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Evolving Heterotic Gauge Backgrounds: Genetic Algorithms
versus Reinforcement Learning

Steven Abel, Andrei Constantin,* Thomas R. Harvey, and Andre Lukas

The immensity of the string landscape and the difficulty of identifying
solutions that match the observed features of particle physics have raised
serious questions about the predictive power of string theory. Modern
methods of optimisation and search can, however, significantly improve the
prospects of constructing the standard model in string theory. In this paper
we scrutinise a corner of the heterotic string landscape consisting of
compactifications on Calabi-Yau three-folds with monad bundles and show
that genetic algorithms can be successfully used to generate anomaly-free
supersymmetric SO(10) GUTs with three families of fermions that have the
right ingredients to accommodate the standard model. We compare this
method with reinforcement learning and find that the two methods have
similar efficacy but somewhat complementary characteristics.

1. Introduction

Obtaining string theory solutions that match the properties of
particle physics in our world has been one of the main driving
forces in string phenomenology, fuelling a significant effort in
developing geometric engineering tools for constructing physi-
cally viable string models. This effort has met with only partial
success due to the sheer mathematical difficulty of the problem
and, to date, none of the existing string theorymodels allows for a
proper description of particle physics. However, the model build-
ing experience of the past few decades has taught us much about
the magnitude of the problem and about how (and also about
how not) to approach it.
The first lessonwe have learnt is that the size of the string land-

scape is much larger than previously thought. The famous first
estimate ofO(10500) consistent type IIB flux compactifications[1,2]
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seems rather conservative in compari-
son with the latest estimates. For in-
stance, in Ref. [3] it was shown that a sin-
gle elliptically fibered four-fold gives rise
to O(10272,000) F-theory flux compactifica-
tions. The second lesson is that the num-
ber of compactifications that match the
symmetry group and the particle spec-
trum of the Standard Model is very large,
despite representing only a tiny fraction
of all consistent compactifications to four
dimensions. In Ref. [4] it was argued that
there are at least 1023 and very likely up
to 10723 heterotic MSSMs, while the au-
thors of Ref. [5] argued for the existence
of a quadrillion standard models from F-
theory.

The third lesson is that these numbers are so large that tra-
ditional scanning methods cannot be used for systematic explo-
ration. One can, of course, focus on small, accessible corners of
the string landscape and this approach has been successful to
some extent. For instance, in Refs. [4, 6], 107 pairs of Calabi-Yau
three-folds and holomorphic bundles leading to SU(5) heterotic
string models that can accommodate the correct MSSM spec-
trumwere explicitly constructed. However, going beyond just the
spectrum is both computationally challenging and may well lead
to an empty set of models, depending on the required degree of
similarity with the standard model. What is needed instead is a
tool-set of non-systematic search methods, that can quickly de-
tect phenomenologically rich patches of the string landscape and
which can implement ‘on the fly’ a number of checks that go be-
yond the usual spectrum considerations.
Such methods can be developed using modern techniques of

optimisation and search, and have already been implemented in
a number of string contexts. Concretely, genetic algorithms (GAs)
were introduced as a search method for finding string vacua with
viable phenomenological properties in Ref. [7], with initial appli-
cations in the free fermionic formulation of heterotic string the-
ory. More recently, reinforcement learning (RL) has been used
in Ref. [8] to generate type IIA intersecting brane configurations
that lead to standard-like models and in Refs. [9, 10] to identify
SU(5) and SO(10) string GUT models, respectively, that can lead
to three generation MSSMs. The landscape of type IIB flux vacua
was explored in Ref. [11] using GAs and Markov chain Monte
Carlo methods, while in Ref. [12] the same methods were used,
as well as RL.
In the present paper we use a GA to obtain phenomenologi-

cally viable heterotic string compactifications on two Calabi-Yau
three-folds with monad bundles. The same class of models has
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recently been explored in Ref. [10] using RL, and indeed one of
the purposes of the present work is to compare the two methods.
We search and obtain several hundred SO(10)models that can ac-
commodate three standardmodel families of quarks and leptons.
We also check during the course of the genetic evolution that the
models are anomaly free and that they pass a necessary condi-
tion for bundle stability. The latter check would normally be per-
formed at the end of the search, but recent advances in establish-
ing simple, analytic formulae for line bundle cohomology[13–20]

have made possible the inclusion of additional checks during
the search.
The rest of the paper is organised as follows. In Section 2 we

give a brief introduction to GAs while in Section 3 we review the
construction of heterotic models on Calabi-Yau three-folds with
monad bundles. In Section 4 we discuss the details of our GA
implementation and in Section 5 we present the results.

2. The GA Technique for Seeking Perfect Models

Let us begin by giving some background and motivation for the
GA. The approach of GAs (and evolutionary computation more
generally) is to use concepts that are generally understood to un-
derly evolution in order to find an optimumsolution to a specified
problem. Thus all GAs contain an evolving population of individ-
ual solution attempts, a “fitness” function for each individual, and
a “selection and breeding process” based on their fitnesses, which
applies evolutionary pressure with the aim of driving the popula-
tion towards a solution. Depending on the problem at hand, suc-
cess may be declared when the population contains sufficiently
many “good” examples, or when one or several individuals in the
population satisfies every one of a discrete set of desiderata. The
present study will be of the latter kind. More specifically, we will
be searching for models with properties that make them candi-
dates for a standard model from string theory. For easy of termi-
nology we will refer to suchmodels as “perfect models” in the fol-
lowing.
The idea of evolutionary computing was developed in the

1950s, but it was formalised by Holland[21] whomoulded the idea
of “building blocks” into a theory of “schema”. Later reviews can
be found in Refs. [22–30]. There has been growing interest in
the technique within the astrophysics and particle theory com-
munity, for example in Refs. [7, 11, 31–51], partly due to its often
surprising efficacy.
We will return to discuss some of the ideas that have been

proposed to explain the efficacy of GAs in a moment, but let us
first describe the technique itself in more detail as it pertains to
the problem under discussion. The fundamental starting point
of any GA is to encode the problem into a string of data, referred
to as the genotype (each entry of which is referred to as an allele).
To be specific, in the present case the genotype is constructed

as follows. Fixing a Calabi-Yau three-fold X , we seek monad bun-
dles V constructed from two sums of holomorphic line bundles
B and C, with ranks rB and rC, respectively, via the short exact
sequence 0 → V → B → C → 0. Each line bundle in B and C is
specified by its first Chern class, which, relative to a basis of
H2(X ), is described by an integer list with length equal to the Pi-
card number h = h1,1(X) of X . This means that V is specified by
h(rB + rC) integers. In fact, as explained below, we will be looking
for bundles satisfying c1(V) = 0, a constraint that cuts down the

number of integer parameters to h(rB + rC − 1). In order to trans-
late this into a genotype we will allow the line bundle integers to
assume values only within a finite range, which can then be im-
plemented as a binary encoding, with each integer beingmapped
to a binary string of fixed length nB for B and nC for C.
Thus the collection of all line bundle integers in B and C or,

rather, the corresponding bit-string obtained by joining their bi-
nary encodings defines a particular model. The starting point of
the GA is then a population ofNpop randomised individuals, each
being represented as a string of digit alleles of length

