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Abstract
With the increasing needs to decarbonise existing energy systems, there is an effort to
integrate small‐scale distributed generation sources, such as wind generators, with the
electric demand in circuits known as microgrids. The operation of distributed variable
renewable resources is subject to an optimum operating regime, ahead of real‐time, which
relies on output forecast. However, many wind speed forecast models are designed for
centralised controllers, which are vulnerable to control failures. A suitable wind forecast
model for a distributed control system is, therefore, required for optimal and reliable use
of renewable generation. This paper presents a comparison of wind speed forecast
models suited for distributed control, evaluating them in terms of the statistical significant
difference in accuracy and computational resource requirements. This is essential since
computational resources are limited in distributed control schemes. The data used in this
paper is the historical wind speed of the Auchencorth Moss Atmospheric Observatory
from 2016 to the end of 2019. Two forecast model types based on Auto‐regression and
Artificial Neural Network (ANN) are compared using the Diebold‐Mariano test. Results
show that ANN models with parallel hidden layers have the highest accuracy with sta-
tistical significant difference, while remaining suitable for microgrid distributed control.
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1 | INTRODUCTION

To increase the efforts to combat climate change, the electricity
sector is encouraged to maximise integration of renewable
generation, for example, wind turbines. Wind energy is, how-
ever, inherently variable and such variations are often hard to
control in the short term. For this reason, any reliable power
generation scheduling scheme for wind‐integrated power sys-
tems depends on the accuracy of wind speed forecast to account
for unforeseen wind variations and ensure balance is held be-
tween generation and demand, thereby allowing for an opti-
mum (in economical terms) and stable operation of the system.
In this regard, Artificial Neural Network (ANN) methods are
among the latest time‐series forecast models used [1–6].

Research efforts have been focussed in centralised control
schemes and their respective forecast models. These forecast
models are computationally complex and operate with several
external inputs in central controllers [6]. Examples of ANNs in
central controllers include the Non‐linear Auto‐regression
(AR) model with exogenous variables (NARX) neural net-
works used for electricity price forecast [7, 8].

Notwithstanding this, maximising the efforts of energy
decarbonisation requires the integration of distributed gener-
ation in the form of onshore wind integrated microgrids,
where centralised control schemes could represent a vulnera-
bility due to existence of a single point of failure.

To address this vulnerability, distributed control has
emerged as an alternative for microgrid control with improved
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reliability, as the operation of the microgrid does not depend of
any single component. However, optimal implementation of
distributed control schemes in a microgrid setting still requires
accurate forecasting, in this case of the wind speed, ahead of
real‐time, whereas the rest of the microgrid control operate in
real‐time.

In distributed control, the calculation required for fore-
casting should be carried out locally at the distributed con-
trollers, which may not necessarily have the same
computational resources of a central controller; additionally, a
fast time response is needed to allow real‐time control.
Moreover, using local forecast models in the distributed con-
trol architecture also improves the security of local informa-
tion, as the information itself is not required to be shared
directly with the rest of the system, communicating only the
power schedule generated.

For these reasons, suitable forecast models implemented
require provision of both accuracy and computational effi-
ciency. Additionally, forecast methods are often applied to
aggregated data, which may not be suitable for short‐term
forecasting in local applications [9, 10].

As a continuation of our previous work [11, 12], two main
forecast model families suitable for microgrid distributed
control are analysed: ANNs and AR models; the latter is
optimised using the quasi‐Newton Method. Both families are
compared with the persistence model and the AR Moving
Average (ARMA) model as a point of reference [13].

The Non‐linear AR Network (NARNET) is a type of
ANN used to forecast future time steps of a non‐linear time
series autonomously. This property is ideal for wind speed
forecast in distributed control, given that the NARNET would
not be subject to vulnerabilities caused by dependence of
external signals during operation.

As ANNs, NARNETs are organised in groups of con-
nected layers of neurons, with non‐linear functions, known as
activation functions, applied to the output of each layer. In
other words, the activation function is the non‐linear trans-
formation applied to the data that allows the NARNET to
model the non‐linear properties of the data. Some of the most
common activation functions used in forecast models include
the Logistic Sigmoid function, Tangent Hyperbolic function
and Rectifier Linear function [8, 14]. NARNETs may
have a single layer or have layers connected in series or in
parallel [1, 5].

On the other hand, AR models are statistical models, based
on linear‐regression for time‐series forecasting. They do not
implement any physical description of the model but rather are
entirely based on the past values of the series to predict the
future values [15, 16]. This property makes them easy to
implement as forecasting models, which they can be used for
comparison with other auto regressive forecast models. In a
similar manner, the persistence model serves as the simplest
auto regressive model that can be implemented, often used as a
point of comparison for other forecast models [17–19].

The persistence model is based on the idea that the
changes in two consecutive samples of a time series are small
enough to obtain a good approximation of the next sample,

considering only the previous sample to forecast the next one
[20]. An evaluation of the performance of the persistence
model can also be used as an indication of the amount of
variation of consecutive samples in a given dataset.

Many efforts have been channelled to develop forecast
models with high accuracy, although very few studies report
the statistical significant difference between the analysed
models. In other words, many authors often do not explain if
the reported performance could be attributed to randomness
in the data used [2, 4, 6, 10, 14, 15, 19–30].

The determination of statistical significant difference could
be as important as the performance of the forecast model. The
statistical evaluation method in this paper is based on
the Diebold‐Mariano (DM) test, which is used to compare the
performance of two forecast models between them and against
true values, based on a given Probability Density Function
(PDF) [31].

