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Web of Seiberg-like dualities for 3D A =2 quivers

Tadashi Okazaki®"

School of Physics, Korea Institute for Advanced Study, 85 Hoegi-ro, Cheongnyangri-dong,
Dongdaemun-gu, Seoul 02455, South Korea

Douglas J. Smith

T

Department of Mathematical Sciences, Durham University, Upper Mountjoy,
Stockton Road, Durham DHI 3LE, United Kingdom

® (Received 31 January 2022; accepted 15 March 2022; published 26 April 2022)

We construct Seiberg-like dualities of 3D A" = 2 general quiver gauge theories with unitary, symplectic,
and orthogonal gauge groups coupled to fundamental and bifundamental matter fields. We illustrate this
with several examples of linear, circular, and star-shaped quiver gauge theories. We examine the local
operators in the theories by computing supersymmetric indices and also find precise matching for the
proposed dualities as strong evidence. We also generalize the dualities in the presence of a boundary on
which the theories obey A = (0,2) chiral half-BPS boundary conditions and check the matching of

half-indices.
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I. INTRODUCTION AND CONCLUSIONS

There exist various dualities in 3D N = 2 supersym-
metric field theories. One of the dualities which is called
Seiberg-like duality states that two or more different
ultraviolet (UV) gauge theories flow to an exactly same
infrared (IR) fixed point. Unlike Seiberg duality [1] of 4D
N =1 gauge theories, Seiberg-like duality of 3D N = 2
gauge theories is available even for the cases without matter
field if big enough Chern-Simons coupling is turned on.
This adds spice to the 3D dualities. Since 1997 numerous
Seiberg-like dualities have been reported (see e.g., [2-27]).
Although most of the investigations of Seiberg-like duality
had been centered on gauge theories with a single factor of
gauge group, those of quiver gauge theories with a product
of two gauge nodes consisting of classical groups coupled
to matter in the vector and rank-2 representations have been
recently proposed in [28] by performing Seiberg-like
duality on one of the two gauge nodes. Similar techniques
of dualizing a node within a quiver have been performed
[26,29-32] for the related monopole duality on nodes
within quivers. It has also recently been demonstrated that
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various 3D IR dualities can be understood through reduc-
tion of 5D superconformal field theories (SCFTs) [33,34].

In addition, the story becomes more interesting in the
presence of a boundary. The 3D N = 2 supersymmetric
field theories with a Lagrangian description can preserve
supersymmetry at a boundary by specifying appropriate
UV boundary conditions of bulk fields [35]. Half-BPS
boundary conditions can preserve either N" = (1, 1) which
have been described in [35,36], or N' = (0,2) which we
focus here. In particular, A" = (0,2) half-BPS chiral UV
boundary conditions preserving the U(1), symmetry lead
to various applications [35,37-47]. For pairs of UV
boundary conditions, there exist dual boundary conditions
which flow to the same IR boundary conditions. Abelian
dualities of A/ = (0,2) half-BPS boundary conditions in
3D N = 2 gauge theories were proposed in [35]. Seiberg-
like dualities of the N' = (0,2) half-BPS boundary con-
ditions in 3D A/ = 2 gauge theories are found in [40] for
the unitary gauge theories coupled to chiral multiplets in
the vector representation and in [48] for the orthogonal and
symplectic gauge theories with chiral multiplets in the
vector representation.

In this paper we obtain Seiberg-like dualities of generic
linear, circular and star-shaped quiver gauge theories with
symplectic, orthogonal and unitary gauge groups coupled
to chiral multiplets in the fundamental and bifundamental
representations by generalizing the dualities of quivers with
two gauge nodes in [28]. As strong evidence we find that
supersymmetric full-indices [49-54] computed as S' x S?
partition functions precisely agree with each other for the
proposed dual theories. Also we propose dualities of the

Published by the American Physical Society


https://orcid.org/0000-0002-7705-7852
https://orcid.org/0000-0002-0018-671X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.086023&domain=pdf&date_stamp=2022-04-26
https://doi.org/10.1103/PhysRevD.105.086023
https://doi.org/10.1103/PhysRevD.105.086023
https://doi.org/10.1103/PhysRevD.105.086023
https://doi.org/10.1103/PhysRevD.105.086023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

TADASHI OKAZAKI and DOUGLAS J. SMITH

PHYS. REV. D 105, 086023 (2022)

N = (0,2) half-BPS boundary conditions in these quiver
gauge theories. We support our claim by checking that half-
indices [37-40] computed as S' x HS? partition functions
(also see [55,56]) which count boundary local operators
precisely coincide for the proposed dualities where HS? is a
hemisphere. By expanding the full- and half-indices we
check the operator mapping across the bulk and boundary
dualities.

A. Structure

The structure of this paper is as follows. In Sec. II we
generalize the dualities of quiver gauge theories with two
nodes of symplectic gauge groups by introducing Chern-
Simons couplings and analyzing three gauge nodes. We
also propose the dualities of the A" = (0,2) half-BPS
boundary conditions in these theories. In Sec. Il we extend
the dualities of quivers of orthogonal gauge groups to the
case with more than two SO gauge nodes and with other
orthogonal gauge groups, O, Spin, and Pin.. In Sec. IV
we further extend the dualities to the quivers consisting of
both orthogonal and symplectic gauge nodes. In Sec. VI we
argue for Seiberg-like dualities of general linear quivers
including circular quivers and linear quivers of arbitrary
lengths. In Sec. VII we propose that a star-shaped quiver
gauge theory is dual to a polygonal bipyramid quiver gauge
theory. We also argue that the nodes we are not dualizing
can have arbitrary additional matter including coupling to
other gauge nodes. In this way the star-shaped quiver can
be embedded in an arbitrary quiver and this shows that in
such cases we can dualize any gauge node which has only
fundamental and bifundamental matter.

B. Open questions

There are several interesting open problems which we

leave for future works.

(1) It would be nice to elucidate general rules of
mapping of the (bare and dressed) BPS monopole
operators under the proposed Seiberg-like dualities,
to study the moduli spaces of supersymmetric vacua
and to provide further tests of the dualities by
computing other protected quantities, including a
sphere partition function [57-59], a squashed sphere
partition function [60] and a twisted index [61-65].

(i1) It would be interesting to study in more detail quivers

with Chern-Simons couplings, including the monop-
ole operators, the relevant level-rank dualities and
emergence or enhancement of supersymmetry in the
bulk [66] and at the boundary [67]. This could include
examples with N/ > 2 supersymmetry [68-71].

While the proposed Seiberg-like dualities are field
theory phenomena, the brane constructions of 3D
N = 2 gauge theories [3,72,73] would be useful to
generalize our results. The N = (0,2) boundary
conditions should be studied by tilting the 5-branes

(iii)

@iv)

)

(vi)

(vii)

(viii)

(ix)

()
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of the brane configurations in [74] with the cross-
determinant Fermi at the NS5-NS5 junction [75,76]
or taking the T-dual of the brane configurations
in [77].

In the presence of the BPS Wilson and vortex line
operators, the full- and half-indices can be evaluated
[40,54,78]. It would be interesting to compute the
indices to extend the dualities by introducing the line
operators.

Mutations on quivers in the cluster algebras [79,80]
have been argued to play several roles in Seiberg-
like dualities [81-87] (See also [88,89] for the
relation between certain 3D A =2 Abelian
Chern-Simons matter theories and the cluster alge-
bra). It would be intriguing to explore the relation
between the proposed dualities and the mutations.

Some identities of indices resulting from the Abelian
dualities of 3D AN =2 theories are demonstrated
e.g., in [40,90,91] showed that many exact results,
including for U(N) Aharony dualities, could be
proven using a vortex partition function identity.
While we have checked the matching of indices as
strong evidence of the dualities, analytic proof of the
various identities of indices presented in this paper is
desirable. Also the half-index which involves the 3D
bulk degrees of freedom can exhibit interesting
properties under modular transformations [44,92].

The Seiberg-like dualities in 3D N =2 gauge
theories are obtained from 4D dualities by compac-
tifying 4D N = 1 gauge theories on a circle [10,93].
It would be interesting to explore 4D uplifts of the
proposed dualities.

Inclusion of boundary N = (0,2) charged chiral
multiplets and gauge multiplets should generalize
the web of dualities of the N = (0,2) boundary
conditions. In the presence of 2D bosonic fields the
Neumann half-index would be computed by follow-
ing the Jeffrey-Kirwan (JK) residue prescription
[94-96] which picks the contour around poles
associated to the bosonic fields of positive (or
negative) charge as evaluated for N = (0,4) boun-
dary conditions in [97].

The N = (0,2) half-BPS boundary conditions in
3D N =2 field theories are compatible with the
holomorphic twist. They define the boundary vertex
operator algebra (VOA) [42] (see also [47]) which
conjecturally reproduces the bulk operator algebra.
It would be nice to categorify the proposed dualities
to equivalences of algebras or modules.

The 3D N =2 U(N) gauge theory coupled to a
chiral multiplet in the adjoint representation plays
an important role in the 3D-3D correspondence
[54,98-102]. As our proposed duality can provide
us with dual description of the theory T[L(k,1)]
[100] as a special case, it would be interesting to
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explore further applications and to extend the de-
scription of dualities to include quivers with rank-2
tensor matter, especially as such matter appears in the
quivers after dualizing one gauge node. Further
generalizations to include multiple adjoint chirals
for a gauge node are also interesting [17].

(xi) We proposed the dualities of star-shaped quiver
gauge theories. The 3D N = 4 star-shaped quiver
gauge theories arise from the compactifications of
the 6D (2, 0) theory [103—105] which are related to
4D N = 2 theories of class S [106,107]. In addition,
the 3D N = 2 star-shaped quiver-type theory has
been argued to appear from certain compactifica-
tions of 6D or 5D SCFTs [108]. It would be
interesting to further study the details of theories
including moduli spaces and the boundary condi-
tions in the star-shaped quiver gauge theories.

II. SYMPLECTIC LINEAR QUIVERS

We describe dualities with symplectic gauge groups. We
present examples of linear quivers with two and three gauge

2Ny

o

nodes. The description in the case of two gauge nodes
without boundary was first presented in [28].

We start by reviewing the triality of 3D N = 2 quiver
gauge theories with two gauge nodes and one flavor node
proposed in [28]. Theory A is a U Sp(2N;) x U Sp(2N,)
gauge theory with bifundamental chirals B in the (2N, 2N,)
representation, as well as 2N chirals Q in the fundamental
representation of U Sp(2N,). Theory A has three kinds of
bare monopole operators v}, ¥9*, and v%* where the ith
superscript stands for the GNO flux for the ith gauge group
and we denote by * an arbitrary nonzero flux. The bare
monopole v, " with fluxes on both nodes can be dressed by
polynomials in Tr(BB), resulting in the dressed monopole
operators vy Tr((BB)*), k = 1, ..., N|. The Chern-Simons
levels and superpotential vanish.

Provided Ny =N, —N;—1>0 there exists a dual
theory B given by Seiberg-like duality on the U Sp(2N)
gauge factor. The resultisa U Sp(2N,) x U Sp(2N,) gauge
theory with bifundamental chirals b in the (2Nj,2N,)

2N;

M
2N
D q
USp(2Ny) USp(2Na)
be

FIG. 1. Triality of USp x U Sp quivers where N; = N, =N, — 1 and N, = N; +N; — N, — 1. Note that ¢, ¢ and M are in

antisymmetric rank-2 representations.
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representation, an antisymmetric rank-2 chiral ¢, of
U Sp(2N,), as well as 2N chirals Q in the fundamental
representation of U Sp(2N,). We also have a gauge singlet
o which is dual to a monopole vf{o in theory A. While the
Chern-Simons levels vanish, we have a superpotential

Wg = ogvg” + Tr(bg,b). (2.1)

The first term requires the monopole operators v}}’o to vanish
and the second term sets bb to zero so that the bare
monopoles vy" are not dressed by Tr(bb). On the other
hand, the bare monopoles v%* can be dressed by monomials
in the antisymmetric chiral gb’lj, k=1,...,N, [109], as
explained in general in [110]. Consequently theory B
contains two kinds of monopole operators v $% and vj*
in the chiral ring.

Provided N, =N, — N, + Ny—120 there can be a
dual theory C given by Seiberg-like duality on the
USp(2N,) gauge factor. The result is a USp(2N;) x
U Sp(2N,) gauge theory with bifundamental chirals ¢ in
the (2N1,2N2) representation, an antisymmetric rank-2

|

chiral ¢, of U Sp(2N), as well as 2N chirals p and ¢ in
the fundamental representations of USp(2N,;) and
U Sp(2N,). Again we have a gauge singlet o~ which is
dual to a monopole v%* in theory A, but now also additional
singlets M in the rank-2 antisymmetric representation of the
flavor symmetry group SU(2N;). Whereas the Chern-
Simons levels is turned off, theory C has a superpotential

We = octl + Tr(cd,c) + Tr(cpq) + Tr(gMq). (2.2)

The first term sets the monopoles v%" to zero and the second
term gets rid of cc. As a consequence, there are two types of
monopole operators vi:’¢* and v in the chiral ring.

The triality of the USp x USp quivers is shown
in Fig. 1.

The continuous global symmetry groups of the theories
are given by a SU(2N,) flavor symmetry, two axial
symmetries U(1), x U(1),,, and the U(1)z R-symmetry.
The following table lists the charges and representations of
the fields in each theory.

ay

SUQN,) | U(l),, | U, U(1),
B 1 1 0 rg
0 2N; 0 1 ro
b 1 -1 0 1 —rp
o 1 2 0 2rp
0 2N; 0 1 ro
oy 1 —-2N, 0 2N, (1 = rg) = 2N, (2.3)
c 1 —1 0 1—rp
b 1 2 0 2rp
p 2N; 1 1 rg+ro
M | Ng(2N;—1) 0 2 21y
q 2N; 0 -1 1—ry
oc 1 —2N, —2N; 2N (1 = rg) 4 2Ns(1 = rg) — 2N,

The operator map across the triality is summarized as

A B C
Tr(QQ) Tr(QQ) M
Tr(Q(BB)‘Q) | Tr(Q¢,Q) | Tr(ph'p)
Tr((BB)") Tr(¢3) Tr(¢) (2.4)
+.0 +,+
Vy Op Ve
ot g oc
’l}j'i U%i 1}%’0

The monopole operators above are gauge invariant so
can be dressed by gauge invariant combinations of the

|

chiral multiplets, with the mapping between theories
following the pattern indicated in the first three lines of
the table. Note that there can be restrictions on the allowed
dressed monopoles as noted in this context in [28]. These
follow from the condition that the fields dressing the
monopole must be “massless” [110], as well as requiring
gauge invariance and that all F-term constraints are
satisfied. This massless condition is that p(m) = 0 where
p is the weight of the field under the gauge group and m
represents all fluxes of the monopole. Since the monopole
flux breaks the gauge group, each field must be decom-
posed into irreducible representations of the broken gauge
group and then we can determine which (if any) of these

086023-4
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components remain massless in the given monopole back-
ground. We comment on this in some of the examples we
give later.