𝓁 = h(rBnB + (rC − 1)nC) . (2.1)

For instance, for the first of our working examples we will have
h = 2, nB = nC = 3, rB = 6 and rC = 2, giving 𝓁 = 42.
In the case of such a binary encoding there are general

arguments[22,25,28] that suggest that the optimum size of the pop-
ulationNpop depends only logarithmically on the genotype length
𝓁, with a formal lower bound

Npop ≳ 1 +
log(−𝓁∕ logP∗)

log 2
, (2.2)

determined by requiring that both possible values for each allele
should appear in the initially randomised population with some
representative probabilityP∗. (For exampleP∗ = 0.999, would im-
ply that there is a 1 in 103 probability that any individual allele
contains only a 0 or a 1 in the entire population.) Typically this
gives an estimate ofNpop ≳ 20 that is a significant underestimate
of the optimal size of the population, but it nevertheless gives an
indication of the required population size. For the current study,
the GA was found to perform well withNpop ≳ 100. The GA then
consists of repeated application of the following basic elements
on the population:
Selection: Individuals are first selected from the population to

make Npop “breeding pairs” which will create a new generation
to replace the original one. In order to do this the first step is
to calculate the properties of each individual (its so-called phe-
notype). This particular step of extracting the phenotypes from
all the genotypes is the true hallmark of a GA, as the relation
between the genotype and the phenotype it generates, and also
the correlations between different properties within the pheno-
type, may be very deeply hidden. This step, which is where the
physics comes into play, is also often the most case-dependent
and computationally-intensive part of the whole procedure. En-
couragingly, however, it is the aspect that ismost amenable to par-
allelisation.
Based on the phenotype, each individual is then assigned a

fitness value, which is a function of the individual’s phenotype
designed such that it increases as the model approaches a de-
sired optimal solution. There is a wide variety of methods for as-
signing the fitness to an individual, and the process may take
many different forms, such as rank-weighting, tournament se-
lection, and so on. Designing a good fitness function is a crucial
factor in the success (or otherwise) of the GA, because its conver-
gence will depend strongly on the correlation between the fitness
and the distance from the hypothetical optimal solution in geno-
type space (that is, theHamming distance). This fitness-distance-
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correlationwas formalised in a number of works by Jones, Forrest
et al.[24,52–55]

We can appreciate this aspect of the GA for the simple exam-
ple of maximising a smooth function. Suppose we choose a fit-
ness functionswhich is simply proportional to the function value.
Then, as the population approaches a relative flat maximum,
theremay be little difference in fitness between individuals which
are nevertheless widely separated in coordinate space (which in
the case of a continuous function would be directly given by the
genotype). In other words there would be little fitness-distance-
correlation in the neighbourhood of a solution and convergence
would cease. A simple way to avoid this kind of convergence prob-
lem is to rank the individuals in the population by their fitness
value, and then to simply equate their fitness with their ranking.
This is the aforementioned rank-weighting selection procedure,
and is the approach that we will adopt in this study. It has the
additional advantage that we do not need to store all fitness val-
ues separately, but can keep track of the ranking by re-ordering
all the Npop genotypes within a single Npop × 𝓁 array. Selection to
participate in breeding pairs is then carried out with a linearly dis-
tributed likelihood (known generally as roulette wheel selection)
that simply depends on an individual’s ranking. In the present
case an individual at rank k in the population is selected for breed-
ing with a probability that depends linearly on its ranking as

Pk = 2
(1 + 𝛼)Npop

(
1 +

Npop − k

Npop − 1
(𝛼 − 1)

)
, (2.3)

where 𝛼 determines how much more frequently the fittest indi-
vidual is chosen over the least fit. In other words, the probabilities
PNpop

and P1 for selecting the fittest and least fittest individual are
related by

P1 = 2𝛼
(1 + 𝛼)Npop

= 𝛼PNpop
. (2.4)

Typically, an optimal configuration is found when the fittest in-
dividual is selected for breeding a few times more than the least
fit, so that a good choice would be 𝛼 = 2 or 3. But note that it is
important that less fit individuals are also able to breed.
Breeding/Cross-over: At this stage we have Npop breeding

pairs, with the median individual having been selected for breed-
ing twice (that is,NpopPNpop∕2 = 1 + (1∕Npop)). A new population
of individuals is then formed by splicing together the genotypes
of the two individuals in each breeding pair. Again there aremany
different ways to do this. The canonical choice is N-point cross-
over, namely one cuts the genotypes of a breeding pair at the same
N random positions along their lengths and swops the cut sec-
tions. For robustness, the publicly available codes often use so-
phisticated combinations (for example [26, 31, 56, 57] uses both
one- and two-point cross-over in roughly equal proportions) to re-
duce end-point biasing. In the present study this effect was not
found to be significant, and a simple one-point cross over was
found to work sufficiently well.
Mutation: With only the two previous elements, one would

already observe clustering of the population around good solu-
tions over generations. However, the power of GAs comes from
the third element which is mutation. Once a new generation is

formed, a small fraction (usually around a percent) of the alleles
are flipped at random. This prevents stagnation in the popula-
tion, where the entire population clusters around a local maxi-
mum in the fitness, when better solutions are available globally.
For example, it removes the possibility alluded to below Equa-
tion (2.2) that a particular allele could end up being blocked with
either all 0’s or all 1’s running throughout the entire population.
It is important to understand that mutation is not just an im-

provement to the convergence, but is absolutely integral to the
entire process. Depending on the problem and the structure of
the fitness landscape, it causes a dramatic increase in the overall
rate of convergence. This can be seen in practice by optimising
themutation rate as demonstrated in Ref. [7]. It is worthmention-
ing one possible innovation that could be considered, but which
we did not use in this study, namely so-called creep mutation. This
is effectively a small mutation in the phenotype which overcomes
so-called Hamming walls, which occur when the population is
close to an optimum solution in terms of phenotype, but far away
in terms of Hamming distance. An example would be the binary
number 1000 and 0111 which are numerically close but have four
different digits. This can again be thought of as a way to over-
come breakdowns in the fitness-distance-correlation, and could
be thought of as assisted mutation.
Elitism: Finally to create the new generation in a way that guar-

antees a monotonically increasing maximum fitness, we invoke
elitism. This means the fittest individual from the previous gener-
ation is copied into the new one and replaces the least fit new in-
dividual.
The process is then repeated over many generations, and is

terminated and reset when each “perfect model” is found. Note
that there aremany other practical elements that could be consid-
ered, such as fitness “crowding penalties”, and “niching”, that we
do not discuss (or require). They are covered in the literature (see
Refs. [25, 27]). The overall procedure that we use in this study is
summarised in the following pseudo-code (Algorithm 1).

