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1 Introduction

1.1 A quick summary

A powerful feature of supersymmetric localisation is the ability to introduce exact defor-
mations and scaling limits that lead to different mathematical representations of the same
partition function. In the case of 3d N = 2 supersymmetric gauge theories, the localisation
schemes used in the literature fall into two broad classes:

• In Coulomb branch localisation, the path integral localises onto configurations where
the vectormultiplet scalar is non-zero and the gauge group is broken to a maximal
torus. This expresses the partition function as a contour integral of special functions,
for example, as in the first supersymmetric localisation computations on S3 [1–3].

• In Higgs branch localisation, the path integral localises instead onto configurations
solving vortex-like equations. This expresses the path integral in terms of integrals of
characteristic classes over moduli spaces of vortices, which may often be reduced to
isolated fixed points by turning on mass parameters for flavour symmetries [4, 5].

In many cases, the individual residues of the contour integral in Coulomb branch localisation
reproduce the isolated fixed point contributions in Higgs branch localisation. Further
background on localisation in three dimensions can be found in the reviews [6, 7].

In this paper, we focus on the twisted index of 3d N = 2 supersymmetric gauge
theories on S1 × Σ, where Σ is a closed Riemann surface of genus g [8–10]. This is a rich
observable amenable to supersymmetric localisation and has important applications to exact
microstate counting for supersymmetric black holes in AdS4 [11–14] and the Bethe/gauge
correspondence [15–17]. The aim is to expand upon and generalise the geometric interpre-
tation of the twisted index as the Witten index of an effective supersymmetric quantum
mechanics [18–20].

The route to such a geometric interpretation of the twisted index is through a Higgs
branch localisation scheme and for large classes of theories the twisted index is a generating
function of enumerative invariants associated to moduli spaces of vortices on the Riemann
surface Σ. However, Higgs branch localisation of the twisted index of a generic 3d N = 2
gauge theory leads to additional saddle points beyond vortex configurations. For a U(1)
gauge theory, these additional saddle points are characterised by

1. All chiral multiplets vanish Φ = 0;

2. The vectormultiplet scalar is fixed σ = σ0;

3. The gauge symmetry is unbroken.

Such “topological” saddle points exist whenever the effective U(1) Chern-Simons level in
asymptotic regions of the Coulomb branch is non-zero. We compute the contributions of
topological saddle points to the twisted index and show that they reproduce the contributions
from residues at infinity in Coulomb branch localisation. These contributions are crucial
for the consistency of the geometric interpretation of the twisted index and wall-crossing
phenomena studied in [20] in more general classes of theories.

– 1 –
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1.2 Some more details

Let us first summarise the Coulomb branch localisation scheme for the twisted index of 3d
N = 2 gauge theories on S1 × Σ, which was introduced for g = 0 in [8] and extended to
g > 0 in [9, 10]. For a U(1) gauge theory this leads to a representation of the twisted index
as a contour integral

I =
∑
m∈Z

qm
∫

Γ

dx
2πix I(x,m) , (1.1)

where each summand is the contribution from configurations with m units of flux on Σ.1
The integrand receives contributions from a one-loop determinant and an integral over
gaugino zero modes. The contour is a Jeffrey-Kirwan residue prescription, building on
computations of the elliptic genus of 2d N = (2, 2) gauge theories [21, 22]. However, a novel
feature in three dimensions is the existence of poles at x±1 → 0. The contour prescription
for these poles is determined by the effective Chern-Simons levels k±eff in asymptotic regions
of the Coulomb branch.

Here we introduce an exact deformation of the lagrangian depending on a real parame-
ter τ . This can be understood as a 1d Fayet-Iliopoulos parameter from the perspective of
supersymmetric quantum mechanics on S1. In Coulomb branch localisation, it modifies the
contour prescription Γ for the poles at x±1 → 0 in (1.1) when the corresponding effective
Chern-Simons level vanishes, k±eff = 0. This has two important consequences:

• Away from walls in the parameter space of τ , the contour Γ is always well-defined for
each individual flux m, before summing over m ∈ Z. This feature is necessary for a
hamiltonian interpretation of the twisted index as counting supersymmetric ground
states and in particular for compatibility with any Higgs branch localisation scheme.

• It leads to interesting wall-crossing phenomenon in τ [20], via the same mechanism as
supersymmetric quantum mechanics [23].

Indeed, in the presence of the 1d Fayet-Iliopoulos parameter τ , it is possible to consider
an alternative scaling limit in the path integral that leads to a Higgs branch localisation
scheme. This provides a representation of the twisted index in the form

I =
∑
m∈Z

qm
∫

Â(Mm) ch(F) , (1.2)

where Mm denotes the moduli space of supersymmetric saddle points with flux m and
ch(F) is the contribution of massive fluctuations and Chern-Simons terms. Each summand
in (1.2) is the contribution from an effective supersymmetric quantum mechanics in the
topologically distinct sector labelled by the flux m. The moduli spaceMm in general has
contributions from two types of saddle points:

1. Vortex Saddles
Vortex saddles are solutions of abelian vortex equations on Σ depending on τ . In
the presence of generic mass parameters for flavour symmetries, their contribution

1We assume there are no monopole operators in the superpotential so there is a U(1) topological symmetry.
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to the moduli spaceMm has a concrete description as a disjoint union of symmetric
products of Σ. We show that their contribution to (1.2) reproduces residues of the
contour integral (1.1) at poles at finite values of x.

2. Topological Saddles
Topological saddles are configurations where all chiral multiplets vanish, σ has a fixed
expectation value, and the U(1) gauge symmetry is unbroken. Topological saddles only
exist if an effective Chern-Simons level is non-vanishing, k±eff 6= 0. Their contribution
to the moduli space Mm is roughly the Picard variety parametrising holomorphic
line bundles on Σ of degree m. We show that their contribution to (1.2) reproduces
residues of (1.1) at poles at x±1 → 0.

The existence of both vortex and topological saddle points depends on τ and the moduli
spaceMm may jump as this parameter crosses walls proportional to the flux m. Taking this
into account, we show that equation (1.2) exactly reproduces the Coulomb branch residue
prescription in the presence of τ for a broad class of U(1) gauge theories.

Finally, the twisted index has a hamiltonian interpretation as a Witten index

I =
∑
m∈Z

qmTrHm(−1)F , (1.3)

where Hm is the space of supersymmetric ground states with flux m on Σ. It is therefore
natural to identify the supersymmetric ground states with some form of cohomology of the
moduli spaces of vortex and topological saddle points contributing to Mm [18]. However,
the twisted index exhibits cancelations between contributions from residues at finite x and
x± →∞. This indicates the presence of instanton corrections between perturbative ground
states associated to vortex and topological vacua. We hope to return to this phenomenon
in the future.

1.3 Outline

The outline of the paper is as follows. In section 2 we review the Coulomb branch localisation
of the twisted index of U(1) gauge theories. In section 3 we introduce an alternative Higgs
branch localisation scheme and discuss general features of vortex and topological saddles. In
sections 4 and 5 we evaluate the contribution of vortex and topological saddles respectively
to the twisted index. In section 6 we evaluate these contributions explicitly in examples with
a single chiral multiplet. Finally, in section 7 we perform a preliminary investigation of an
SU(2) gauge theory deformed by a 1d Fayet-Iliopoulos parameter for the Cartan subalgebra.

2 Background

2.1 Abelian theories

We consider a 3d N = 2 gauge theory with G = U(1) and N chiral multiplets Φj of charge
Qj and R-charge rj ∈ Z. We will restrict attention to the cases where |Qj | = 1. We

– 3 –
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introduce a supersymmetric Chern-Simons term at level k for the gauge group and a mixed
gauge-R symmetry Chern-Simons term kR. The quantisation condition requires

k + 1
2

N∑
j=1

Q2
j ∈ Z ,

kR + 1
2

N∑
j=1

Qj(rj − 1) ∈ Z .

(2.1)

The latter condition implies that the R-symmetry line bundle that we use for the topological
twisting is well-defined. In this paper, we set the superpotential to vanish.

There is a global topological symmetry U(1)t with associated real Fayet-Iliopoulos
parameter ζ ∈ R. In some cases, this is enhanced to a non-abelian symmetry in the infrared.
In addition, there is a global flavour symmetry Gf with maximal torus

Tf ∼=

 N∏
j=1

U(1)j

 /U(1) , (2.2)

where U(1)j rotates Φj with charge +1 and the quotient is by the gauge group. Correspond-
ingly, we introduce real mass parameters mj such that the total mass of Φj is mj +Qjσ

where σ is the real scalar in the vectormultiplet. The real masses are defined up to a
constant shift mj → mj +Qjc, which can be absorbed by σ → σ − c.

