
Advances in Engineering Software 171 (2022) 103147

Available online 13 June 2022
0965-9978/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research paper 

An open source hp-adaptive discontinuous Galerkin finite element solver for 
linear elasticity 

Thomas Wiltshire , Robert E. Bird , William M. Coombs , Stefano Giani * 

Department of Engineering, Lower Mountjoy, South Rd, Durham DH1 3LE, UK   

A R T I C L E  I N F O   

Keywords: 
Open source software 
MATLAB 
Discontinuous galerkin finite elements 
Linear elasticity 
hp-Adaptivity 
Researcher development 

A B S T R A C T   

Open source codes are a key ingredient to greater research integrity and accountability in computational science 
and engineering. However, many of these codes have not been developed with modification of the base code as 
their primary consideration. Existing codes may provide an environment for researchers to quickly test out their 
ideas under different physical conditions in a high level way but they are not always ideal for those interested in 
the development of numerical methods. The majority of existing open source discontinuous Galerkin finite 
element codes are written in C++ and there is a significant learning curve for junior researchers to adopt, un
derstand and modify the underlying code/routines. This paper presents an open source hp-adaptive discontin
uous Galerkin finite element code written in MATLAB that has been explicitly designed to make it easy for users, 
especially MSc/PhD-level researchers, to understand the method and implement new ideas within the core code. 
Although the code is focused on solving problems in linear elasticity, it is straightforward to modify it to solve 
other physical equations.   

1. Introduction 

Open source codes are essential for the health of research in 
computational science and engineering as they provide a route-in for 
researchers to start working with numerical methods without having to 
implement hundreds (often tens of thousands) of lines of computer code. 
Open source code also promotes collaboration between researchers and 
transparent inspection of numerical results - resulting in greater 
research integrity and accountability [1]. There are already available 
many open source codes to solve specific engineering problems like for 
example fractures in materials [2,3] or simulating structures using plates 
and shells [4,5]. 

The majority of numerical methods for solving partial differential 
equations (PDEs) can be divided into two categories; those based on 
meshes partitioning the physical domain and those not using meshes. 
Meshless methods [6] were invented to mitigate some of the difficulties 
associated with resolving the geometry of physical domains with 
meshes. In common with methods based on meshes like finite element 
methods (FEMs), meshless methods use shape functions to approximate 
the solutions but not as interpolants as in FEMs, rather than as 
approximants. Partition of unity methods is another class of methods not 
based on standard meshes but on a coverage of the physical domain with 

overlapping patches [7,8]. The category of methods based on meshes is 
dominated by FEMs and their variations. One of the most prominent 
classes of FEMs is multiscale methods [9,10] in which the approximated 
solution is decomposed into coarse and fine-scale solutions. This is 
achieved by rewriting the PDE model into a pair of coupled macroscopic 
and microscopic models. Other classes of methods were invented to 
overcome some of the aspects of classical FEMs. Isogeometric analysis 
breaks free from the limitations of polygonal and polyhedral shaped 
elements and polynomials of integer order shape functions [11]. 
Extended and enriched FEMs allow adding to the approximation spaces 
functions incorporating specific knowledge of the solution [12,13]. Cut 
FEMs eliminate the difficulties to fit complex or implicit surfaces with 
standard meshes [14,15]. A lot of effort has been made in studying ways 
to control the error in FEMs [16–18]. A very popular approach is 
adaptivity as a way to improve the accuracy of computed solutions in 
many fields adapting meshes without leaving the FEM framework 
[19–21]. 

There are of course methods not easily classifiable in these two 
categories like numerical methods based on Taylor-series [22]. 

However, the solution of partial differential equations in engineering 
analysis is dominated by the continuous Galerkin (CG) variant of FEM. 
There are a huge number of open source codes based on conventional CG 
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finite elements (for example, see [23–28], amongst many others). An 
alternative to the conventional CG formulation is the family of discon
tinuous Galerkin (DG) finite element methods and there are many rea
sons that researchers may wish to adopt a DG modelling framework, 
such as:  

(i) their ability to easily allow for adaptive mesh refinement, 
hanging nodes and different polynomial orders in adjacent ele
ments due to the relaxation of the compatibility between 
elements;  

(ii) that, unlike CG elements, DG elements can handle excessive 
aspect ratios without degradation of their predictive capabilities; 

(iii) that, unlike CG methods, degrees of freedom are not shared be
tween elements, making easier to split a mesh on several 
computing nodes;  

(iv) that, unlike CG methods, boundary conditions are imposed 
weakly, making easier to incorporate complicated boundary 
conditions into models;  

(v) more freedom in choosing shape functions since no continuity 
across elements is needed. 

There are several variants of DG finite element methods, categorised 
by the inter-element communication technique used to couple adjacent 
elements. In this paper we adopt a symmetric interior penalty DG (SIPG) 
approach. Despite their advantages, there are far fewer DG finite 
element open source codes (compared to CG-based methods) and the 
majority of these codes have not been developed with understanding 
and modification of their core code as their primary focus. To the best of 
the authors’ knowledge, the following open-source DG codes are freely 
available (grouped by underpinning implementation language):  

C++ based: hpGEM [29], DUNE (Python binding) [30], DoGPack 
(Python/MATLAB post-processing possible) [31], 
NEKTAR++, FreeFEM [32], MFEM [33] and FEniCS 
(Python front-end available) [34];  

Python based: PyFR [35] and Nutils [36].  
FORTRAN based: SPEED [37] and SEISOL [38]. 

It is clear that the majority of these codes are based on C++ for 
computational efficiency. However, several researchers are interested in 
the development of methods rather than the analysis of large-scale 
problems. For these researchers, being able to easily access and under
stand the underlying source code is essential and these C++ imple
mentations may be off-putting or a complete barrier to using these open 
source codes to develop their ideas. Python, being open-source to its 
very core, is a credible alternative and several of the C++ codes have 
Python front ends and/or processing environments, as identified above. 
However, in the authors’ opinion, within mathematical and technical 
computing, MATLAB is the dominant tool taught to engineers and sci
entists whilst at university and MATLAB has been specifically designed 
with these users in mind [39]. The documentation, help and debugging 
environment offered by MATLAB is unparalleled and this allows re
searchers (especially junior scientists/engineers) to quickly develop 
their scientific ideas whilst minimising the syntax barrier. 