2.1. Discussion of Efficacy

Before moving on to the details of heterotic string models with
monad bundles, it is worth pausing to consider why GAs are
thought to work. With the benefit of several intervening decades
of development in heuristic search methods, we can see that
GAs contain an interesting mix of elements that can be found
in other methods. For example the fitness function is arguably
just a cost-function by another name. In addition, the general
idea of fitness-distance-correlation in Jones, Forrest et al[24,52–55]

clearly has some parallels with Gradient-Descent or Nelder-Mead
search techniques. However, one can also see that this correla-
tion can only be a part of the whole story and that GAs must
confer their own advantages: indeed a very strong correlation
would render the genotype representation superfluous because
the dynamics of the flow could be mapped directly to the pheno-
type. Some power of GAs clearly lies then in the fact that small
changes in the genotype can result in huge changes in the phe-
notype, so that the GA samples the whole space before it begins
to converge. Holland’s schema theory idealised this behaviour in
terms of hidden building blocks within the genotype. A schema
is a representation of some crucial set of digits that confers some
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Algorithm 1 Pseudocode for GA

favourable characteristic, and in this instance might look some-
thing like S = 1 ∗∗∗ 0 0 ∗ . This example has 3 entries that we
are interested in (hence we say it is order 3) and 4 entries that
we do not care about, which are labelled with a wildcard ∗. The
probabilistic arguments ofHolland (summarised in [7]) then sug-
gest that schemata of this kind are important because selection
favours the propagation of shorter strings of data: small subsec-
tions of the genome that confer fitness dominate first and, once
they are shared by the majority of the population, crossover does
not affect them. As a result, so the theory goes, if the schema S
confers fitness on an individual, then it will grow exponentially
within the population until an equilibrium is reached where the
attraction to the solution balances against the repulsion due to
the mutation.
Thus the overall behaviour suggested by schema theory is that

a GA incorporates and balances competing forces. Selection and
breeding tends to produce convergence around local maxima in
the fitness landscape, drawing the population in over genera-
tions. On the other hand the effect ofmutation is to push the pop-
ulation away from local maxima (on average), so that as a whole it
can explore the entire parameter space. The power of GAs is then
that they are sensitive to the entire landscape, but simultaneously
can respond to and converge on interesting regions.
The schema argument fell temporarily out of favour in the

1990s, for reasons which are summarised in Ref. [30], mainly on
the grounds that it does not consider the constructive effects of
cross-over, and that it assumes a constant contribution to the fit-
ness of a given schema. In reality, the population is not static,
so that changes in the rest of the genotype tend to alter the rel-
ative fitness of the schema after the first few generations in a
run. Despite this objection, the idea was rehabilitated by Poli
et al in a suite of papers (see Ref. [30] for a comprehensive re-
view) which developed so-called exact schema based models, and
showed their relation to Markov chains. Simultaneously there

have been several other approaches to understanding GAs, for
example statistical mechanical approaches[58] or stochastic differ-
ential equations,[59] which each seem to have their own drawback.
In the former approach, one assigns the fitness function with
a Boltzmann weighting, while the latter approach is restricted
to simple cases such as the so-called onemax problem which is
equivalent to solving the one-dimensional Ising model. In these
cases it is likely that the set-up of the configuration influences
the results so that the conclusions are not general but really only
applicable to the very specific configurations used to frame the
argument. Despite these limitations, the schema theory remains
as one of the best interpretations of the behaviour of the GA.

3. Heterotic Models with Monad Bundles

Having presented the main features of GAs, we now turn to a
concise discussion of the geometric ingredients entering the con-
struction of E8 × E8 heterotic string compactifications on Calabi-
Yau three-folds with monad bundles. More details can, for exam-
ple, be found in Refs. [10, 60–65]. In particular, we will specify the
degree of similarity to the properties of the standard model, that
qualifies a particular heterotic model to be designated as “per-
fect”. From the perspective of the GA this amounts to working
out the phenotype.

3.1. Heterotic CY Models

As already alluded to, heterotic E8 × E8 compactifications are
based on the data (X, V, Ṽ, C), where X is a Calabi-Yau three-fold,
V and Ṽ are slope poly-stable vector bundles over X whose struc-
ture groups embed into E8 and C is an effective curve class on X .
Poly-stability is themathematical condition to ensure the bundles
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preserve supersymmetry and it is, in general, difficult and time-
consuming to check explicitly. For the purpose of our algorith-
mic approach we will only check a necessary condition known as
Hoppe’s criterion. It says that a poly-stable bundleV over X must
necessarily satisfy

h0(X,∧rV) = 0 , for all r = 1, 2,… , rk(V) − 1. (3.1)

Another constraint on the bundle V arises from the fact that only
special unitary groups can be embedded into E8. This means that
we require

c1(V) = c1(Ṽ) = 0 . (3.2)

Anomaly cancellation: The sectors of the four-dimensional the-
ory which originate from the bundle Ṽ and the five branes wrap-
ping a curve with class C are hidden sectors, in the sense that
they couple to the observable sector associated to V only gravita-
tionally. Since we are interested in the observable particle physics,
these sectors will not be constructed explicitly.However, for a con-
sistent model, we need to satisfy the anomaly cancellation condi-
tion

c2(TX ) + ch2(V) + ch2(Ṽ) = C (3.3)

which relates the various sectors of the theory. This is done by
demanding that

c2(TX ) + ch2(V) ∈ Mori cone of X (3.4)

which guarantees the existence of a supersymmetric completion
of themodel with a trivial hidden bundle Ṽ and five-branes wrap-
ping a curve with class C = c2(TX) + ch2(V).
Spectrum: For the purpose of this paper, we will consider “ob-

servable” bundles V with structure group SU(4) which breaks
one of the E8 symmetries to an SO(10) GUT group. The SO(10)
multiplets arise from the decomposition of the 248 adjoint of E8
under the maximal subgroup SU(4) × SO(10), which reads

248E8 → (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)
gauge families anti-families Higgs bundle
bosons moduli

n16 = h1(V) n16 = h1(V∗) n10 = h1(Λ2V) n1 = h1(V ⊗ V∗)

The number of each multiplet is given by the first cohomology
of V , V∗ and its various products, as indicated in the last row
above. Of particular importance is the chiral asymmetry of fami-
lies which can be expressed in terms of the index of V as

n16 − n16 = −ind(V) = h1(X, V) − h2(X, V) . (3.5)

The last equality in the above formula assumes that h0(V) =
h3(V) = 0 which follows from the poly-stability of V , via Hoppe’s
criterion (3.1).
Equivariance: The SO(10) GUT symmetry needs to be broken

to the standard model group and this is done by including a dis-
crete Wilson line into the construction, which is possible when

the manifold is non-simply connected. However, most of the typ-
ical constructions lead to Calabi-Yau three-folds that are simply
connected. On the other hand, if a freely-acting symmetry Γ on
X exists, this can be used to produce a quotient X̂ = X∕Γ with
non-trivial fundamental group. The Wilson line is then included
on the resulting quotient manifold X̂ = X∕Γ. In order to end up
with three chiral families after performing this quotient, the up-
stairs model on X requires a chiral asymmetry of

n16 − n16 = −ind(V)
!
= 3|Γ| , (3.6)

where |Γ| is the order of the discrete group Γ. For this construc-
tion to make sense, the upstairs bundle V → X needs to descend
to a bundle V̂ → X̂ on the quotient CY and this is the case iff
V admits a Γ-equivariant structure. This is typically a non-trivial
constraint which will be discussed inmore detail below, when we
introduce monad bundles.