B. Supersymmetric indices for symplectic
gauge theories

The supersymmetric full-indices [49-54,111] for
theories A, B, and C with symplectic gauge groups are

A _ USp,-USp
I Zgaugé Zgaugé ZmatterA ’ (25)
B _ 7USp, ,USp
I Zgaugtlezgaugézmatteer (26)
_ 2USp, -USp,
1€ = Zgaugel ZgaugZ:Zmatter C» (27)

where Zg,oe and Z e, are the contributions from the
vector and chiral multiplets with U Sp; referring to gauge
node USp(N;) and USp, referring to gauge node
U Sp(N;). Above we have included Chern-Simons levels
k, for U Sp(2N,) but for now we take these levels to all
vanish.

|

ZNJ \m im

The gauge contributions are given by

Usp, ! O dst
Zauge = ZleNv H .\ )
mDez I: i=1 2msi

i

Ni \m im \/2

i<j

YLD

- imD£m® (/2 (1) (D%
xH(l—q P s

5;77)
i<j
x (1= gl em 2 (D=1 (0 (2.8)
The contributions from the chiral multiplet are
N
ZnatterA = ZBZQf (29)
N,
ZmatterB = ZbZzﬁbZQon‘B’ (210)
ZmatterC =Z Z¢ prZ quZ (211)

These can be calculated using the general expressions

Zgifund U Sp,~U sp, (> @) = (g7a™")
n_,0 )
N, N, s o) e e o),
Frr (@ T aT s s ) (@ T T aT s s T )
x HH ) m(’)\ D 4m) ’ (2.12)
i=1 j=1 (qur J as )isﬁj>¥,Q)m(qé+ i, as )isﬁj)i;q)oo
Ny (1 +\mf_’>\ 1.(DF )
1 - - .
NSV (¢ 7a's; ' "xzlq
ZNFFundUSpl(rva):( )FZ I HH 0] ’ ’ (2.13)
a=1 i=1 (q2+ 5 aS(I> xa;Q)oo
v Al SRRy
N |0+ L(g' a'si' s iq)
ZAntiSym USp, (r.a) = ( )ZK’ I m H D), : ’ =
I" Vll(l)
N (g1ri = L g1 (D OF, )
x \nx(1)+mm\ ’ (214)
(g ):ts(.l):t‘q)
i e
Np (g7 xs!
q' ram Xy xg L)
Z antisym su(v,) (1 @) = ; (2.15)
ntisym SU(Np) o];Jﬁ:' (q axax/,»,q)oo
(¢ a5 9)s
Zsingler(1, @) = T (Fad). (2.16)
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In particular, we have

Zp = Zgirund U sp~u sp, (75> @1), (2.17)
ng = Zyw, runa1(Tg. a2), (2.18)

Zy = Zyirwnav sp-v sp,(1 = rp.ay’),  (2.19)
Zy, = Zanisymu sp,(2rp. 1), (2.20)

Zs, = ZSinglet<rUB’ a1_2N2)v (2.21)

Z. = Znirandvsp,-vsp,(1 —rg.a7'), (222
Zy = ZAntismeSp,<2rB7 a%), (2.23)

Z];\z]f = ZBiFund U Sp,—U Sp, (T8 + 70, a1@2), (2.24)
Zﬁf = Z Antisym SU(Ny) (2er a%), (2.25)
Z]qvf = Zpirandusp-usp,(1 = rg.a3"),  (2.26)
Zs. = Zsmglet(rac» al_2Nl a;zzv,)’ (2.27)

where r, =2(1 — rg)N, —2N; and r,. = 2(1 — rg)N; +

C. Boundary ’t Hooft anomalies

When we include N = (0,2) half-BPS boundary con-
ditions, we need to calculate the anomaly polynomial for
the 2D boundary theory. We must ensure that the gauge
anomalies cancel and for proposed dualities we must have
matching boundary °t Hooft anomaly polynomials. In the
case of Dirichlet boundary conditions for gauge fields we
also need the anomaly polynomial to calculate the effective
Chern-Simons coupling which enters the half-index [40].

For the multiplets we have discussed the contributions to
the anomaly polynomial are given by the following
expressions [40,48] if we have Dirichlet boundary con-
ditions. For Neumann boundary conditions we just take the
opposite sign. Taking the multiplets to have R-charge gp
and a vector of U(1), charges ¢ we have

al

N;/(2N;+1) ,

Avmusp, = =Ny + 1)Tr(sg?) — ) r’, (2.28)

AA Bulk

Ao, Funausp, (4r-@) = N Tr(x*) + N, Tr(s;?)
+2N,Ny(q-a+(qg—1)r)%, (2.29)

ABiFundUSp,—USp,(quﬂ)
= N;Tr(sy*) + N,Tr(sy?) + 2NNy (g-a+ (g — 1)r)?,
(2.30)

AAntisym USp, (qR’ ﬂ)

= (N; = 1)Tr(ss?) +

AAntisym SU(Ny) (('IR ’ Q)

- —Nfz_ 2Tr(xz) + Nif(Ni = (g-a+(qr—1r)%
(2.32)
ASinglet(qu ﬁ) = %(Q ca+ (QR - 1)1‘)2. (233)

In this notation s; is the U Sp(2N,) field strength, a is a
vector of U(1), field strengths and r is the U(1)g field
strength. We use x for the SU(2N ) flavor symmetry field
strength and the expressions for fundamental matter and the
antisymmetric multiplet M are given by the above expres-
sions for bifundamental and antisymmetric multiplets by
replacing an appropriate s; with x. Also, we use the
notation 7 in the above expressions to refer to the dual
U Sp(2N,) gauge group with field strength §;.

We propose a triality of the following sets of boundary
conditions:

(i) (N,N,N,N) for (VM;,VM,, B, Q) in theory A.

(i) (D,N,D,N,N,D)for (VM,,VM,, b, ¢,, Q,05) in

theory B.
(iii) (NV,D,D,N,N,N,D,D) for (VM,,VM,, ¢, ¢.. p.
M, q,0¢) in theory C.

We will see that with suitable additional 2D boundary
multiplets, we can cancel the gauge anomalies for the gauge
group factors with Neumann boundary conditions, and
match the anomalies. We can then check the matching of
the half-indices.

Explicitly, we find the following anomaly polynomials
for the bulk fields.

NNy = —2N1Nsai — 2N;N a3 + 4N N (1 = rg)air + 4N,N(1 = ro)ayr

1
+ ((Nl — N3)? + 2N Nyrg(2 — rg) = 2NoN (1 —rp)? +§(Nl +N2)>r2

+ (Nl —N2 + l)Tr(s%) + (1 - Nl +N2 - Nf)TI'(S%) —NzTI'(X2>,

(2.34)

086023-6
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A%,].SA‘}{]B.N,N,D = —2N1N23% — 2N2Nfa% + 4N1N2(1 — rB)alr+4N2Nf(1 — VQ)azl'

1
+ ((Nl — N3)? + 2N Nyrp(2 — rg) = 2N,N (1 —rp)? +§(Nl +N2)>1‘2

—(Ny+ Ny =N, —1)Tr(s3) + N, Tr(8}) — N, Tr(x?), (2.35)
AP vvvpp = —2N1Nya7 = 2NN yas + 4N No(1 = rp)agr + 4N, Ny (1 = rg)ar
+ <(Nl = N3)? + 2N Nyrg(2 —rg) —2NaN (1 —rg)* + % (N; + N2)> r?
— (N3 = N; = 1)Tr(s?) + N,Tr(83) — N,Tr(x2). (2.36)

Recalling that Ny, = N, —N; —land N, = N; — N, + N — 1, and that due to the D boundary conditions USp(2N,)
and U Sp(2N,) are global symmetries on the boundary, whereas U Sp(2N,) and U Sp(2N,) are gauge symmetries due to
the N\ boundary conditions, we can cancel all gauge anomalies with the following 2D multiplets.

| | USp(2N,) | USp(2N,) | USp(2N,) | USp(2N,)

Fermi

r, ‘ 2N,

Fermi I,

In particular, we need to include
(i) Iy, I'; in theory A.
(i) T, in theory B.
(iii) I'; in theory C.
Including the contribution of those 2D multiplets in each
theory all gauge anomalies are cancelled and the resulting
anomaly polynomials match

ATotal — —2N1N23% — 2N2Nfa% + 4N N,(1 —rg)ajr
+4N,N (1 = rg)agr

+ <(N1 — Ny)? + 2N Nyrg(2 = rp)

1
—2N2Nf(1 - I"Q)Z +5(N1 +N2)>r2

+ N Tr(82) + N,Tr(83) — N, Tr(x2). (2.38)

It is possible to consider other boundary conditions. The
obvious case is to switch all boundary conditions so we
have all Dirichlet in theory A. This will simply change the
sign of the bulk contribution to the anomaly polynomial
and it is easy to see that all gauge anomalies will be
cancelled and the anomalies will match if we include 2D
Fermi multiplets

(i) None in theory A.

(i) I'; in theory B.

(iii) I, in theory C.

We will focus on examples with all Neumann boundary
conditions for theory A, but we believe the same dualities

1 ‘ 2N,

2N, 1 (2.37)
1 2N,

will hold with all boundary conditions reversed along with
the above 2D Fermi multiplets. Such dualities have been
checked for the case of a single gauge node for unitary
gauge groups [40], and for symplectic and orthogonal
gauge groups [48].

D. Half-indices

We now give the expressions for the half-indices with the
previously chosen boundary conditions. For the three
theories we have

]]]Ij‘\,N’N'N — MX/MUSpl]]]IX/MUsz]m]lE,HQ’ (2.39)
W o p = Mp" I P I My WG, (2.40)
VMUSp,rVMUSpyr e e o
H/C\f,D.D,N,N.N,D,D:HN Py, pZHDHf/ T Iy T T
(2.41)

where

I N

m/MUSe: (@) ( 1 % ds,(') )( 1 (S(I)S(I)—l 7) )
N 2NI]VI' i=1 27TiSl(»1) i#] ®

086023-7
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e111

ZN’ m; (2 (H

(I) kemmﬁ” )
i

1
m/M U — S Z (2.43)
; D_mD (1 mD 4wy N+ (N+ ’
() m ez Hz;ej( e, " ”E )”, ;q)ooHisj(qli( P )ug ) uﬁ) 1)
|
keffl _ 21(/1’ (2'44) Mmes — HSinglet(rGB’ aI—ZNz)’ (2_49)
recalling that N; = N; so N; = N;. We also have the IM¢ = MBiFend USpi=USps (1 — rg,ayl), (2.50)
prescription that for Dirichlet boundary conditions for the
vector multiplet we make the replacement s — qu.”ugl) % = MASYMUSP(2pp a?), (2.51)
in the following matter contributions.
The 3D matter contributions are given, for either P = MBFendUSPi=USps (rp + 1y, ayay), (2.52)
Dirichlet or Neumann boundary conditions by
mM = ]I]IAntisymSU(NF)(zi,Q7 a%>’ (253)
HB — ]]]IBiFundUSp,—USpJ(rB’ al)v (245)
me = ]HIBiFundUSp,—USp,(l - ro. agl)’ (254)
]]]IQ — ]IHZNfFundUSp,(rQ’ az)’ (246)
Mec = ]]:[[Singlet(r a2 a_ZNf> (2 55)
me = MBiFundUSp,—USp,(l —rg, a1—1)7 (247) oc* ™l 2 . '
A For Neumann boundary conditions the 3D matter con-
I¥r = WA USP(2ry, aj), (248)  (ributions are
|
BiFund U Sp,;~U S S 1
iFund U Sp;~U Sp, _
IDIN ! I(ra a) - L (D* _(J) r (Dx () s (256)
imrjcn (qras; s q) e (qRas; s )
N, Np
e P USe () ) (2.57)
i=1 a=1 qzas xav Q)oo
Antisym U S = 1 . 1
ntisym U Sp _
1y '(r.a) = < ENOROE > (H GENGES > (2.58)
ij=1(qas; S; 1q)e/ \j<i (q2as Sj 19
» 1
My (r, a) = ———, (2.59)
N (4°; 9)co
Antisym SU(N) s 1
my" ™" (r a) = | | ———. (2.60)
N Hﬂ (4Pax,: ) o
while for Dirichlet boundary conditions the 3D matter contributions are
i o X N+ (N+
HglFundUSPI—USpJ(r’ a) = HH (¢'7a! s )i;q)oo(ql—ga—lsl() sﬁ- ) ) (2.61)
i=1 j=
N, Np
I FendUSer () H H a5l ) L (2.62)
i=1 a=
Antisym U S & (1 (-1 a D+ (n+
om0 ) = ( Tt ) (T a5 0 ). (2:63)
ij=1 i<j
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M%inglet ( r a)

Hgnlisym SU(Np) (r’ a)

Finally, the contributions from the 2D matter multiplets are

N,
=TT

i=1 j=

E. USp(2) xUSp(6) -

(¢' a7 q) . (2.64)
Nr

= H(ql_éa_lxaxﬂ; 9 oo (2.65)
a<f

Deol@s U1 g) (2.66)

{8] (N1=1, N2=3, Nf=4)

For simplicity we set the global SU(2N ;) flavor fugacities x, = 1. Here we show the expansion of the indices for N, =1

and N, = 1.
For rp =2/5, ro = 2/7, the full-indices which perfectly match for theory A, B, and C are'
" =18=]°
q'6/33 q23/35 28426/35
=1 +28a3¢”7 + alq?® + g + 406a3¢" T + g+ 56a3a3q7YF 4+ o
— e aja, e —— a1a2 ﬁ,—/ aya,
Tr(QQ) Tr(BB)  ~v— Tr(QQ) Y
T T 1;g~i r( ) e I'( (BB)Q), giTr(QQ)
Tr(QQ)Tr(BB)
4 ! 4/5 6 1 o7, 7 28¢7% 2434135
+ | af + — )g*°+(4060a5 + — )¢+ + —%— + 1190aiaiqP 659
\,-/2 a N—— a, aga, aja, f N~~~
N~ 3 N~ S~ S— ——
Tr(BB) vfo TF(QQ) UOiTl‘(BB) giz UjiTl‘<QQ) Tr(QQ) Tr(BB)’ Tr(Qll/Q)’
Tr(QQ)Tr(Q(BB)Q)  Tr(Bys)
406436/35 37/35 39/35
3 4 q4 5 +28( 2af 4+ a® a3 + qg 16
aya, aya;s ~~ ~~ aja,
Tr(Q(BB)2Q) v
1zg'iTr(QQ)2 vfiTr(BB) e v Tr(eo) vfﬂ
28
+8(393345 + 7a;° A e R e v AL (2.67)
\z—: o \/3 aa,
4+ ~——
Tr(QQ) Vy TI‘(Q(BB)Q), Tr(BB) ugizTr(QQ)
vy Tr(QQ)Tr(BB)

In theory A the term 28a%¢?/7 counts the meson Tr(Q'Q/)
whose coefficient 87 = 28 implies the antisymmetric rep-
resentation under the SU(8) flavor symmetry, as expected
due to the contraction of the U Sp(6) indices. Then the term
406a3q*'7 counts the operator Tr(Q'Q/)Tr(Q*Q') which
gives 28 for each trace and the product of traces is
symmetric so the number is 28 -29/2 = 406. Similarly
for Tr(QQ)? the counting is 28 -29 -30/3! = 4060. For
Tr(QQ)* it is naively 28 - 29 - 30 - 31/4! = 31465 but we
see that the coefficient in the index is 31464 indicating that

"Here we fix the R-charges as in [28]. Note that in order to
check the dualities, it is sufficient to pick any choice of the
R-charges which gives a well defined (convergent) index for all
theories.

there is one linear relation amongst these 31465 expres-
sions. Indeed, there is a single linear relation between the
105 expressions formed by contracting pairs of U Sp(4)
indices on Q' Q%...08. The term 56a2a3¢**/3 corresponds
to the dressed meson Tr(Q’(BB)Q/) Whose number is
8-7/2 =28, with another 28 from Tr(Q'Q/)Tr(BB).
The term 28a;72a;%q*%/3 corresponds to the operator
Ug’iTr(Qi Q7). We note that the monopole operators can
be dressed by Tr(QQ) or Tr(BB) provided at least one
component of Q or B remains massless [110] in the
monopole background. To the order of our expansion we
see that all monopoles can be dressed by Tr(QQ) or
Tr(BB) except for v;° which cannot be dressed by
Tr(BB)—this would appear in the index as ¢%°/a} but
we can see it is absent above. However, we note that 1)2‘*

086023-9
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can be dressed by Tr(BB). The asymmetry is because if we
only turn on the flux for U Sp(2) there is no component of
the bifundamental [or any field in a nontrivial representa-
tion of U Sp(2), although in the case of multiple fluxes
some components can be massless due to cancellations
allowing p(m) = 0] that can satisfy the massless condition
p(m) = 0[110]. However, turning on only one of the fluxes
|

mA =mB .. =1¢ =1+ 28(12612/7 + a2q2/5 + 406a4q4/7 _
NN DN N, D 2 1 2

for U Sp(6) the component of B which is in the bifunda-
mental representation of U Sp(2) x U Sp(4) [with this
being the original USp(2) and with USp(4) C
U Sp(6)] remains massless.