In this paper we present a MATLAB-based open-source symmetric 
interior penalty DG finite element code that has been designed to make 
the method accessible to early career researchers, such as final year 
undergraduates, MSc and PhD students as well as post-doctoral re
searchers moving into this area of research. This point is emphasised by 
the fact that the first author of this manuscript was a final year MEng 
student during the development of this paper and associated code. 
Another point of novelty of this paper is the inclusion of error estimate 
driven hp-adaptivity, where the code automatically refines the back
ground mesh in terms of element size (h) or polynomial order (p) of 
specific elements based on the estimate error in each element. This 
provides a powerful stress analysis tool which is able to achieve extreme 

accuracy (errors less than 10− 10) with modest computational effort and 
on resources that are commonly available to early career researchers 
(standard laptop/desktop PCs). The physical problem focus of the code 
is linear elasticity, however once the structure of the code is understood, 
it is straightforward to modify the code to analyse other physical 
problems, include alternative element formulations, test out different 
adaptivity routines, etc. 

Following this introduction, the layout of the rest of the paper is as 
follows: Section 2 outlines the considered model problem and key details 
of the symmetric interior penalty DG finite element method (including 
the error estimate and adaptivity algorithm), Section 3 explains how to 
install and test the method, Section 4 details the structure of the program 
and demonstration problems are show in Section 5. Finally, brief con
clusions are included in Section 6. All of the code and associated 
documentation is available from https://github.com/Robert-Bird/Disco 
ntinuous-Galerkin-MATLAB. 

2. The method 

In this section, we detail the numerical analysis aspects of the 
implemented method. The model problem and numerical methods 
implemented in the code are analysed in [40] where in-depth analysis 
can be found. 

2.1. Model problem 

The problem implemented in the code is linear elasticity with a va
riety of boundary conditions: Let Ω be a bounded polygonal domain in 
R2 with ∂Ω = ΓD ∪ ΓN ∪ ΓT, where ΓD, ΓN and ΓT are disjoint sets, and let 
u the solution of 

− ∇⋅σ(u) = f in Ω
u = gD on ΓD

σ(u)⋅n = gN on ΓN
u⋅n = gT ⋅n on ΓT

t(u)⋅n‖ = 0 on ΓT ,

(1)  

where n = (nx, ny) is the unit vector perpendicular to the boundary of Ω 
and pointing out and n‖ is the tangential unit vectors to the boundary, 
t(u) is the traction component of the stress, i.e. 

t(u) := σ(u)⋅n.

The functions f, gD, gN and gT specify the rhs and the values along the 
boundaries and they are respectively in [L2(Ω)]

2, [H1/2(ΓD)]
2, [L2(ΓN)]

2 

and [H1/2(ΓT)]
2. We define the strain tensor for a displacement v as 

ϵ(v)ij :=
1
2 (∇jvi +∇ivj) and the stress as σ(v) = Dϵ(v) where the matrix 

D ∈ R3×3×3×3. 
The set ΓD may be empty. In this case, problem (1) may not have a 

unique solution if rigid motions are in the kernel [41]. Therefore, the 
natural choice of space to enforce a unique solution for problem (1) is 
u ∈ S := [H1(Ω)]

2
\R, where R is the space containing all rigid motions. 

In case the prescribed boundary conditions define a problem with rigid 
motions in the kernel, the well-definiteness of the problem can be 
enforced using the average boundary condition to remove rigid motions 
[42]. Such a case happens for example when only Neumann boundary 
conditions are used, see problem 3 in Section 3.2. The code automati
cally applies the average boundary condition if needed. 

2.2. Symmetric interior penalty discontinuous Galerkin method 

In this section we introduce our DG method used in the code to solve 
problem (1). We assume that the computational domain Ω can be par
titioned into a shape regular mesh T of triangular and affine elements 
and we denote with K a generic element of T . We allow for irregular 
meshes with a maximum of one hanging node per edge. Due to our 
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assumption that the initial mesh is shape regular, allowing at most one 
hanging node per edge implies that the diameters of the elements in all 
refined meshes are of bounded variation for any pair of neighbouring 
elements. We denote E (T ) and E int

(T )⊂E (T ) the set of all edges of 
the mesh T and the subset of all interior edges respectively and by 
E

BC
(T )⊂E (T ) the subset of all boundary edges. The set E BC

(T ) is 
partitioned in the three subsets E D

(T ), E N
(T ) and E T

(T ) that are the 
sets containing the edges forming the three portions of the boundary ΓD, 
ΓN and ΓT . We define hK and hE to be the diameter of the element K and 
the length of the edge E respectively. 

In the implementation, we allow to vary the polynomial degrees 
across elements under the constraints that the variation is at most equal 
to one for any pair of neighbouring elements. This is enforced during 
mesh adaptation, too. For each element K of the mesh T we associate a 
polynomial degree pK ≥ 1 and we introduce the degree vector p = { pK :

K ∈ T } and we define pmin as the minimum of pK on the mesh T . For 
any E ∈ E (T ), we introduce the edge polynomial degree pE by 

pE =

{
max(pK , pK′ ), if E = ∂K+ ∩ ∂K − , E ∈ E

int
(T ),

pK , if E = ∂K ∩ ∂Ω, E ∈ E (T )\E
int
(T ),

(2)  

where + and - denote the two elements sharing the face E. Hence, for a 
given partition T of Ω and a degree vector p on T , we define the 
hp-version DG finite element space by 

Vp(T ) =
{

v ∈
[
L2(Ω)

]2
\R : v|K ∈

[
P pK (K)

]2
, K ∈ T

}
, (3)  

where P pK (K) is the space of polynomials of degree at most pK and R is 
the set of rigid motions. We also use + and - to denote all quantities 
related to the elements. Given an edge E ∈ E

int
(T ) shared by two ele

ments K+ and K− , we define the jump [[⋅]] operator and the average {⋅}
operator on vectors and tensors as: 

[[v]]ij = v+
i n+

Kj − v−
i n+

Kj

[[σ]]i = σ+
ij n+

Kj − σ−
ij n+

Kj

{σ(v)} =
1
2
(σ(v)+ + σ(v)− )