3.2. Calabi-Yau Three-Folds

To realise the above construction we require, in a first instance,
explicit CY manifolds. It turns out that, for group-theoretical rea-
sons, the Wilson-line breaking of SO(10) to the Standard Model
requires a discrete group Γ which is at least ℤ3 × ℤ3. While the
number of knownCYmanifolds is large, only a handful of known
examples have symmetry groups this large,[10,66–68] so the choice
of manifold is, in fact, rather constrained 1. For the purpose of
this paper, we will focus on two of these manifolds, both realised
as complete intersections in products of projective spaces (CICYs)
and represented by the following configuration matrices

[
ℙ2 3

ℙ2 3

]2,83

−162

,

⎡⎢⎢⎢⎣
ℙ2 1 1 1

ℙ2 1 1 1

ℙ2 1 1 1

⎤⎥⎥⎥⎦
3,48

−90

. (3.7)

These manifolds are also known as the bi-cubic CY and the triple
tri-linear CY, respectively. They are embedded in the ambient
spaces  = (ℙ2)×2 for the bi-cubic and  = (ℙ2)×3 for the triple
tri-linear. Themanifold itself is cut out by the common zero locus
of homogeneous polynomials whose multi-degrees correspond
to the columns of the above matrices. The superscripts provide
the Hodge numbers h1,1(X), h2,1(X ) and the subscript the Euler
number, 𝜂(X), of the manifold. Both manifolds have a freely-
acting symmetry Γ = ℤ3 × ℤ3, as required for the SO(10) GUT
breaking. We will also need the second Chern class c2i(TX ) of the

1 This changes for models based on an SU(5) GUT group whose break-
ing only requires a ℤ2 symmetry.
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tangent bundles and the triple-intersection numbers dijk. Relative
to the obvious basis (J1,… , Jh) of H

2(X), obtained by restricting
the Kähler forms of the projective ambient space factors to X , and
the associated dual basis of H4(X), they are given by

bi-cubic c2i(TX) = (36, 36) d122 = d112 = 3

triple tri-linear c2i(TX) = (36, 36, 36) diij = 3 ∀i ≠ j,
d123 = 6 .

(3.8)

3.3. Monad Bundles

Explicit bundle construction frequently rely on holomorphic line
bundles as basic building blocks. Holomorphic line bundles are
classified by their first Chern class. Relative to an integral basis
(J1,… , Jh) of H

2(X), the first Chern class of a line bundle L → X
can be represented by an integer vector k ∈ ℤh, such that c1(L) =
kiJi, hence the notation L = X (k).
Monad bundles are defined by a short exact sequence

0 ←→ V ←→ B
f
←→ C ←→ 0 , B =

rB⨁
i=1

X (bi) , C =
rC⨁
a=1

X (ca),

(3.9)

where, for our purposes, B andC are each taken to be line bundle
sums. Thus such monad bundles are specified by a pair (B,C)
of line bundle sums which can be identified with an integer
matrix (b1,… , brB , c1,… , crC ) of size h × (rB + rC). The bundle V
is isomorphic to the kernel, Ker(f ) of the monad map f which
can be thought of as a rC × rB matrix with polynomial entries
fai ∈ Γ(X (ca − bi)).
A given choice of (B, C) might lead to a monad sheaf, rather

than a monad bundle. This happens when the degeneracy locus
of f , that is, the locus on X where the rank of f is less than maxi-
mal, is non-trivial. Since we are considering smooth, geometrical
models we should avoid sheafs, so we have to check “bundleness”
of V by computing the dimension

ddeg = dimension of degeneracy locus of f . (3.10)

Typically, the matrix f exhibits a pattern of zero and non-zero en-
tries, depending onwhetherΓ(X (ca − bi)) is trivial or non-trivial,
and for otherwise generic choices, the dimension ddeg can be de-
termined from this pattern. Themodel is acceptable iff ddeg = −1.
A monad map with too many zero entries might also lead to

a split bundle, that is, to a bundle V whose structure group is
a proper sub-group of SU(4), for example S(U(2) ×U(2)). These
split bundles lead to a GUT group larger than SO(10) and we do
not consider this possibility here. To this end, we introduce the
number

nsplit = number of splits of the bundle V (3.11)

which can be determined from the pattern of the monad map. It
is also useful to introduce the number

ntrivial = number of trivial line bundles X in (B,C) . (3.12)

As mentioned earlier, Γ-equivariance of V is a non-trivial con-
straint but a full check based on presently available methods is
not compatible with an efficient computational realisation. In-
stead, we will perform a strong necessary check for B and C to
possess a Γ-equivariant structure. This is done by checking that
each unique line bundle L in B or C has an index divisible by |Γ|.
If a line bundle L appears with multiplicitym in either B or C, we
require that

ind(L⊕m) is divisible by |Γ| . (3.13)

To check the other constrains we require the following formulae
for the Chern classes of a monad bundle:

rk(V) = rk(B) − rk(C)
!
= 4

ck1(V) = ck1(B) − ck1(C) =
rB∑
i=1

bki −
rC∑
a=1

cka
!
= 0

c2k(V) = ch2k(C) − ch2k(B) =
1
2
dklm

(
rC∑
a=1

clac
m
a −

rB∑
i=1

blib
m
i

)
!
≤ c2k(TX )

ind(V) =
3∑

q=0
(−1)qhq(X, V) = 1

2
c3(V) = ch3(B) − ch3(C)

= 1
6
dklm

(
rB∑
i=1

bki b
l
ib
m
i −

rC∑
a=1

ckac
l
ac

m
a

)
!
= −3|Γ| .

(3.14)

The conditions appearing on the right-hand sides of these equa-
tions originate from the requirement that V has an SU(4) struc-
ture group, from the anomaly cancellation condition (3.4) and
from the constraint (3.6) on the chiral asymmetry.
Calculating cohomology for monad bundles requires the long

exact sequence in cohomology associated to the monad se-
quence (3.9). Such computations can require ranks of maps and
can be time-consuming. For this reason, checking Hoppe’s crite-
rion for poly-stability in full is not feasible while running a GA.
Instead, we will use that Hoppe’s criterion is violated and, hence,
that V is non-supersymmetric if

h0(B) − h0(C) > 0 or h0(B∗) − h0(C∗) > 0 . (3.15)

Fortunately, analytic formulae for zeroth line bundle cohomology
exist for both manifolds under considerations,[10] so the above
expressions can be checked efficiently.