Integrating out chiral multiplets in the presence of generic real masses generates effective
supersymmetric gauge and mixed gauge-R symmetry Chern-Simons levels

keff(σ) = k + 1
2

N∑
j=1

Q2
j sign(mj +Qjσ) ,

kR,eff(σ) = kR + 1
2

N∑
j=1

Qj(rj − 1) sign(mj +Qjσ) ,
(2.3)

which are piece-wise constant in σ. The quantisation condition (2.1) ensures that the
constant values are integers. It is also useful to define

k±eff := lim
σ→±∞

keff = k ± 1
2

N∑
j=1

Qj |Qj | , (2.4)

which controls the gauge charges of monopole operators with U(1)t topological charge ±1.
Similarly, the asymptotic values of the effective mixed Chern-Simons level controls of the
R-charge of the same monopole operators.

2.2 The twisted index

Following [8–10], we consider the twisted index on S1×Σ with a closed orientable Riemann
surface Σ of genus g. The twist is performed using the unbroken R-symmetry, which
preserves an N = (0, 2) quantum mechanics on S1 with a pair of supercharges Q, Q̄.

– 4 –
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The twisted index has a hamiltonian interpretation as counting supersymmetric ground
states on S1 × Σ annihilated by Q, Q̄. The space of supersymmetric ground states H
transforms as a representation space of the global symmetry U(1)t ×Gf and the index is

I = TrH(−1)F qJt
N∏
j=1

y
Jj
j , (2.5)

where Jt and Jj denote the Cartan generators of U(1)t and U(1)j respectively, and q and
yj are the fugacities. A basic assumption is that H is locally finitely graded, meaning that
the coefficient of a given monomial in q and yj is a finite integer.

2.3 Supersymmetric Lagrangians

The twisted index can also be computed using supersymmetric localisation applied to the
path integral construction [8–10]. We now briefly summarise the various lagrangians used
in supersymmetric localisation.

First, the vectormultiplet Yang-Mills lagrangian LYM and the chiral multiplet lagrangian
LΦ are exact with respect to both supercharges Q, Q̄. In supersymmetric localisation, their
coefficients are typically sent to infinity so that the saddle point approximation is exact.

The Fayet-Iliopoulos and mass parameter lagrangians LFI and Lm are not exact and the
twisted index depends on these parameters. These parameters are naturally complexified by
Wilson lines around S1 for the associated global symmetries. In particular, we can identify
the fugacities in the hamiltonian definition (2.5) of the twisted index as

q = e−2πβ(ζ+iAt) , y = e−2πβ(m+iAf) , (2.6)

where At and Af denote the constant background connections for U(1)t and Tf respectively.
The twisted index is a meromorphic function of q and y with poles at loci where non-compact
massless degrees of freedom appear and the spectrum is no longer gapped.

The supersymmetric Chern-Simons lagrangian LCS is not exact and the index depends
on the level k.

Following [20], we introduce an additional exact term

Lτ = iτ

2 (Q+ Q̄)(λ+ λ̄) = −iτD1d , (2.7)

where
D1d := D − 2F11̄ (2.8)

and τ is a real parameter valued in the Lie algebra of the topological symmetry U(1)t. This
is interpreted as a 1d Fayet-Iliopoulos parameter since the combination D1d is the auxiliary
field in the N = (0, 2) quantum mechanics vectormultiplet. Unlike the 3d Fayet-Iliopoulos
parameter ζ, it cannot be complexified. As this parameter is real and exact, the twisted
index depends in a piecewise constant manner on τ but may jump accross walls.

– 5 –
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2.4 Contour integral formula

We now briefly review the derivation of the contour integral formula for the twisted index
using supersymmetric localisation.

First, the localisation scheme used in [8–10] starts from the lagragian

L = 1
e2LYM + 1

g2LΦ + LCS + LFI . (2.9)

Schematically, localisation is done by sending e2 → 0 and g2 → 0 in a careful way as
described in [8–10]. Following computations of the elliptic genus of supersymmetric gauge
theories in two dimensions [21, 22], a more precise analysis leads to a Jeffrey-Kirwan
residue integral.

The contour integral takes the form

I =
∑
m∈Z

qm
1

2πi

∮
C

dx
x
H(x)gZ(x,m) , (2.10)

where the contour C is in the complexified maximal torus of G = U(1) parameterised by x
and the summation is over the magnetic flux m ∈ Z. The integrand is constructed from the
supersymmetric Chern-Simons term and one-loop contributions

Z(x,m) = xkmx(g−1)kR
N∏
i=1

[
(xQiyi)

1
2

1− xQiyi

]Qim+(g−1)(ri−1)

(2.11)

and the hessian factor

H(x) = k +
N∑
j=1

Q2
j

(
1
2 + xQjyj

1− xQjyj

)
, (2.12)

which arises from integration over gaugino zero modes.
The contour is given explicitly by

1
2πi

∮
C

dx
x

=
∑
x∗

JK-Res
x=x∗

(Q∗, η) dx
x
, (2.13)

where
JK-Res
x=0

(Q, η)dx
x

:= Θ(Qη) sign(Q) (2.14)

and η 6= 0 is an auxiliary real parameter. The sum is over poles of the integrand and Q∗
denotes the Jeffrey-Kirwan charge associated to a pole at x = x∗. The poles at solutions of
xQiyi = 1 arise from the elementary chiral multiplet Φi and their Jeffrey-Kirwan charge is
simply the gauge charge Qi. The Jeffrey-Kirwan charges assigned to the poles at x = 0 and
x =∞ are

x = 0 : Q+ = −k+
eff ,

x =∞ : Q− = +k−eff ,
(2.15)

which are the gauge charges of monopole operators of U(1)t charges ±1.

– 6 –
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This result is manifestly independent of the auxiliary parameter η if all Jeffrey-Kirwan
charges are non-vanishing. However, if a monopole operator is gauge neutral, when Q0 = 0
or Q∞ = 0, then the Jeffrey-Kirwan residue operation requires further specification. In
such cases, [8–10] introduce an additional term in the lagrangian as a regulator with the
result that the residue at x = 0 or x =∞ should not be taken in such cases. This leads to
a meaningful result that is independent of η after summing over magnetic flux m ∈ Z.

In reference [20], the 1d Fayet-Iliopoulos parameter τ was introduced to ensure a
meaningful result for each individual flux m ∈ Z. This feature is necessary if we want to
unambiguously interpret the coefficient of qm as counting the supersymmetric ground states
with U(1)t charge m, as in the hamiltonian definition (2.5). The starting point is now
the lagrangian

L = 1
t2

( 1
e2LYM + Lτ

)
+ 1
g2LΦ + LCS + LFI , (2.16)

and the localisation proceeds as in supersymmetric quantum mechanics by taking the limit
t2 → 0 with e2 finite [23]. This leads to an identical contour integral formula but with a
different assignment of Jeffrey-Kirwan charges to the poles.

For the poles associated to chiral multiplets Φi the Jeffrey-Kirwan charge is again
Qi. For the poles associated to monopole operators, the Jeffrey-Kirwan charges are now
assigned according to

Q+ =
{
−k+

eff if k+
eff 6= 0

m− τ ′ otherwise
, (2.17a)

Q− =
{

+k−eff if k−eff 6= 0
m− τ ′ otherwise

, (2.17b)

where τ is re-scaled as

τ ′ := e2vol(Σ)
2π τ . (2.18)

The contribution from each magnetic flux m ∈ Z is now separately independent of the
auxiliary parameter η provided τ ′ 6= m. However, the twisted index may now jump accross
the wall τ ′ = m according to

I(τ ′ = m + ε)− I(τ ′ = m− ε) = qm
[
δk+

eff,0
Res
x=0

+ δk−
eff,0

Res
x=∞

] dx
x
H(x)gZ(x,m) , (2.19)

where ε→ 0+.
In what follows, we therefore require τ ′ /∈ Z. This ensures the Jeffrey-Kirwan charges

are always non-vanishing and the contribution to the twisted index from each flux m ∈ Z
is meaningful.

Finally, the contour prescription used in [8–10] is recovered by sending τ ′ → +∞ with
η > 0 or τ ′ → −∞ with η < 0. That this is independent of the auxiliary parameter η is
equivalent to the statement that sum of (2.19) over m ∈ Z is proportional to a formal delta
function at q = 1.

– 7 –
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3 Alternative localisation scheme

3.1 Motivation

The hamiltonian definition of the twisted index (2.5) can be viewed as the Witten index of
an effective N = (0, 2) supersymmetric quantum mechanics obtained by twisting on S1 ×Σ.
Based on the general structure of supersymmetric quantum mechanics of this type we can
expect a geometric construction of the twisted index in the form

I =
∑
m∈Z

qm
∫

Â(Mm) ch(Em) . (3.1)

In such an expression, Mm denotes a moduli space parametrising saddle points of the
localised path integral with magnetic flux m ∈ Z, while Em is schematically a complex of
vector bundles arising from the massive fluctuations of chiral multiplets and supersymmetric
Chern-Simons terms. The integral should be understood equivariantly with respect to the
flavour symmetry Tf, leading to the dependence on the parameters yi.