As we conjecture, the half-indices for theories A, B, and
C agree perfectly with each other. With the same R-charge
assignment as the full-indices, they are given by

8 9/14 2 1
g ay(w?* + 1)) + 56a%a%qz4/35 + a?q4/5
w e

T™00)  T(BB)  TH(QO) o TH(O(BB)Q)  Tr(BBY
8 59/70 2 1 224 13/14( ,3 (1,2 1
_ q (alaZ(u + )) + 4060agq6/7 _ q (a2(w + )) =+ 1190a%aé2¥q34/35
u N — —
Te(QBT) Tr(00) Tr(QQ)Tr(Qr) TH(QQ)*Te(BE)

1 1
+q<u2+2+w2+2+2>+---,
u w

Tr(I' [y ). Tr(T,15)

where u and w are the fugacities for U Sp(2N,) = U Sp(2)
and USp(2N,) = USp(2). Since in theory A the both
vector multiplets obey the Neumann boundary condition
there is no monopole operator at the boundary.

The boundary operator map of across the proposed
triality is given by

A | B |
Tr(QI) Tr(QI) Yy (2.69)
Tr(QBT) Tr(Qwy) | Tr(gel)

where y, is the fermion in the g multiplet with Dirichlet
boundary conditions which is charged under the global
SU(2N/) and U Sp(2N,) symmetries, and similarly y,, is
the fermion in the » multiplet.

F. Chern-Simons levels
As is well known, we can also generate nonzero Chern-
Simons levels by giving large positive or negative masses to
the chirals Q as first demonstrated for symplectic groups by
taking a limit of the partition function in [112]. In the
simplest case we start with 2N, = N ¢ + 2|k| fundamental
and antifundamental chirals and give masses (of the same

(2.68)

[

sign) to 2|k| € Z of them to leave N, fundamental chirals.
This generates a Chern-Simons level & for the U Sp(2N,)
gauge node in theories A and B with k > 0O by sending the
masses to +oo and k < 0 by sending the masses to —oo.
There are no other changes to theories A and B so the result
is that the duality holds for arbitrary Chern-Simons level k
for U Sp(2N,). However, the effect on theory C is more
involved. In the case where we send the masses of 2|k|
multiplets Q to £oo, in theory C we must also send the
masses of 2|k| multiplets ¢ and of o to Foo while also
sending the masses of 2|k| multiplets p to +oo. This
modifies theory C by having N, = N; — N, + Nf/Z +
|k| — 1 while having Nf flavors, removing the o~ multiplet,
and giving gauge group with Chern-Simons levels
USp(2Ny), x USp(2N,)_y.

G. USp(2) xUSp(6)y —[2(4- [k|)] (N1=1, N2=3,
Nyp=4-|k|)
Here we have N 1 =1 and 1\72 = 1, with Chern-Simons
level satisfying |k| € {3, 1,3, 2,3, 3,7, 4}.
We have checked the matching of supersymmetric
indices and for k = 1/2, rg = 2/5 and ry = 2/7 the full
indices are given by

086023-10
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IA — IB — IC
1
=1+21a3¢¥" + a3¢* +231a3¢*" + 42d2a3q*>  + < ai + — >q4/5 +1771a8g°%7
N N N—— e— — N~~~ ay N
T1(QQ) Tr(BB) Tr(QQ)? Tr(QQ)Tr(BB), Te(BB) N~ Tr(QQ)’
Tr(Q(BB)Q) '
+  672a}a3q*P - 50q 4+ 21( 2at + ap® )a3g*¥ 41062645647 + -+, (2.70)
e ~—~ N~~~ ~— —— —
Tr(QQ)*Tr(BB), Tr(Qwy), Tr(QQ)Tr(BB)?, v, Tr(QQ) H(00)*
Tr(QQ)Tr(Q(BB)Q)  Tr(Bys) Tr(Q(BB)*Q)

We see that the monopole operators with the charge (0, %)
are removed due to the nonzero Chern-Simons level for the
second gauge node. In fact, in [113] it is argued2 that the
Chern-Simons terms allow monopole operators to carry an
electric charge given by the Chern-Simons level. In order to
form a gauge invariant operator they must be dressed by
charged fields. However, typically even the candidate
minimal gauge invariant dressed monopole operator is
not chiral so does not contribute to the index, with the
lowest order dressed chiral monopole operators having
even higher dimension [113] if there even are any chiral
|

[

monopoles in the theory. Therefore, not surprisingly, we do
not see contributions from any monopole operators charged
under U Sp(6) to the order we expand. However, the
charge (*,0) monopole operators and dressed versions
survive as the U Sp(2) gauge node has vanishing Chern-
Simons level.

Note that in this example there are some features specific
to the chosen gauge groups. For example, Tr(BB)?> and
Tr(BBBB) are not distinct operators since the first gauge
node is U Sp(2).

The half-indices for k = —1 are given by

79" (ay(w* + 1))

Hﬁf,]\/ = IDI%N = ]]]Iﬁ/’p =1+ 21a%q2/7 + a%qz/5 + 231a§q4/7 - + 42a%a%q24/35 + a‘l‘q4/5
e N N — w N N —
Tr(QQ) Tr(BB) Tr(QQ) TH(QTy) Tr(QQ)Tr(BB),  Tr(BB)
Tr(Q(BB)Q)
59/70 2 13/14( 13 (11,2
_1¢7 " (ayay(u® + 1)) 1771487 147 (a3 (w* + 1)) L 6naadg
u N——— |y —
Tr(QBI) Tr(QQ)? Tr(QQ)Tr(QT) Tr(QQ)*Tr(BB),
Tr(QQ)Tr(Q(BB)Q)

1 1
+q<u2+—2+w2+—2+2> +-e
u w

Tr(Dy Ty ). Tr(0,T5)

H. USp(2N,) x U Sp(2N,) - [2N;] x U Sp(2N3)

Here we would like to propose a quadrality of quiver
gauge theories with three nodes of symplectic gauge groups
USp(2N,), USp(2N,) and U Sp(2N3). Let us call the

*The detailed analysis in [113] is for U(N) gauge groups, but
we expect a similar results for other gauge groups—see also
[18,114] for SU(N) theories. It is an important issue to under-
stand the spectrum of chiral monopole operators for symplectic
and orthogonal groups, even in the case of a single gauge node.
We leave this for future work and in this paper simply comment
on ‘missing” monopole operator contributions in some examples.

(2.71)

original theory A. Dualizing the U Sp(2N,) or U Sp(N3)
lead to a theories B or D which are easily obtained from the
previous discussion.

Another interesting theory arises when we take the
Seiberg-like dual of the U Sp(2N,) gauge node. We
propose that it gives a dual theory C with U Sp(2N,)
where N, = N; + N; + Ny — N, —1 gauge node. The
three gauge nodes USp(2N,), USp(2N,), and
U Sp(2N;) are coupled to 2N, chiral multiplets py, g,
and p,. There are antisymmetric rank-2 chirals ¢! for
U Sp(2N,) and ¢? for U Sp(2N3), and a singlet chiral M in
the antisymmetric rank-2 representation of the flavor
symmetry SU(2N ). It has a superpotential

086023-11
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ocve ™ + Tr(cipler) + Tr(cydles)

+Tr(cip1g) + Tr(c,paq) + Tr(cicacs)
+ Tr(gMgq).

WC:

(2.72)

The first term replaces the bare monopole operator v%i'o

with the singlet 6 while the second and third terms replace

cycy and c,c, with ¢! and ¢2. The final term replaces gg
with M. The other terms can be viewed as replacing cgq
with p;, coq with p,, and c|c, with c;.

The proposed quadrality of the USp x USp x U Sp
gauge theories is shown in Fig. 2.

The operator map across the proposed quadrality is
given by

2N¢
Q
B By
2Ny 2Ny
Q
By by
Pa
M
2Ny
P1 g 2
c1 ~ C2
USp(2Ny) USp(2N3) USp(2N3)

o

C3

o2

FIG. 2. Quadrality of USp(2N;) x USp(2N,) — [2N;] x U Sp(2N;) quiver where Ny =N, =N, —1, Ny =N, + N, + N; -
N, —1 and N3y = N, — N5 — 1. All chirals ¢,, ¢, ¢2, ¢4, and M are in antisymmetric rank-2 representations.
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A B C D
Tr(QQ) Tr(QQ) M Tr(QQ)
Tr(B,(B2B,)"B) Tr (¢, (B2B,)*) Tr(csc3(2) ") Tr((¢p4)*B1By)
Tr(B,(B1B))*B,) Tr((¢,)*B2Bs) Tr(csc3(he)*") Tr(¢a(B1B1)")
Tr(Q(B,B)"Q) Tr(Q¢;0) Tr(pi(¢e)'p1) | Tr(Q(BB,)*Q)
Tr(Q(B,B,)"Q) Tr(Q(B2B,)*Q) | Tr(pa(#2)*' p) Tr(Q¢k0)
Tr(B, B, ) Tr(¢}) Tr(pe)* Tr(B, B, )"
Tr(B,B,)* Tr(B,B,)* Tr(p?)* Tr(¢k) (2.73)
yE00 oy pto p200
00+ P00+ e op
Ug,i,o U;,i,o oc v%i,i
pEE p0+0 pE00 pt
0=t pEE W00+ P00
pE0* pEO* P pa0*
pbt Pt pa pto

The monopole operators above are gauge invariant so can
be dressed by gauge invariant combinations of the chiral
multiplets, with the mapping between theories following the
pattern indicated in the first seven lines of the table. As for
the case of two gauge nodes there will be restrictions on the
allowed dressed monopole operators [110] and we comment
on this in the example we include next.

L. USp(2) xUSp(6)—1[6] x U Sp(2)
(Nl =1,N2=3,N3=1,Nf=3)
We have confirmed that the four supersymmetric indices

perfectly match. With rz =2/5 and ry =2/7 the full
indices are given by

q'2/% 19/35
=1+15a3¢"7 + S5+ ¢°( ai + @ )+ el al + aj)+120a3q""
araas ~~ ~~ ayaas ~ Y
™eQ) N~~~ Te(B\B))  Tr(ByBy) OEE pEEO Tr(QQ)
e

15 22/35 1
+ 2q4 5 +q24/35( Tt 30ata3 + 30a3a3

aja,as 1a,"as N N——

Ug,iAoTr(QQ) vgiz.u Tr(QQ)Tr(BlBl)’ Tr(QQ)Tr(BZBZ)v

Tr(Q(B1B1)Q) Tr(Q(B,B,)0Q)
+q26/35( SR . >+q4/5< 2a}d} + at PRI a3 +1>
aSa3 aza  aSaSa — —~ a$ —~ a§
pg'i‘(;BlBl yg'i'O'Bsz pj"i'i Tr(BlBl )Tr(BzB2> Tr(B,B,) 1)1{40.0 Tr(B,B,)* yg'vo‘i
Tr(BleBzBl)
+ 15‘129/35( 2 14 s T % 14 2 )+680“g‘16/7+q31/35< 6 l12 st 112 s 3 112 4)
ajasa alaza;s —_—— alay*a§  ajay’a ajay’a;
—— N—— Te(QQ)? —_—— ——  N——
U/T'i'OTr(QQ> vﬂi‘iTr(QQ) vf,ii<i v%iZ.i i,il()
12042/3 PEEEr 1 N 1 N 1 N 1
atasa3 7 ajaSaj  ataSa3 aSa$ a$a$
—— ——
o =0Tr(00)? vitOByBy  SFEBB P EBiB W TFByB,
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15
+q34/35< 7 + 34543 a4 + 345a3a3 )— 38¢ + -
14543 7,—’ 7-/ N
u%ﬂ'OTr(QQ TI'(QQ) Tr(B]Bl)’ TI'(QQ) Tr(BZBZ)’ Tr(QWQ)’
Tr(QQ)Tr(Q(B1B1)Q)  Tr(QQ)Tr(Q(B1B,)Q)  Tr(Biyg,). Tr(Bayrs, )

+q8/7( R +3060a8+~~->+q6/5< a3 + ai +--~>+--- (2.74)

ataa§  aSaSaj N a$ a$

N—— Tr(QQ)* ~~ ~~

vEEEBB, v BB, vi%°B,B,  5%“BB,

Note that unlike the U Sp(2) x U Sp(6) — [8] example,
here we get the naively expected coefficient for the ¢%7a$
term, in this case 3060 = 15 - 16 - 17 - 18/4! for Tr(QQ)*.

We see several bare monopole operators and at higher
order they are dressed with gauge invariant combinations of
the other operators. However, some terms are missing. The
first occurs at order ¢%° where we do not see the terms
q% Ja} or ¢°/3 / @} which would be the contributions from

vjf'o’o dressed by BB, and vg’o'i dressed by B,B,. We have
checked the index to higher order than presented here and
we see no contributions which would correspond to v
dressed by any operators containing B; operators (or, of
course by symmetry, vg‘o’i dressed by any operators
containing B, operators). This is entirely as expected since
with only flux for one of the U Sp(2) gauge nodes, and
fields in nontrivial representations of that U Sp(2) group
cannot obey the massless condition p(m) =0, and this

clearly applies to B and B, in these backgrounds.

A __TmB _1mC 1D
W v =W v = Wiy p e = Wy

One point to note is that for symplectic gauge groups we
have no topological fugacities in the index to keep track of
monopole contributions.” This means that some coeffi-
cients can arise from contributions from different sectors.
One example at higher order is the coefficient of
¢33 /(a%a$) which is found to be 680. This can receive
contributions from the gauge invariant bare monopole
operator v1"* and from v7*F dressed by Tr(QQ)>.
Naively, Tr(QQ)* gives contribution 15-16-17/3! =

680 so at first it appears as though the Uj:'o’i

is missing. However, in the vfi’i monopole background
the massless part of Q transforms in the fundamental
representation of the USp(4) gauge group and a
careful check reveals a linear relation amongst the 15
naively independent gauge invariant contraction of
0'0°0°0*0°0".