The use of statistical significant difference tests of forecast
models has been reported previously, although the computa-
tional parameters of the models are not reported [27, 32], or
only a single configuration is tested for each of the forecast
models compared [30, 33, 34]. Similarly, the PDF used is
omitted in previous studies such as Ref. [17, 34]. The use of the
DM‐test has been reported for large‐scale wind farm appli-
cations [18, 35]; however, in these applications, the DM‐test of
the error residuals was applied to a normal distribution, which
may not be suitable at the microgrid scale.

In other words, there is still a need to develop forecast
models suitable for microgrid distributed control. To combat
this shortcoming, this paper has the objective of proposing a
development and validation method of a suitable forecast
model for microgrid distributed control [36]. This requires
that the forecast model developed is only dependable on
historical data that could be stored locally, such that each
distributed controller has access to the forecast within a few
milliseconds. To achieve optimal operation in a distributed
environment, AR forecast models are proposed as a suitable
solution.

The proposed evaluation method allows the selection of
the best short‐term wind speed forecast model, suitable for
distributed microgrid control. This method evaluates the per-
formance of each forecast model in terms of accuracy using
the Root Mean Squared Error (RMSE). The models are then
compared in size to verify computational requirements. Finally,
the models are compared using the DM‐test to ensure the
statistical significant difference between the models, taking into
account randomness in the data.

1.1 | Key contribution

The contribution of this paper can be summarised with the
following points:

� The proposition of a suitable short‐term wind speed fore-
cast model for distributed control schemes applied to
microgrids (for performance optimisation), where the
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execution of the forecast model is as autonomous as
possible to maintain reliability.

� This work proposes the use of an evaluation method, based
on the DM test that verifies the statistical significant dif-
ference between forecast models with different calculation
requirements and the historical data. With this method, it
can be verified that the accuracy results are not due to
randomness and that a model can be selected for optimal
use of computational resources.

� As an improvement from our previous work, it was found
that the NARNET with the parallel architecture and Logsig
activation function has the highest accuracy for the
Auchencorth Moss wind speed data. Additionally, it was
found that it has a statistical significant difference compared
to more complex models and the historical data, which
indicate a valid forecast model with smaller requirement of
computational resources. This properties make this model
ideal for microgrid distributed control.

The rest of the paper is organised as follows: Section 2
describes the wind speed forecast methods. Section 3 details
how the DM‐test is calculated for model comparison. Sec-
tion 4 presents the test case and how it is applied to the
forecast models. Section 5 presents the evaluation results,
which are discussed and summarised in section 6.

2 | MICROGRID DISTRIBUTED
CONTROL

As stated previously, accurate and computationally efficient
forecasting of distributed variable renewable generation in a
microgrid setting is a crucial step of any efficient and reliable
distributed control scheme aimed at forward generation
scheduling of such assets. Accurate forecasting would allow for
planning the operation of the distributed generation resources
in a safe and reliable manner.

To this end, in this section, a full description of a microgrid
control scheme is given. The term ‘microgrid control’ in this

paper is used to represent any control scheme for such
application as optimum generation scheduling coupled with
real‐time control of distributed generation assets within a
microgrid to ensure demand is met at all times, subject to the
microgrid's physical and the operational boundaries. The
control schemes can be implemented either centrally or in a
distributed fashion. The latter scheme is the focus of this
paper.

The microgrid control presented in this paper is organised
in a hierarchy, where each level has specific objectives and time
response capabilities, with control references being supplied by
the upper levels of the hierarchy. In the control scheme pre-
sented here, tertiary control is considered the highest control
level and is used to coordinate different microgrids to allow the
coordination of the power flow between them and the main
grid. Secondary control is used to plan and coordinate an
optimum generating schedule for the Distributed Energy Re-
sources (DERs) within each microgrid by generating their
corresponding power set points. The primary control directly
regulates the voltage of the individual DERs, having one
controller per resource, to maintain the power flow required
considering stability and voltage regulation limits [11, 37, 38].
The hierarchical control framework is shown in Figure 1.

While many microgrids have a centralised secondary con-
trol to maximise the optimal coordination of all DERs, this
kind of control structure tends to be computationally expen-
sive and leaves all primary controllers dependent on a single
secondary controller, which means that the entire operation
and privacy of the microgrid components are vulnerable to a
single point of failure.

To combat this vulnerability, distributed secondary control
emerges as an alternative to centralised control, with separate
control units that coordinate with each other to realise the
power management objectives in a communication network.
This also adds flexibility to the structure of the microgrid, as
any DER can be added or removed from the microgrid
without the need to redesign the secondary control, as the
system adjusts itself [37, 39, 40]. The centralised and distrib-
uted control systems are illustrated in Figure 1.
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As mentioned in the introduction, to achieve optimal
operation at the secondary and tertiary control levels, it is
necessary for the microgrids to have information about avail-
able generation in the DERs in advance. This is due to start‐up
cost for controllable DERs, the states of charge for the Energy
Storage Systems and stochastic generation for the renewable
generation sources, which make the operation of the microgrid
dependent on its previous states. Therefore, it is essential that
decisions taken at the secondary and tertiary levels are sup-
ported by accurate forecasts of relevant renewable resources.

As distributed control systems are required to maintain a
communication network additionally to realise power man-
agement optimisation, it is necessary to minimise the compu-
tational cost of the forecasting methods used. For this reason,
suitable forecast models for microgrid distributed control, in
this case wind speed forecast models, must have the highest
accuracy possible with the least computational resource
requirements.

In this paper, the wind speed forecast models are required
to estimate electric power generated by wind resources, with
the purpose of minimising renewable energy curtailment and
maximising the lifespan of the batteries used to regulate power
from wind turbines. For this reason, it is important to overview
the process to calculate expected wind power output given a
forecast model in the next subsection.