(4)  

where n+
K = (n+

x , n+
y ) the outward unit normal on the boundary ∂K+ of an 

element K. Such definitions are modified on edges along the boundary of 
the domain, i.e. E ∈ E

BC
(T )⊂E (T ), along the boundary we set 

{σ(v)} = σ(v), [[σ]]i = σijn+
Kj and [[v]]ij = vin+

j . Thus, the DG approximation 
problem (1) reads as follows: Find uh ∈ Vp(T ) such that 

aDG(uh, vh) = l(vh) ∀vh ∈ Vp(T ) (5)  

where the bilinear form 

aDG(u, v) :=
∑

K∈T

∫

K
σ(u) : ϵ(v) dx

−
∑

E∈E int(T )∪E D(T )

∫

E
{σ(u)} : [[v]] + {σ(v)} : [[u]] ds

+
∑

E∈E int(T )∪E D(T )

γp2
E

hE

∫

E
[[u]] : [[v]] ds

−
∑

E∈E T(T )

∫

E
(t(u)⋅n)(v⋅n) + (t(v)⋅n)(u⋅n) ds

+
∑

E∈E T(T )

γp2
E

hE

∫

E
(u⋅n)(v⋅n) ds  

and the linear form 

l(v) :=
∑

K∈T

∫

K
f⋅v dx

−
∑

E∈E D(T )

∫

E
gD⋅σ(v)⋅n ds +

∑

E∈E D(T )

γp2
E

hE

∫

E
gD⋅v ds

+
∑

E∈E N(T )

∫

E
gN ⋅v ds

−
∑

E∈E T(T )

∫

E
(gT ⋅n)(t(v)⋅n) ds +

∑

E∈E T(T )

γp2
E

hE

∫

E
(gT ⋅n)(v⋅n) ds  

where γ is the penalty constant. As proved in [43], the penalty term γp2
E

hE 

adjust for any variation in h or p in the mesh. This means that the penalty 
constant γ is mesh independent and the only condition that γ must satisfy 
is to be big enough as stated in [43]. In the authors’ experience, γ = 10 is 
big enough for most problems. For more complicated PDEs, the defini
tion of the penalty term can be modified in view of [44] to take into 
account varying coefficients in the second order term of the PDE, see for 
example [45–50]. 

The natural norm for problem (5) is the DG norm: 

‖ |u ‖ |T :=

(
∑

K∈T

‖ ϵ(u) ‖2
0,K +

∑

E∈E int(T )

γp2
E

hE
‖ [[u]] ‖2

0,E +
∑

E∈E D(T )

γp2
E

hE
‖ u ‖2

0,E

+
∑

E∈E T(T )

γp2
E

hE
‖ u⋅n ‖2

0,E

⎞

⎠1/2,

(6)  

where ‖ ⋅ ‖0,K and ‖ ⋅ ‖0,E are respectively the L2-norm on an element K 
and on an edge E. 

2.3. Error estimator 

This section defines the error estimator implemented in the code. In 
[40] the reliability and efficiency proofs of the error estimator are 
presented. 

The error estimator is defined as 

ηerr =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

K∈T

(
η2

R,K + η2
J,K + η2

F,K
)√
, (7)  

where the three terms under the sum are defined as 

η2
R,K :=

h2
K

p2
K
‖ fh +∇⋅σ(uh) ‖

2
0,K ,

η2
J,K :=

1
2
∑

E∈E int(K)

γ2p3
E

hE
‖ [[uh]] ‖

2
0,E +

∑

E∈E D(K)

γ2p3
E

hE
‖ uh − gD,h ‖

2
0,E

+
∑

E∈E T(K)

γ2p3
E

hE
‖ uh⋅n − gT,h⋅n ‖

2
0,E,

η2
F,K :=

1
2
∑

E∈E int(K)

hE

pE
‖ [[σ(uh)]] ‖

2
0,E +

∑

E∈E N(K)

hE

pE
‖ σ(uh)⋅n − gN,h ‖

2
0,E

+
∑

E∈E T(K)

hE

pE
‖ t(uh)⋅n‖ ‖

2
0,E  

where fh and gN,h are the L2 projections of f and gN onto the finite 
element space and where gD,h and gT,h are piecewise polynomial 
approximated of traces of functions in H1(Ω) as in [51]. 

2.4. Adaptivity 

The code supports arbitrary high order triangular elements as 
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defined in Section 2.2.3 in [52]. The hp-adaptive strategy used here was 
originally proposed in [53] and consequently used in [54]. The elements 
are chosen for either h or p refinement using Algorithm 1. 

The marking strategy in Algorithm 1 uses two threshold values δ1 
and δ2, with δ2 ≥ δ1, to determine what elements to refine in h and what 
elements in p. All the elements satisfying η2

K > δ2η2
max, where η2

max =

maxK∈T η2
K, are marked for h − refinement and all elements satisfying 

δ2η2
max ≥ η2

K > δ1η2
max are marked for p − refinement. The remaining el

ements are not marked for refinement at all. To only apply h-adaptivity 
set δ2 = δ1 ∕= 0. Similarly, to only apply p-adaptivity, set δ2 = 1 and 
δ1 ∕= 0. To uniformly refine in h set δ2 = δ1 = 0 and to uniformly refine 
in p set δ2 = 1 and δ1 = 0. 

3. Installation and testing 

3.1. Installation 

The only MATLAB add on that SIPG Linear Elastic uses is the Sym
bolic Math Toolbox™, which can be downloaded from mathworks.com. 
To begin the installation, clone or download the repository from GitHub. 
Discontinuous-Galerkin-MATLAB is a MATLAB directory environment 
that contains main functions, placed in the top directory, that can be run 
directly, the path_add.m script to add folders to the MATLAB search path, 
and folders containing routines that perform the analysis. The package 
has the functionality to support mesh generation with the MESH2D, a 
MATLAB based Delauney mesh generator for two-dimensional geome
tries [55,56] which can be downloaded from the MathWorks® website. 
If the user wishes, this package can be integrated into the program by 
copying the MESH2D file into the SIPG Linear Elastic directory. Care 
should be taken to ensure that the folder containing the package is added 
to the MATLAB search path, so it is advised that the user edits line 28 of 
path_add.m as appropriate. The three problems described in Section 5 can 
be run without MESH2D. The code analytical_problem.m needs MESH2D. 
Table 1 describes the subfolders in SIPG_linear_elastic_v1.0. 