For such an interpretation to be meaningful, it is necessary for the contribution to the
twisted index from each individual flux m ∈ Z to be unambiguous. This necessitates the
introduction of the 1d Fayet-Iliopoulos parameter τ . The wall-crossing phenomena in τ are
then reflected in jumps in the structure of the moduli spaces Mm and complexes Em.

This general expectation was verified in previous work [19, 20] for a special class of
theories (for example those with N = 4 supersymmetry) where for generic τ ′ 6= m the moduli
spaces Mm exclusively parametrise vortex-like configurations on Σ where the gauge group
is completely broken. The purpose of this paper is to extend the geometric interpretation
to theories with “topological” saddle points, where there is an unbroken gauge symmetry
and the moduli spaces Mm must be described as quotient stacks.

There is an important distinction between saddle points where the unbroken gauge
symmetry is the whole G = U(1) or a discrete subgroup. The latter involves a relatively mild
extension of [20] to deal with moduli spaces with orbifold singularities and our constraint
|Qi| = 1 is designed to avoid such cases. We therefore consider theories with topological
saddle points where G = U(1) is fully unbroken and the moduli space Mm has a component
that is the Picard stack parametrising degree m holomorphic line bundles on Σ.

3.2 Localising action

To arrive at such a geometric interpretation we introduce an alternative supersymmetric
localisation for the twisted index [20], which is similar to the Higgs branch localisation
schemes for 2d N = (2, 2) theories [24–26] and for 3d N = 2 theories [4, 5]. However, in
addition to the usual vortex-like saddle points, here there will be additional topological
saddle points where the matter fields vanish and the gauge group is unbroken.

The starting point is to consider the same lagrangian from equation (2.16) including
the 1d Fayet-Iliopoulos parameter τ but first set g = t to obtain

L = 1
t2

( 1
e2LYM + Lτ + LΦ

)
+ LCS + LFI . (3.2)

– 8 –
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The second step is to consider the limit t2 → 0 while keeping e2 finite. The supersymmetric
saddle points are then solutions to the following set of equations,

1
e2 ∗ FA +

N∑
j=1

Qj |φj |2 − t2σ
keff(σ)

2π − τ = 0 , (3.3a)

dAσ = 0 , ∂̄Aφi = 0 , (3.3b)
(mi +Qiσ)φi = 0 ∀ i = 1, . . . , N , (3.3c)

where FA is the curvature of the gauge connection A, and ∗ is the Hodge star operator on
Σ. In writing these equations, φj should be understood as a section of Krj/2

Σ ⊗ LQj where
KΣ is the canonical bundle on Σ and L is the holomorphic gauge bundle on Σ.

Note that the dependence on the 3d Fayet-Iliopoulos parameter ξ has dropped out
but the equations depend critically on the 1d Fayet-Iliopoulos parameter τ . We keep the
contribution proportional to the effective Chern-Simons term in the limit t2 → 0 to capture
potential saddle points where |σ| → ∞ with σ0 := t2σ finite.

3.3 Saddle points

The solutions to equations (3.3) fall into topologically distinct sectors labelled by the flux

m := 1
2π

∫
Σ
FA ∈ Z . (3.4)

A constraint on the existence of saddle points with a given flux m is found by integrating
equation (3.3a) over the Riemann surface Σ to give

(
τ ′ −m

)
+ e2 vol(Σ)

4π2 t2σkeff(σ) =
N∑
j=1

Qj ‖φj‖2 , (3.5)

where
‖φj‖2 := e2

2π

∫
Σ
φ̄j ∧ ∗φj (3.6)

is a positive definite inner product on sections of Krj
Σ ⊗ LQj and τ ′ = e2vol(Σ)

2π τ is the
normalised 1d Fayet-Iliopoulos parameter defined in (2.18).

Assuming the 1d Fayet-Iliopoulos parameter is generic, meaning τ ′ 6= m, there are two
classes of solutions with a given magnetic flux m ∈ Z. They can be described as follows:

1. Vortex Saddles

Vortex saddle points are solutions where σ remains finite in the limit t2 → 0 and
the term proportional the effective Chern-Simon level keff in equation (3.3a) can be
ignored. The remaining equations are the vortex equations

1
e2 ∗ FA +

N∑
j=1

Qj |φj |2 = τ , ∂̄Aφi = 0 , (mi +Qiσ)φi = 0 . (3.7)

– 9 –
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For generic mass parameters m1, . . . ,mN , the space of solutions decomposes as a
disjoint union of components where a single φi is non-vanishing and σ = −mi/Qi.
From the constraint (3.5), a component of the moduli space where φi is non-vanishing
exists if

sign(τ ′ −m) = sign(Qi) . (3.8)

2. Topological Saddles

Topological saddle points are solutions where |σ| → ∞ in the limit t2 → 0, such that
the combination σ0 := t2σ remains finite and has a unique non-vanishing solution.
This requires φj = 0 for all j = 1, . . . , N and therefore the constraint (3.5) becomes

τ ′ −m = −e
2 vol(Σ)

4π2 σ0k
±
eff . (3.9)

A unique solution with ±σ0 > 0 exists if k±eff 6= 0 and

sign(τ ′ −m) = sign(Q±) . (3.10)

In addition, if k±eff = 0 then a non-compact Coulomb branch parametrised by ±σ0 > 0
appears at τ ′ = m, which is responsible for the wall-crossing phenomena in equation (2.19).
These three classes are analogous to the trichotomy of flat space supersymmetric vacua
in [27].

If we align the auxiliary parameter

sign(τ ′ −m) = sign(η) , (3.11)

components of the moduli space of saddles with flux m are in one-to-one correspondence
with the poles selected by the contour prescription in section 2. There is a component of
the vortex moduli space with φi 6= 0 when the pole at xQiyi = 1 is selected. Similarly, there
is a topological saddle point with ±σ0 > 0 whenever the residue at x±1 → 0 is selected.
The purpose of sections 4 and 5 is to reproduce the residues at these poles.

4 Vortex saddles

4.1 Moduli space

The moduli space of vortex saddle points consists of solutions to

1
e2 ∗ FA +

N∑
j=1

Qj |φj |2 = τ ,

∂̄Aφj = 0 , (mj +Qjσ)φj = 0 ,
(4.1)

for all j = 1, . . . , N , modulo gauge transformations. The moduli space is a disjoint union
of topologically distinct components Mm labelled by the magnetic flux m ∈ Z. The
entire moduli space is realised as an infinite-dimensional Kähler quotient and under our
assumptions each componentMm is a finite-dimensional smooth Kähler manifold.
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For generic mass parametersmi, the moduli space further decomposes as a disjoint union
of componentsMm,i where a single chiral multiplet φi is non-vanishing and σ = −mi/Qi.
Each component parametrises solutions to the abelian vortex equations

1
e2 ∗ FA +Qi|φi|2 = τ , ∂̄Aφi = 0 , (4.2)

where φi transforms as a section of Kri/2
Σ ⊗ LQi . A small modification of the standard

analysis applies and each component is either a symmetric product of the curve Σ or empty,

Qi = +1 : Mm,i =

Σdi if τ ′ > m

∅ if τ ′ < m

Qi = −1 : Mm,i =

∅ if τ ′ > m

Σdi if τ ′ < m

(4.3)

where
di := Qim + ri(g − 1) (4.4)

is the degree of Kri/2
Σ ⊗ LQi and Σd := SymdΣ with the understanding that this is empty

for d < 0. The symmetric product Σdi parametrises the positions of the vortices. The
assumption |Qi| = 1 is important to get a symmetric product, otherwise the moduli space
has orbifold singularities where a discrete gauge subgroup is unbroken.

Note that if the auxiliary parameter η is aligned with τ ′ −m, meaning

sign(τ ′ −m) = sign(η) , (4.5)

then the componentMm,i of the moduli space is non-empty whenever the Jeffrey-Kirwan
residue prescription selects the pole at xQiyi = 1 from the chiral multiplet Φi. The task in
the remainder of this section is to reproduce the residue at this pole from supersymmetric
localisation.

It is useful to use an algebraic description of moduli spaces of abelian vortices in terms
of holomorphic pairs. Let us assume sign(τ ′ − m) = sign(Qi) so that the vortex moduli
spaceMm,i is non-empty. Then the Hitchin-Kobayashi correspondence says that there is
an algebraic description parametrising pairs (L, φi) where L is a holomorphic line bundle
of degree m and φi is a non-zero section of Kri/2

Σ ⊗ LQi . The symmetric product Σdi in
equation (4.3) parametrises the zeros of the section φi.