The half-indices are given by

monopole

6¢” M (ay(w* + 1))

=1+15a3¢"" +¢*°( & + a3 )+ 120a3q*" -
~—— ~~ ~~ — w
Tr(QQ) Tr(BlBl) Tr(B,B;) Tr(QQ)Z Tr(QL,)
+ 30a3g*/% ( a3 + a3 +¢*> 2a3d3 + af + a4 )
~~ ~— D ~~ ~~
Tr(QQ)Tr(B,B;). Tr(QQ)Tr(B,B,), Tr(B,B,)Tr(B,B,)  Tr(BiB)?  Te(B:Bo)
Tr(Q(B,B1)Q) Tr(Q(B,B,)Q) Tr(B,B,B,B)
64 (ay(ayu(v® + 1) + a3 (4 + 1)v)) + 68048457 — 90¢"/ (a3 (w* + 1))
uv 2 w
Tr(QBIT).Tr(QBAT) Tr(Q)’ Tr(OT)Tr(0Q)
+ 345a3q34/35< a + a3 ) 4 (2.75)
~~ ~—
Tr(QQ)*Tr(B, B,). Tr(QQ)*Tr(B,B,),
Tr(QQ)Tr(Q(B,B1)Q)  Tr(QQ)Tr(Q(B,B,)0)

3Although we can of course calculate the contribution to the index for each choice of magnetic fluxes.
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where v, w, u are the fugacities for USp(2N,),
USp(2N,), U Sp(2N3) and T, is the Fermi in the bifun-
damental representation of U Sp(2N;) x U Sp(2N; which
is included in the theories for Neumann boundary con-
ditions for the U Sp(2N;) vector multiplet.

III. ORTHOGONAL LINEAR QUIVERS

We now discuss similar dualities where we have
orthogonal rather than symplectic gauge groups. We
present examples with two and three gauge nodes.

A. SO(Nl) X SO(Nz) - [Nf]

There are distinct orthogonal gauge groups SO(N.),
O(N,.)y, Spin(N,) and Pin(N,.), for the Lie algebra
80(N.). The minimal gauge group is SO(N,.) and other
gauge groups can be obtained by gauging two zero-form
global symmetries, the charge conjugation symmetry Zg and
the magnetic symmetry Zé\/’. In the indices and half-indices
we have discrete fugacities y for Z§ and ¢ for Z51. We first
review the triality of the SO x SO quiver gauge theories
proposed in [28] and mostly consider only the cases where
these discrete fugacities are set to one, i.e., so the gauge
groups are SO. However, we expect all dualities to be
generalizable to other orthogonal groups as for the single
gauge node cases without [93] or with boundaries [48].

The structure of the SO x SO quivers take the similar
form as the U Sp x U Sp quivers in Sec. Il A. Theory A is a
SO(N;) x SO(N,) gauge theory with bifundamental chi-
rals B in the (Ny, N,) representation, N, chirals Q in the
fundamental representation under the SO(N,). In these
theories there can exist three types of baryonic operators

Ny N2—N, — biby, ga1 ... g1 0
61623 Q = €a]...aN] € th] Bth QbN]H

N, N, _ qaiay, pb Oy i iny
€ BT OV = e N]Bal"'BaN,le"'Qlev

biob j in
€2QN2 = e NZQZI . QbNZ27

(3.1)
where a;, b;, and iy are the SO(N,), SO(N;), and SU(N)
indices. Since they are antisymmetric in the flavor indices,
the second and third types exist only when N, > N; or
Ny > N, respectively. The first type exists when
Ny > Ny — Ny > 0. The dualities we discuss are also valid
for N, < N,* but in those cases we have no baryonic
operators of the first type since the analogous constructions
contracting bifundamentals using the antisymmetric tensors
would have an excess of SO(N,) indices and we have no

4Specifically, for both dualities discussed in this section to be
valid we need N; =2 <N, <N + N, +2.

flavors in the fundamental of SO(N) to contract these
indices.

For a single gauge node with N, > 2° there are two types
of monopole operators v+ and v~, which are even and odd
under the charge conjugation symmetry Z5 [93]. The
monopole operators break the gauge group SO(N,) down
to S(O(N.—2)x O(2)). For the product gauge group
SO(N;) x SO(N,) the even monopole operators are

+0 0.+ ot
vy, vy, vy

(3.2)
They are gauge invariant and can be dressed with gauge
invariant combinations of B and Q.

The odd monopole operators are not gauge invariant for
N, > 2. However, they can form gauge invariant operators
dressed by B and Q in baryonic combinations [28]

70 BN QN2
70,6, BN 2 QNN 42,
it e BN QN2
W0

v} e 6, BN QN N12,
e

vy €16, BN12 QNN (3.3)
where in any cases where the exponent would indicate an
negative power, that type of operator is not present. In the
case of zero exponent that component is not present and
this includes the special cases where N = 2 and/or N, = 2
where some of the combinations above reduce to gauge
invariant bare monopoles.

Theory B has the dualized SO(N; = N, — N, +2))
gauge node and introduces a rank-2 symmetric chiral for
SO(N,). Dualizing the SO(N,) gauge node gives theory C
which has N, flavors for both gauge nodes and rank-2
symmetric chirals for SO(N,;) and the global flavor
symmetry SU(N).

In general, under Seiberg-like duality of a gauge node
SO(N;) with discrete fugacities y; and {;, the dual gauge
node SO(N,) has discrete fugacities 7, = {y; and &, = .
For each gauge node SO(N) connected to SO(N;) in the
quiver diagram we also have the mapping {; — {;{; under
duality of gauge node SO(Nj).

The triality of SO x SO quiver gauge theories is depicted
in Fig. 3.

The mapping of monopole operators is quite involved for
orthogonal gauge groups so we refer to [28] for details. The
mapping of the other operators (and their R-charge

>There are additional monopoles which we do not discuss here
in the case where N, >4 [93] while for N, <2 we have no
monopoles.
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o

FIG. 3. Triality of SO x SO quivers where N,
symmetric rank-2 representations.

assignment) is similar to the case with symplectic gauge
groups so we do not list that again.

B. Supersymmetric indices for orthogonal
gauge theories

Writing N; = 2n; +¢; for n; € Z and ¢; € {0, 1}, the
supersymmetric full-indices [49-54] for theories A, B, and
C with orthogonal gauge groups can be constructed by
generalizing the expressions for a single gauge node
[7,93,115] and are given by

A SO SO
" = ZgaulgezgdujgczmatterA’ (34)

=N,—N,;+2and N, =

Ny

M
Ny
5 q
SO(Ny) = SO(IN,)
be
Ny + Ny — N, +2. All chirals ¢, ¢. and M are in

I Zggllge V4 gauzge Zmatter B> (3 -5)

c _ S0 SO
I ZgaulgeZ gauzgeZmatter C (3 6)

where Zg,oe and Zer . are the contributions from the
vector and chiral multiplets with SO; referring to gauge

node SO(N;) and SO, referring to gauge node SO(N,).
The gauge contributions are given by

i g (1) €
750 é’ H ds; Dygm® Y =S em®1/2=5 imD£m /2 Wyt
gau,ge = E : 2111161—1,1 !f ( .l (1) (_st(' ))k[mi )q = calmlf Kj‘ ‘/ (l |(1 _)(Iq|mi \/ZSE ) >

i—1 27is;
XH( g /2004y (1 _
i<j

except for the case where y; = —1 and ¢; =

q|—m1>:|:m \/2 ()

0 where instead

i=1

1)+
i, (3.7)
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dom w1l ()
so, i ds; (D) \kym® =S em P2 mt
Zgauge = Z 2’1’_1(}11 _ 1)'% (H N0 (_si ) 11 q Z Z J H(l q‘

mVez =1 27is;
n;—1
m m + —m m 1)+
<[[(1-4 Nt \/2<>5))(1_q| D12 (1)~ L5105, (3.8)
i<j

Above we have included Chern-Simons levels k; for SO(N;) but for now we take these levels to all vanish.
As for the symplectic case the contributions from the chiral multiplets are

N
ZmatterA = ZBZQf’ (39)
N
Znatter B = ZbZ(;,,ZQon-B’ (310)
ZmatlerC =Z Z¢ prZ quzgcv (311)
where
\m(l)—m(”\ I I+ \m()+1n( )\ D+ ()+
7 B | ?’7’1 ZNj] \m?”imﬁ.])\ 1 ( =5+ a_lsz(' )$S§») ;Q)oo(ql_EJr—!a_lsz(') SE) ;q)oo
BiFundSO,—SO,(r’ a) = (q za ) - H H 0,0 UNSOE
SR (g as YT ) W (g as s )
n , I (I)+ T Wil )+ “
T E e s ) (@' T s g)e
R . ) e
EUo(gtas) T d) e =t (gt ay, s<) 1)
ny 1-5 -1 . €€
X( (q _ra ){I}(Jch)oo) , (312)
= (@axis s
e
1-r Ny (1) _7+Ta_ S Xo ’q>oo (ql_%a_lllx_l;q)oo “
ZN,.—FundSO,(r’a) =(q7a NFZ b ‘H H ] ! N < T ,a ’ (3.13)
e () E (@?ax1%0: 4) <o
(¢ as; x4 q) o
Al e Al % nF
. 2y S e T g s s ) (6T a s s )
SymSO,(r’a) (q ‘a ‘mm_mu)‘ i 4D
N i s T ) N (e R BTN
. ) (1% €
1@ a s g)e | (@7 a T g)
) H m) (@) | (3.14)
U (@ ey )
(¢'"a"xz" x5 4)os
Zsymsuv,)(r.a) = , (3.15)
ymSU(Nr) l}ﬂ (q axax[)” Q)oo
with the prescription that for the case of y; = —1 and ¢; = 0 we must replace every occurrence of s;’,) * with simply =1 and
I _ 6 . .
set my, = 0.” So in particular we have

®See [93] for full details and discussion of how to describe various orthogonal groups with different global structure.
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Zg = ZBiFundSO,—SO,(rB» al)’ (3-16)
2y = Zy,runai(rg- a2). (3.17)

Zy, = Zgirund s0,-so,(1 — rp.a7'), (3.18)
Zy, = Zsymso, (2rg, a%), (3.19)

Zsy = Zsingiet(To» ai™). (3.20)

Z, = Zpirundso,-s0,(1 — rp.ai'), (3.21)
Zy, = Zsymso,(2rp. ay), (3.22)

ng = Zgirund 50,-50,(Ts + rg- a1a2),  (3.23)
Z;V/ = ZSymSU(NF)(er’ a%), (3.24)
zy = Zgikwnaso,-so, (1 = rg.a3"), (3.25)
Zac = ZSinglet(rac’ al_Nl a;Nf)v (3-26)

where now r, =(1—-rz)N,—(N;—=2) and r,. =
(l—rB)N1+(1—rQ)Nf—(N2—2)

C. Boundary ’t Hooft anomalies

The gauge anomaly cancellation and anomaly matching
works in a similar way to the symplectic gauge theories.
For the multiplets we have discussed the contributions to
the anomaly polynomial are given by the following
expressions [40,48] if we have Dirichlet boundary con-
ditions. For Neumann boundary conditions we just take the
opposite sign. Taking the multiplets to have R-charge gp
and a vector of U(1), charges ¢ we have

ul

N;(N; -1
Avuso, = ~(N; - 2)Tr(s12) - MPZ,

; (3.27)

A Bulk
A 2

N
AN, Funaso, (4r- 9) = TITT(XZ) + N, Tr(sy?)
N;N
S (g at (e =) (328)

Apifunaso,-s0, (dr-q) =N Tr(sy*) + N, Tr(s;?)

N;N
+—5(g-a+(gr=1r)*. (3.29)
-ASymSU(Nf) (qr Q)
N 2 N:(N 1
- f2+ Tr(x2)+7f( £+ )(g'§+(qk—l)r)2,
(3.30)
Asymso, (qr-q) = (N;+2)Tr(sy?)
N;(N;+1
ANED (g (g 1ep, (331)

where here s; is the SO(N;) field strength.
We propose a triality of the following sets of boundary
conditions:
i) (N,N,N,N) for (VM;,VM,, B, Q) in theory A.
(i) (D,N,D,N,N,D)for (VM,,VM,, b, ¢;,, Q,03) in
theory B. -
(iii) (M,D,D,N,N,N,D,D) for (VM;,VM,, ¢, ¢, p,
M, q,0¢) in theory C.
We will see that with suitable additional 2D boundary
multiplets, we can cancel the gauge anomalies for the gauge
group factors with Neumann boundary conditions, and
match the anomalies. We can then check the matching of
the half-indices.
Explicitly, we find the following anomaly polynomials
for the bulk fields,

1 1
My = —5 NiNaat - ENsza% + N N> (1 = rg)ajr + NoNy(1 —rg)arr

1
+Z((N1 —Ny)* + 2N Nprg(2 = rp) = 2NNy (1 = rg)? = (N + Np))r?
1
- (N2 _Nl + 2)Tr(s%) - (Nl +Nf - N2 + Z)Tr(s%) —ENQTI'<X2>, (332)
1 1
A%E\%%),N,N,D = ——NlNza% —ENsza% + N1N2(1 - rB)alr—l— Nsz(l - rQ)azr
1
+Z((N1 —N3)* + 2N Nyrp(2 = rp) = 2N, Ny(1 = rg)* = (Ny + Ny))r?
1
—(Ny + Ny — Ny +2)Tr(s3) + N Tr(87) —ENzTr(xz), (3.33)
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AC Bulk 1

L 2
NDDNNNDD — ~ 5 N N>aj

1
—ENsza% +N1N2<1 - rB)alr+N2Nf(l - VQ>321'

1
+Z((Nl —N2)2+2N1N21"B(2—7"3) —2N2Nf(1 —VQ)Z— (N] +N2))r2
(

1
— N; +2)Tr(s?) + N,Tr(83) — EN2Tr(>(2). (3.34)
Recalling that N, = N, — Ny +2and N, = N; — N, + Ny + 2, and that due to the D boundary conditions SO(N,) and
SO(N,) are global symmetries on the boundary, whereas SO(N;) and SO(N,) are gauge symmetries due to the N\
boundary conditions, we can cancel all gauge anomalies with the following 2D multiplets.

| | SO(N)) | SO(N,) | SON,) | SO(N,)
Fermi | T, N, 1 N, 1 (3.35)
Fermi | T, 1 N, 1 N,

In particular, we need to include
(1) T'y, I'; in theory A.
(ii) I’y in theory B.
(iii) Iy in theory C.
Including the contribution of those 2D multiplets in each
theory all gauge anomalies are cancelled and the resulting
anomaly polynomials match

1 1
ATOtal = —EN]NZa% —§N2Nfa%

+N1N2(1 - rB)a1r+N2Nf(l - VQ)azl'
1
—((N

1

—2N2Nf(1 —I"Q)z—

— Ny)? + 2N Nyrg(2 = rp)

1
+ N Tr(82) + N,Tr(33) — ENzTr(x2).

obvious case is to switch all boundary conditions so we
have all Dirichlet in theory A. As noted for the symplectic
case, this will simply change the sign of the bulk con-
tribution to the anomaly polynomial and it is easy to see
that all gauge anomalies will be cancelled and the anoma-
lies will match if we include 2D Fermi multiplets

/Mo _ f
N 2n,+e, l’l' H 2””

(i) None in theory A.
@ii) I’y in theory B.
(iii) ', in theory C.
Again, we do not present any examples of these boundary
conditions but the dualities should hold for these boundary
conditions as was found for theories with a single gauge
node with orthogonal group [48].