The reference manual can be generated automatically using the 
M2HTML toolbox [57]: 

m2html(’mfiles’, ’SIPG_dir’, ’htmldir’,’doc_dir’, ’recursive’,’on’); 
where SIPG_dir is the relative path to the folder Discontinuous-Galerkin- 
MATLAB and doc_dir is the relative path to the folder where the user 
wants the reference manual to be saved. All functions in the Discontin
uous-Galerkin-MATLAB code are integrated with the MATLAB help sys
tem. The installation consists in running the script path_add.m to add the 
necessary folders to the MATLAB search path. 

3.2. Testing 

After installation, the user should call the function tests.m in the 

command window. The function tests.m is based on the unit test 
framework used in Matlab. This is used to check that the program is 
working as expected on the user’s computer by performing a set of four 
simulations, listed in Table 2, and thereby testing critical routines. By 
comparing the values from this simulation with a set of expected values 
stored in .txt files, the function checks that all routines are performing 
nominally. 

Apart from the global stiffness matrix calculation DG_algorithm.m and 
the volumetric integral of the body force force_integration_vol.m, other 
routines common to all test problems are the error estimation algorithms 
error_calc_ele.m and the calculation of the L2 and DG norms. Depending 
on the boundary conditions defined, different subroutines within the 
error estimation and the calculation of the DG norm will be executed and 
tested by tests.m. 

The primary role of test problem 1 is to verify that the mesh adap
tivity algorithms are functioning correctly. To achieve this, the program 
solves the problem with the displacement solution shown in Table 2 with 
five different mesh adaptivity methods: uniform h, uniform p, adaptive 
h, adaptive p and adaptive hp. Test problems 2, 3, and 4 establish that the 
force surface integral functions associated with each type of boundary 
condition are performing as expected. When executing a problem with 
only Neumann boundary conditions, the problem is indeterminate and 
rigid body motion is possible. To prevent rigid body motion, such that all 
displacements and rotations are zero, for instance, test problem 3, it is 
necessary to generate Lagrangian force components to cause the system 
to act in a deterministic manner. This is performed in the UV_ave_bc.m 
and rot_ave_BC.m, which are additional algorithms whose performance is 
checked by test problem 3. 

4. Program structure 

4.1. Mesh data structures and flags 

We now consider the format used in the program. The initial mesh of 
all simulations must be a conforming mesh, i.e. no hanging node must be 
present. The coordinates of the nodes are stored in the variable coord and 
element topology information is stored in the variable etpl.mat, dis
cussed below. 

The elements used are triangular with an anticlockwise local node 
numbering convention, and the global node index begins at one. Global 
nodal coordinates are stored in the variable coord, an [x,y] list with di
mensions nodes× 2, where nodes is the number of nodes in the mesh. 
Nodes are shared between elements if they are not hanging nodes. 
However, in DG methods, degrees of freedom are not shared between 
elements. Element topology information is stored in the MATLAB 
structure array etpl, which initially contains the fields mat, poly and tree; 
an additional field, ed_recalc, is calculated at the start of each adaptivity 
loop and is not required as an input. A description of each field, their 
input format and array dimensions is shown in Table 3. 

In the mat field, the element faces are defined by stepping 
Algorithm 1. hp-refinement strategy: For parameters δ1, δ2 

with 1 ≥ δ2 ≥ δ1 ≥ 0. 

Table 1 
Subfolders ofSIPG_linear_elastic_v1.0.  

adaptivity Functions to adapt the mesh. 

boundary_conditions Functions to apply average boundary condition. 
error_calculation Functions to compute the a posteriori error estimator. 
example_problems Functions to set up the example problems. 
mesh_generation Functions to generate the meshes. 
norms Functions to compute the norms of the errors of the computed 

solutions. 
plotters Functions to plot the solutions. 
problem_set_up Functions to set up the example problems. 
rhs Functions to compute the rhs of the linear system 
solvers Functions to solve the linear system. 
stiffness_matrix Functions to compute the DG stiffness matrix of the linear 

system. 
tests Functions to perform the tests.  
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anticlockwise around the local nodes, indexed by their global node 
number (row position in coord). Elements in the mesh are indexed ac
cording to their row position in etpl.mat, and are assigned a polynomial 
order in etpl.poly. As for the first generation of elements every element is 
active, etpl.tree should be initialised by setting all rows as [1,0,0]; storing 
information about the history of elements using this variable facilitates 
adaptation of the code to include mesh derefinement, which may be of 
interest to advanced users. 

The final data structure describing the mesh is the element face to
pology matrix etpl_face, which has the format [element 1,element 2,local

face 1, local face 2,normal x,normal y,face type]. In the code it is enforced 
that element 1 is an element for which the face is a complete face. In case 
of hanging nodes, element 2 with an hanging node in the middle of the 
face. This variable stores information about face connectivity for all 
faces in the mesh, illustrated in Fig. 1. 

The local face value ranges between one and three, indexed in an 
anticlockwise direction around each element; normal x, normal y describe 
the outward facing normal vector orientation; face type is a flag used to 
indicate whether the face is internal, and, if it is external, the boundary 
condition to be imposed. Table 4, below, outlines the flagging conven
tion used in the face type column of etpl_face. If a face is external then the 
value in the relevant row for element 2 in etpl_face is set to zero, as is the 
value of local face 2. 

The mesh data structure format that SIPG Linear Elastic uses is 
compatible with the mesh generation algorithm MESH2D. Conse
quently, if additional information is desired by the user about the data 
structures discussed in this section, this can be found in the MESH2D 
documentation. 