4.2 Contributions to index

The contribution to the twisted index from a componentMm,i of the vortex moduli space is

Im,i =
∫
Â(Mm,i)

Â(E)
e(E) ch(Lk ⊗ LkRR )

=
∫
Â(Mm,i)

ch(Lk ⊗ LkRR )
ch(∧̂•E)

(4.6)
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where E is a perfect complex of sheaves encoding the massive fluctuations of chiral multiplets
around vortex configurations, and L, LR are holomorphic line bundles arising from the
gauge and mixed gauge-R symmetry Chern-Simons terms respectively. We omit the labels
m, i from the bundles for brevity.

This integral should be understood equivariantly with respect to the flavour symmetry
Tf with parameters yi. It can be evaluated using intersection theory on symmetric products
and converted into a contour integral following [28, 29]. This extends a computation
performed in [19] to a wider class of theories.

For simplicity and to avoid a profusion of signs at intermediate steps in the calculation,
we set Qi = +1 with τ ′ > m. A similar computation applies to Qi = −1 and the final result
is presented in a uniform way for both cases.

4.2.1 Tangent directions

We first consider the contribution from the tangent directions to Mm,i, which is the
symmetric product Σdi when τ ′ > m and otherwise empty.

Let us briefly summarise some notation for the intersection theory on a symmetric
product. There are standard generators ζa, ζ̄a ∈ H2(Σd) with a = 1, . . . g and η ∈ H2(Σd)
arising from cohomology classes on Σ. We then define θa := ζa ∧ ζ̄a and θ := ∑g

a=1 θa.
From reference [28], the Chern character of the tangent bundle is

ch(TΣdi) = (g − 1) + ((di − 2g + 1)− θ)eη

= (g − 1) + (di − 2g + 1)eη +
g∑
a=1

eη−θa .
(4.7)

From here we can evaluate the Â-genus as follows

Â(Σdi) = exp
(
−di − g + 1

2 η + θ

2

)(
η

1− e−η
)di−2g+1 g∏

a=1

η − θa
1− e−η+θa

= exp
(
−di − g + 1

2 η + θ

2

)(
η

1− e−η
)di−2g+1 g∏

a=1

η − θa
1− e−η(1 + θa)

= exp
(
−di − g + 1

2 η + θ

2

)(
η

1− e−η
)di−2g+1 g∏

a=1

η − θa
(1− e−η)− e−ηθa

= exp
(
−di − g + 1

2 η + θ

2

)(
η

1− e−η
)di−2g+1 g∏

a=1

η − θa
1− e−η

(
1− e−η

1− e−η θa
)−1

= exp
(
−di − g + 1

2 η + θ

2

)(
η

1− e−η
)di−2g+1 g∏

a=1

η

1− e−η

(
1− θa

η
+ e−η

1− e−η θa
)

= exp
(
−di − g + 1

2 η + θ

2

)(
η

1− e−η
)di−g+1 g∏

a=1
exp

[
θa

(
−1
η

+ e−η

1− e−η

)]

=
(
ηe−η/2

1− e−η

)di−g+1

exp
[
θ

(
1
2 −

1
η

+ e−η

1− e−η

)]
, (4.8)

where we have made repeated use of θ2
a = 0 for any a = 1, . . . , g.
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4.2.2 Index bundle

We now consider the fluctuations of each of the remaining massive chiral multiplets Φj with
j 6= i around configurations inMm,i.

At a point (L, φi) on the moduli space Mm,i, each chiral multiplet Φj with j 6= i

generates 1d N = (0, 2) chiral and Fermi multiplet fluctuations valued in the following
vector spaces

• Chiral multiplets: E0
j := H0

(
Σ, LQj ⊗Krj/2

Σ

)
,

• Fermi multiplets: E1
j := H1

(
Σ, LQj ⊗Krj/2

Σ

)
.

If we move around in the moduli space Mm,i the dimensions of these vector spaces may
jump. But by the Riemann-Roch theorem the difference of their dimensions is constant,

dimE0
j − dimE1

j = h0(LQj ⊗Krj/2
Σ )− h1(LQj ⊗Krj/2

Σ )
= Qjm + (g − 1)(rj − 1)
= dj − g + 1 .

(4.9)

We can therefore formally regard the difference of these vector spaces as the fibre of a
holomorphic vector bundle on the moduli spaceMm,i of rank dj − g + 1, or at least this
will define a reasonable K-theory class for use in the computation of the twisted index.

To make this more precise, we recall the construction of the universal bundle on a
symmetric product. We consider the pair of projection maps

Σdi × Σ

Σdi Σ

π p . (4.10)

There is a unique universal line bundle L on Σdi × Σ with the property that its restriction
to a point (L, φi) on the symmetric product is the holomorphic line bundle L on Σ. We
also define K := p∗KΣ to be the pull-back of the canonical bundle on the curve. With this
in hand, the fluctuations of Φj transform in a perfect complex of sheaves on Σd defined by
the derived push-forward

E•j := R•π∗(LQj ⊗Krj/2) . (4.11)

The stalks of E•j over a point (L, φi) on the symmetric product are the vector spaces E•j .
We can extract the Chern roots of E•j following standard computations [29]. The

starting point is the Chern character of the universal bundle

ch
(
LQj

)
= eQjη

(
1 +Qjm ηΣ +Qjγ −Q2

jηΣθ
)

(4.12)

and
ch(Krj/2) = 1 + rj(g − 1)ηΣ . (4.13)

Here we abuse notation and identify the cohomology classes η, θ with their pull-backs by π.
In a similar way, ηΣ denotes the class of a point on Σ and its pullback by p. Finally, γ is
built from the pull-back of 1-form generators and will not play a role in what follows.

– 13 –



J
H
E
P
0
5
(
2
0
2
2
)
1
1
6

An application of the Groethendiek-Riemann-Roch theorem to π gives

ch(E•j ) = π∗
{

ch(LQj ⊗Krj/2) td(Σdi)
}

= eQjη
(
(dj − g + 1)−Q2

jθ
)
. (4.14)

On vortex saddle points parametrised by the moduli spaceMm,i, the real vectormultiplet
scalar is fixed to σ = −mi and the real mass of Φj fluctuations is mj −Qjmi. We therefore
promote this result to a Tf-equivariant Chern character

ch(E•j ) = zje
Qjη

(
(dj − g + 1)−Q2

jθ
)
, (4.15)

where
zj := yj/y

Qj
i . (4.16)

The fluctuations from all the massive chiral multiplets is encoded in

E =
⊗
j 6=i
E•j . (4.17)

The equivariant Chern roots have a similar structure to those in (4.7) and the contribution
of these fluctuations to the twisted index can be evaluated in a similar way, with the result

Â(E)
e(E) =

∏
j 6=i

(
(e−Qjηzj)

1
2

1− e−Qjηzj

)dj−g+1

exp
[
Q2
jθ

(
1
2 + e−Qjηzj

1− e−Qjηzj

)]
. (4.18)

4.2.3 Chern-Simons terms

The supersymmetric Chern-Simons terms generate holomorphic line bundles on the moduli
space Mm,i

∼= Σdi according to the general mechanism in [30]. A careful translation into
the algebraic framework of this paper leads to the conclusion that the Chern-Simons levels
k, kR generate holomorphic line bundles Lk, LkRR with

c1(L) = θ −mη ,

c1(LR) = −(g − 1)η .
(4.19)

The contribution to the integrand of equation (4.6) is therefore

ch(Lk ⊗ LkRR ) = ek(θ−mη)e−kR(g−1)η . (4.20)

This result passes a consistency check. It is compatible with the contribution (4.18) from
massive fluctuations of chiral multiplets and the fact that integrating out a massive chiral
multiplet of charge Qj and R-charge rj with real mass mj → ±∞ shifts

k → k ±
Q2
j

2 ,

kR → kR ±
Qj
2 (rj − 1) .