2.1 | Wind power generation

For the case of wind turbines, the electrical power output Pwt is
defined in general as:

Pwt Vwsð Þ ¼

0; Vws < Vmin ∨ Vws > Vcut
Cp Vwsð Þ

3
; Vrated < Vws < Vcut

Pmax; else

8
<

:
ð1Þ

where Vws is the wind speed, Vmin is the minimum wind speed
for generation or cut‐in speed, Vrated is the rated wind speed of
the wind turbine, Vcut is the maximum wind speed for gen-
eration or cut‐out speed, Pmax is the maximum wind turbine
power output, and Cp is the coefficient of performance of the
wind turbine.

In this case, the expected power generation E Poutð Þ over
some period τ = [1…τmax] with duration τmax, given that the
wind speed is random, is defined by [41]:

E Poutð Þ ¼
X

i
Pwt Vws ¼ vwið Þpws;i; ∀i ∈ τ ð2Þ

where pws,i is the probability that Vws equals the ith realisation
vwi. The expected power generation is then an estimation of
electrical power output taking into account the randomness in
the wind speed over a finite time period. Given that accurate
estimations depend on the wind speed forecast methods
applied, the next section describes suitable wind speed forecast
models for distributed control, as they rely only on historical
data that can be stored and shared locally in each controller.

3 | WIND SPEED FORECAST METHODS

As mentioned in the previous section, the methods in this
section are suitable for wind speed forecast in a distributed
control architecture for microgrids. All of the methods pre-
sented in this section are ultimately data‐driven and differ in
how the data is handled in each case, which would generate
different forecast outputs. These models will be analysed in
terms of accuracy and statistical significant difference.

The forecast methods in the next subsections are used to
model the true wind speed as follows:

YwsðtÞ ¼ FðtÞ þ ϵðtÞ ð3Þ

where Yws is the historical wind speed, t is time, F represents
one of the forecast model in the following subsections and ϵ is
the error at time t, in other words, the difference between the
real wind speed and the wind speed forecast for the same t.
Each of the forecast models are described next.

3.1 | Persistence model

The persistence model is the simplest forecast model and is
defined as [20]:

F1ðtÞ ¼ Ywsðt − 1Þ ð4Þ

where F1 is the wind speed forecast. The basic assumption of the
model is that the difference between one sample and the next is
small when the sampling frequency is sufficiently small, and
therefore the wind speed one step ahead will remain mostly
unchanged. The effectiveness of the persistence model depends
on the location and sampling frequency. This model would not
be suitable for generating forecasts with time horizons larger
than 1 hour. This model will be used as a baseline to compare
the Neural Network models, with the use of the DM‐test.

3.2 | ARMA model

This method was been recently used in wind speed forecast in
scenarios of limited information, making it suitable for
distributed control systems and therefore is useful as point of
comparison for other forecast models [13].

This model combines the AR model with a correction of
the average depending on the error obtained in previous
evaluations of the model. The model is defined as follows:

F2ðtÞ ¼W0 þ
X

i∈P
WaðiÞYwsðt − iÞ þ

X

j∈Q
WbðjÞϵðt − jÞ ð5Þ

where F2 is the ARMA model, W are the model parameters,
W0 is a constant,Wa is a vector containing the weights for the
AR model and Wb contains the elements for the moving
average model, P ¼ 1;…;PARMAf g, PARMA refers to the or-
der of the AR component, Q¼ 1;…;QARMAf g and QARMA is
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the order of the moving average model. The parameters of this
model and the AR model are obtained with the quasi‐Newton
method, which will be discussed in the next subsection. This
model will also be used as a point of comparison against the
other models in terms of accuracy and with the use of the DM‐
test.

3.3 | Auto‐regression model

This model also produces the forecast of the wind speed
only with past values with the difference that it does not
require the information of the previous errors. The advan-
tages of this method are the convergence of the solution
and the quicker generation of the solution compared to the
NARNET.

This forecast model is defined as follows:

F3ðtÞ ¼
X

i
WcðiÞYwsðt − iÞ; ∀i ∈DAR ð6Þ

where F3 is the AR wind speed forecast, realised by the
weighted sum of wind speed samples Yws with a lag order, or
delay size, dAR. In 6 the set DAR = [1…dAR] is multiplied by
the vector containing the Wi optimised weights, from Yws
(t − dAR) to Yws (t − 1).

The weights W are optimised with the quasi‐Newton
method by solving the following least squares problem:

min
W

X

t
YwsðtÞ − FkðtÞð Þ

2
;∀t ∈ T ð7Þ

where the set T = [1, …, NT] represents the times at which the
historical data is taken for NT total available samples, for the
kth forecast model.

In Equation (7), all the weights are tuned to minimise the
total summation of the squared errors applied to the entire set
of historical sample data available.

In this case, the fitting algorithm of the model starting with
all the weights is set to 1 and the weights are updated in the
direction of highest decrease of Equation (7), also known as
the cost function, until the stop criterion is met. The stop
criterion is met in this case in any of the following cases: 1) the
cost function is equal to 0. 2) The change in the cost function
is equal or below the 1 � 10−5. 3) The change in the weights is
equal or below 1� 10−6. 4) Iterations have reached a
maximum of 1200.

3.4 | NARNET model

This method is based on the Non‐linear Auto‐regressive
ANN. In this type of ANN, the output is feedbacked to
the input, with an internal matrix called Delay that stores
information and serves as a memory in time‐series fore-
casting. This network then produces the forecast based only
on past values of the time series, in this case, past values of
wind speed.

In this study, the connections between the layers are
defined by three different architectures tested that are shown in
Figure 2.