D. Half-indices

We now give the expressions for the half-indices with the
previously chosen boundary conditions following from all
Neumann in theory A. For the three theories we have

N, + Ny))r? V M SO,V M SO
(N1 + Ny))r My oy =10 ', B M, (3.37)
(3.36)
m = I, S my My memy . (3.38)
It is possible to consider other boundary conditions. The ALDNND
I N.N.N.D.D H/‘\//M SOIMVM SOZHC I T T T 7
(3.39)
where
(50501 T (D= (D% Ty (0% ) )
> ( (s; S; ;q>oo) <H(Si S; §Q)oo> (H(lei §4)oo> ) (3.40)
i#j i<j i=1
n (1) n e n (1)
prsor _ 1§ 0 ) K g g e
D " (g 0_p (1) (1)1 mDym®y N+ (D
(D% £ (T ™ ) ) [y a= 0D g) )
1
% (3.41)

(1) N+ €’
(T (g 5 g) )
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keitr = N, (3.42)

except for the case of y; = —1 and ¢; = 0 when instead

MVMSO, _ (‘1) (n;—lj{ ) (lﬁ(s s )
N 2m=1(n, —1 27is" ) \ i e
n;—1
x (H<s§”is§-’>i;q>m) (H<s§’>i;q>oo<—s§’>*;q>w), (3.43)

i<j

1 1
H;MSOI = 1 E : G
=li_, E= (I (N+
(@)™ (~4:9)e ez (TLL (g™ W q) o (=g 15 ) )

(=1 henr ) S5 ) D S 2 (Db

« S l . (3.44)

n m® = (1) (1)1, D aemDy (D+ (D%,
(T (g = ul!) ,q>m><n,~<,~<qli<t D u"ul% g) )

Note that N; = N, so N; = N;. We also have the pre-

- _ BiFund SO,-S0, (1 _ -1
scription that for Dirichlet boundary conditions for the I = WP (1 - rg.ay), (3.50)
vector multiplet we make the replacement PN qmz(’”u([)
i i . — TSymSO 2
in the following matter contributions. M7 = 301 (2rp, a7) (3.51)
The 3D matter contributions are given, for either
Dirichlet or Neumann boundary conditions by P = mBFendSO=S0s (rp + 1y, aya;),  (3.52)
mE = HBiFundSOI—SO./<rB, al), (345) MM — ISymSU(Np) (2rQ’ Cl%), (353)
M = I FendSOr(r ., ay), (3.46) .
Mme = MB1FundSO,—SOJ(1 _ rQ’ agl)’ (354)
]]]Ib — HBiFundSO,—SO,(l —rp, al_l>’ (347)
Moc = mSnget(r a1 ™), 3.55
% = M™S01(2rg, a?), (3.48) (Foc: @y 'y ) (3:53)
Sinalet N, For Neumann boundary conditions the 3D matter con-
M7e = TP (r,, ap2), (3-49)  {ibutions are

BiFund SO,—SO T 1 = 1 I 1 “
1~ J —
Iy <r7a)—<|||| RO ENOENGES )(H BN ES ) (HW>
imtj=t(@as; s d) o (qPasi s i a) o/ NiST(@Payns) )/ Nimt (@Raxys i)

1 €€
X (7 ) (3.56)
(Fax X1 )
Nf ny
N, Fund SO 1 1 €r
M,/ "(r,a) = ( )( . ) , (3.57)
,g g(q%asﬁ’)ixa;q)w (a1 @)oo
Hi’ymwl(”“):<ﬁ 0 }z>—1 )(ﬂ , <1>i1<z>i >< : 1 ) (3.58)
L= (qasis) s q) o/ Nigi (qPas; s T q) e/ (@26 q) s [T (gays"q) e
I[[[SymSU Nf H (359)

asp (42XaXp: @)oo
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while for Dirichlet boundary conditions the 3D matter contributions are

ny  ny 1y €1
BiFund SO;,-SO _r 1. () (J _r 1. (D (J)=* _r _ J)£
Iy ™80S0 (1 ) = (HH(Q‘ fats( s g) (g1 s ;Q)w> (H(q1 falyys!” ;q)oo)
i=1 j=1 J=1

al _r _ + “ _r €€
- <H<q1 s ) ) (@R ) (3.60)
i1
Nf ny
my " (r,a) = ] (H(ql-%a-lsf»”*xa; q>m) (4" 501 1xa 0))" (3.61)
a=1 i=1
m i _r _ -1 i _r _ + +
my SO’(r,a):< (¢"Ha's"s) ) ) ([ 2! s7s )
Qj=1 i<j
_r _ e _r _ + “
x <(q1 i q) [[ (a5 s 1 0)s ) (3.62)
i1
SymSU(N,) al
Im; r,a) = H(ql‘fa‘lxaxﬁ;q)oo. (3.63)
asp

Finally, the contributions from the 2D matter multiplets are

e e ()t L+ (I LA T L e T el
IFIZ<HH(q;s§) a9 (ghs D >:F;q)oo> <H(q%;(,u§-) ;q)m) <H(615;m5> ;q)oo> (¢ridrg)e’.  (3.64)

i=1 j=1 j=1 i=1

and we recall that 7; = y,{;.
As for the full indices, all the above 3D and 2D matter contributions are modified in the case of y; = —1 and

€; = 0 by replacing every occurrence of sf,ll)i with simply +1, and similarly for the dual group in the case of the

2D Fermi.

E. SO(3) x SO(4) - [3] (Ny=3,N,=4,N;=3)

Here N, = 3 and N, = 4 so both dual theories also have gauge group SO(3) x SO(4).
The indices for the dual pair actually coincide. For rz = 1/2 and ry = 1/3 we have the full-indices’

IA — IB — IC
2.1/3 2 1 1/2 4 .2/3 1 1 3/4 2 1 2.5/6
=1+6a5q "+ | ai + — |q¢/"+2la3q"° + | 55 + —— ]g +6 2ay + asq
Tr(QQ) Tr(BB) \a; Tr(QQ)? &fl'z’ gl\fl'z’ T Tr(BB \a’l"
T T T
1):{‘0 vﬂ‘* v:+ Y(QQ) I'( )7 1JXOT1'(QQ)
Tr(Q(BB)Q)
1 1 1
—|—3< a + — >a2q11/12+q< 2af + S + — + 5645 — 10 )
NG a N a? at N ~
qaBo S~ Tr(BB):, 2 7 mweor Tr(Qyo)
v,"e;BO vI’OTr(BB) 1;?2‘0
Tr(BBBB) Tr(Byp)

"This example is also presented in [28] but we include a complete identification of the operators counted by the indices.
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1 1 Tal
+9< —-— + = >q13/12+q7/6 (3( 20a}a3 + =2 ) + == )
aja, aia, T aj aia,
Tr Tr(BB), o Y
4T Tr(QQ), vt Tr(QO), (QO)Tr(BB) v, Tr(QQ)? vy eBO,
_ - Tr(QQ)Tr(Q(BB)Q). o
NG vy T60° vy €16,B0
4 (e,BQQQ)Tr(BQ)
1 1 1
>/4 1943 a3 — 1945 2 — == |+ 3.65
+q aja; + po ( as + = + P + s + (3.65)
(€12BBBQ)Tr(0Q), v7% BOTr(QQ), "+ P Snss) o
e/ Tr(BQ)’ vZ'OelezBQ3

We note the coefficient 2 of the ¢*/*/(aja3) term. This
arises from the contributions of two different dressed
monopole operators schematically written v, " Tr(BB).
The main point is that for each SO(N) group the monopole
flux breaks the gauge symmetry so that (loosely speaking) a
fundamental splits into a “massive” fundamental of SO(2)
due to the flux and a “massless” SO(N — 2) fundamental
following the description in [110]. For a bifundamental of
SO(N,) x SO(N,) we will get a massless bifundamental of
SO(N; —2) x SO(N, —2). However, in the case where
the monopole has equal magnitude fluxes for both groups,
we can also get a massless bifundamental of SO(2) x
SO(2) due to cancellation of the flux contributions to the
|

[

mass. Hence, in the v, background there are two distinct
gauge invariant operators by dressing the monopole with
the traces of the squares of these two massless bifunda-
mentals arising from B after symmetry breaking.8

Above we have taken the discrete fugacities {; = 1 and
x1 = 1. The duality holds for other values and the indices
have a similar expansion and identification of operators.
For example, if we take {; = —1 the effect is simply to
include a factor —1 with each of the monopole operators
with flux 4 for the SO(3) gauge node. For simplicity here
and in the following examples we list only the results with
all discrete fugacities set to 1.

The half-indices are given by

1 1
m . =18, =M =1+ 6aiq'/? +a2q1/2+q2/3< 21a% —3a, <w1 —|———|—w2+—>> +  12a%a%g°/°
NN DN N.D 2 1 2 n w 142

Tr(QQ) Tr(BB)

Tr(QQ)?

2
o Tr(QQ)Tr(BB).

Tr(Q(BB)Q)

1 1 1
+q11/12<3a%a2 —3a1a2<v +—+ 1>> +q< 2af - 1943 <w1 +—4w, ——)
N——" v ~—~ wi %)

€680 obT
1

1 w
+ 5645 +v+—+wiwy+—+
v wi

———

wi
— +
Wy  Wiwp

Te(BB)?
Tr(QQ)Q0T.6,000T,

+3> TR (3.66)

Tr(QQ)*

L,

F. SO(N,) x SO(N;) — [Ns] x SO(N3)

Now consider the case with three gauge nodes. Dualizing
either left or right gauge node leads to the ones discussed in
Sec. III A The Seiberg-like dual of the SO(N,) gauge node
gives a SO(N, = N; + N5 + N;— N, +2) gauge node,
all three gauge nodes have N flavors, there are bifunda-
mental chirals for each pair of gauge nodes, there are
symmetric rank-2 chirals for SO(N,) and SO(N3), and a

*We thank Stefano Cremonesi for explaining this point.

singlet chiral in the symmetric rank-2 representation of the
flavor symmetry SU(N ).

We propose the quadrality of the SO x SO x SO quivers
in Fig. 4. The monopole operators can be understood by
generalizing the results for the case of two gauge nodes. We
now have possible fluxes for each of the three gauge nodes.
Monopole operators without any negative fluxes are gauge
invariant so will contribute to the index and can be dressed
with any gauge invariant operator. A monopole with flux
—1 for gauge node I must be combined with a baryonic
combination of operators, specifically it will have a con-
traction with the antisymmetric tensor ¢; and dressed with
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Ny

M

Ny

C1 = C2

SO(Ny) SO(N>) SO(Ns)

C3
oL o2

FIG. 4. Quadrality of SO(N,) x SO(N,) — [N/] x SO(N3) quiver where Ny = Ny = Nj +2,2N; = N; + N3 + N; — 2N, + 2 and
N3 = N, — N5 + 2. All chirals ¢, ¢!, ¢2, ¢, and M are in symmetric rank-2 representations.

an operator with N; —2 indices. In addition there are = gauge nodes case. As there are many options we do not list
monopoles with more than one flux. E.g. for any gauge  everything explicitly here.

node SO(N) with N > 4 there are monopole operators with

two nonzero fluxes for that node which need to be G. SO(2)xSO(4)-[1]-S0(2)

contracted with the antisymmetric tensor and dressed with (N1=2,N,=4,N3=2,N;=1)

an operator with N — 4 free indices [28]. The mapping of Here N, =3 so the dual theory has gauge group
monopole operators also generalizes naturally from the two SO(2) x SO(3) x SO(2)

086023-23



TADASHI OKAZAKI and DOUGLAS J. SMITH PHYS. REV. D 105, 086023 (2022)

As we conjecture, the supersymmetric indices precisely agree with each other. For ry = rc = 2/5 and ry = 2/7 we get
the following full indices,