(4.21)
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4.3 Evaluation of Witten index

Collecting the contributions from the tangent directions to the moduli space, the fluc-
tuations of massive chiral multiplets and the supersymmetric Chern-Simons terms, the
contribution (4.6) to the twisted index from the component Mm,i of the vortex moduli
space is

Im,i =
∫

Σdi
ek(θ−mη)e−kR(g−1)η

(
ηe−η/2

1− e−η

)di−g+1

exp
[
θ

(
1
2 −

1
η

+ e−η

1− e−η

)]

×
N∏
j 6=i

(
(e−Qjηzj)

1
2

1− e−Qjηzj

)dj−g+1

exp
[
Q2
jθ

(
1
2 + e−Qjηzj

1− e−Qjηzj

)]
, (4.22)

provided τ ′ > m, and vanishes otherwise.
The final step is to convert the integration over the symmetric product into a contour

integral using the following useful result [31],∫
Σd
A(η)eθB(η) =

∮
u=0

du
u

A(u) [1 + uB(u)]g
ud

. (4.23)

The integral in equation (4.22) has precisely this form with

A(η) = e−kmηe−kR(g−1)η
(
ηe−η/2

1− e−η

)di−g+1 ∏
j 6=i

[
(e−Qjηzj)

1
2

1− e−Qjηzj

]dj−g+1

, (4.24)

B(η) = k +
(

1
2 −

1
η

+ e−η

1− e−η

)
+
∑
j 6=i

Q2
j

(
1
2 + e−Qjηzj

1− e−Qjηzj

)
, (4.25)

and therefore we find

Im,i =
∮
u=0

du e−kmue−kR(g−1)u
(

e−u/2

1− e−u

)di−g+1 N∏
j 6=i

[
(e−Qjuzj)

1
2

1− e−Qjuzj

]dj−g+1

×

k + 1
2

(
1 + e−u

1− e−u

)
+

N∑
j 6=i

Q2
j

2

(
1 + e−Qjuzj
1− e−Qjuzj

)g (4.26)

=
∮
x=y−1

i

dx
x
xkm+kR(g−1)

(
(xyi)

1
2

1− xyi

)di−g+1 N∏
j 6=i

[
(xQjyj)

1
2

1− xQjyj

]dj−g+1

×

k + 1
2

(1 + xyi
1− xyi

)
+

N∑
j 6=i

Q2
j

2

(
1 + xQjyj
1− xQjyj

)g , (4.27)

where the substitution e−u = xyi has been made in the second line. A similar calculation
can be performed in the case Qi = −1.

The final result, under the assumption that |Qi| = 1 is that the contribution to the
twisted index from vortex saddle points parameterised byMm,i is

Im,i =
∮
x=y−1/Qi

i

dx
x
xkm+kR(g−1)

N∏
j=1

[
(xQiyj)

1
2

1− xQjyj

]dj−g+1 k +
N∑
j=1

Q2
j

(
1
2 + xQjyj

1− xQjyj

)g
(4.28)
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when sign(τ ′−m) = sign(Qi), and zero otherwise. This exactly reproduces the contribution
to the twisted index from the pole at xQiyi = 1 when the auxiliary parameter η is chosen
such that sign(η) = sign(τ ′ −m).

5 Topological saddles

5.1 Moduli space

Topological saddle points are configurations where φj = 0 for all j = 1, . . . , N and there is
a unique finite expectation value for σ0 := t2σ that solves the equation

τ ′ −m = −e
2 vol(Σ)

4π2 σ0k
±
eff (5.1)

in the region ±σ0 > 0. Topological saddle points exist provided k±eff 6= 0 and sign(τ ′ −m) =
sign(Q±). If we choose the auxiliary parameter such that sign(η) = sign(τ ′ −m), there are
topological saddle points with ±σ0 > 0 whenever the Jeffrey-Kirwan residue prescription
selects the poles at x±1 → 0. The task in this section is to reproduce the residues at
these poles.

The only massless bosonic fluctuations around a topological saddle are those of the
gauge connection A. Topological saddle points with flux m ∈ Z are therefore parametrised
by connections A on a principle U(1) bundle satisfying

∗ FA = 2π
vol(Σ)m , (5.2)

modulo gauge transformations on Σ. As for vortex saddle points, the contribution to
the twisted index is expected to be the Witten index of a supersymmetric quantum
mechanics whose target is the moduli space of solutions to these equations. However, gauge
transformations act trivially on FA and σ0, so the U(1) gauge symmetry is unbroken and
the quantum mechanics is gauged.

To describe the supersymmetric quantum mechanics concretely, we use the algebraic de-
scription of solutions to (5.2) as holomorphic line bundle L of degree c1(L) = m. We then ex-
pect a supersymmetric sigma model to the Picard variety Picm(Σ), parametrised by the com-
plex structure ∂̄A which transforms as a chiral multiplet under N = (0, 2) supersymmetry.

However, any holomorphic line bundle has a C∗ worth of automorphisms, corresponding
to unbroken complexified gauge transformations. It is therefore more appropriate to describe
the supersymmetric quantum mechanics as a sigma model to the Picard stack,

Mm = Picm(Σ) . (5.3)

We can make this more concrete at the cost of introducing an auxiliary base point p ∈ Σ.
Decomposing complex gauge transformations into those trivial at p and constant gauge
transformations, we have

Mm =Mm × [pt/C∗] , (5.4)

where
Mm = Picm (Σ) ' T 2g . (5.5)
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In this way, the supersymmetric quantum mechanics is a hybrid of a non-linear sigma model
with target space T 2g and a U(1) gauge theory.

The supersymmetric quantum mechanics is not, however, a product due to the massive
fluctuations of the chiral multiplets Φj . They transform in a perfect complex on Mm

generated by fluctuations annihilated by ∂̄A. Choosing an auxiliary base point as above,
this becomes a C∗-equivariant complex onMm. So the fluctuations roughly transform as
sections of a holomorphic vector bundle on the target space T 2g of the sigma model and
are also charged under the unbroken U(1) gauge symmetry.

5.2 Contributions to index

The contributions to the twisted index from topological saddle points can be expressed in
the same form as vortex saddle points,∫

Â(Mm)ch(Lk ⊗ LkRR )
ch(∧̂•E)

, (5.6)

where E is a perfect complex arising from fluctuations of the massive chiral multiplet, and
L, LR are holomorphic line bundles arising from the gauge and mixed gauge-R symmetry
Chern-Simons terms.

To make this more precise, we choose an auxiliary base point on Σ and decompose the
moduli stack Mm =Mm × [pt/C∗]. The characteristic classes in equation (5.6) are then
to be understood as C∗-equivariant classes on Mm. The integral over the moduli stack
decomposes into two parts:

• A regular integral over the moduli spaceMm
∼= Picm (Σ). This is the usual contribution

from an N = (0, 2) supersymmetric non-linear sigma model.

• A contour integral
1

2πi

∮
C

dx
x
,

where x is the Chern character of the trivial C∗-equivariant holomorphic vector bundle
with weight +1. This is the contribution due to the unbroken U(1) gauge symmetry.

The purpose of the contour integral is of course to project onto gauge invariant contributions.
This is not meaningful as it stands because the integrals of C∗-equivariant classes in
equation (5.6) over the moduli spaceMm produce rational functions of x. It is therefore
necessary to specify whether the integrand should be expanded inside or outside the unit
circle, which correspond to the residues at x = 0 or x =∞ respectively.

Our prescription will be guided by physical intuition. First, note that the path integral
construction identifies x = e−2πβ(σ+iA) where σ is the real vectormultiplet scalar and A is
a constant gauge connection around the circle. Topological saddle points with σ0 > 0 are
therefore associated with the region x → 0, while those with σ0 < 0 are associated with
x→∞. The natural expectation for the contour C is therefore

σ0 > 0 : 1
2πi

∫
x=0

dx
x
,

σ0 < 0 : 1
2πi

∫
x=∞

dx
x
.

(5.7)
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This gains further support from the hamiltonian interpretation of the twisted index as
counting supersymmetric ground states. The supersymmetric ground states depend on the
sign of the real mass of fluctuations, which is dominated by σ as |σ| → ∞. For example,
the ground state wavefunctions of a 1d chiral multiplet of charge +1 are

σ > 0 : φne−σ|φ|
2
, n ≥ 0 ,

σ < 0 : φ̄ne−σ|φ|
2
ψ̄ , n ≥ 0

(5.8)

with contributions to the index

σ > 0 : 1 + x+ x2 + · · · = 1
1− x ,

σ < 0 : −x−1 − x−2 + · · · = 1
1− x .

(5.9)

So projecting onto uncharged states at the level of the index is equivalent to

σ > 0 : 1
2πi

∫
x=0

dx
x

1
1− x = 1 ,

σ < 0 : 1
2πi

∫
x=∞

dx
x

1
1− x = 0 ,

(5.10)

which select the coefficient of x0 in the expansions around x = 0 and x =∞ respectively.
The general prescription (5.7) is basically a broad generalisation of this observation.

In summary, we have two contributions from potential topological vacua with σ0 > 0
and σ0 < 0 are given by the following integrals

I0 = 1
2πi

∫
x=0

dx
x

∫
Â(Mm)ch(Lk ⊗ LkRR )

ch(∧̂•E)
,

I∞ = 1
2πi

∫
x=∞

dx
x

∫
Â(Mm)ch(Lk ⊗ LkRR )

ch(∧̂•E)
,

(5.11)

where we interpret E and L, LR as C∗-equivariant objects on the moduli spaceMm
∼= T 2g.

In the next section we evaluate these explicitly and show that they reproduce the appropriate
contributions to the twisted index according to the contour prescription (2.17).