4. Monad Bundles and Genetic Algorithms

4.1. The Environment

Let us now outline the “environment” that will form the basis of
our search. We will consider models consisting of monad bun-
dles (3.9), specified by matrices (B, C), on a fixed CY three-fold X ,
in practice one of the twomanifolds in Equation (3.7). The integer
entries in (B, C) are not, a priori, bounded but will be restricted
as

bmin ≤ bki ≤ bmax , cmin ≤ cka ≤ cmax , (4.1)
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so that the environment becomes finite. Given that we are aiming
tomatch relatively small integers, such as the required index, this
does not seem to be a serious limitation. In fact, model building
experience suggests[6,10,69,70] that viable models typically arise for
relatively small integer entries. The first Chern class constraint,
c1(V) = 0, can be easily solved (see Equation (3.14)), for example
by fixing the last line bundle in C in terms of the others. For this
reason, we constrain the environment to pairs (B, C) that satisfy
c1(B) = c1(C). If we allowed, say, 10 values per entry, the number
of states in the environment is of order

10h(rB+rC−1) . (4.2)

Since rB + rC − 1 ≥ 5 and we consider h = h1,1(X) ∈ {2, 3} this
is quite sizeable and not suited for systematic scanning. Model
building experience also shows[6,10,69,70] that the fraction of viable
models within this environment is so small that a purely random
search could not be successful.
The environment has a large degeneracy, governed by the sym-

metry

H × SrB × SrC , (4.3)

where the first factor is H = S2 for the bi-cubic CY and H = S3
for the triple tri-linear CY and arises due to the symmetries of
the configurationmatrices; it corresponds to permutations of the
rows of the matrix (B, C). The permutation groups SrB and SrC
arise from permutations of the line bundles (columns) in B and
C which of course do not affect the resulting monad bundle V .
For the purpose of applying GAs, we have kept this degeneracy,
as the ordering required for its elimination would significantly
complicate the algorithm. Indeed the very notion of ordering by
genotype, which would have to be performed even after eachmu-
tation, is somewhat at odds with the principle of GAs although it
could in principle be included. However, redundancy in themod-
els will be ultimately be eliminated from the list of perfectmodels
found by the algorithm.
For the purpose of implementing the GA we require an in-

trinsic value function v(B, C) on the environment which mea-
sures any deviation from the required properties and, in the con-
text of GAs, forms the basis of the fitness of a given individ-
ual. The various contributions to this value function are listed
in Table 1. A viable or perfect model (B, C) is defined to be a
model with intrinsic value v(B, C) = 0. Given the definition of
the value function in Table 1, such a state allows for a super-
symmetric, anomaly-free completion, it is based on an SO(10)
GUT symmetry, has the correct chiral asymmetry of families and
it passes the checks for bundle equivariance and poly-stability dis-
cussed earlier. Of course such perfect models might then still
fail at a fairly elementary level, for example due to the pres-
ence of undesirable 16-multiplets, a failure of stability or a fail-
ure of equivariance. Checking these properties requires cohomol-
ogy calculations which, with the available methods in commu-
tative algebra, are too time-consuming to be carried out during
the GA evolution. However, experience from “by-hand” model
building[6,69,70] and from RL[10] shows that a significant frac-
tion of the perfect models also satisfy the more stringent coho-

Table 1. Contributions to the intrinsic value for the monad environment.
The intrinsic value v(B, C) is the sum of all eight terms. The normalisation
factors involveM = max(bmax, cmax) and h = h1,1(X).

Property Term in v(B, C) Comment

index match − 2|ind(V)+3|Γ|
hM3 ind(V) computed from

Equation (3.14)

anomaly
∑h

i=1 min(c2i(TX) − c2i(V), 0) c2i(V) computed from
Equation (3.14)

bundleness −(ddeg + 1) ddeg from Equation (3.10)

split bundle −nsplit nsplits as in Equation (3.11)

equivariance −
∑

L⊂B,C mod(ind(L⊕m), |Γ|) L and m is in Equation (3.13)

trivial bundle −ntrivial ntrivial as in Equation (3.12)

stability V −max(0,h0(X,B)−h0(X,C))
hM3 test from Equation (3.15)

stability V∗ −max(0,h0(X,B∗)−h0(X,C∗))
hM3 test from Equation (3.15)

mological constraints. In other words, while some of the con-
ditions in Table 1 are only necessary, they are still sufficiently
strong2.
The monad environment we have just described was also used

in the context of RL,[10] where the value function in Table 1 was
used to determine the reward. It was shown in Ref. [10] that
RL is extremely successful on this environment, with trained
policy networks efficiently leading to perfect models for 100%
of episodes, and many, previously unknown, models being dis-
covered. Using the same environment allows a direct compar-
ison between RL and GAs, which we carry out in the next
section. In summary then, our environment is the same as
that used for RL in Ref. [10], which has been realised as a
MATHEMATICA[71] package.

4.2. Genetic Algorithm

To realise the GA we choose the range of entries such that
bmax − bmin = 2nB − 1 and cmax − cmin = 2nC − 1, representing ev-
ery integer in B and C in a binary encoding, with nB and, re-
spectively, nC bits, resulting in a bit sequence of total length
𝓁 = h(rBnB + (rC − 1)nC). The typical size of a population consists
ofNpop ≃ 100 − 300 states, each represented by such a binary en-
coding of the matrix (B, C). The population is then evolved by
crossing and mutation, as discussed in Section 2.
With the fitness function specified by the intrinsic value

v(B, C), we found that rank-weighting selection, elitism and a
simple one-point cross breeding work well. The GA was imple-
mented in two ways, as a MATHEMATICA[71] and as a Python
package, in both cases being coupled to the MATHEMATICA
package realising the environment. The two realisations lead to
similar results.

2 It is conceivable that analytical formulae formonad cohomology can be
found, in analogy with the analytical formulae known for line bundle
cohomology.[13,16–18] Such formulae would facilitate setting up a more
advanced environment which checks the full spectrum and a sufficient
condition forstability.
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Figure 1. Performance measures for a typical GA initialisation on the bicubic.

5. Monad Bundles on the Bicubic Manifold

5.1. A Typical GA Run on the Bicubic

We first consider monad bundles on the bicubic manifold with
rk(B) = 6 and rk(C) = 2. We choose bmin = −3, cmin = 0 and
bmax = 4, cmax = 7, such that each integer entry in the matrix
(B,C) can be represented by a 3-bit binary sequence counting up
from the fiducial points, bmin and cmin. For instance, an entry of
−3 in B will be represented by the sequence (0,0,0), while an en-
try of 4 in B corresponds to (1,1,1). Similarly, an entry of 0 in C
is represented as (0,0,0), while an entry of 7 in C corresponds to
(1,1,1).
Working with integers that can be encoded on 3 bits is conve-

nient for the purpose of comparing the GA and RL techniques.
However, it is possible and in fact easy to further increase the
range of line bundle integers, as the corresponding augmenta-
tion in the computational time is not significant.
As mentioned above, the environment has a large degeneracy.

Equivalent models arise from permuting the two ℙ2-factors in
the bicubic embedding, as well as from permuting the line bun-
dles in B and C. This amounts to a group of order 2! ⋅ 6! ⋅ 2! =
2800. Of course, this does not necessarily imply that every per-
fect model can be found in 2800 different sites, since some per-
mutations may leave particular matrices (B, C) unchanged, but it
nevertheless gives some idea of the degree of degeneracy present
in the environment.
It is useful to illustrate the performance of the GA graphically.