Each hidden layer in the NARNET has the following
function:

Alþ1 ¼ fa ωlAl þ Blð Þ ð8Þ

where Al+1 is the output of the layer l, Al is the input of the
layer, ωl is the weight matrix of the layer, Bl is the bias of the
layer and A1 is the input of the NARNET. Each hidden layer
has an activation function fa at the end, which encodes the
non‐linear properties of the data; in other words, it is the
function that allows the NARNET to forecast non‐linear time
series. The output layer function is:

Alþ1 ¼ ωlAl þ Bl ð9Þ

1
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F I GURE 2 NARNET Architectures used for this study. (a) Single hidden layer, (b) series hidden layers and (c) parallel hidden layers
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In this study, three activation functions are used for the
hidden layers of the NARNET forecast model:

f1 ¼
1

1þ e−x
ð10Þ

f2 ¼
2

1þ e−x
− 1 ð11Þ

f3 ¼maxð0; xÞ ð12Þ

where f1 is the Logistic Sigmoid function, f2 is the hyper-
bolic tangent Sigmoid function and f3 is the Rectified Linear
Unit (ReLU) function [8, 14, 42].

The input A1 at a specific time t is stored in the
NARNET as part of an internal vector D that also contains
past values of the input. In other words, D represents the
‘memory’ of the NARNET. In this case, D contains past
values of Yws up to t that are used to generate the wind
speed at time t + 1.

The general transfer functions of the entire NARNET
for each of the architectures used in this paper, with j
delay size, q � 1 input size and k neurons in each layer can
be derived by the equations of each layer [42]. For the
case of the single hidden layer it is described as follows
[12, 42]:

F4ðtÞ ¼ ωq�k fa ωk�jqDjq�1ðt − 1Þ þ Bk�1
� �� �

þ Bq�1 ð13Þ

For the series hidden layers it can be described as:

F5ðtÞ ¼ ωq�k fa ωk�k fa ωk�jqDjq�1ðt − 1Þ
� �

þ Bk�1
� ���

þ Bq�1ÞÞ þ Bq�1 ð14Þ

Finally, for the parallel hidden layers we will have:

F6ðtÞ ¼ ωq�k fa ωk�jqDjq�1ðt − 1Þ þ Bk�1
� �� �

þωq�k fa ωk�jqDjq�1ðt − 1Þ þ Bk�1
� �� �

þBq�1 ð15Þ

In equations (13), (14) and (15), the subscripts show the
size of each matrix to illustrate the complexity of the NAR-
NET, in particular from the matrix product ωk�jqDjq�1.

Given the complexity and randomness introduced in the
training, the NARNET model may produce different results in
terms of accuracy for the same size of the internal matrices for
each training realisation, which will be discussed in the next
subsection.

3.4.1 | The Non‐linear Auto‐regression Network
training method

The NARNET is a machine learning method driven by his-
torical data. The model produces different results each time it

is run even when the inputs are the same because of the
randomness induced in the training process.

The training process is randomised for two reasons: to
mitigate the bias from the selection of the training, testing and
validation sets and to better explore the accuracy the model can
achieve depending on the sets mentioned before. In other
words, this mechanism aids in the generalisation of the model
for new data.

The training algorithm for the NARNET is the
Levenberg–Marquardt algorithm, which minimises the MSE
of the NARNET between the training values, which are
the actual wind speeds, and the output values by adjusting
the weights and biases at each layer. The minimisation
problem solved by the training algorithm is defined as
follows:

min
ω;B

P
t YwsðtÞ − FkðtÞð Þ

2

NT
; ∀t ∈ T ð16Þ

The method uses the back‐propagation algorithm to
obtain the Jacobian of the errors with respect to the weights
and updates the weights using a method similar to the
quasi‐Newton methods. The training method can be sum-
marised as follows. The network is initialised with all the
weights and biases randomised with values between −1 and
1, using a uniform distributed PDF. From this starting
point, the weights and biases are updated using the
Levenberg–Marquardt back‐propagation algorithm, following
the direction of steepest descend until the stop criterion is
met. The stop criterion is met when any of these conditions
is met: 1) the epochs have reached a maximum of 1000; an
epoch is completed when the algorithm uses all the training
data once. 2) The performance goal of MSE = 0 is ach-
ieved. 3) The gradient of the performance is 1 � 10−5 or
lower. 4) The maximum validation check of six epochs is
reached.

In this training method, the entire dataset is divided in
three sets, namely, the training set, the validation set and the
testing set. The training set is the set of samples used directly
to obtain the weight and bias updates of the NARNET;
therefore, the weights and biases are heavily biased by the
training set. To prevent over‐fitting of the NARNET, the
validation set is used as a separate calculation of the perfor-
mance of the NARNET. When the performance from the
validation check is continuously deteriorating up to the
maximum of six epochs, the training stops. This allows
the NARNET model to be validated for the general case.
However, the validation set indirectly influences the weights of
the NARNET during training. For this reason, the test set is
not used during training but as its name implies, it is used to
test the performance of the NARNET once it is training. The
training, testing and validation set are randomly selected from
the entire dataset in ratios of 70%, 15% and 15% accordingly.
The entire training method for the NARNET is summarised in
Figure 3.
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4 | DM‐TEST FOR FORECAST MODEL
EVALUATION

To compare the forecast models using the DM‐test, each
model is first evaluated in terms of RMSE, following the re-
sults from Ref. [12]. The RMSE is defined as follows for the
kth forecast model:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
t YwsðtÞ − FkðtÞð Þ

2

NT

s

; ∀t ∈ T ð17Þ

Then, the wind speed forecast models are analysed in
terms of statistical significant difference, repeating the exper-
iment and performing the DM‐test of every realisation of each
of the models presented in the previous section.

Each method is compared against the others and the true
wind speed values to determine if the differences in accuracy
are due to randomness in the true dataset or because a forecast
model is actually more accurate than others.

In this work, the null hypothesis is that the forecast models
have the same accuracy, and the difference in the performance
is due to randomness in the dataset, or because the compared
models are nested. A model Fx is nested in Fy when
Fy = Fx + Fz, for any Fz function. Therefore, a rejection of the
Null hypothesis concludes that there is a statistically significant
difference between the models and a better performance is due
to a better model.

