogpack-code.org/, accessed 21/
05/2020].

[32] FreeFEM. freefem.org/, accessed 21/05/2020].
[33] MFEM - finite element discretization library. mfem.org/, accessed 21/05/2020].
[34] FEniCS Project. fenicsproject.org/, accessed 21/05/2020].
[35] PyFR. www.pyfr.org/index.php, accessed 21/05/2020].
[36] Nutlis. www.nutils.org/en/latest/, accessed 21/05/2020].
[37] SPEED. http://speed.mox.polimi.it, accessed 25/02/2022].
[38] SEISOL. https://www.seissol.org, accessed 25/02/2022].
[39] Matlab vs. python: Top reasons to choose matlab. uk.mathworks.com/products/

matlab/matlab-vs-python.html, [accessed 21/05/2020].
[40] Bird RE, Coombs WM, Giani S. A posteriori discontinuous galerkin error estimator

for linear elasticity. Appl Math Comput 2019;344–345:78–96.
[41] Holzapfel GA. Nonlinear solid mechanics: A Continuum approach for engineering.

Wiley; 2000.
[42] Robert B, Will C, Stefano G. A quasi-static discontinuous galerkin configurational

force crack propagation method for brittle materials. Int J Numer Methods Eng
2018;113(7):1061–80.

[43] Prudhomme S, Pascal F, Oden J, Romkes A. Review of a priori error estimation for
discontinuous Galerkin methods. Tech. Rep. 00–27. The University of Texas at
Austin; 2000.

[44] Ern A, Stephansen AF, Zunino P. A discontinuous galerkin method with weighted
averages for advection-diffusion equations with locally small and anisotropic
diffusivity. IMA J Numer Anal 2009;29(2):235–56.

[45] Bird R, Coombs WM, Giani S. Accurate configuration force evaluation via hp-
adaptive discontinuous galerkin finite element analysis. Eng Fract Mech 2019;216:
106370.

[46] Giani S. A hp-adaptive discontinuous galerkin method for plasmonic waveguides.
J Comput Appl Math 2014;270:12–20.

[47] Giani S. An a posteriori error estimator for hp-adaptive discontinuous galerkin
methods for computing band gaps in photonic crystals. J Comput Appl Math 2012;
236(18):4810–26.

[48] Giani S, Hall E. An a-posteriori error estimate for hp-adaptive DG methods for
elliptic eigenvalue problems on anisotropically refined meshes. Computing 2013;
95:319–41.

[49] Giani S. High-order hp-adaptive discontinuous galerkin finite element methods for
acoustic problems. Computing 2013;95:215–34.

[50] Giani S, Grubǐsić L, Ovall JS. Benchmark results for testing adaptive finite element
eigenvalue procedures. Appl Numer Math 2012;62(2):121–40.

[51] Houston P, Schötzau D, Wihler TP. Energy norm a posteriori error estimation of hp-
adaptive discontinuous galerkin methods for elliptic problems. Math Models
Methods Appl Sci 2007;17:33–62.

[52] Solin P, Segeth K, Dolezel I. Higher-order finite element methods. CRC Press; 2003.
[53] Heuer N, Mellado ME, Stephan EP. Hp-adaptive two-level methods for boundary

integral equations on curves. Computing 2001;67(4):305–34.
[54] Eibner T, Melenk JM. An adaptive strategy for hp-FEM based on testing for

analyticity. Comput Mech 2007;39(5):575–95.
[55] Engwirda D. Locally-optimal delaunay-refinement and optimisation-based mesh

generation. School of Mathematics and Statistics, The University of Sydney; 2014.
Ph.D. thesis.

[56] Engwirda D. Unstructured mesh methods for the navier-stokes equations. School of
Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney;
2005. Master’s thesis.

[57] M2HTML. https://github.com/gllmflndn/m2html, accessed 28/03/2022].
[58] Bird R, Coombs W, Giani S. Fast native-matlab stiffness assembly for sipg linear

elasticity. Comput Math Appl 2017;74(12):3209–30.

T. Wiltshire et al.

https://hpgem.org/
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0045
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0045
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0045
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0046
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0046
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0047
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0047
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0047
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0048
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0048
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0048
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0049
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0049
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0050
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0050
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0051
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0051
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0051
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0052
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0053
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0053
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0054
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0054
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0055
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0055
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0055
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0056
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0056
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0056
https://github.com/gllmflndn/m2html
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0058
http://refhub.elsevier.com/S0965-9978(22)00058-8/sbref0058

	An open source hp-adaptive discontinuous Galerkin finite element solver for linear elasticity
	1 Introduction
	2 The method
	2.1 Model problem
	2.2 Symmetric interior penalty discontinuous Galerkin method
	2.3 Error estimator
	2.4 Adaptivity

	3 Installation and testing
	3.1 Installation
	3.2 Testing

	4 Program structure
	4.1 Mesh data structures and flags
	4.2 Creation of data structures and flags
	4.3 Modification of data structures during adaptivity
	4.4 Description of example codes
	4.5 How to set up a custom problem

	5 Example problems
	5.1 Problem with an analytical solution on unit square domain
	5.2 Non-Smooth problem on an L-Shaped domain
	5.3 Crack in a plate problem

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