We set the size of the population to Npop = 250 randomly ini-
tialised states and let the GA run for 200 generations with a mu-
tation rate of 0.004 and the parameter 𝛼 from Equation (2.3) set
to 𝛼 = 3. The time taken by such a run is relatively small (<100
seconds on a laptop). Figure 1 shows a typical evolution of the
population. The histogram on the left shows how the population
progresses towards greater fitness (intrinsic value). The plot on
the right shows the fraction of perfect models in the population,
that is, the fraction of models with a value v(B, C) = 0. By genera-
tion 150 more than half of the population corresponds to perfect
models. For this run, a total of 200 × 250 states have been vis-

Figure 2. Saturation of the number of perfect states found in a typical GA
run on the bicubic.

ited, many of them multiple times. Of these 12,665 correspond
to perfect models with 48 being distinct. After eliminating re-
dundancies, 18 non-equivalent models remain. The fraction of
perfect models can be easily increased by lowering the mutation
rate. However, as onemight anticipate from the discussion in the
introduction, this also induces a degree of stagnation, with a ten-
dency for the same states to emerge repeatedly.
A few remarks are in order. Firstly, to appreciate the perfor-

mance of the algorithm, note that the size of the search space
is

814 ≃ 4.4 × 1012 .

By comparison, the number of states visited in the above run,
namely 50,000, represents only a tiny fraction of the space. How-
ever, the GA was capable of finding 48 perfect states, while a ran-
dom search over millions of states would typically lead to no per-
fect states at all.
Secondly, as already noted, the GA has a tendency of visiting

the same states multiple times. It is interesting to plot the total
number of perfect states found after n generations as a function
of n. For our illustrative run such a plot is shown in Figure 2,
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which suggests that there is no additional benefit in letting the
population evolve beyond a certain generation (n ≃ 150).
Finally, it is useful to compute the degeneracy of the 18 states

that remain after removing redundancies. By performing all the
allowed permutations a number of 19,080 states are obtained.
This should be compared with the product 18 × 2800 = 50, 400
which turns out to be an overestimate by more than a factor of
2. Moreover, what this computation indicates is that a single run
of the GA is not enough if the aim was to find all the perfect
states available in the environment and that 1,000 further runs,
which would take about 1 day on a single machine, would be
just about enough to find the other redundant representations
of the 18 states found in the first run. Of course, many more new
states, not related to the 18 by permutations, would be expected
to arise in such a search, which implies that a comprehensive
search would require several, possibly tens of thousands of GA
runs. With 10,000 runs this would amount to exploring ∼ 0.01%
of the environment.

5.2. A Quasi-Comprehensive GA Search

The illustrative results presented above show that GAs can be
efficiently used to identify monad bundle models on the bicu-
bicmanifold that satisfy the phenomenological requirements dis-
cussed in Section 3. A natural question to ask is whether the GA
can find all (or almost all) perfect models available within the en-
vironment. Answering this question is difficult, mainly because
the environment is too large to be subjected to a systematic scan
which would ensure that no perfect state was missed. The com-
putational time needed for a systematic scan within the environ-
ment bounds can be easily estimated to about 200 core years,
which although attainable, is by no means something that one
would easily invest in.
A partial answer to the question can be achieved bymaking use

of the redundancy present in the environment. The procedure is
as follows. We perform 10,000 runs keeping the same settings as
above, namelyNpop = 250, the length of a run equal to 200 gener-
ations, a mutation rate of 0.004 and 𝛼 = 3. The required compu-
tation time for this is about 10 core days3. We extract the number
of perfect states found after n runs and then ask how many of
these are left after removing redundancies. Now, if the GA is ca-
pable of finding almost all the states, then the expectation would
be that the redundancy reduced number of perfect states after n
runs would saturate as a function of the total number of perfect
states found after n runs. In other words the GA is only finding
versions of models that it has found before. The plot in Figure 3
confirms this expectation. The search lead to a number of 96,705
perfect states, out of which 639 are inequivalent (not related by a
permutation). Performing all possible permutations on the 639
states leads to 481,680 perfect states that must be present in the
environment. If allowed more time, the GA would of course be
expected to find all of these. However, the saturation plot in Fig-
ure 3 as well as the plots in Figure 4 suggest that there are not
many more inequivalent states to be found. We take this as an
indication that the search has already successfully found most of
the inequivalent perfect states.

3 The scan was carried out on the Hydra Computer Cluster in the
Dept. of Physics at the University of Oxford.

Figure 3. GA scan results. Saturation of the redundancy reduced number
of perfect states.

5.3. Enlarging the Search Space

So far theminimal and themaximal values of the entries inB and
C were fixed such that all integers can be encoded on 3 bits. Up-
grading to integers that can be encoded on 4 bits leaves the com-
putational time required for a GA run virtually unchanged. Thus
enlarging the range of line bundle integers in B and C would not
pose a problem for the performance of the GA implementation
used here. But is there a good reason for enlarging the environ-
ment?
To answer this question we need to see if the perfect models

found are well within the boundary of the environment or if a
significant fraction of them lies close to the boundary. The bar
charts in Figure 5 show that in fact most of the models lie on the
boundary (for instance, 451 out of the 639 inequivalent models
include the integer 4 in B). This suggests the need for increasing
further the entries in B and C. However, before embarking on
such an enterprise, it is worth looking deeper into the quality of
the monad bundles found. The requirement of stability imposes
that h0(V) = h3(V) = 0. Moreover, in order to avoid the presence
of 16-multiplets, the bundle has to satisfy h2(V) = 0. These coho-
mological constraints are too computationally intensive to have
included them in the search, however they can be carried out on
the set of 639 inequivalentmodels found on the bicubicmanifold.
Moreover, many of themodels found contain a repeated line bun-
dle in B and C. While this is not a problem in itself, such models
are equivalent to monad bundles with rk(B) = 5 and rk(C) = 1.
We eliminate these from the discussion, which leaves 214 mod-
els of genuine rk(B) = 6 and rk(C) = 2 type. Out of these, 67 have
the right cohomologial properties mentioned above. Further sta-
bility checks reduce this number to 29 models. The distribution
of entries in B for the remaining 29 models is shown in blue in
Figure 6 and indicates that most of the models have all the line
bundle entries in the range {−2,−1, 0, 1, 2}. In view of this, the
expectation is that very few, if any, additional models satisfying
the additional constraints would be found by further enlarging
the size of the environment.

5.4. GA Scan Versus RL Scan

In Ref. [10] a similar search for physically viable models on the
bicubic manifold with monad bundles was performed using
methods of reinforcement learning (RL). The same fitness
function v(B, C) as described above was used in that context to
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Figure 4. GA search results on the bicubic. The number of inequivalent perfect states saturates, while the total number of perfect states found is still far
from saturation after 10,000 GA runs.