IA:IB:IC:ID

39/70
Sl @+ @ a2 &+ @)
—— —~ =~ a1aa; ~—~—~ —~ —~—
TH(00) THBIB)  Te(BrBy) S TH(0Q) Tr(QQ)Tr(B,B,) Tr(QQ)Tr(B,B,)
’l)A"
Tr(QOB,B,Q) Tr(QB,B,Q)
a4,/
2470 @+ 2aa3 4 @ ) o +asg”
~— —— ~— ayaz ——
Tr(B,B,)>  Tr(B\B))Tt(B,B;)  Tr(B,B,)? v‘“f—’MTr(QQ) Tr(QQ)?
Te(B,B\B\B,)  Tt(B\B:BoBy)  Te(ByByByB,)°
€1e3(B\B,)(B1B,)
€1e3(BB,)(B,B,)
1 1
+2407/70 ( —s + ) +2a4q3/3 ( a3 -+ a3 )
aras aray ~~ ~~
U2’+’03131 Ug‘-H)Bsz Tr(QQ)ZTr(BIBI) TI‘(QQ)zTI‘(BzB2)
o o Tr(QQ)Tr(QB,B,Q)  Tr(QQ)Tr(QB,B,0)
'UA' ‘elBlBl 1}A’ ’ €3Bsz
- 59 +a3q®/3( 13ata3 + 5af + 5a% )
~~~ S ~~~ ~~~
Tr(Qw,) Tr(QQ)Tr(B,B,)Tr(B,B,),  Tr(QQ)Tr(B,B;)>, Tr(QQ)Tr(B,B,)?,
Tr(Bll//B]),€lBlll/Bl Tr(QQ)Tr(BlBlBlBl), Tr(QQ)Tr(BszB2BZ),
Tr(le//Bz),E‘]le//Bz TI'(QBIBIQ)TI'(BIBl), Tr(QBszQ)Tr(BzBZ),
Tr(QOB,B,B,B,0), Tr(0OB,B,B,B,Q),
(OB))e (B By)e(B1Q) (OB,)e3(ByBy)es(BQ)
39/35 3.79/70
T B S (3.67)
ajasdas arjasy N——
" Tr(QQ)*
U2.+2,0 U/(;'Jr‘OTr(QQ)Z

where the counting can get a bit tedious, e.g., (¢;B,B,)? is a linear combination of Tr(B,B;)? and Tr(B,B,B,B;), and we
have not explicitly listed the 13 different gauge invariant combinations of the QOB BB, B, operators. Note that we only
see monopole operators of the form 1;2‘*’0 to this order but others will contribute at higher order.

The half-indices are given by

A __ B _ e __ D
MN,N,N_HD,N.N _HN,D,N_HN,N,D
9/14(, 2 1
“1+B "+ &+ & >+a421q4/7_a2f1 (w>+w+1)
~—— ~~ ~~ ~—— w
Tr(QQ) Tr(B\By)  Tr(ByB,)  Tr(QQ)? or,
+2a3¢7%( at + @ V4247 ai 4+ 2414 + @)
~— ~~ ~— ~—— ~~
TT(QQ)TT(BIBI) TI'(QQ)TI'(BZBz) Tr(BlBl)z Tr(B]B])Tr(BzBQ) Tr(B2BQ)2
Tr(QOB,B,Q) Tr(QB,B,Q) (€1BB,)? Tr(B,B,B,B) (€2B,B,)?
6152(3132)(3132)
€16;(BBy)(B,B,)
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_ 2g%9/70 Cazal(”%vz + 0103 + 01 + 1)) n (azas(ujuy 4 wyu3 + uy + Mz)))

V10Uy Uy
OB I OB,I3
3,13/14(,,2 1
+ alqdl _aq (w* +w+ )+2a‘2‘q34/35( a + a Y4, (3.68)
S w ~~ ~~
Tr(QQ)* TH(00) 0T, Tr(QQ)*Tr(B,B;) Tr(QQ)*Tr(B,B,)

Tr(QQ)Tr(QOB,B,Q) Tr(QQ)Tr(QB,B,Q)

IV. ORTHOSYMPLECTIC LINEAR QUIVERS

In this section we study the quiver gauge theories with both orthogonal and symplectic gauge groups.

A. SO(N;) x USp(2N,)

The triality of SO x U Sp quiver is depicted in Fig. 5.
The required details for the full indices, half-indices and anomalies are mostly covered in the previous section for
symplectic and orthogonal groups. The extra ingredients required here are

Ny
Q
B
M
Ny Ny
Q ; a
b SO(N) ¢ USp(21s)
()
b be

FIG. 5. Triality of SO(N,) x U Sp(2N,) quiver where N; = 2N, — N, + 2 and 2N, = N, + Ny —2N, — 2. Here ¢, is in the rank-2
symmetric representation while ¢, and M are in antisymmetric representations. Note also that for consistency we must have
N + Ny even.
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\m(l)—m(,j)\ ( ) ( )j: \mg)#»m(‘j)\ ( )j: ( )
1_£¥_1 nHF (J)*. l—fgp— 7 1 J)E,
Z — (g2 a~! 2o NJ ‘m imﬁj| T a s, S; )@ T a Si S )
BiFundSO,—USp,(r’a)_(q a ) D )| D )|
i=1 j=1 (g5 L s DE DT Dl U q)
J >4/ J >4/
W) €
N, +— -1, )
(@' a usi i d)e il
x — , @.1)
Jj=1 —— (F.
(@ ays; "1q)
N |m :tm
ZSmeSp,(r7 a) ( )ZK]
‘m(l 7m<1)‘ \m( )+m( )\

ZAntisyrnSO,(r’ (1) (

n (gl S1 D=1 (D),
a1y (1—’[(q i a’'s;’ s; ,Q)m)

S (qr+ asll)sﬁ'[)_l * q)oo
\m(”+m< )\ (1) €
RN I P !
e (glor —a 1s5 )¥s§_ )¢;q)m n (ql—r+Ta—1)([SE[)i;q)oo 43
X | 1 ""E)*”’j')‘ , ‘1111(1)‘ )+ s ( . )
i<j (qr+ g ) SE) ;q)oo i=1 (g ay;s. ;Q)oo
for the full indices and
n; Ny 1

n, 1 ¢
HBlFundSOI USPJ(V a) = < > < > s (44)
g i1 (gas)" 57T ) (gbas 5 ) 11:[1 (diaxs*9)

HAnnsymSO,(r a) _ <

r -1 r + + n r + ’
i= (ghastsV 7 ) ) \i (ghas 5% q) o) \TTE (GPags ™ )

J

mymUse: _ - 1 . 1 4.6
N (r.a) = H (1) (D-T, H r o (DE (DE, ’ (46)
ij=1(q2as; S; 19) o’ \j<i (qras; S 29 oo

<

n; ny n €
iFun - _r J _r N+ (J)+ _r _ J)+
HEF dso, USpJ(na) _ (HH 1=5 - s '>:F;q)oo(ql Sa 1S() S;) ;q)oo> (H(ql 5a 1){135) 39)00) ’ 4.7)

i=1j =1

~.

ntisym SO, = _r _ -1 u _r _ + + o _r _ + “
IS0 (1 ) = (H<q1 fa1 5050 ;m) (Hml FEPCENY ;q>°o> (Hml ) ;q>m) . 48)
i=1

i,j=1 i<j

Ny Ni
MSDmeSp’(r,a) _ (H (6]1_761 1s(1)s51)—1;q)00) (H(ql_fa_ls( )£ s;l):t;q)oo>’ (4.9)

i,j=1 i<j

for the half-indices. Again, for the orthogonal groups if y; = —1 and ¢; = 0 we must replace sl(.l)jE with £1.
The new contributions to the anomaly polynomials are given by

N
ABiFundSO,—USpJ(QRvQ) = TITT(SJZ) +2N,Tr(sy*) + N1NJ(£ -a+ (gr — Dr)?, (4.10)
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-AAntisymSO,(qR’ Q) = (NI - 2)TI‘(SIZ) + W(ﬂ -a+ (qR - 1)1‘)2, (411)
Asymusn (a.a) =(N; + DTx(s?) + 2D (g g (g -1y @.12)

B. SO3)xUSp(4)-[7] (Ny=3,N,=2,N;=17)
Here we have N; = 3 and N, = 2 so the gauge group for theories A, B and C is SO(3) x U Sp(4).
The supersymmetric indices agree with each other. For rz = 2/5 and r, = 1/2 the expansions of full-indices are’

gl g1 g3/
M =1% =1 =1+421d3¢"* + 5=+ —F + —<= +alq*® + Taja,q""/* + 28a}ajq®/"°
——  aja) aj ajal  ~——~
Tr(QQ) — \:0" ‘\:: Tr(BB)? eBBBQ Tr(Q(BB)Q)
L'A. UA' 1/‘A
1 1 z 7
+(231ai— 50 )q+< 72 42+ >q23/2°+< p) e R )q6/5
— —~ gl a1a; dyd; a apa;
o0 Tr(Q¥,) Dot —— ~ —~
TI’(BI//B) v "BY172Q v, Te(QQ) v, T Tr(BB) v Tr(QQ) v TBMIT?Q
21 5/4 1
+ ;1 — + q13/1°< 4244 +— 14) 4o (4.13)
aja; N—— , aja,
v:iTr(QQ) TI‘(QQ)TF(BB) ’ 02
Tr(BB)Tr(Q(BB)Q)

The half-indices are given by

7¢%*(ay(Wiwy + wiw3 +wy +wy))
wiwy

]]]IA — I8 :HC :1+21a2q1/2_ +a4q4/5+7a3azq17/20
v = o = My 29 NN S

Tr(QQ)

Tr(BB)? eBBBQ
or,

+‘12q9/10 — 28a? -|-1;_|_1+1 _7(]19/20(a1a2(1)2—|—y+1))

Tr(Q(BB)Q) €BBT, QBT

1 1 1
+q<231a‘2‘ +u+—+w%+—2+w1w2+&+ﬁ+ +w§+—2+3> 4+ (4.14)
N——" v w1 wi %) wWiwy w5

Tr 2
(C0) INTEREIE

C. USp(2N,) x U Sp(2N,) - [N;] x SO(N5)

For consistency we need N3 + N, to be even. The dualization of the U Sp(2N,) gauge node gives a U S p(2N, =
2N, 4+ N3 + Ny — 2N, — 2) gauge node, all three gauge nodes have N flavors, there are antisymmetric rank-2 chirals for
USp(2N;) and SO(N3), and a singlet chiral in the antisymmetric rank-2 representation of the flavor symmetry SU(N).

We propose the quadrality in Fig. 6.

D. USP(Z) X USp(6> - [5] X S0<3) (Nl =1,N2=3,N3 =3,Nf=5>
Here N, = 1 so the dual theory has gauge group U Sp(2) x U Sp(2) x SO(3).

%See also [28].
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Ny
Q
By B>
Ny Ny
Q Q
b1 B> By b2
o ba
M
Ny
P1 g 2
& ~ C2
USp(2Ny) USp(2Nz) SO(N3)
¢1 C3 ¢2

FIG.6. Quadrality of U Sp(2N,) x U Sp(2N,) — [N;] x SO(N3) quiver where Ny = N, = Ny — 1,2N, = 2N; + N3 + N; — 2N, —
2 and N3 = 2N, — N5 + 2, and we need N5 + N + to be even. Note that ¢, @L, @2, and M are in antisymmetric rank-2 representations
while ¢, is in the symmetric representation.
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The full indices are given by

IA:IBZIC:ID=1+q2/7(
19293

+ g*® <20a%a% +15a3a3 +

10 1 55

L j0a) s args s 47 g (10 S
a2a5a3+ a; | +ayq’" +—s=+4q 733173 10a6+ a

ayaas aja,as  apa-as

¢*"/¥(10a3a}a3 + 1)

1
3 .26/35
i ) L U e i

aya,-das

1
+ ¢*3 (a‘l‘ +}+ a‘3‘> =+ q6/7<
1
The half-indices are given by

A __TmB _ C _ 1D
My = p v = Wiy p e = Wy

=1+ 10a3¢*" + a3¢* + 55a%q*" —

+5a,a3¢%% + ¢*> (al + af) -

apazas

86+ 6,15 9+ 2 (415)

3+220ag> +--
ajay’ay  aya,a;

5¢" " (ay(w* + 1))
w

+5a3q*¥3 (4a2 + 3a2)

5¢°°0(aya3(vivy + vy (V3 4 va + 1) + 17))

a3q’" (vjvy + 01 (13 + vy + 1) + ;) 50¢"3 (a3 (W + 1)) N

U102

+220a8¢%7 —

U102

For these indices and half-indices we do not write the
explicit operators contribution to each term as these can
easily be understood from the previous discussions.

E. USp(2N,) x SO(N,) — [Nf| x SO(N3)
Here we need N, to be even. Dualizing the SO(N,)
gauge node leads to an SO(NZ =2N;+N3+N;— N, +
2) gauge node and all three gauge nodes have N flavors,

there are bifundamental chirals for each pair of gauge
nodes, there are symmetric rank-2 chirals for U Sp(2N,)

(4.16)

and SO(N3), and a singlet chiral in the symmetric rank-2
representation of the flavor symmetry SU(N ).

The proposed quadrality of the U Sp x SO x SO quiver
is illustrated in Fig. 7.

F. USp(2) xSO(4)-[1]-S0(2)
(N1=1,N2=4,N3=2,Nf=1)
Here N, =3 so the dual theory has gauge group
USp(2) x SO(3) x SO(2).
The full indices of theory A and theory C perfectly
match. They are

11/70 1/5 11/35 5/14 31/70 33/70
P=pp=pc=p=14+d 4T 2o 4 GV LI A B S
aja,a3  aj adalal  ala,adj al ata3  al*a3db
a2q 7B g 028 4240 +1) L s e 1 1
+— 12 2 4 [P R LA Al Uowrie alos -y sl v
aj aj*ajas al*a,a3 aij alay  aj
22/35 9/14 47/70 1
q arq q 2 24/35 2
al®a3ad  dba3  al%aia§ 2 al } (4.17)
The half-indices are given by
9/14(,,2 1
H?V,N,N — H%,N,N - H/C\/,D.N — H/?f,N,D =1+ a%q2/7 + ang/s + a§q4/7 _ g (Ww—i— w+1) + 2a%a%q24/35
24 (ayaz(vivy + 103 + v + v
+q4/5(2a%a%+a‘1‘+2a§)— q ( 2 3( 1 12}102 103 1 2))+agq6/7
3 13/14(,,2 1
_@q (w*+w+ )+2a421a%q34/35+”. (4.18)

w
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Ny
Q
By By
Ny Ny
Q Q
bl Bz Bl b2
b ba
M
Ny
P1 g 2
& ~ C2
USp(2Ny) SO(N>) SO(N3)
¢1 e ¢2

FIG. 7. Quadrality of U Sp(2N;) x SO(N,) — [Nf] x SO(N3) quiver with even N, where 2N = N, —2N; —2, N, = 2N; + N3 +
Ny =N, +2 and N3 = N, — N3 +2. Note that ¢, ¢!, ¢2 and M are in symmetric rank-2 representations while ¢, is in the

antisymmetric representation.

Again, for these indices and half-indices we do not write
the explicit operators contribution to each term as these can
easily be understood from the previous discussions.

V. UNITARY LINEAR QUIVERS

We now come to the case of unitary gauge groups.
Again, for two gauge nodes the general description of these

bulk dualities was given in [28]. We will generalize this to
include Chern-Simons levels (see also Ref. [26]) and to
cases with additional gauge nodes. As we will discuss, we
expect the duality extends to the case with boundary in a
similar way to the symplectic and orthogonal cases, but it
appears we need to include 2D charged chiral multiplets
(not just Fermis) to cancel gauge anomalies and match
’t Hooft anomalies. This complicates the evaluation of the
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half-indices by requiring use of the JK residue prescription
which we leave to future work. Here we discuss the
anomaly cancellation and matching, and simply conjecture
the dualities with boundaries.

A. U(Ny) x U(N2) = [Ny]

We summarize the case with two gauge nodes which was
presented in [28]. We start with theory A, and U(N;) x
U(N,) gauge theory with bifundamental chirals B and B in
the (Ny,N,) and (N, N,) representations, as well as N
chirals Q in the fundamental representation of U(N,), and
N, chirals Q in the antifundamental representation of
U(N,). For now we fix N, = N, and consider cases with
N, # Ny to arise from integrating out some fundamental or
antifundamental chirals. The Chern-Simons levels vanish
(but can be generated by integrating out fundamental and/or
antifundamental chirals) but in comparison to orthogonal
and symplectic gauge groups we have U(1) topological
symmetries and background Fayet-Iliopoulos (FI) terms.
Theory A has vanishing superpotential.

Provided N| = N, — N; > Othereis adual theory B given
by Seiberg-like duality on the U (N ) gauge factor. The result
is a U(N,)x U(N,) gauge theory with bifundamental
chirals » and b in the (N, N,) and (N, N,) representations,
an adjoint chiral ¢, of U(N), as well as N ; chirals Q in the
fundamental representation of U(N,), and N, chirals Q in
the antifundamental representation of U(N,). We also have
gauge singlets 6 which are dual to monopoles in theory A.
|

The Chern-Simons levels vanish but we again have back-
ground FI terms. The superpotential is given by
W = o5v5" 4 Tr(bg,b). (5.1)
Provided Ny =N, - N, + N ¢ 2> 0 there is a dual theory
C given by Seiberg-like duality on the U(N,) gauge factor.
The result is a U(N,) x U(N,) gauge theory with bifunda-
mental chirals ¢ and ¢ in the (N;,N,) and (N,,N,)
representations, an adjoint chiral ¢, of U(N,), as well as
Ny chirals p and g in the fundamental representations of
U(N,) and U(N,), and N, chirals p and g in the anti-
fundamental representations of U(N ) and U(N,). Again we
have gauge singlets o7 which are dual to monopoles in
theory A, but now also an additional N x N, matrix of
singlets. The Chern-Simons levels vanish but we again have
background FI terms. The superpotential is given by

W = 0Evl™ + Tr(eg.c) + Tr(qep) + Tr(g ¢ p)

+ Tr(gMg). (5.2)
The triality of the U x U quivers is shown in Fig. 8.
The global symmetry group is given by a SU(N;) x

SU(N,) flavor symmetry, two axial symmetries U(1),, %

U(1),,, two topological symmetries U(1), x U(1),, and

the U(1), R-symmetry. The following table lists the charges

and representations of the fields in each theory (for simplicity
still restricted to the case N, = Ny).

SUN,) | SUWN,) | U, | U, | UQ), | UQ), U(1)g
B.B 1 1 0 0 1 0 rg
Q N; 1 0 0 0 1 ro
0 1 N, 0 0 0 1 ro
b.b 1 1 0 0 -1 0 1—rg
b 1 1 0 0 2 0 2rg
0 N¢ 1 0 0 0 1 ro
0 1 N, 0 0 0 1 ro
o5 1 1 +1 0 —N, 0 No(1 —rg) = (N, = 1)