5.2.1 Tangent directions

Let us first summarise some notation for intersection theory on the Picard varietyMm ' T 2g.
The cohomology ring is generated by classes ζa ∈ H1,0(T 2g,Z) and ζ̄a ∈ H0,1(T 2g,Z) with
a = 1, . . . g. We define θa := ζa ∧ ζ̄a and θ := ∑g

a=1 θa with normalisation
∫
T 2g

θg

g! = 1 . (5.12)

The tangent bundle is flat and therefore Â(Mm) = 1.
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5.2.2 Index bundle

We now consider the massive fluctuations arising from each of the chiral multiplets Φj . At
a point on the moduli space corresponding to a holomorphic line bundle L, each chiral
multiplet generates chiral and Fermi multiplet fluctuations solving

∂̄Aφj = 0 , ∂̄Aηj = 0 , (5.13)

where φj and ηj transform as 0-form and 1-form sections of LQj ⊗Krj/2
Σ respectively. The

fluctuations of Φj around this point therefore generate the vector spaces

• Chiral multiplets: E0
j := H0

(
Σ, LQj ⊗Krj/2

Σ

)
,

• Fermi multiplets: E1
j := H1

(
Σ, LQj ⊗Krj/2

Σ

)
.

As L varies in Picm(Σ) the dimensions of these vector spaces may jump, but by the
Riemann-Roch theorem the difference is constant and equal to

dimE0
j − dimE1

j = Qjm + (g − 1)(rj − 1) (5.14)
= dj − g + 1 . (5.15)

This means the difference behave like the fibre of a holomorphic vector bundle on Picm(Σ)
for the purpose of K-theoretic computations involved in the twisted index.

To make this more precise, it is again useful to consider a universal construction. This
is canonical for the moduli stack but for concreteness we pick a base point p ∈ Σ and pass
the moduli spaceMm. There is a corresponding diagram

Mm × Σ

Mm Σ

π p (5.16)

and universal line bundle L such that on restriction to a point onMm corresponding to a
holomorphic line bundle L, L|p ' L. The universal line bundle is not unique: due to C∗

automorphisms there is the possibility to transform L → L⊗ π∗N . However, this can be
fixed by demanding L is trivial on restriction to p.2 We also define K = p∗KΣ.

The massive fluctuations of the chiral multiplet Φi generate a perfect complex E•i of
sheaves defined by the derived push-forward

E•j := R•π∗
(
LQj ⊗Krj/2

)
. (5.17)

The stalks of E•j at L ∈ Mm are the vector spaces E•j considered above. The class
ch
(
E•j
)

= ch(E0
j )− ch(E1

j ) makes sense in equivariant K-theory and the complex behaves
like a vector bundle of rank dj − g + 1 for the purpose of such computations.

To compute the contribution to the twisted index, we begin by computing the Chern
character of E•j . This is a small modification of a standard argument presented in [29]. In

2There is a unique universal line bundle on Mm × Σ without such a choice.
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what follows, we again abuse notation and identify the class θ with its pull-back via π.
Similarly ηΣ denotes the class of a point on Σ and its pull-back via p.

First, the Chern class of the universal line bundle is

c1(L) = mηΣ + γ , (5.18)

where γ2 = −2ηΣθ. We therefore find

ch
(
LQi

)
= eQic1(L)

= 1 +QimηΣ +Qiγ + Q2
i

2 γ2

= 1 +QimηΣ +Qiγ −Q2
i ηΣθ . (5.19)

Similarly, from
c1(K) = (2g − 2)ηΣ , (5.20)

we find

ch
(
Krj/2

)
= e

rj
2 c1(K)

= erj(g−1)ηΣ

= 1 + rj(g − 1)ηΣ . (5.21)

Combining these results

ch
(
LQj ⊗K

rj
2

)
= 1 + djηΣ +Qjγ −Q2

jηΣθ . (5.22)

We can now compute the Chern character of E•j using the Groethendiek-Riemann-Roch
theorem,

ch
(
E•j
)

= π∗

[
ch
(
LQj ⊗K

rj
2

)
Td(PicmΣ× Σ)

]
(5.23)

= π∗
[

ch
(
LQi ⊗K

ri
2
)

(1− (g − 1)ηΣ)
]

= π∗
[
1 + (dj − g + 1)ηΣ +Qiγ −Q2

i ηΣθ
]

= (dj − g + 1)−Q2
i θ (5.24)

= (dj − 2g + 1) +
g∑
a=1

e−Q
2
jθa , (5.25)

where in the final line we have expressed the result in such a way that the Chern roots are
manifest. This is promoted to an equivariant Chern character

ch
(
E•j
)

= xQjyj

(
(dj − 2g + 1) +

g∑
a=1

e−Q
2
jθa

)
. (5.26)

The contribution to the twisted index is now given by the equivariant Â-genus of the
complex E•j . This is straightforward to compute from the equivariant Chern roots by a now
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familiar set of manipulations,

Â(E•j )
e(E•j ) =

(
xQjyj

) dj−g+1
2 e

Q2
j
θ

2

(
1

1− xQjyj

)dj−2g+1 g∏
a=1

1
1− xQjyjeQ

2
jθa

=
(
xQjyj

) dj−g+1
2 e

Q2
j
θ

2

(
1

1− xQjyj

)dj−2g+1 g∏
a=1

1
1− xQjyj(1 +Q2

jθa)

=
(
xQjyj

) dj−g+1
2 e

Q2
j
θ

2

(
1

1− xQjyj

)dj−g+1 g∏
a=1

(
1 + xQjyj

1− xQjyj
Q2
jθa)

)

=
(
xQjyj

) dj−g+1
2 e

Q2
j
θ

2

(
1

1− xQjyj

)dj−g+1

exp
(

xQjyj
1− xQjyj

Q2
jθ

)

=
(

(xQjyj)
1
2

1− xQjyj

)dj−g+1

exp
((

1
2 + xQjyj

1− xQjyj

)
Q2
jθ

)
, (5.27)

where we have made repeated use of θ2
a = 0.

5.2.3 Chern-Simons term

The supersymmetric Chern-Simons again induce holomorphic line bundles over the moduli
space Mm

∼= T 2g. In the algebraic framework the Chern-Simons levels k, kR induce
holomorphic line bundle Lk, LkRR with

c1(L) = θ ,

c1(LR) = 0 ,
(5.28)

and transform equivariantly with weights m and (g− 1) respectively. The equivariant Chern
characters are therefore

ch(Lk) = (xmeθ)k = xkmeθ ,

ch(LkRR ) = xkR(g−1) .
(5.29)

This is compatible with the contribution (5.27) from fluctuations of Φj and the fact
that integrating out a massive chiral multiplet of charge Qj and R-charge Rj shifts the
supersymmetric Chern-Simons levels as in equation (4.21).

5.3 Evaluation of Witten index

Combining all these contributions, the contribution to the integrand from the integration
over the moduli spaceMm = Picm(Σ) ∼= T 2g is
∫
Picm(Σ)

xkmekθxkR(g−1)
N∏
j=1

(
(xQjyj)

1
2

1− xQjyj

)dj−g+1

exp
((

1
2 + xQjyj

1− xQjyj

)
Q2
jθ

)

= xkm+kR(g−1)
N∏
j=1

(
(xQjyj)

1
2

1− xQjyj

)dj−g+1 ∫
Picm(Σ)

exp

k +
N∑
j=1

Q2
j

(
1
2 + xQjyj

1− xQjyj

) θ
= xkm+kR(g−1)

N∏
j=1

(
(xQjyj)

1
2

1− xQjyj

)dj−g+1 k +
N∑
j=1

Q2
j

(
1
2 + xQjyj

1− xQjyj

)g . (5.30)
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The contributions from topological saddle points therefore exactly reproduce the potential
residues at x = 0 and x = ∞ in the Jeffrey-Kirwan residue prescription with η aligned
with τ ′ −m.

6 Examples

We consider a U(1) Chern-Simons theory at level k ∈ 1
2 + Z≥0 with one chiral multiplet Φ

of R-charge r = 1 and charge Q = +1. The flavour symmetry Tf is trivial and there are no
real mass parameters. The effective Chern-Simons level coupling is

keff(σ) = k + 1
2 sign(σ) (6.1)

and so
k±eff = k ± 1

2 . (6.2)

The cases k = 1
2 and k > 1

2 are quite different. The former has a neutral monopole operator
and is mirror to a free chiral multiplet. This difference is reflected in the structure of the
saddle points in our computation of the twisted index and therefore we treat the two cases
separately. We also restrict attention to the twisted index with g > 0.

6.1 U(1) 1
2

+ 1 chiral

First consider k = 1
2 . In this case keff(σ) = 1

2(1 + sign(σ)) and therefore k+
eff = 1 and k−eff = 0.