4.2. Creation of data structures and flags 

The data structures and their respective fields required to solve the 
SIPG problem are etpl, coord and etpl_face. They are either hardcoded as. 
txt files, as in the case of problems 1-to-4 in Table 2 or generated with 
MESH2D. There are two stages in creating the data structures if MESH2D 
is used, this is highlighted with the analytical_problem.m example. First, 
the mesh input data for MESH2D is defined, in this case in analy

tical_problem_generator.m. Second the input data is used by MESH2D to 
create an element topology which is then restructured into coord, etpl

and etpl_face; this happens with the routine seed_mesh_square.m. 
The input data required for MESH2D is, node, edge and BC, and in this 

example are defined in analytical_problem_generator.m. node is structured 
as a list of n domain boundary coordinates [x,y], with size [n× 2], and 
edge is a list of contiguous set of edges that combine to form the 
boundary of the domain. Each edge in edge is defined by 2 boundary 
domain coordinate numbers, e.g. [n-1,n], and has the size [n× 2]. Last, BC

is defined, it is of size [n×3] with the first two columns the same as edge, 
the third column is a face type flag which defines the type of boundary 
condition for each edge in edge. 

Once the input data has been defined by the user, seed_mesh_square.m

is called. The first operation of which is to call the routine refine2, of 
MESH2D, which takes node and edge as in inputs and outputs a mesh in 
the form of an element topology and coordinate matrix, respectively 
stored in etpl.mat and coord. Additionally, the list conn is also outputted 
of size [number of external edges× 2], each row is 1 edge and contains 2 
global node numbers. It is then extended by the finding_the_boundary.m

routine to have a third column that contains the face flags for each edge. 
finding_the_boundary.m operates on the basis that the node numbers for 
each external edge in BC also exist in conn. Hence there exists a set of 
edges in conn that link between the nodes defining a boundary edge in 
BC, these edges thus all have the same face flags defined in BC. Now that 
the element topology of the initial conforming mesh has been created, 
the fields poly and tree of etpl can be defined as in the previous section. 
etpl.tree is initialised by setting all rows to [1,0,0] and etpl.poly is ini
tialised by setting the rows to [row number,initial polynomial order]. The 
next stage to seed_mesh_square.m is creating etpl_face with two steps, both 
of which are called by etpl_face_square_func.m. First, create etpl_face for all 
internal faces and second, for all external faces. Both are dependent on 
etpl.mat and coord created by MESH2D, whilst the latter also depends on 
conn. 

The creation of the internal faces is performed by etpl_face_all.m and is 
described with Algorithm 2. It loops over all the elements in the mesh 
nels and their local face numbers, 1-to-3, on lines 2 and 3. If the element 
el and its local face number f have not been stored in etpl_face, controlled 
by the if statement on line 4, the face counter face_count is increased by 1 
and etpl_face_index is updated to indicate the element, el and face f have 
been seen by the algorithm. Then, el, f and the outward normal n to the 
face are stored in etpl_face on line 8. Next, a search of etpl.mat is per
formed to find an neighbour element el_n, this is defined as an element 
which shares two nodes with el. If el_n exists, then it and the local face 
number that contains the shared nodes are stored in etpl_face, addi
tionally etpl_face_index is updated to indicate the element, el_n and face f_n
have been seen. 

Algorithm 2 will find all faces in the domain and store them in 
etpl_face, however the last column of the etpl_face will not be defined for 
the external faces. This occurs in etpl_face_ext_find_square.m, described by 
Algorithm 3, and uses conn to assign the face flag to the external faces of 
etpl_face. 

The last data structure to be created is ed which stores for each 
element its degrees of freedom and steers the local element stiffness 
matrices into the global matrix. It is created during the accumulation of 

Table 2 
Test problems and main routines used.  

Problem 
Number 

Boundary Condition Type Expression Main Routines Used 

1 Homogenous Dirichlet u = sin(πx)sin(πy)
v = sin(πx)sin(πy)

h_adapt.m, p_adapt.m, hp_adapt.m, DG_algorithm.m, force_integration_vol.m 

2 Inhomogenous Dirichlet u = sin(πx)sin(πy)
v = cos(πx)sin(πy)

DG_algorithm.m, force_integration_vol.m, force_integration_Dirichlet.m 

3 Inhomogenous Neumann u = sin(2πx)sin(2πy)
v = cos(2πx)sin(2πy)

DG_algorithm.m, force_integration_vol.m, UV_ave_bc.m, rot_ave_BC.m, force_integration_Neumann.m 

4 Inhomogenous Dirchlet/ 
Neumann 

u = x  
v = y 

DG_algorithm.m, force_integration_vol.m, force_integration_Neumann.m, 
force_integration_Dirichlet_Neumann.m  

Table 3 
Fields in etpl.  

Field Description Format Dimensions 

mat Element topology 
matrix 

[node1,node2,node3] [nels × 3]

poly Element polynomial 
order 

[element number,polynomial order] [nels × 2]

tree Element tree 
structure 

[active flag, generation number,

parent element]

[nels × 3]

ed_recalc Flags for refined 
elements 

[flag] [nels ]
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the volumetric part of the stiffness matrix calculation in vol_int.m and has 
size [nels× max(NDOF)], where each row corresponds to an element 
number and max(DOF) is the maximum number of local degrees of 
freedom1that an active element in the mesh has. It’s creation is sum
marised in Algorithm 4, where DOF is degrees of freedom and, NDOF is 
the number of degrees of freedom. 

It is important to highlight three aspects of the DOF storage in ed. 
First, elements which are not active will have only zeros in their row, as 
controlled by the if statement. Second, the DOF only increases with 
active elements, this ensures that no rows and columns with zero values 
will appear in the global stiffness matrix when the local element 

matrices are steered into the global matrix. Last, ed is reset to zero after 
each adaptive step to account for different elements that have become 
active or changed polynomial order. This therefore means it is possible 

Fig. 1. Example of three elements in a 2D DG Mesh. Arrows indicate the outward normal direction, values in boxes are the element number and values on the edge 
are element face number (c.f. Fig. 2 of [58]). 

Fig. 2. Unit square domain initial mesh.  

Table 4 
Face type flags.  

Face Type Flag in etpl_face

Internal Faces 1 
Homogenous Dirichlet BC 2 
Nonhomogenous Dirichlet BC -2 
Homogenous Neumann BC 3 
Nonhomogenous Neumann BC -3 
Homogenous Mixed Dirichlet/ Neumann BC 4 
Nonhomogenous Mixed Dirichlet/Neumann BC -4  

Algorithm 2. Internal face creation.  

1 Defined by the polynomial order. 
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for the DOF for an element to change during an adaptivity step. 