The DM‐test is essentially based on the ratio of the
mean and covariance of the errors, encapsulated in the
difference of errors between models. The DM‐test is based
on the principle that the errors from a valid forecast model
are covariance stationary, which means that the residuals, or
errors, of a valid model should behave as a random series.
This test also assumes that the time series requiring forecast
is infinite, and therefore any set used for test calculation is a
sample of the entire series.

The test requires 3 sets as inputs and provides a probability
(p‐value) that the null hypothesis is true. The inputs are the
true wind speed Yws, and the output of the two models that are
being compared. When the p‐value is sufficiently small, the null
hypothesis is rejected. When this occurs, a statistically signifi-
cant difference in accuracy between the forecast models is
concluded.

From each pair of forecast model outputs Fa and Fb, the
squared errors e are calculated as:

eaðtÞ ¼ YwsðtÞ − FaðtÞð Þ
2
; ∀t ∈ T ð18aÞ

ebðtÞ ¼ YwsðtÞ − FbðtÞð Þ
2
; ∀t ∈ T ð18bÞ

The loss differential function d is defined as:

dðtÞ ¼ eaðtÞ − ebðtÞ ð19Þ

From this new set, the sample mean of the differential d
is obtained. To determine if a deviation from zero of this
value is statistically significant, this value is divided by
an estimation of the standard deviation of the differential
series.

Next, the autocovariance γ of each lag up to h is calculated:

γðhÞ ¼ CovðdðtÞ; dðtþ hÞÞ ð20Þ

where Cov is the covariance function. Then, the variance is
estimated as [31]:

vd ¼
γð0Þ þ 2

P
iγðiÞ

NT
; ∀i ∈H ð21Þ

where H = [1…h], which represents the set of lags of the
autocovariance. Finally, the DM‐test output is calculated as:

DM0 ¼
d
ffiffiffiffiffivd
p ð22Þ

This test is adjusted using the Harvey adjustment, which
corrects the test for heavy‐tailed distributions of the loss dif-
ferential. This correction is used because the dataset contains
outliers with respect to the normal distribution function, given
the nature of wind speed; therefore, the normal distribution
function does not accurately describe the loss differential dis-
tribution [31]:

Ini�alise set and weights

Update weights by 
backpropaga�on

Calculate valida�on check

Selected saved 
configura�on as best fit

valida�on 
check count = 6

end

Valida�on 
check passed?

Save configura�on.
reset valida�on 

check count

Increase valida�on check 
count by one

Start

yes

yes

no

no

F I GURE 3 Summary of the training process of the non‐linear auto‐
regression network (NARNET) model
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DM1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NT þ 1 − 2hþ N−1
T hðh − 1Þ

� �

NT

s

DM0 ð23Þ

The heavier tails are illustrated in the Forecast Error His-
togram appendix.

The p‐value, also represented simply as p, is obtained by
calculating the student's‐t Cumulative Distribution Function of
DM1:

p¼
Z DM1

−∞

Γ Kþ1
2

� �

ffiffiffiffiffiffiffi
Kπ
p

Γ K
2

� � 1þ
t2

K

� �−Kþ12

dt ð24Þ

where Γ(⋅) is the Gamma function, t is the integration variable
and K is the number of degrees of freedom [41]. For this test,
K = NT − 1. p represents the probability that the null hy-
pothesis is true. In this work, if 0.05 ≤ p < 0.10 the significance
is regarded as weak and if p < 0.05 the forecast models are
regarded as statistically significantly different; in either of these
cases, the null hypothesis is rejected. The null hypothesis is not
rejected in any other case.

Given that a specific time horizon requirement in a
microgrid application depends on factors such as available
storage and the cost functions of other resources, the
forecast methods will be evaluated at the prediction of one
step ahead, such that it is possible to realise the model
evaluation between any combination of two models. While it
is possible to increase the time horizon as done in our
previous work [12], all of these methods continuously up-
date the forecast to always be one step ahead as time
progresses.

5 | TEST CASE

5.1 | Wind speed data

The wind speed data used in this work is the historical wind
speed data of three years, 2016, 2017, 2018 and 2019, taken
every 30 min, at the Auchencorth Moss Atmospheric Obser-
vatory in Scotland, UK. The original dataset was obtained from
Ref. [43]. The samples in this dataset are measured inm/s, with
a total of 58,655 samples.

For this study, the samples with values equal or higher than
30m/s were removed, with the remaining dataset having
58,448 samples, of which 16,499 represent the data for 2016,
17,014 for 2017, 17,514 for 2018 and 7628 for 2019, which is
99.6% of the original dataset. This set is composed of 97.45%
of the possible samples, given that there are samples missing in
this set. No form of extrapolation was used to fill the gaps
given that the natural wind speed variations is enough to treat
the samples as consecutive. For reference, 87 samples of this
set are above 15m/s (0.1485%) and 58,568 (99.8515%) are
between 0m/s and 15m/s. The variation of the wind speed
over this period is illustrated in Figure 4.