Figure 5. Bar charts showing the number of inequivalent perfect states (B, C) that have a certain integer present in B (left chart) and in C (right chart).

compute the intrinsic value of states (B,C). When moving from
one state to another, the RL agent receives a reward equal to the
difference between the intrinsic values of the two states if the
difference was positive or a fixed penalty if the difference was
negative. The search is divided into episodes of fixed maximal

length and along each such episode the return Gt of a state st is
computed as

Gt =
∑
k≥0

𝛾krt+k, (5.1)

Figure 6. Distribution of models across the range of integers in B (top chart) and C (bottom chart). The number of models is significantly reduced when
additional requirements are imposed. Very few models are left on the boundary of the environment.
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Figure 7. RL training metrics on the bicubic manifold. After 100,000 rounds every episode ends up in a terminal state.

where rt is the reward (penalty) associated with the step st → st+1
and the discount factor 𝛾 is a subunitary number close to 1. The
aim of the game is then to devise a strategy of finding a path
that would maximise the return of any randomly chosen start-
ing point, by eventually landing on a perfect state (also called a
terminal state in the RL context).
More details can be found in Ref. [10]. What is important for

the present discussion is that, although the RL and GA meth-
ods rely on the same intrinsic value function, their underlying
philosophies are very different, which makes for an interest-
ing comparison.
For the RL we use a policy network trained on episodes of max-

imal length 64. After 100,000 rounds of training, a phase which
takes several hours on a laptop, the RL agent is capable of finding
terminal states from virtually any random starting point within
episodes of average length ∼30. The training curves are shown in
Figure 7.
In order to get a preliminary assessment of the performance

of the trained network we let it run for 10,000 episodes which
takes about 16 minutes on a single machine. The run produced
2460 terminal states, out of which only 72 are distinct. The rep-
etitions are not evenly distributed over the 72 distinct states. In
fact, one of these states accounts for almost half of the terminal
states found. Incidentally, this particular state corresponds to a
monad bundle that can be reduced to a rk(B) = 5 and rk(C) = 1
case. The genuine rk(B) = 6 and rk(C) = 2 are found with much
smaller frequencies, most of them appearing only once in the
dataset. Thus, although the network is capable of finding termi-
nal states, a small number of these sates have very large basins of
attraction and are found much more often than the others. This
is a source of inefficiency for the RL implementation.
We let the trained network search for terminal states from

1.7 ⋅ 109 random initial states. This search, which took 35 core
days produced ∼10,000 perfect states, out of which 643 were
inequivalent. By comparison, the computational time for the
GA scan was 10 core days and lead to ∼100,000 perfect states,
out of which 639 were inequivalent. The saturation curve of
the number of inequivalent models as a function of the total
number of models found at various stages of the RL search is
shown in Figure 8 together with the corresponding curve for the
first 10,000 perfect states found during the GA search. Figure 9
shows the progression of the number of (inequivalent) models
found with the number of states visited.

Figure 8. Saturation of the redundancy reduced number of perfect states.
Orange curve: RL search. Blue curve: GA search. The RL search took 35
core days, while the part of the GA search shown here took only 1 core
day.

A number of remarks can now be made. Firstly, the GA search
is more efficient at finding perfect states than the RL search.
Roughly the same number of inequivalent perfect states have
been found in the two searches, though the RL search took 3.5
times longer than the GA. Secondly, the GA is more prolific, by
more than an order of magnitude compared to the RL search, at
finding redundant perfect states. This is very likely a by-product
of crossover, which is prone to producing redundant states by
permuting various parts of the genome. Note that various tech-
niques such as crowding penalties might be considered to re-
move this inefficiency.
Finally, there is a substantial overlap between the inequivalent

models found in the two searches, with only ∼50 models in each
complement. This brings the total number of inequivalent mod-
els to 689. The fact that two such different methods lead to virtu-
ally the same dataset of models is another even stronger indica-
tion that it has been possible to achieve a high degree of compre-
hensiveness by scanning only a tiny fraction of the environment.
While both methods produce nearly identical data sets of per-

fect models after sufficient running time their trajectories dur-
ing evolution/training appear to be quite different. Using nonlin-
ear visualisation techniques such as Sammon maps we find that
the set of perfect models found at an early stage is quite differ-
ent for the two methods. In particular, as illustrated by Figure 8,
GAs tend to produce a significantly larger degree of redundancy
than RL.
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Figure 9. RL search results on the bicubic. The number of inequivalent perfect states saturates, while the total number of perfect states found is still far
from saturation after 1.7 ⋅ 109 RL episodes.

Figure 10. Performance measures for a typical GA initialisation on the triple trilinear.

6. Monad Bundles on the Triple Trilinear Manifold

6.1. A Typical GA Run on the Triple Trilinear

As in the previous section we consider monad bundles with
rk(B) = 6 and rk(C) = 2 and set bmin = −3, cmin = 0 and bmax = 4,
cmax = 7, such that each integer entry in the matrix (B, C) can be
represented by a 3-bit binary sequence. For the triple trilinear
manifold the degeneracy of the environment is even larger than
in the case of the bicubic, due to the six possible permutations
of the three ℙ2-factors in the ambient space. The corresponding
group has order 8640.
As in the previous case, we illustrate the performance of the

GA graphically. We keep the size of the population to Npop = 250
randomly initialised states. The GA needs to run a little longer
until a significant fraction of the population corresponds to per-
fect states. Evolutionary episodes of 400 generations with amuta-
tion rate of 0.004 and 𝛼 = 4 seem to work well. The time taken by
such a run is relatively small (∼450 seconds on a singlemachine).
Figure 10 shows a typical evolution of a population of models

on the triple trilinear manifold. By generation 300 about half of
the population corresponds to perfect models. For this run, a to-
tal of 400 × 250 states have been visited, many of them multiple
times. Of these 15,377 correspond to perfect models, with 43 be-
ing distinct. After eliminating redundancies, 41 non-equivalent
models remain.
The size of the search space is

821 ≃ 1019.

which is orders of magnitude larger than the bi-cubic space. The
number of states visited during the above run, namely 100,000
states (not necessarily distinct), represents a minuscule fraction
of the space. Nevertheless, it is remarkable that 43 perfect states
were found, and these perfect states lead to 41 inequivalent mod-
els. The total number of perfect states found after n genera-
tions as a function of n is plotted in Figure 11, which suggests
that the number of generations, 400, is suitably chosen given
the other hyper-parameters. This continued efficacy despite the
much larger search space suggests that the difficulty of finding a
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Figure 11. Saturation of the number of perfect states found in a typical GA
run on the triple trilinear CY manifold.

Figure 12. GA search results on the triple trilinear manifold. The creation
of each point has taken 10 core hours and corresponds to 108 visited
states. The number of inequivalent perfect states has not saturated after
35 ⋅ 108 visited states.

solution is increasing only polynomially for the GA as one might
have hoped.

6.2. GA Search on the Triple Trilinear

The environment being much larger than in the case of the bicu-
bic manifold, we have not attempted to reach the same degree of
comprehensiveness as before. After running for 15 core days, the
GA found ∼ 100, 000 perfect states, three quarters of which are
inequivalent. Figure 12 shows that the number of inequivalent
states is far from saturation at the end of the run, suggesting that
many more other inequivalent perfect states are still to be found
within the environment.