4.3. Modification of data structures during adaptivity 

During the adaptive step the mesh is adapted through changes in the 
size and polynomial order of elements in the mesh. When the changes 
occur, the element topology structure etpl, node coordinate list coord and 
face connectivity and boundary matrix etpl_face need to be updated. The 
changes to these datasets occur in mesh_refine_topology_marking.m, the 
structure of which is provided by Algorithms 5 and 6. 

mesh_refine_topology_marking.m is governed by the for loop on line 2 of 
Algorithm 5, it loops over the possible element ages in the mesh from 
oldest to youngest; a younger element is the result of more refinements 
compared to an older element. This ensures that during the refinement 
process a maximum of one hanging node can exist on a face. The second 
loop on line 3 loops over the elements that are marked for h-refinement, 
within this loop new nodes, elements and faces are created. The first 

stage of the algorithm updates etpl and coord with homogeneous 
h-refinement on element el_ref. For homogeneous refinement midside 
nodes are required, these are either created resulting in updates to coord, 
or retrieved as they may exist already, on line 5 using the coor

d_check_new.m routine2. The node numbers for the vertices are then 
stored in Nn1,Nn2 and Nn3, the midside nodes Nn4,Nn5 and Nn6, which 
are combined to create four new elements on line 9  

etpl.mat(nel+1,:) = [N1 N4 N6];

etpl.mat(nel+2,:) = [N4 N2 N5];

etpl.mat(nel+3,:) = [N6 N5 N3];

etpl.mat(nel+4,:) = [N6 N4 N5];

where nel is the number of elements in the mesh. The assignment of the 
node numbers in these way ensures that the local face numbers of the 
new elements coincide with el_ref. Elements nel+1-to-nel+3 use a com
bination of vertex nodes and midside nodes, nel+4 is a formed from only 
midside nodes. Next on line 10 new elements are assigned their parent 
polynomial order, and the active element tree etpl.tree is updated on line 
11. This is followed by an updating the face connectivity matrix for all 
faces corresponding to el_ref on line 12 with Algorithm 6. 

The update to etpl_face is split into two steps in Algorithm 6, the first 
step is defined with the for loop which spans lines 4–15, corresponding 
to the elements nel+1-to-nel+3 as these elements will have faces which 
interact with element and face information that already exists. The 
second step occurs with the for loop on lines 16–18 since the faces of 
element nel+4 are shared only with the newly created elements and 
hence new face information has to be created. The first section of the 
algorithm starts by finding the faces that correspond to el_ref and storing 
these in etpl_face_current_el. The local faces j=1:3 of el_ref are then search 
for in etpl_face_current_el, for a j they stored in etpl_face_current_face. If 
there is only one row in etpl_face_current_face, then the new elements that 
share face j with el_ref are assigned the face information of etpl_face_

current_face and stored in etpl_face. If there are two rows of etpl_face_

current_face then the face j of el_ref has a hanging node, each new element 

Algorithm 3. External face creation.  

Algorithm 4. ed creation.  

Algorithm 5. Mesh adaptivity Algorithm, etpl.

Algorithm 6. Mesh adaptivity Algorithm, etpl_face.

2 When using the coord_check_new.m routine it is important to highlight that 
the node check is performed using element topology rather nodal position 
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on j is then assigned the row of etpl_face_current_face. The row which they 
are assigned is found by finding which row contains an opposite element 
that it share two nodes with. Last the face information for nel+4 is found 
and stored in etpl_face on lines 16–18, this achieved using a similar an 
algorithm similar to Algorithm 2. 

When storing new information in etpl_face it is important to highlight 
that all the new element numbers go into the first column, and all new 
local face numbers are stored in the third column. This ensures that the 
element and face information of the smaller element on the face is al
ways in the same columns. 

4.4. Description of example codes 

In this section, we briefly describe the structure of the code analy

tical_problem.m. The structures of the other examples example_problem_1.

m, example_problem_2.m and example_problem_3.m are similar. The defi
nition of the problem under consideration is done between lines 38 and 
39. For each problem, multiple simulations with different choices of 
parameters can be done sequentially with a single call to analy
tical_problem.m. The loop running all simulations span from line 42 to 
line 138. Inside the loop, eight steps are executed:  

1. Generation of the mesh (line 46): see the description of the data 
structures in Section 4.1.  

2. Entering the adaptivity loop (line 56): this loop applies several 
adaptive steps until the variable exit is set to 1.  

3. Calculating the global stiffness matrix (line 66): this step assembles 
the global matrix in the linear system.  

4. Calculating the global rhs (lines 71–75): each type of contribution to 
the global rhs is computed on a different line. On line 75, all 
contribution are assembled.  

5. Computing the solution (line 81): the MATLAB implementation of 
the back-slash is used for the task. 

6. Error estimation (lines 87–94): the L2 and the DG norm of the dif
ference between the true solution and the computed solution are 
calculated. If the analytical solution is not available then it is set to 
zero. Also the a posteriori error estimator of the computed solution is 
calculated in this step.  

7. Mesh refinement (line 100): the mesh is refined using the specified 
adaptive algorithm.  

8. Postprocessing (lines 110–134): a series of plots are generated. 

The definition of the problem is performed setting the variables in 
Table 5. Examples of such procedures are: analytical_problem_generator.m, 
analytical_problem_1_generator.m, analytical_problem_2_generator.m and ana

lytical_problem_3_generator.m. 
In the code, two ways to set up the mesh are used. In analytical_pro

blem.m, the routine seed_mesh_square is used which calls MESH2D. In 
analytical_problem_1_generator.m, analytical_problem_2_generator.m and ana

lytical_problem_3_generator.m, the routines squaremesh, Lmesh and crack

mesh are used. Such routines read the mesh from files. 

4.5. How to set up a custom problem 

The easiest way to set up a new problem is to make a copy of ana

lytical_problem.m and modify the code accordingly. The two main steps 
are:  

1. Define the new problem defining all the variable in Table 5.  
2. Define the mesh to use either loading it from file or generating using 

MESH2D, see Section 4.4. The user may also decide to write routines 
to import meshes saved in existing formats. 

Optionally, the postprocessing section of the code may be changed to 
display the information in the requested format. 