This set was selected, among other reasons, because it is
freely available and has a good resolution compared to others,
which average for days or months. Additionally, the set is
sufficiently long to allow the statistically significantly difference
test, which relies on the variance of the error in a time series
and becomes more reliable with more data. Finally, this loca-
tion provides data applicable for microgrid applications with
onshore wind resources, as opposed to large offshore wind
farms, which have different environmental conditions.
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Historical Wind Speed Data of Auchenchorth Moss

F I GURE 4 Auchencorth Moss wind speed, South East Scotland (55°47036″ N, 3°14041″ W). This dataset represents 99.6% of the total data available for
this period
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5.2 | Forecast model training

Each of the models was fitted, optimised or trained according
to the wind speed data and the models described in previous
sections. The hardware used for this study includes the
Durham University super computer known as Hamilton. One
node of Hamilton was used, comprising 24 CPU cores with 2x
Intel Xeon E5‐2650v4 model processors at 2.6 GHz and
64 GB RAM. Other hardware used for training includes a
desktop with an i7‐6700 CPU at 3.40 GHz with 16 GB of
RAM and a desktop with an i5‐7500 CPU at 3.40 GHz with
8 GB of RAM. The software for training and fitting is MAT-
LAB R2019a (9.6.0.1099321) 64‐bit and the DM‐test was done
in the Scientific Python Development Environment, Spyder
4.1.5, with Python 3.8.5 64‐bit.

The NARNET model architectures were trained with
different number of delay sizes ranging from 20 (10 h) up to
672 (2 weeks), number of neurons from 5 to 265 and the three
activation functions discussed previously, with the most rele-
vant ones presented in the results section. The selection of
these parameters was based on our previous work [12] and
time required to realise the training and performance of the
model.

The ARMA model, used as point of comparison, was
optimised for the order P ¼ 5 and Q¼ 30, compared with
Ref. [13] that used orders P ¼ 2 and Q¼ 1, and following
the autocorrelation of the dataset, this is considered enough
to maximise the performance of the ARMA model. The AR
model was optimised for different sizes of delay, varying
from 1 to 240. The ARMA and AR models are fitted using
the data from 2016 to 2018 and the data from 2019 is left
for error testing. For the case of the NARNET, the subsets
are selected at random, as explained earlier. A total of 95
realisations where done for the single layer architecture, 50
realisations for the parallel architecture and 18, for the series
architecture. The difference in the amount of realisations
done is due to the training time and performance in terms
of RMSE. However, each combination of architecture and
activation function was realised at least 6 times to account
for randomness in the NARNET training. A total of 405
forecast models were computed, and every pair combination
was evaluated with the DM‐test; the number of realisations
are summarised in Table 1.

6 | DISCUSSION

The RMSE of all the realisations varies between 0.74,485 m/s
and 1.1267m/s. Most of the models performed better than the
persistence model at 0.9437m/s RMSE as expected, except for
7 realisations, all of which correspond to the combination of
single layer with the Tansig activation function which is the
best architecture found in our previous work in Ref. [12],
although, with a different dataset. However, other runs of the
same NARNET with variations in the size of delay and
number of neurons performed much better with regards to
accuracy.

The results in terms of RMSE are shown as a histogram to
illustrate the variations between the same forecast model,
which are shown in Figures 5 and 6. The results of the DM‐test
are shown in Figures 8 and 9. The RMSE results of the best
individual realisation and corresponding p‐values are shown in
Tables 2 and 3.

The best realisations of each NARNET architecture, AR
model, ARMA model and the persistence model are shown in
Table 2 with their respective p‐values from the DM‐test. While
the null hypothesis is not rejected for the comparison between
the parallel and series NARNET model, the size of the ω
matrices of the parallel NARNET is in total eight times smaller
than the series model ω matrix as described in Figure 9.
Table 2 also shows that the parallel NARNET model has an
RMSE reduction between 3% and 21%, compared to the rest
of the analysed forecast models.

In Figure 5, the realisations are grouped by NARNET
architecture and compared with the AR model. It is notable
that all the AR model realisations are grouped within two bins
of the histogram, even when the delays range up to 240
samples, equivalent to 5 days of data. For the case of the
NARNET models, it is notable that the distribution that

TABLE 1 Summary of forecasts model realisations

Model Architecture Number of realisations

NARNET Single 95

Series 18

Parallel 50

AR ‐ 240

ARMA ‐ 1

Persistence ‐ 1

Error Histogram by Forecast Model

0.7449 0.7994 0.8540 0.9085 0.9631 1.0176 1.0722 1.1267
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F I GURE 5 Histogram of the total root mean squared error (RMSE)
by forecast model. The persistence and auto regression moving average
(ARMA) models are omitted as they only have one iteration each
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accounts for the lowest RMSE is the parallel architecture and
that the series architecture has the largest variation.

In Figure 6, the same results of Figure 5 for the NARNET
realisations are shown, grouped in a histogram by the activa-
tion function. It can be seen that the RELU function seems to
have the best performance in terms of distribution. However,
looking at the most accurate forecast model realisation in
Figure 9, it can be noted that the best activation function in
terms of RMSE is the Logsig, while the Tansig has the highest
variation in performance, being present in all bins.

Table 3 is built in the same way as Table 2 for the best
realisations of each NARNET activation function. In this case,
it can be seen that the p‐values show that the models are
statistically significantly different for every test except between
the RELU and the Logsig comparison, with a weak statistical
difference.

To demonstrate all the p‐values for all the possible DM‐
tests, Figures 8 and 9 are presented. However, Figure 7 is
presented first to illustrate the information that is included in
those figures. The following observations apply for the DM‐

test figures: a) the performance ranking goes from the
lowest to the highest RMSE, following natural numbers. b)
Each square in the figure encodes the p‐value from the DM‐
test between the row and column pair of models. c) The
diagonal is always 1 because a forecast model is compared with
itself (100% probability of no difference). d) The colour of
each square goes from 0 to 0.1, and above 0.1 the colour re-
mains yellow, which means no statistical difference. e) Any
square that is not yellow indicates a statistical difference be-
tween the pair of models. f) Any square in blue of any shade
has p‐value below 0.05 and therefore a statistical significant
difference between the models. g) In general, the NARNET
models outperform the AR models, separating them in two
regions in Figure 8.