c, 1 1 0 0 -1 0 1—rg
b 1 1 0 0 2 0 2rp
P N¢ 1 0 0 1 1 rg+7rg
P 1 N, 0 0 1 1 rg+ro
M N¢ N, 0 0 0 2 2rg
q N¢ 1 0 0 0 -1 1-rg
g N, 0 0 0 -1 1-rg
oE 1 0 +1 —N, —N; Ni(1=rg) +N(1=rg)— (N, — 1)

(5.3)
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®b

M
Ny
D, P q,9
c,C -
U(N2)

e

FIG. 8. Triality of U x U quivers where N; = N, — Ny and N, = Ny 4+ N; — N,.

B. Supersymmetric indices for unitary
gauge theories

Our notation for the indices [49—-54] for the unitary cases
is similar to that for other gauge groups. However, we now
have separate fugacities x and % for the SU(N,) and
SU(N,) flavor symmetries and we introduce fugacities
21, 2o for the topological symmetries.

The superconformal indices for theories A, B, and C are

IA = Zgalugezgugezmatterm (54)
If = Zg;llllgezz‘[;]az“gezmatterB’ (55)
IC = Zgilugezgztzugezmaner C» (56)

where

1 N sl o m?
Uy E | | i Dykym' My
ZgaUge = N]'f < (N (_SS ))k L >

mez =1 27is;

I

N
_\ 7V () _ () n _
X g D ity = |/2| |(1_q\ iy \/2S§1)S§1) 1)’

i#]

(5.7)

and

N
ZmalterA = ZB.BZQ/ZgGv (58)
N¢ N,
Zoawers = 252,20 22 Zo. (5.9)
Nt Ny NN N7 N,

ZmatterC = ZC.EZ¢(ZPfo) ZMf Z‘IIZ("; Zo'zizzrg' (510)

Above we have included Chern-Simons levels k; for U(N)
etc., but for now we take these levels to all vanish. Note also
that for U; = U(N,) the topological symmetry is the same
as for U; = U(N;) so in both cases we label the fugacity z;.
There can be a nontrivial mapping of topological fugacities
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under Seiberg-like duality. Specifically, while the fugacities
in theory B are the same as those in theory A, in theory C
the matching requires the replacement of z, — 1/z, and
Z1 = 212». Indeed, this mapping for theory C is to be
expected from the mapping of FI terms as seen from
analysis of contact terms in similar contexts of Seiberg
duality [30,85,91,116] and it was observed explicitly in this
context in [28]."" The reason the mapping is trivial when
the gauge node being dualized is only attached to other
gauge nodes, i.e., has no flavors, is not entirely clear.
However, the explanation seems to be that the same
mapping holds'' but is a symmetry exchanging some
monopole operators. This can be seen explicitly in the
examples later in this section. Note also that for a single
gauge node the index is symmetric under the inversion of
the topological fugacity z — 1/z so this mapping of
topological fugacities also cannot be observed in those
indices.
The matter contributions are given by

Zg = Zpirundv, -, (7B, @1)s (5.11)
Ny
Zyg = ZNfFundUZ(rQ,az), (5.12)
Zz@va = ZNuAntiFundUz(rQaaz), (5.13)
Zy; = Zpirundv,-v, (1 — rg. ai'), (5.14)
Zy, = Zagiv, (2rp. a3), (5.15)
Z, = = ZSmg]et( opo Zl _ZNZ), (516)
Z. = Zgirwnav,-v,(1 = rp.ai’), (5.17)
Zy, = Zagiv,(2rg. ai). (5.18)
N
Zy' = Zrunau, (18 + 1o, a1ay), (5.19)
N
Zﬁf = Zantirunav, (78 + 7, a1a2), (5.20)
7N _ 7 (1- ) (5.21)
q Fund U, rog.d, ), .
N f—
qu :ZFundUz(l_rQ’azl), (5.22)
2N,
Z A ZSmglet( oc? Zz ZNIGQ f), (523)
where r,, =(1-rg)N,—(N,—1) and r,_ = (1 — r)N,+

(1=rg)Ny=(N,—1) and

'"The mapping given in [28] differs by exchanging the indices

1 <> 2 on the topological fugacities but this appears to be a typo.

i.e., specifically z; - 1/z; and z, - 7,2, for the map to
theory B.

N; Ny i
ZBlFundU, UJ ra HH - "a _2 m —m b/2
i=1 j=
1+(|m=m|=r)j2 -1 (DF ()£,
L a='s;s] i)
(q(|m —m H—r) asl(l)isgj)q:;q)oo
(5.24)
Ny N, 1
l “a —2 -2 |m |/4
FndU, )
wr = 11
5 (q1+\m )=r)/2 —1( ()) 1 ;1’61) 5.25)
(q \m |+r)/2as( )x q)
N, N,
—rg- 1
AntlFund u, — HH - 2 ) ‘/4
a=1 i=
<q1+<'m» TG s ()
(q(|m 412 ( l(l))—lxa;q)oo ’ ’
N N_p /4
g, = [ a0
ij=1
m’—m —r — 1
(qlﬂ -n/2, 1(85)) ]S;);q)oo 527,
mD =D 1), (- ’ :
(g 2as () ).
NfN Hl_a[ 1 rQaz Xy x/;,q) (5 28)

a=1p= rQaZ'xaxﬂ 7¢])oo

C. Boundary ’t Hooft anomalies

Initially, we focus on the following sets of boundary
conditions:

(i) (N,N,N,N,N,N) for (VM;,VM,, B, B, 0, Q) in

theory A.
(i) (D,N.D,D,N,N,N,D) for (VM;,VM,, b, b, ¢,,.
0, 0,03 in theory B.
(i) (M,D,D,D,N,N,N,N,D,D,D) for (VM;, VM,
¢, & e, p,pM,q,q,0&) in theory C.
We will see that with suitable additional 2D boundary
multiplets, we can cancel the gauge anomalies for the gauge
group factors with Neumann boundary conditions, and
match the anomalies.

For the multiplets we have discussed the contributions to
the anomaly polynomial are given by the following
expressions [40,48] if we have Dirichlet boundary con-
ditions. For Neumann boundary conditions we just take the
opposite sign. Taking the multiplets to have R-charge ¢y, a
vector of U(1), charges ¢ we have

2

N
Ay oy, = =N, Tr(sy?) + Tr(sy)* - TIrz, (5.29)

086023-33



TADASHI OKAZAKI and DOUGLAS J. SMITH

PHYS. REV. D 105, 086023 (2022)

N N
Ax, Funav, (qr: @) = —LTr(x?) + —fTr(Slz) + 2N,Tr(sy)(g-a+ (qr — 1)r) + N;Ns(q-a+ (gg — 1)r)?,

2 2
Nio ooy Na 2 2
An, AniFund v, (qr- 9) = 7Tr(x ) +7Tr(s1 ) —2N,Tr(sy)(g-a+ (gg — D)r) + N;Ny(g-a+ (qg — Dr)%,

N N
Asirundv,-v, (qr: q) = TITT(SJZ) +71T1”(512) +N;N;(q-a+ (gg—1)r)?,

+ (NyTr(sy) = NTr(sy))(g - a+ (gr = Dr),

N2
Angjv,(qr-9) = N, Tr(sy?) — Tr(sy)? + 71 (g-a+(gr— r)2.

In this notation s; is the U(N;) field strength, a is a vector of U(1), field strengths.

(5.30)

(5.31)

We then find for N, = N the following anomaly polynomials for the bulk fields, including FI contributions 2s;y; or

25,y, for each U(N;) or U(N;) gauge group factor where y, are the topological U(1) _ field strengths

y

Af\/l?xl\lfll,(z\/.N,N.N = NiNya7 — NoN a3 + 2N Ny (1 = rp)a;r 4 2N,N (1 — rg)aor
+ <% (N1 = N3)? + N Nyrg(2 —rg) = NoNg(1 - ”Q)2>1'2 +Tr(sy)* + (N, = N,)Tr(s})
—Tr(sy)* + (=N + Ny — Nj)Tr(s3) + 2y, Tr(s) + 2y,Tr(s,) — %Nz(Tr(x%) + Tr(x2)), (5.32)
BE\?PZ),D,N.N,N.D = NiNsaj — N2Nfa% + 2N Ny(1 = rg)a;r +2N,N4(1 — rg)a,r
+ (% (Ny —N3)? + N Nyrg(2 = rg) = NoNy(1 — rQ)2> r’ + (=N; + N, — N;)Tr(s3)
+Tr(8;)> + Ny Tr(87) + 2y, Tr(8) + yi + 2y, Tr(sy) — %Nz(Tr(Xﬁ) + Tr(x2)), (5.33)
A vy oo = NiN2ai = NoNgas + 2N No(1 = rg)air 4+ 2N,N (1 = rp)asr
+ G (Ny = Ny)* + N Narg(2 —rg) = NoNy(1 - rQ)2> r’ + (N, — Ny)Tr(s?})
+ Tr(8,)* 4+ N, Tr(83) + 2y, Tr(sy) + 2y, Tr(8,) +y5 — %Nz (Tr(x7) + Tr(x7)). (5.34)

Recalling that Ny = N, — Ny and N, = Ny — N, + N, and that due to the D boundary conditions U(N ) and U(N,) are
global symmetries on the boundary, whereas U(N;) and U(N,) are gauge symmetries due to the A/ boundary conditions,

we can cancel all gauge anomalies with the following 2D multiplets.

UNN,) | UNy) | UWNy) | UWN,) | U), u(),,
Fermi m det 1 det™! 1 -1 0
Fermi 1 1 det 1 det™! 0 -1
Fermi | T N; 1 N, 1 0 0 (5.35)
Fermi I, 1 N, 1 N, 0 0
Chiral 11 det 1 1 1 0 0
Chiral X2 1 det 1 1 0 0

In particular, subject the ambiguity described below, we need to include
(l) N, N2, Fl’ Fz in theory A.
(ii) #,, Iy, y» in theory B.
(iii) 7y, I'y, ¥; in theory C.
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Including the contribution of those 2D multiplets in each theory all gauge anomalies are cancelled and the resulting

anomaly polynomials match

ATOtal = NlNZa% — Nsza% + 2N1N2(1 — rB)all'—F 2N2Nf(1 - rB)azr

2

- - 1
+2y1Tr(8)) +yi +2y,Tr(3y) +y5 — §N2 (Tr(x3) 4 Tr(x7))-

It should be noted that conjugate representations give the
same contribution to the anomaly polynomial, so we cannot
distinguish between them here. For Fermi multiplets this is
not important as conjugate representations also give the
same contribution to the half-index. However, for 2D
chirals the contributions are not quite the same, so we
should also consider the possibility that the chirals y; are in
the det™! representations.

While the theory A half-indices can be straightforwardly
evaluated, due to the presence of 2D chiral multiplets the
theory B and C half-indices cannot be evaluated simply by
taking a contour around the origin. Instead it is necessary to
use the JK residue prescription [94-96]. This involves some
computational complexity so we do not evaluate these in
this article, leaving the issue of checking the matching of
half-indices to future work.

We could also consider the case with all boundary
conditions reversed. As for the symplectic and orthogonal
|

1
+ < (Ny = Ny)* + N Nyrp(2 — rg) = NoNy(1 - VQ)2> r? 4+ Tr(8;)* 4+ N Tr(87) + Tr(8,)> 4+ N,Tr(s3)

(5.36)

|
groups we can cancel the gauge anomalies and match the
global anomalies by rearranging the bifundamental Fermis,
but now we also need to change the sign of the topological
charges of the bideterminant Fermis. As there are fewer
constraints from canceling gauge anomalies in this case,
there are two obvious ways to include the determinant
representation 2D matter to match anomalies. In particular
we find either

(1) 1, x> in theory A.

(i) #}, T'y, x; in theory B.

(iii) 75, I'y, y, in theory C.
or

(iv) None in theory A.

(v) 7}, I'1, 7, in theory B.

(vi) 15, T, 1 in theory C.
where we have defined the following additional 2D matter
multiplets

UNN,) | UN,) | UNy) | UDN,) | U(l),, u(l),,
Fermi m det 1 det™! 1 1 0
Fermi | ) 1 det 1 det™! 0 1 (5.37)
Fermi ¥ det 1 1 1 0 0
Fermi i 1 det 1 1 0 0

D. U(1)xU(2)-[2] (Ny=1,N,=2,N;=N,=2)

We have checked that the three supersymmetric indices coincide. For rg = 1/5, ry = 3/8 we find the full indices

21/40

M= =1=1+aq"’ +4a3 + ol + I cn o v ot g+ 8daeV Y +atgs

Hﬂ-/ R:_/ \c-/ A145 ——— N — \c-/

Tr(BB) Tr(0Q) Tr(BB)? vt of* Tr(QQ)Tr( B 3)7 Tr(BB)?

Tr(OBBQ)
a g 1 -1 -1 4 3/4 4.2 31/40 4/5 8 1 -1
+ 2 (z1z2+ 275 + 20+ 25") + 10a5¢7* +  8ajaiq +q al —I—;(zl—l—zl )
) e——— Y — —=— ~~ 1

v Tr(BB) o5 Tr(BB) Tr(QQ)? Tr(QQ)Tr(BB)?, Tr(BB)* T

.~ - Ua

Tr(QBBQ)Tr(BB)
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4910 3 37/40
+ (12 + 7l + 1+ 5t + L (ziza+ 7' + 2+ 5!
ap N e N’ as N e’ N——
v TH(00) 5 Te(00) v Tr(BB)? o Tr(BB)?
+  2541a3q"  + 8P +( 4’ - 10 )g+ - (5.38)
ﬁ_/ ~\/ .
Te(QQ)Te(BB).  Tr(QQ)Te(BB)’,  med PvnfvnLretye
Tr(QQ)Tr(0BBQ)  Tr(OBBQ)Tr(BB)?

To this order we have identified all the operators in
theory A which contribute. Note that the contribution at
order ¢'%?° would naively have a coefficient 26 from
Tr(QQ)? Tr(BB) giving a contribution 10 to the coefficient
and Tr(QQ) Tr(QBBQ) giving a contribution 16.
However, noting the particular gauge groups involved, it
turns out that there is one linear relation between the 6
operators which would generically be formed in these ways
from Q', 0%, Q', 0%, B, B. Therefore, the coefficient is in
fact expected to be 25, in agreement with the index
calculations.

While the identification of operators above is given for
theory A, we can make the identification in theories B and
C too. The details of the operator map are given in [28] and
are similar to the maps for the symplectic and orthogonal
gauge groups so we do not repeat them here.

E. Chern-Simons levels

As is well known, we can also generate nonzero Chern-
Simons levels by giving large positive or negative masses to
the chirals Q as first derived for unitary groups by taking a
limit of the partition function in [112], following the
original proposal using brane constructions in [3]. We
can also generate nonzero Chern-Simons levels by giving
large positive or negative masses to the chirals Q and Q. In
the simplest case we start with N;=N, =N+ [k|
fundamental and antifundamental chirals and give masses
(of the same sign) to |k| of them to leave Ny = N, = N [

|

fundamental and antifundamental chirals. This generates a
Chern-Simons level k for the U(N,) gauge node in theories
A and B with k£ > 0 by sending the masses to oo and
k < 0 by sending the masses to —oo. There are no other
changes to theories A and B so the result is that the duality
holds for arbitrary Chern-Simons level k for U(N,).
However, the effect on theory C is more involved. In the
case where we send the masses of || multiplets Q and Q to
+o0, in theory C we must also send the masses of |k|
multiplets ¢ and § and of 6 and o to F oo while also
sending the masses of |k| multiplets p and p to +oco. This
modifies theory C by having N, = N, — N, —I—Nf + ||
while having N ¢ flavors, removing the oz multiplets,
and giving gauge group with Chern-Simons levels
U(N1) x U(N2)

F. U(1) x U(2); ~ [2- k] (Ny=1,N,=2, 8 =2 k]

By sending some or all chiral flavor masses to infinity for
the example given in section VD, we can produce
examples with k = £1 or k = 2 where theory A has
gauge group U(1) x U(2), with 2 — |k| flavors, theory B
has gauge group U(1) x U(2), with 2 — |k| flavors, and
theory C has gauge group U(1), x U(1)_, with 2 — k|
flavors and no ¢ multiplets.

For k =2 we have removed all flavors and we find
agreement of the full indices given by

4/5(,,10 1
g (a’ +z1+7)
H=18=1C=1+alq"’ +atq*’ +alq*/ + ]az Lt (al=2)g +al?g®>
1
8/5(420,2 1 4 4 1 1
+a}4q7/5+q (a1 lejZHr )+ (aig—l—;)qgﬁ—i—(a%0—3)q2+a%(a%0—2)q11/5
1 1

4
1
+1)+ 26 13/5+( 1

ql2/5( Z _|_Z1
+ a3
a)y
16/5 10 41
q ( —4a, +Zl 7)