5. Example problems 

In this section, we present three example problems that demonstrate 
the capabilities of the package. These examples serve as a guide to 
problem set up by showing how the problems outlined in [40] can be 
analysed. These are a problem with a smooth solution on a unit square 
domain, a non-smooth problem on an L-shaped domain, and a crack in a 
plate problem, performed by executing the .m scripts example_problem_1. 
m, example_problem_2.m and example_problem_3.m respectively. These 
problems do not use the set up scripts for use with MESH2D discussed 
above to generate the mesh. 

5.1. Problem with an analytical solution on unit square domain 

The first example, example_problem_1.m, considers a small strain 
linear elastic problem on (x, y) ∈ Ω = (0, 1)2 where x and y are in me
ters, see Fig. 2. The problem acts in plane strain with Young’s modulus 
EY = 5

2Pa and a Poisson’s ratio ν = 1
4. As discussed in [40], the right-hand 

side f of Equation  (1) should be selected such that the exact analytical 
solution is 

u =

{
sin(2πx)sin(2πy)
sin(2πx)sin(2πy)

}

.

For this problem, the boundary condition is homogeneous Dirichlet 
(zero displacement) along the whole boundary. Fig. 2 shows the mesh 
used for this example. 

In the file analytical_problem_1_generator.m all parameters to run this 
example are defined. For example, on line 73, the type of boundary 
conditions are defined. The value 2 corresponds to homogeneous 

Table 5 
Set up script variables.  

Input Description Notes 

node Vertices of the desired domain 
(used for mesh generation) 

Number of vertices by 2 array of 
the [x,y] coordinates of the vertices 
of the domain 

edge Defines the connections between 
the domain vertices, indexed 
according to their row position in 
nodes

Number of edges by 2 topology 
matrix of the connections between 
the domain vertices 

BC Imposed boundary conditions See Table 4 
av_bc Flag to indicate if the average 

boundary condition is used 
See [42] 

d_2 Delta 2 coefficient Array containing one value for 
each simulation defining the 
marking strategy to use, see  
Section 2.4 

d_1 Delta 1 coefficient Array containing one value for 
each simulation defining the 
marking strategy to use, see  
Section 2.4 

loop_end Number of adaptivity loops 1 by number of simulations array 
defining the no. adaptivity loops 
for each simulation 

sim_end Number of separate simulations - 
E Young’s Modulus (Pa) - 
nu Poisson’s ratio - 
u, v Displacement expression in the x,y 

directions 
Problems with an analytical 
solution: Symbolic expression for 
the displacement solution across 
the domain Problems without 
known solutions: Symbolic 
expression for the imposed non- 
homogenous dirichlet boundary 
condition 

traction Array containing expressions for 
the imposed traction in the [x,y] 
directions 

Problems without known solution 

fx,fy Expressions for the imposed body 
force in the [x,y] directions 

Problems without known solution  
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Dirichlet. The scalar material constants for E, Young’s modulus (Pa) and 
v, Poisson’s ratio are set on line 75. on lines 77 and following lines, we 
define the number of simulations to perform by setting sim_end=3, and 
then choose the number of adaptivity loops for each simulation by 
setting the values in loop_end=[11 4 3], i.e. 11 hp-adaptivity loops, 4 
h-adaptive loops and 3 pure-h loops. The penultimate step is to select the 
d_1 and d_2 parameters for each simulation, achieved by inputting the 
chosen values into the relevant columns in each array. For this example, 
the desired δ values are d_2=[0.7, 0.07, 0] and d_1=[0.07, 0.07, 0]. An 
overview of the variables used in setting up the script is given in Table 5. 
The program determines the analytical body force from the analytical 
displacement solution, and then imposes the analytical body force across 
the domain. These tasks are performed on lines 105 through 123 using 
the MATLAB symbolic toolbox. This is done in three steps:  

1. Differentiating the displacement with respect to area to find the 
strain components across the domain  

2. Multiplying the strain vector by the elastic stiffness matrix De to find 
the stress across the body  

3. Differentiating the stress with respect to area to find an expression 
for the body force 

To perform the simulations, the user should enter the command 
example_problem_1. The program will output a table detailing the prog
ress of the mesh generation algorithm, for each adaptivity loop infor
mation about the time taken to calculate important parts of the DG 
algorithm, and the error estimate in the command window. Addition
ally, for each simulation the program will produce three figures: the first 
shows a colour coded plot of the boundary conditions applied to the 
external faces, the second is a log-log plot of the error estimate and the 
DG and L2 norm convergence, and the third is a surface plot of the von 
Mises stress across the domain. 

An important difference between SIPG Linear Elastic and the pro
gram used in [40] is that the former initialises the simulation with an 

unstructured mesh, and the latter initialises with a structured mesh. 
Despite this, comparing the convergence plot for the square problem 
produced with SIPG Linear Elastic, Fig. 3, to Fig. 1 of [40] it is clear that 
the magnitude of the error estimator, ηerr, the error in the DG norm, ‖ |u 
-uh‖ |, are similar for a given number of degrees of freedom, and the 
convergence patterns also show similarities. 

5.2. Non-Smooth problem on an L-Shaped domain 

Next, we consider example_problem_2.m, a linear elastic problem on 
(x, y) ∈ Ω = (− 0.5,0.5)2/([0,0.5] ×[− 0.5, 0]) where x and y are in me
ters, acting in plane strain with the same material constants as in 
example 1. The exact solution u is chosen such that the problem is sin
gular at (x,y) = (0,0), 

u =

{ (
x2 + y2)2/3

(
x2 + y2)2/3

}

.

The relevant .m script for this problem is analytical_problem_2_gener

ator.m, and the domain is shown in Fig. 4a. The structure of the code in 
analytical_problem_2_generator.m is similar to the code in analytical_pro

blem_1_generator.m which is discussed in the previous section. Here, 
following the same process as in [40], we apply the non-homogenous 
Dirichlet boundary condition defined by u to all faces and therefore 
all external faces in etpl_face have the flag -2 associated with them and 
the symbolic expressions for u,v are set to equal u. We set loop_end=[13 9

3] to perform 13 adaptivity loops for the hp-adaptive simulation, 9 for 
adaptive-h refinement, and 3 adaptivity loops for the pure-h refinement 
simulation. The material constants and δ values are the same as the 
previous example. Again, as this is a problem with a known analytical 
displacement solution, the analytical body force is calculated using the 
steps outlined in the previous section and then imposed across the 
domain. 