In Figure 8, the p‐value results of every combination of
two forecast realisation for the DM‐test are shown. The model
realisations are ranked from the lowest RMSE to the highest in
both axes while the colour indicates the p‐values, where yellow
represents a p‐value equal or higher than 0.1, or in other words,
no statistically significant difference. The blue colour indicates
that the difference in performance in RMSE is statistically
significant; therefore, the difference in performance is due to
difference in accuracy of the models rather than randomness in
the data. It can be verified that the NARNET outperforms the
AR in terms of RMSE, forming regions indicated by the ar-
rows. Additionally, this figure illustrates that the NARNET
models in general are either statistically significantly different
or not at all from the high contrast in colour among them
compared with the smother transition in p‐values in the AR
region. Figure 8 also illustrates that in most cases the NAR-
NETmodels are statistically significantly different from the AR

P-value from DM-test for forecast models

Region
NARNET 
models AR models

Region Performance
Ranking 1 2 3 4

NARNET 
models

1 1 0.1 0.04 0.001 0.74

2 0.1 1 0.08 0.06 0.8

AR 
models

3 0.04 0.08 1 0.01 0.9

4 0.001 0.06 0.01 1 0.91

0.74 0.8 0.9 0.91 RMSE

F I GURE 7 Illustrative table for the presentation of DM‐test results
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F I GURE 8 Entire DM‐test p‐value results for every combination of
the forecast model realisation by colour. The colours show the probability p
that the null hypothesis is true. A p < 0.05 indicates statistical significant
difference, 0.05 p < 0.1 indicates weak statistical difference and p 0.1
indicates no statistical difference, shown in yellow. The realisations are
ranked from lowest RMSE to highest, as shown in the horizontal and
vertical axis. The blue regions show that the NARNET region is in general
at a lower RMSE than the AR models with an statistical significance
difference

Error Histogram by Activation Function
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F I GURE 6 The persistence model, AR model and auto regression
moving average (ARMA) model are omitted, as they do not have activation
functions. Tansig refers to the Hyperbolic Tangent Sigmoid function.
Logsig refers to the Logistic Sigmoid function
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models, except for those with close performance in RMSE. A
yellow diagonal is shown across the figure as it shows the
comparison of a realisation with itself, and therefore there is no
difference calculated.

Figure 9 shows in more detail the top 16 forecast model
realisation p‐values from the DM‐test by colour, all of which
are NARNET models, describing the specific configuration of
the model in the left axis and the RMSE performance in the
right axis. The same ranking from top to bottom of the left axis
is from left to right in the horizontal axis. Given that the top 3
models are parallel NARNET models with the Logsig activa-
tion function with identical RMSE performance for the first

two decimal places it is expected that those have no statistically
significant difference among them.

The best performing model has an RMSE 0.74485 m/s,
delay size of 48, or one day of memory, with parallel hidden layer
with 35 neurons, which implies 3360 weights in total for both of
the hidden layers. It is also notable that the Single layer with
Tansig activation function model, that was found to be best
model in our previous work, in this case, has a delay of 384,
equivalent to 8 days of memory, and 70 neurons in the hidden
layer, which implies an internal matrix of 26,880 weights has
0.773 RMSE. The performance of this forecast model in terms
of the expected power calculation is included as an appendix.

As a forecast model developed for distributed control,
which has the trade‐off from not having to external variables in
exchange to increased reliability and privacy of the controller,
there could be weather uncertainties independent of wind
speed. However, the correlation of the errors of this realisation
with rainfall from the same location is calculated at 0.06,
calculated with 5000 samples from 2018.

Moreover, the method is tested with several years of data,
covering all of the normal climatic scenarios. Therefore, it can
be concluded that uncertain climatic scenarios do not affect
this realisation of the NARNET model although the accuracy
of the NARNET model is affected by sudden changes in the
wind speed trend, such as in the case of severe and extreme
weather conditions.

7 | CONCLUSION AND FUTURE WORK

In this work, wind speed forecast models suited for real‐time
distributed control applied to microgrids with distributed wind
generation were studied and analysed using historical wind speed
data from Auchencorth Moss. It was found that the NARNET
model with the parallel architecture, delay size of 48 and 35
neurons per layer, has the highest accuracy in this regard, with an
overall performance of 0.74485 m/sRMSE for short‐term wind
speed forecasting. It was also found that within this architecture,
the best performance is achieved by the Logsig activation
function. This function has a statistical significant difference
with the ReLU and Tansig activation functions of 0.0875 and
0.006, respectively, with the same architecture.

Additionally, it was found that the model with the highest
accuracy is equivalent in statistical significant difference

TABLE 2 DM‐test p‐values between the
best realisation of each forecast model. Si
refers to Single, Se to Serial, and Pa to parallel
NARNET, AR to auto‐regression (AR), auto
regression moving average (ARMA) to AR
with moving average, and base to persistence
model. The models are sorted by root mean
squared error (RMSE), shown in the second
row

Model Pa Si Se AR ARMA Base

RMSE 0.7448 0.7730 0.8289 0.8721 0.888 0.9437

Pa 1 0.277 8.9E–10 1.7E–17 2.57E–17 0

Si 0.277 1 1.06E–7 8.16E–19 8.73E–20 7.32E–43

Se 8.9E–10 1.06E–7 1 2.53E–7 4.56E–8 3.41E–134

AR 1.7E–17 8.16E–19 2.53E–7 1 1.69E–5 2.17E–118

ARMA 2.57E–17 8.73E–20 4.56E–8 1.69E–5 1 7.91E–113

Base 0 7.32E–43 3.41E–134 2.17E–118 7.91E–113 1

TABLE 3 DM‐test p‐values between the best realisation of each
activation function of the non‐linear auto‐regression Network (NARNET),
sorted by RMSE

RMSE DM Logsig RELU Tansig

0.7448 Logsig 1 0.0875 0.0012

0.7519 RELU 0.0875 1 0.006

0.7694 Tansig 0.0012 0.006 1

F I GURE 9 Entire DM‐test results by colour for the best 16 forecast
models realisations ranked from lowest RMSE to highest, as shown in the
horizontal and right axis. Each colour indicates the probability p that the
null hypothesis is true. A p < 0.05 indicates statistical significant difference,
0.05 p < 0.1 indicates weak statistical difference and p 0.1 indicates no
statistical difference, shown in yellow. The left axis details the model’s
architecture, activation function, size of D and number of neurons per
hidden layer
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with the NARNET with a single layer and a delay size of 384
and 70 neurons in the hidden layer. This finding indicates a
reduction of 87.50% in the required number of weights and
therefore of computational resources required for training and
execution.