There is a neutral monopole operator and the theory is mirror to a free chiral multiplet,
together with specific background mixed Chern-Simons couplings.

The contour integral for the twisted index is

I =
∑
m∈Z

(−q)m
2πi

∮
C

dx
x

xm

(1− x)m+g , (6.3)

where we have shifted q → −q compared to above. In the presence of a 1d Fayet-Iliopoulos
parameter τ , the contour is a Jeffrey-Kirwan residue prescription with charges

Q+ = −1 , Q1 = 1 , Q− = m− τ ′ . (6.4)

Note that the charge Q− associated to the residue at x = ∞ now depends on the 1d
Fayet-Iliopoulos parameter τ according to equation (2.17) since k−eff = 0.

For g > 0 the residue at x =∞ vanishes and there is no wall-crossing phenomena. The
twisted index is given by computing the residue at x = 1 (η > 0) or equivalently minus the
residue at x = 0 (η < 0), with the result

I = (−1)gq1−g(1− q)g−1 . (6.5)

While the twisted index is non-zero only for fluxes 1 − g ≤ m ≤ 0, there are in fact
supersymmetric ground states for all m ≥ 1− g [18].
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We now reproduce this result by evaluating the contributions from vortex and topological
saddle points. The existence of vortex and topological saddle points is constrained by
equation (3.5), which becomes

(
τ ′ −m

)
+ e2 vol(Σ)

4π2 σ0keff(σ) = ‖φ‖2 , (6.6)

together with the equation σφ = 0. The existence of solutions depends on the sign of τ ′−m.

• When τ ′ −m > 0, there are vortex saddle points with σ0 = 0. The moduli space of
vortex solutions with flux m is the symmetric product Mm = Σd where d = m + g − 1.
Following the computations in section 4, the contribution to the twisted index is∫

Σd
Â(TΣd) ch(L1/2) =

∫
Σd

(
ηe−η

1− e−η

)m

exp
[
θ

(
1− 1

η
+ e−η

1− e−η

)]

= 1
2πi

∫
x=1

dx
x

xm

(1− x)m+g .

(6.7)

• When τ ′ −m < 0, there are topological saddle points with

φ = 0 , σ0 = − 4π2

e2vol(Σ)(τ ′ −m) > 0 . (6.8)

The moduli space of topological solutions with flux m is the Picard varietyMm = PicmΣ.
Following the computations in section 5, the contribution to the twisted index is∫

Σd
Â(TΣd) ch(L1/2) = 1

2πi

∫
x=0

dx
x

∫
PicmΣ

(
x

1− x

)m

exp
[( 1

1− x

)
θ

]
= 1

2πi

∫
x=0

dx
x

xm

(1− x)m+g ,

(6.9)

where the residue at x = 0 is taken since σ0 > 0.

A Coulomb branch of solutions with σ0 < 0 opens at τ ′ −m = 0 so there is the potential
for wall-crossing. However, the vanishing of the residue at x =∞ means that the twisted
index is independent of τ . This reproduces the Jeffrey-Kirwan residue prescription with
charges (6.4) and sign(η) = sign(τ ′ −m). The result is independent of η for each flux m by
construction.

6.2 U(1)k + 1 chiral

Now consider k > 1
2 such that k±eff = k ± 1

2 > 0. There are no gauge neutral monopole
operators and the structure of the twisted index differs considerably.

The contour integral for the twisted index is now

I =
∑
m∈Z

(−q)m
2πi

∮
C

dx
x
xkm

(
x1/2

1− x

)m (
k + 1

2
1 + x

1− x

)g
, (6.10)

where the contour is a Jeffrey-Kirwan residue prescription with charges

Q+ = −k − 1
2 < 0 , Q1 = 1 , Q− = k − 1

2 > 0 . (6.11)
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The index is now manifestly independent of τ and there is no wall-crossing. We therefore
enumerate the residues at x = 1 and x =∞ (η > 0) or equivalently minus the residues at
x = 0 (η < 0).

In this case it is illuminating to spell out the contributions from individual residues.
For example, with g = 2 and k = 3

2 we find

−I0 = 1
q
− 4 ,

I1 = 1
q
− 3− q − 2q2 − 5q3 − 14q4 − · · · = 1− 4q +

√
1− 4q

2q ,

I∞ = −1 + q + 2q2 + 5q3 + 14q4 + · · · = 1− 4q −
√

1− 4q
2q .

(6.12)

Notice that the contributions I1 and I∞ are not rational function of q and so cannot
individually reproduce a reasonable index. In fact they do not count honest supersymmetric
ground states but only perturbative ground states. These are subject to instanton corrections
that remove pairs of perturbative ground states corresponding to cancelations in the sum
I1 + I∞ = −I0.

We can reproduce these contributions from an analysis of vortex and topological saddle
points. The saddle points are again constrained by

(
τ ′ −m

)
+ e2 vol(Σ)

4π2 σ0keff(σ) = ‖φ‖2 , (6.13)

and depend on the sign of τ ′ −m.

• When τ ′ −m > 0, there are both vortex saddle points and topological saddle points
with σ0 < 0. The contributions from these saddle points reproduce the residues at
x = 1 and x =∞ respectively.

• When τ ′ −m < 0, there are topological saddle points with σ0 > 0, whose contribution
reproduces the residue at x = 0.

There is no Coulomb branch at τ ′ − m = 0 and the twisted index is independent of τ .
This reproduces precisely the Jeffrey-Kirwan residue prescription with charges (6.11) and
sign(η) = sign(τ ′ −m). The result is independent of η for each flux m by construction.

7 An exploration of SU(2)

In this section, we briefly explore the extensions of our results to G = SU(2) Chern-Simons
matter theories, highlighting some novelties and difficulties compared to G = U(1). For
simplicity, we focus on SU(2) Chern-Simons theory at level k coupled to N fundamental
chiral multiplets.3

3The quantisation condition requires k + N
2 ∈ Z. In this section, we will assume N ∈ 2Z and k ∈ Z.
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7.1 The twisted index

The contour integral formula reads

I =
∑
m∈Z

1
2πi

∮
Γ

dx
x
H(x)gZ(x,m) , (7.1)

where

Z(x,m) = 1
2 x2mk

(
1− x2

)1−g (
1− x−2

)1−g N∏
i=1

(1− x−1y−1
i )m−(g−1)(ri−1)

(1− xy−1
i )m+(g−1)(ri−1) , (7.2)

with m valued in the co-character lattice of G = SU(2). We also have

H =
(

2k +
N∑
i=1

1 + xy−1
i

2(1− xy−1
i )

+ 1 + x−1y−1
i

2(1− x−1y−1
i )

)
. (7.3)

The factor (1 − x2)1−g(1 − x−2)1−g in equation (7.2) originates from the W -bosons in
breaking the gauge group from SU(2) to U(1). The corresponding poles for g > 1 lead
to subtleties in the derivation of the Jeffrey-Kirwan residue prescription. The standard
approach in the literature is to omit these poles from the contour Γ [9, 10]. For the remaining
poles, the same prescription as in (2.14) applies. The poles at x±1 → 0 are assigned charges
according to the effective Chern-Simons levels

Q+ = −k+
eff,U(1) = −2k ,

Q− = k−eff,U(1) = 2k ,
(7.4)

and the contour encloses poles whose charges are of the same sign of the auxiliary pa-
rameter η. This prescription becomes ambiguous when k = 0. This appears compatible
with the geometric interpretation discussed in the remainder of this section, which may
provide some further justification for this prescription, but we are unable to provide a
systematic explanation.

7.2 Geometric interpretation

In analogy to the U(1) theories discussed above, we now study the saddle point equation in
order to interpret the index geometrically. The supersymmetric saddle points are determined
by the equations

1
e2 ∗ FA +

N∑
i=1

φ†iφi − t
2σ
keff(σ)

2π = 0 , (7.5a)

dAσ = 0 , ∂̄Aφi = 0 , (7.5b)
(σ +mi)φi = 0 , (7.5c)

where σ = σaT a. For each i, the chiral multiplet φi transforms as a section of the vector
bundle Kri/2

Σ ⊗Ei. Suppose that the mass mi is generic. The SU(2) gauge group is unbroken
only at σ = 0, where the effective level keff is given by

keff,SU(2) = k + 1
2
∑
i

T2(Ri)sign(mi) . (7.6)

For σ 6= 0, the gauge group is broken to U(1) and the effective levels are given by (7.4).
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These equations exhibit the same types of solutions as their abelian counterparts:
vortex and topological saddles. For general k, there is an important subtlety due to the
existence of topological saddles with both σ = 0 and φ = 0. The SU(2) gauge symmetry
is unbroken and the relevant moduli space is that of SU(2) flat connections on Σ. They
are not topologically disjoint from vortex and topological saddles where the gauge group is
broken to U(1).