7. Conclusion

In this paper we have explored the efficacy of genetic algorithms
(GAs) as a search method for probing the landscape of four-
dimensional  = 1 heterotic compactifications. GAs turn out
to be very successful for engineering the compactification data
and for finding perfect models, that is, models which resemble
the Standard Model. The spaces of models scrutinised here were
extremely large (∼1012 in the case of the bicubic manifold and
∼1019 for the triple trilinear manifold). In the case of the bicu-
bic manifold a systematic scan, although feasible, would be ex-
tremely time consuming, while for the triple trilinear manifold,

a systematic scan is practically unfeasible. Despite this, the GA
was able to find tens of models within the first few minutes of
running on a single machine. The method is not only efficient,
but also highly parallelisable.
After 10 days of running, the GA accomplished a high degree

of comprehensiveness in finding all the perfect models avail-
able on the bicubic manifold. Indirect evidence in support of this
claim was obtained by exploiting the degeneracy of the environ-
ment, as well as by comparison of the results of the GA search
with those obtained through reinforcement learning (RL). Al-
though the twomethods are very different, they lead to datasets of
inequivalent models that have an overlap of over 90%. This sug-
gests that the details of the optimisation process are not really
essential once the processes begin to saturate, provided that they
share the same incentives.
Our comparative analysis of the two search methods revealed

that GA is, overall, more efficient by about an order of magnitude
in finding perfect states than RL.However, GA is alsomore prone
to finding models that are related by redundant permutations, a
feature which is likely related to the crossover mechanism. In
principle techniques such as crowding penalties (with the redun-
dancy incorporated)might improve this aspect. An important fac-
tor contributing to the lower output of the RL search was the fact
that certain perfect states had very large basins of attraction and
consequently were found many times, while other perfect states
had small basins of attraction and needed many trial episodes to
be found.
The combinedRL andGA searches on the bicubicmanifold led

to some 700 inequivalent perfect models. Only a tenth of these
correspond to monad bundles of genuine (rk(B), rk(C)) = (6, 2)
type with the correct cohomology dimensions. Further stability
checks reduce the number of viable models by another factor of
2 – the correspondingmonad bundles have been tabulated in Ap-
pendix A. Unfortunately these checks had to be performed at the
end of the search due to the limitations imposed by cohomology
computations. However, it may be the case that a quick method
for computing monad bundle cohomology can be developed, for
instance in the form of an analytic formula similar to those found
for line bundle sums. If possible, this would facilitate the imple-
mentation of further checks at the search stage, which would sig-
nificantly improve the performance of both GAs and RL.
Improving the performance of the search methods is of par-

ticular importance for large environments, such as that corre-
sponding to the triple trilinear manifold. In the absence of more
stringent notion of perfect model, achieving any degree of com-
prehensiveness is difficult in such large environments; conse-
quently, partial searches such as the one presented in Section 6.2
may miss many relevant models.
Lookingmore broadly, one is irresistably drawn to the question

of whether the optimisation processes that we have been explor-
ing here might have a bearing on physics in the early Universe,
in the sense that a qualitatively similar kind of selection may
have happened involving, for instance, topological and small-
instanton transitions between different vacua. Of course it is not
known what (if any) incentives might favour the physics that we
observe in our world, although there have over the years been
varyingly speculative suggestions (and we do not need to add to
the list). But if this is the case and if the idea of amultiverse is cor-
rect, then the results that we observe with GA and RL searches do
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at least support the idea that selection mechanisms can success-
fully operate within the vast search space, and indeed that they
do so in a quite convergent way. This suggests the possibility of
alternative pictures, quite distinct from that of a randomly popu-
lated multiverse, in which the properties of this world would be
more common than one would naively expect.

Appendix

A. Monad bundles on the bicubic

The table below contains the 28 monad bundles of genuine type
(rB, rC) = (6, 2) obtained on the bicubic manifold X , leading to
models with 27 families and no anti-families. For these bundles
equivariance with respect to the ℤ3 × ℤ3 action on the manifold
has been checked at the level of index divisibility for the line bun-
dles in B and C. A number of necessary stability checks have
been carried out. More precisely, we have found all the line bun-
dles with entries in the range [−3, 3] that inject into V and have
checked that there exists a non-empty locus in the Kähler cone
where all these line bundles have a negative slope, thus leaving
V slope poly-stable.
In order to save space we use the notation (k1, k2) instead of

X (k1, k2). All the line bundles are to be understood on the bicu-
bic threefold.

B C

(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (1,-1)⊕(1, 1)⊕ (1,1) (1, 2)⊕ (2,2)

(-1,1)⊕(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (2,-1)⊕(2,1) (1, 2)⊕ (2,2)

(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (1,-1)⊕(1, 1)⊕ (1,2) (1, 4)⊕ (2,1)

(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (1, 0)⊕ (1, 0)⊕ (1,0) (1, 1)⊕ (2,2)

(-1,1)⊕(-1,1)⊕(1, 1)⊕ (1, 1)⊕ (1, 1)⊕ (2,-1) (1, 2)⊕ (2,2)

(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (1,-2)⊕(1, 2)⊕ (2,1) (2, 2)⊕ (2,2)

(-2,1)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (1, 2)⊕ (2,1) (2, 2)⊕ (2,2)

(-2,2)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (1, 1)⊕ (1,1) (1, 2)⊕ (2,2)

(-1,1)⊕(-1,2)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (2,1) (1, 2)⊕ (2,2)

(-1,2)⊕(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (2,-2)⊕(2,1) (1, 2)⊕ (2,2)

(0, 2)⊕ (0, 2)⊕ (0, 2)⊕ (1,-2)⊕(1,-1)⊕(1,1) (1, 2)⊕ (2,2)

(-1,2)⊕(-1,2)⊕(1,-1)⊕(1,-1)⊕(1, 1)⊕ (2,1) (1, 2)⊕ (2,2)

(-1,1)⊕(-1,1)⊕(1, 1)⊕ (1, 1)⊕ (1, 1)⊕ (2,-1) (1, 2)⊕ (2,2)

(-1,1)⊕(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (2,-1)⊕(2,1) (1, 2)⊕ (2,2)

(-1,1)⊕(-1,1)⊕(-1,1)⊕(2, 0)⊕ (2, 0)⊕ (2,0) (1, 1)⊕ (2,2)

(-1,1)⊕(-1,1)⊕(1, 1)⊕ (1, 1)⊕ (1, 2)⊕ (2,-1) (1, 4)⊕ (2,1)

(-2,2)⊕(-1,1)⊕(1, 1)⊕ (1, 4)⊕ (2,-1)⊕(2,-1) (1, 5)⊕ (2,1)

(-2,1)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (1, 2)⊕ (1,4) (1, 5)⊕ (2,2)

(-1,1)⊕(-1,2)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (1,4) (1, 2)⊕ (1,5)

(-1,2)⊕(-1,2)⊕(1,-1)⊕(1,-1)⊕(1, 1)⊕ (1,4) (1, 2)⊕ (1,5)

(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (1,-2)⊕(1, 2)⊕ (1,4) (1, 5)⊕ (2,2)

(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (1,-2)⊕(1, 4)⊕ (4,1) (1, 5)⊕ (5,1)

(-1,2)⊕(-1,2)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (2,-1) (1, 2)⊕ (2,1)

(-2,2)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (1, 1)⊕ (1,2) (1, 4)⊕ (2,1)

(-1,1)⊕(-1,1)⊕(1, 1)⊕ (1, 1)⊕ (1, 1)⊕ (1,1) (1, 2)⊕ (1,4)

(-1,1)⊕(-1,2)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (1,2) (1, 1)⊕ (1,4)

(-2,1)⊕(1, 0)⊕ (1, 0)⊕ (1, 0)⊕ (1, 4)⊕ (4,1) (1, 5)⊕ (5,1)

(-1,2)⊕(0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (2,-1)⊕(2,-1) (1, 2)⊕ (2,1)
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