Calling the poly_plot function found in the plotters folder of SIPG 
Linear Elastic with the values of etpl and coord at the end of the first 

Fig. 3. Log-linear convergence of the error estimator, error in the DG and L2 norms against mesh refinement using different adaptive strategies for the unit square 
domain problem. 

T. Wiltshire et al.                                                                                                                                                                                                                               



Advances in Engineering Software 171 (2022) 103147

10

simulation plots a grey-scale colormap of polynomial order distribution 
across the refined mesh, as shown in Fig. 4b. After the first simulation 
with hp refinement the mesh has been refined in h extensively around 
the point x = 0, y = 0. This is because the error estimate for elements 
near the singularity surpass the threshold set by the δ2 parameter, and so 
are refined in h; the polynomial order, controlled using the δ1 parameter, 
is highest for elements close to the singularity due to the large errors 
near this location. However, for the bulk of the mesh (where the solution 
is smooth) the polynomial order remains low, meaning computational 
effort is used more efficiently to focus on problem areas. The conver
gence of the error estimator, ηerr, the error in the DG norm, ‖ |u -uh‖ |, 
and the error in the L2 norm ‖ u -uh‖ are shown in Fig. 5, below. Despite 
beginning with an unstructured mesh, the results of the simulation 

performed with SIPG Linear Elastic are remarkably similar to those re
ported in [40], highlighting the ability of the program to analyse 
non-smooth problems effectively. 

5.3. Crack in a plate problem 

The final example, example_problem_3.m, considers a problem with a 
stronger singularity, a crack in a plate with the same material properties 
as the previous examples. However, unlike the previous examples there 
exists no analytical solution for the displacement across the domain. The 
domain of the problem is described as (x,y) ∈ Ω = ((0,1.5)× ( − 1.5, −
1.5)/([0,0.5] × 0)), where x and y are in meters, with the crack tip at (x,
y) = (0.5, 0). The boundary of the problem is defined as ∂Ω =

ΓN ∪ ΓD ∪ ΓT, where the subscripts N,D and T denote faces where the 

Fig. 4. L shaped domain mesh, before and after hp refinement. (a) L shaped domain initial mesh. (b) Afte the 15th hp refinement step.  

Fig. 5. Log-linear convergence of the error estimator, error in the DG and L2 norms against mesh refinement using different adaptive strategies for the L-Shaped 
domain problem. 
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Neumann, Dirichlet and mixed boundary conditions are applied 
respectively. Additionally, ΓN = ΓN1 ∪ ΓN2 , and 

σ(u)⋅n = pr⋅n on ΓN1 = ([0, 0.5] × − 1.5)
u = 0 on ΓD = ([0, 0.5] × 1.5)

u⋅n = 0 on ΓT = (0.5 × [ − 1.5, 1.5])
t(u)⋅n‖ = 0 on ΓT
σ(u)⋅n = 0 on ΓN2 = ∂Ω\(ΓN1 ∪ ΓD ∪ ΓT)

To set up this problem we consider the choice of variables in the 
script nonanalytical_problem_3_generator.m. The initial mesh, shown in 
Fig. 6a, is unstructured and finer than that used in [40]. 

Here, we wish to impose the following boundary conditions: non- 
homogenous Neumann between nodes 1 and 2, homogenous mixed 
between nodes 2 and 3, homogenous Dirichlet between nodes 3 and 4, 
and homogenous Neumann elsewhere. The etpl_face data for this 
example, stored in crack_EtplFace.txt, therefore provides an insight into 
how the flagging system in column seven of etpl_face can be used to 
define a more complex set of boundary conditions. For this example, 
d_2=[0.3 0.2 0], d_1=[0.07 0.2 0] (NOTE: The first values are different to 
the value reported in the error estimator paper) and loop_end=[15 15 5]. 

Unlike the previous examples where the right hand side f could be 
determined from the analytical displacement solution, for problems 
without an analytical displacement solution across the domain f must be 
specified manually. Hence, inputs for the symbolic expressions for the 
non-homogenous Dirichlet boundary conditions, u and v, non- 
homogenous Neumann boundary conditions, traction and body force 
to be imposed across the domain, fx and fy are required. A final point to 
note is that a zero input to these variables should be expressed as, for 
example, traction=[0*X;0*Y]and not[0;0], to conform with the format 
expected by the symbolic toolbox. Following these guidelines, a zero 
input is used for u,v,fx and fy, and the traction is specified by setting 
traction=[0*X; -1]. 

The convergence of the error estimator for the three adaptive stra
tegies defined by the δ parameters for this problem is shown in Fig. 7. 
Note that for problems with a non-analytical displacement solution, the 
DG and L2 norms will not converge and are therefore not shown in Fig. 7. 

The roughly linear convergence of the hp-adaptive strategy in Fig. 7 
indicates exponential convergence of the error estimator, whereas the 

rate of convergence of the error estimator for the h-adaptive and 
h-uniform strategies decreases as the number of degrees of freedom in
creases, a result also reported in [40]. This example therefore shows 
that, by choosing an appropriate adaptive strategy, SIPG Linear Elastic 
can also be used to analyse non-linear problems with strong 
singularities. 

6. Conclusions 

The paper presented an open source MATLAB code to solve linear 
elasticity using discontinuous Galerkin finite elements with hp-adap
tivity. MATLAB was chosen as the platform for the project because it is 
one of the best platforms for prototyping numerical methods. 

The code has been consciously designed for developers and re
searchers to be used as a starting point for their projects. The modularity 
of the code facilitates modifications like implementing a different 
operator or changing the definition of the error estimator. Customisation 
can be done without touching the algorithm responsible for the 
hp-adaptivity. 

As shown in literature, hp-adaptivity can improve accuracy for a 
variety of PDE problems but it is still not commonly used due to the 
difficulties in implementing it correctly. hp-adaptivity has been included 
in the package to allow the users to effortlessly adopt it for their projects. 
As shown in the examples in Section 5, the code is capable to deliver 
very high accuracy which is better than what many other packages can 
deliver and much more than what is requested from a prototype. Given 
this, the present package can be used from prototyping a new numerical 
method to producing the results to include in publications spanning 
through the entire research process. 
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