In order to circumvent this issue, in the discussion below, we deform the moduli space
by turning on a small 1d Fayet-Iliopoulos parameter τ ∈ R that explicitly breaks SU(2) to
U(1). This modifies (7.5a) to

1
e2 ∗ FA +

N∑
i=1

φ†iφi − t
2σ
keff(σ)

2π = τ1 . (7.7)

For convenience, we take the normalised τ defined in (2.18) to be

|τ ′| < 1 , (7.8)

although in principle any value of τ ′ is allowed.
For k 6= 0, unless τ ′ /∈ Z, the topological saddles with SU(2) unbroken are removed and

the twisted index is well-defined and independent of τ . For k = 0, there exist a non-compact
Coulomb branch parametrised by constant σ0 := t2σ and therefore the twisted index may
jump as we vary τ ′ across integer values.

7.2.1 Vortex saddles

Vortex saddles are solutions with φi 6= 0 for some i. Equation (7.5c) implies that σ1 = σ2 = 0
and σ3 = ±mi. This equation breaks the gauge group SU(2)→ U(1) by itself. Accordingly,
the vector bundle decomposes into a sum of line bundles, whose i-th summand is

Ei = Li ⊕ L−1
i . (7.9)

We denote by φ1,i and φ2,i the sections of Li and L−1
i respectively. In the limit t→ 0 and

in the presence of generic mass parameters mi, the moduli space of vortex saddles is a
union of disjoint componentsM+

m,i andM−m,i, which are parametrised by solutions (A, φ)
that satisfy

1
e2 ∗ FA + 1

2 |φ1,i|2 = τ , ∂Aφ1,i = 0 (7.10)

and 1
e2 ∗ FA −

1
2 |φ2,i|2 = τ , ∂Aφ2,i = 0 (7.11)

respectively. Here A is a connection on the line bundle Li of degree m. We then have

M+
m,i =

Σd+
i

if m < τ ′

∅ if m > τ ′
, M−m,i =

Σd−
i

if m > τ ′

∅ if m < τ ′
, (7.12)

with
d±i := ±m + ri(g − 1) . (7.13)
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The contribution to the twisted index from the vortex saddles can be studied in the
same way as in section 4.2. Each component contributes

I±i =
∫
Â(M±m,i)

ch(L2k)
ch(∧̂•E)

. (7.14)

Here the index bundle E is the contribution from the fluctuation of the chiral and vector
multiplets:

E = E•V ⊗
⊗
j 6=i
E•+,j ⊗

N⊗
j=1
E•−,j , (7.15)

where E•±,j is the contribution from the chiral multiplets φ1,i and φ2,i:

E•±,j = R•π∗(L± ⊗Krj/2) . (7.16)

The first term E•V is the contribution from fluctuations of W-bosons. This decomposes into
1d N = (0, 2) chiaral and Fermi multiplets

• Chiral multiplets (az,Λz): E1
V := H0(Σ, L2 ⊕ L−2) ,

• Fermi multiplets (σ, λ): E0
V := H1(Σ, L2 ⊕ L−2) ,

which can be written in terms of the universal bundle as

E•V = R•π∗(L2 ⊕ L−2) . (7.17)

From this we can compute

1
ch(∧̂•E)

= (e−η − eη)2m−g+1(eη − e−η)−2m−g+1

×
∏
j 6=i

(
(e−ηzj)1/2

1− e−ηzj

)d+
j −g+1 N∏

j=1

(
(eηzj)1/2

1− eηzj

)d−
j −g+1

× exp

θ∑
j 6=i

(
1
2 + e−ηzj

1− e−ηzj

)
+ θ

N∑
j=1

(
1
2 + eηzj

1− eηzj

) ,
(7.18)

where we defined zj = yj/yi with yi = e−2πmi as before.
Finally, the SU(2) Chern-Simons term at level k generates a holomorphic line bundle

L2k
m,i on the moduli spaceM±m,i, which contributes

ch(L2k
m,i) = e2k(θ−mη) . (7.19)

By the same manipulations that follow (4.22), we get an agreement of the integrand
with (7.1). The integration picks the poles of the chiral multiplets according to the
alignment of η and τ ′ −m, which for m 6= 0 and τ ′ chosen as in (7.8) is the same as −m.
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7.2.2 Topological saddles

Topological saddles are characterised by φi = 0 for all i. With τ turned on, we only
have solutions with σ 6= 0 and the vector bundle decomposed into a sum of line bundles
E = L⊕ L−1.4

The BPS equations in the limit t → 0 have solutions of this type in the region
|σ| → ∞ with σ0 = t2σ kept finite. The equations uniquely determine the value of σ.
Therefore this component of the moduli space is parametrised by connections A of the U(1)
bundle L satisfying

∗ FA = 2π
vol(Σ)m , (7.20)

where deg(L) = m. The low-energy theory is described by the U(1) Chern-Simons the-
ory with

k±eff,U(1) = 2k . (7.21)

The geometric description of the twisted index can be given in the same way as in
section 5. Algebraically, this topological saddles can be described by the Picard stack

Mm = Picm(Σ) , (7.22)

which contributes to the twisted index as∫
Â(Mm) ch(Θ2k)

ch(∧̂•E)
. (7.23)

As discussed in section 5.2, this integral decomposes into an integral over the moduli space
Mm and a contour integral around x = 0,∞ that projects onto C∗-invariant contributions.

The factor ch(∧̂•E)−1 is the contribution from fluctuations of chiral and vector multiplets
on Mm. Following the discussion in section 5.2, we find

1
ch(∧̂•E)

= (x−1 − x)2m−g+1(x− x−1)−2m−g+1

×
N∏
i=1

(
(xyi)1/2

1− xyi

)m+(g−1)(ri−1)((x−1yi)1/2

1− x−1yi

)−m+(g−1)(ri−1)

× exp
[
N∑
i=1

θ

(1
2 + xyi

1− xyi

)
+ θ

(
1
2 + x−1yi

1− x−1yi

)]
.

(7.24)

The effective U(1) CS coupling contributes

ch(Θ2k) = e2kθe2km . (7.25)

The result agrees once again with (7.1). Projecting onto C∗-invariant configuration is
done by taking residues at σ → ±∞ where x = e−2πσ as usual. Poles are then picked up

4In the limit τ → 0, the moduli space of flat SU(2) connections appears, as we discussed above.
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according to the assignment of charges (2.17), which we rewrite for convenience:

Q0 =
{
−2k if k 6= 0
m− τ ′ otherwise

, (7.26a)

Q∞ =
{

+2k if k 6= 0
m− τ ′ otherwise

. (7.26b)

The final answer for the index computation may or may not depend on τ , depending
on the presence of vectormultiplet poles and on whether the level k vanishes. We conclude
by studying some examples on P1 at level k 6= 0, which are immune of these problems.

7.3 Example

At genus g = 0, all holomorphic vector bundles split as a sum of holomorphic line bundles
by the Birkhoff-Groethendieck theorem. Therefore, the topological vacua that preserve full
SU(2) gauge group are absent and the subtleties described in the paragraph below (7.6)
do not arise. This is reflected in the fact that there are no vectormulitplet poles in the
integrand of the contour formula. The SU(2) theory can then be viewed as a 1d U(1) theory
prior to the insertion of the regulator. For k 6= 0, we do not expect a dependence of the
result on the regulator τ .

Let us consider the example of G = SU(2)k theory with N = 2 fundamental chiral
multiplets. The holomorphic vector bundle E decomposes into a sum of line bundle
E = L⊕ L−1 with deg(L) = m ∈ Z. The D-term equation reduces to

1
e2 ∗ FA + 1

2

2∑
i=1

(
|φ1,i|2 − |φ2,i|2

)
− t2 2kσ

2π = 0 . (7.27)

We find that the solutions of the BPS equations exists in the following regions, depending
on sign of m:5

• For m > 0, we have vortex solutions at σ = mi and topological solutions at σ →∞;

• For m < 0, we have vortex solutions at σ = −mi and topological solutions at σ → −∞;

• For m = 0, we have{
τ > 0 : vortex solutions at σ = −mi and topological solution at σ → −∞;
τ < 0 : vortex solutions at σ = mi and topological solutions at σ →∞.

On the other hand, the Jeffrey-Kirwan charges for the poles at infinities are assigned as

Q0 = −2k , Q∞ = 2k . (7.28)

Let Q+ be the collection of positive U(1) charges at σ = −mi, and Q− be the negative
U(1) charges at σ = mi. Suppose η > 0. The Jeffrey-Kirwan residue integral then picks up
the poles that corresponds to charges Q+ and Q∞ for all values of m ∈ Z and τ . By the
residue theorem, we find that this prescription agrees with the geometric interpretation of
the indices at each flux sector.

5For convenience, we take the regulator to be small.
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