This study illustrates the importance of not only deter-
mining the best forecast model in terms of minimal errors but
also the importance of verifying that the difference in per-
formance between two forecast models is actually due to an
actual superior model either by accuracy or by efficient use of
computational resources. This method, therefore, can equally
be applied to other systems with distributed control and local
forecasting requirements to ensure selection of the best model
in terms of least errors and computational performance.

The NARNET is considered a suitable forecast model for
distributed control in microgrids given that it relies on his-
torical data that can be stored locally, which means that the rest
of the control system is not subjected to dependence of other
external signals, which could represent single points of failure
in terms of control reliability.

Evaluation of the forecast models using statistical signifi-
cant test supports the selection of such models. Adding the
comparison in terms of computational cost could improve the
selection of forecast models in applications where optimal use
of computational resources is required, for example, in case of
distributed control architectures. In the context of microgrid
distributed control, this could be applied to electricity price,
weather and demand. An optimal selection of the forecast
models contributes to the accurate, optimal and fast response
of the control systems applied to microgrids.

Future work includes further exploring artificial
intelligence‐based methods for forecast requirements in
microgrid distributed control and for other types of renewable
generation and local electricity demand as well as increasing the
robustness of the evaluation method to validate the selection
of the forecast models developed.

NOMENCLATURE
Pwt Wind turbine power Output
Vwt Wind speed
Vmin Minimum generation wind speed
Vrated Rated wind speed
Vcut Cut‐out wind speed
Cp Coefficient of performance
Pmax Maximum wind turbine power output
E Expected power generation
i Time index variable
τ Period of generation
τmax Duration of generation period
vwi Wind speed realisation
Yws Historical wind speed
t Time
F Wind speed forecast model
ϵ Wind speed forecast error
W ARMA model parameters
P AR order of the ARMA model
Q MA order of the ARMA model

W Weights of AR model
dAR Delay size of AR model
DAR Set of delays for AR model
T Set of time samples in historical data
NT Total available samples in historical data
ω Neuron weight matrix
B Neuron bias matrix
D Neuron delay vector
f Activation function
Al ANN l layer input
l ANN layer index variable
j ANN delay size
q ANN input size
k Number of neurons in layer
e Squared forecast error
d Loss differential function
γ Autocovariance
h Maximum lag for DM‐test
H Set of lags for DM‐test
vd Variance estimation for DM‐test
DM0 DM‐test output
DM1 DM‐test output with Harvey adjustment
t Integration slack variable
K Degrees of freedom
p Probability of null hypothesis
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APPENDIX

Forecast er ror histogram
This section presents the error distribution of the forecast
methods against all wind speed data. This illustrates that the
distributions have heavier tails than the normal distribution as

shown in previous studies on wind speed forecast; however, in
all cases it can be seen from the shape of the distributions that
the forecast models studied in this paper are validated.

Figures A1, A2 and A3 illustrate the error histograms for
the best realisation of the NARNET, which has parallel hidden
layers with a delay size of 48, equivalent to a day of memory
and 35 neurons in each hidden layer, the AR model with 240
weights and the ARMA model with order P ¼ 5 and order
Q¼ 30. The histograms are done for all of the wind speed
data to illustrate the heavier tails in the error distribution and
validate the use of the Harvey adjustment.

Figure A4 show the error distributions of the forecast
models, using the 2019 wind speed data to illustrate the suit-
ability of the models over the test data subset.
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F I GURE A 3 Error histogram to validate the auto regression moving
average (ARMA) forecast method for all the data
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F I GURE A 1 Error histogram to validate the most accurate non‐linear
auto‐regression network (NARNET) forecast method for all the data
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F I GURE A 2 Error histogram to validate the most accurate auto‐
regression (AR) forecast method for all the data
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NARNET error histogram for testing subset

-6 -4 -2 0 2 4
Forecast errors (m/s)

0

100

200

300

400

500

600

700

800

F
re

qu
en

cy
 (

-)

AR error histogram for testing subset
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F I GURE A 4 Error histogram to validate the forecast methods with the
testing data
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Wind power calculat ion
To help putting in the context of microgrids, this appendix
will briefly cover how the forecast results shown previously
compare in terms of the expected wind power generation
that could be extracted from the site, given ideal conditions.
First, in Figure A5 the total wind power that could be
generated using the wind speed data from 2016, 2017 and
2018 is shown.

For the case of the expected power output E, following
Equations (1) and (2) and considering Vmin = 3.5 m/s,

Vrated = 15 m/s, Vcut = 35 m/s, Pmax = 30 kW and
Cp = 0.0089 kW (m/s)−3, E1 ¼ 21:9053 kW per turbine using
the historical data of the 23/10/2018 as input,
E2 ¼ 20:8627 kW per turbine using the model with the lowest
RMSE, and E3 ¼ 21:0047 kW for the case of the model
ranked 13 in Figure 9, which does not have statistical signifi-
cant difference with the rank 1 model but at a higher
computational cost, given that it requires more weights to
achieve this. The calculation of E can be simplified to the mean
power output calculated with the wind speed from each case.
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