+ 3 - +a‘11<a?0

aj

a0 4 2)g'4/3
2

_2)q17/5_~_a?6q18/5+

1
+q <a§0+z1 +—)
21

g3 (a7, =223 + 7, -2) .
a%Z1

1

(5.39)
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We can see that, at least to order ¢, the indices agree with
the results for the k = 0 case given in equation (5.38)
subject to the removal of all terms (in the theory A
interpretation) involving the fundamental chiral multiplets
(containing Q and y/ ) or any monopole operators with flux
in the U(2) gauge group—monopoles with flux only in

U(1) survive.

1,1

1, ¢
U(Ny)

¢l

G. U(Ny) x U(N) - [Ny| x U(N3)

As for the previous gauge groups, we can easily general-
ize to a linear quiver with three gauge nodes, with a theory
D corresponding to dualizing the U(N;) gauge node. These
theories are described by the quiver diagrams in Fig. 9. The
structure of theory D is the same as of theory B while, up to
some notational differences, theories A and B are the same

M

Ny

c3,C3

¢2

FIG. 9. Quadrality Of U(Nl) X U(Nz) - [Nf} X U(N3) quiVerWhere Nl = N2 —Nl,Nz = Nl +N3 +Nf —N2 andN3 = N2 —N3.
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as for the case of two gauge nodes other than the
additional U(N3) gauge node and bifundamental matter
connecting gauge nodes 2 and 3. The generalization of
theory C to the case of three gauge nodes is a little more
involved but still straightforward. The theory C super-
potential is given by

2
W =o'+ Z (Tr(¢¢tcy) +Tr(gepr) +Tr(ge; )
=1

+Tr(C|C2C3)+TI'(Z’152€'3)+Tr(qu>. (540)

z
JA— B _JC_ D _1 —|—4a§q2/7 _,_qz/s(a% +a§) + 10a‘2‘q4/7 +q3/5( 1T +

@0z 4+ 1) (25 4+ 1) (212323 + 1)

The topological fugacities are mapped nontrivially but in a
generalization of the result for the case of two gauge nodes
so that in theory C (assuming N, # 0) we need to replace
21 = 2122, 20 = /25 and z3 — 2523.

H.U1)xU2)-[2]xU(1)

Theory A and its dual theory C, by dualizing the U(2)
gauge node, are given by the quivers in Fig. 9. We have
confirmed that the full indices match. For rz = 2/5 and
ro = 2/7 they are given by

+a d+1

2 2

+8a2%35 (a2 + a2
a @z ) 24 ( 1 3)

+q*(at + a3)* +

1

21+ 241
+ 4a3g*"/®» <—a2 a9y 32 +25a3q3 B (a2 +ad) + - -
1

VI. CIRCULAR LINEAR QUIVERS

As we have confirmed Seiberg-like dualities of linear
quivers, we generalize the dualities to circular quiver gauge
theories. This is very straightforward. We just introduce an
extra bifundamental multiplet to connect the two gauge
nodes at the ends of the linear quiver. Dualizing any interior
gauge node is the same with the additional bifundamental

a1a§a311Z2Z3

+20a8¢%7

(5.41)

[
present in the original and dual theory, and the super-
potential is not altered by the presence of this additional
bifundamental. dualizing the end nodes is changed, but
now they dualize in the same way as all the other nodes. We
illustrate with some examples with three gauge nodes and
due to the symmetry we focus only on the dualization of
what was the middle node (i.e., to theory C).

FIG. 10. Circular quiver with gauge group USp(2) x USp(6) x USp(2) and its dual circular quiver with gauge group
USp(2) x USp(2) x USp(2). All chirals ¢!, ¢2, and M are in antisymmetric rank-2 representations.
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A. Circular U Sp(2) x U Sp(6) - [6] x U Sp(2) symmetry with fugacity a4. Theories A and C are sum-

These theories have the same field content as the linecar ~ Marized in the quiver diagram in Fig. 10.
quivers described in Sec. Il H, with the specific example in The fullz-mdlcesz match for theory A and C. For
Sec. 111, with the addition of a bifundamental chiral for the rg =rc =3 ro =7 we have
two U Sp(2) gauge nodes with an additional U(1),, axial
|

/35 15¢22/3

12,
q
1+ 15(1%6]2/7 + m + qz/s((l% + a% + aﬁ) + 120a§q4/7 + a1a3a4q3/5 + W
1%2%3 1#2%3

! q26/35<a2 + a3 +d3)
n q24/35< 55 + 30ata3 + 15a3(243 + aﬁ)) + 12 6 23 :
ataldl aya,as

+ ¢*5(a}(2d3 + d3) + a} + ada; + ai + af) + 680a5¢®7 + Sla,a3azasq’'/?

120433 a,q% 15
+ + + Y/ +345a%a + 15a%(23a% + 842
alala’ ayaSa, 9 atal®ay 172 2(23a3 3

L P03 (RGBT 4 1y 3041444)
+ q(ajazay + ayazas(a3 + a3) = 39) + ] 218,46 :
2“3

¥ (6abala}(16a2 + 5a3) + 15a}al*ad(2a3a2 + 243 + a}) + 30adal*al + a? + a3 + a3)

+
i 124
aya,-as

q*7(aYa3ai((3060ay" + 2)a3 + a3) + ajaja; + aj(afa; + afaj + a3al + 1) + af)

+
aSaSalal
679
+ 660, a4 ayasg*/> + ¢%5 (at (242 + a3) + A (3a3d? + 2% + at) + oy
193
. 43/35
a(d+a aaa S51a
b - MDD DO s el + o) + T o0
asay a aa,as
i
: 1

e 2

FIG. 11. Circular quiver with gauge group SO(2) x SO(4) x SO(2) and its dual circular quiver with gauge group
S0(2) x SO(3) x SO(2). All chirals ¢,, ¢, ¢2, ¢4, and M are in symmetric rank-2 representations.
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Compared to the noncircular linear quiver with the same
gauge group for theories A and C we see that there are
obvious additional terms arising from the new gauge
invariant operators constructed using the new U Sp(2) x
U Sp(2) bifundamental fields B;. For example, we have
Tr(B3B3) contributing ¢g*/°a2 and Tr(B;B,B5) contribut-
ing ¢*a,aza,. Also, due to the circular quiver structure,

monopole operators with fluxes for either U Sp(2) gauge

node have larger R-charge. For example the vgii and

3% bare monopole operator contributions now appear at
order g%/ with fugacities 1/(a2aSa$a?) and 1/(a%aSa%a3).
|

The half-indices will similarly match and can be under-
stood in term of the noncircular quiver with the additional
terms involving B;. We do not list the half-indices here, but
we do give an example in the next section with a circular
quiver with orthogonal gauge groups.

B. Circular SO(2) xSO(4)-[1] x SO(2)

The theories are similar to the linear quivers in Sec. III F.
Inthisexample, summarized in Fig. 11, we have the dual gauge
theory whose gauge group is SO(2) x SO(3) x SO(2).

The full indices are given by

JA — B — JC = 14+2a2¢"* + &2q?" + ¢/3(d% + @) + 3alq'? + 4a,asa,q? V%0 + 2a3a2q'S/
q39/70
2a2q13/140
+ 8aya3a3¢>V/* + 3a3aiq" /1 + 2% (a} + a2)? + —5——— + 8a ddaza,g**0
aja,a;
9/70
+ 2a%a’q®/* + MT +a$q®" + 7a3q® "% (vy(a} + a3) + 8ayaza,g’’/*0(a} + d3)
193
2057/70(@2 + a2
+ 8a3a3q"V/10 (a3 + a3) + 1 2( L ) +2a3q*/ 5 (at + ad) + - (6.2)
ara,a;
The half-indices are given by
I+ =< =TI¢ =T?
NNN =™ "DNN = “NDN =~ “NND
= 14+2a2¢"* + &2q?" + ¢/3(d% + &2) + 3alq'? + 4a,asa, 2V + 2a3a3q'S/
9/14
a w2 +w+ 1
+ adq* - 24 " ) +4a2q"(a? + a3) + 2a3¢*3 (a? + a3) + 4alqP*
+ 8aya3alq? 7 + 3a2alq" VM + 2445 (@ + a2)? + 8addasayg? 0 + 2a8a3 ¢
_2¢7%a,a, (070303 + 01 (V303 + 0203 + vy + 03) + Vy03)
AR X %]

2459/70 2 2 2

_2q ayas(uiuyus 4 uy (uzuz + upusz + uy + uz) + uyu3) +aSqt - (6.3)

Uyl Uz

The full index and the half-index can easily be compared
to the linear noncircular example in Sec. III G. In the
circular case here the full index is the same with the
addition of gauge invariant operators which can be con-
structed using the bifundamental B; linking the first and
third nodes in the quiver. Note that there are some specific
features arising from the fact that in this example the first
and third gauge groups are SO(2). For example, the aZq'/*
term has coefficient 2 since we can construct two inde-
pendent gauge-invariant operators from B;B;. These are
Tr(B,B5) of course, but also €,e3B3B5. The a,a,azq*'/*°
term illustrates the circular nature of the quiver, getting a

|
contribution from Tr(B;B,B3). The coefficient 4 is due to
the fact we can replace the contraction of either or both
SO(2) index contractions with ¢; and/or e;. The story is
similar for the half-index, with the additional point that the
Fermis I'; and I'; are different from the noncircular case.
Here they are in bifundamental representations of SO(2) x
SO(6) rather than SO(2) x SO(4) as the circular nature of
the quiver modified the dual group for the end nodes.

C. Summary

It is now straightforward to generalize to linear quiver
gauge theories with n gauge nodes. Let G;, i = 1,2, ...,n
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Bi 21

M;
F;
Di-1, i i1,
bi—2i—1 bi—1, N biit1 bit1,i+2
i—1 G; it+1
bi—1iv1
bi—1 Dit1

FIG. 12. Dualization on the ith node of gauge group G; in linear or circular quivers.

be a classical gauge group of the vector multiplet of ith
node which is coupled to F; fundamental chiral multiplets
Q, and bifundamental chiral multiplets B; ;; and B;;,
which are also coupled to (i — 1)th node and (i + 1)th
gauge nodes.

One can find n dual theories by taking the Seiberg-like
dual of n distinct gauge nodes. When the ith gauge node of
gauge group G; is dualized, the resulting theory has similar
fundamental chirals ¢; and bifundamental chirals b;_; ;,
b; ;+1 with modified charges as well as additional bifunda-
mental chirals b;_; ;. between the adjacent gauge nodes
G;_; and G;yy, F; chirals p,_; transforming as the
fundamental representation under the G,_;, F; chirals
Pi+1.; transforming as the fundamental representation under
the G, chirals ¢,;_; transforming in a rank-2 representation
under the G;_;, chirals ¢; | transforming in a rank-2
representation under the, G;,, and gauge singlets M; in
a rank-2 representation of the flavor symmetry group, and
o, (see Fig. 12). The specific rank-2 representation depends
on the group G; being dualized. In particular, it is
antisymmetric if G; is symplectic and symmetric if G; is
orthogonal.

Note that while we can dualize any of the gauge nodes,
once we have dualized one of them we cannot then
immediately dualize either of the neighboring gauge nodes
as they now have a different matter content, specifically a
rank-2 tensor. It is known how to dualize such 3d theories
but we do not pursue this in this article. We also leave for
future work the question of how to dualize such cases with
a boundary as this is not a straightforward problem.

VII. STAR-SHAPED QUIVERS

We now state our general conjecture for Seiberg-like
duals of quivers with fundamental and bifundamental
matter which contains star-shaped quiver gauge theories.
We describe this in terms of Seiberg-like duality of a gauge
node G connected with bifundamentals to arbitrary gauge

nodes G; and with F fundamental flavors. We then give one
specific example involving a total of four gauge nodes.

A. G-[F]-[];6G;

Consider a gauge node with gauge group G which can be
a unitary, orthogonal or symplectic gauge group. We allow
fundamental (Q) and bifundamental (B,)] matter with R-
charges ry and rg, for G, with the bifundamental chirals
coupling to other gauge nodes with gauge groups G;. Each
of these chirals is charged under a separate axial U(1)
group.”® Again we assume each G, is unitary, orthogonal or
symplectic. This gives a star-shaped quiver with centre G.
However, this may be embedded in a larger quiver diagram
where we allow the gauge nodes G to have arbitrary matter
content and couplings to any gauge nodes other than G,
including other G; nodes.

The Seiberg-like duality of G then produces a dual gauge
node G determined in the usual way by the gauge group G
and the total number of fundamental and bifundamental
chirals for G. The node G is at the centre of the quiver with
the same star-shape but now the fundamental (g) and
bifundamental (b,) chirals have R-charges 1 —r, and 1 —
rg, and the signs of the axial charges are reversed. In
addition all the gauge nodes G; now gain (in addition to any
flavors they already had) the same number of flavors (p;) as
G, a rank-2 representation chiral (¢;) and a bifundamental
chiral (b;; = by;) for each pair G, G;. There is also a rank-
2 flavor symmetry chiral M. If G is orthogonal/symplectic,

"2We also have the conjugate representations for unitary gauge
groups.

BFor the cases involving a unitary group the chirals are paired,
although for unitary G we can also consider conjugate repre-
sentations and the two members of each pair of chirals have the
same charge under the same axial U(1). For unitary G we can
also consider the case with different numbers of fundamental and
antifundamental flavors, but they still have the same axial charge.
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M and all ¢; are symmetric/antisymmetric. Finally, there is
also a singlet chiral o, or two singlets 6= if G is unitary.

The general structure of this duality is to map the star-
shaped quiver to a bipyramidal shaped quiver as illustrated
in Fig. 13.

Clearly the dual quiver now has additional closed
triangles, and for each of them we get a cubic contribution
to the superpotential. Also each rank-2 chiral together with
the (bi)fundamental chirals for G gives a cubic term in the
superpotential. The final ingredient in the superpotential is
a quadratic term coupling ¢ to the monopole v with
minimal flux for G and no flux for any other gauge
node—for the unitary case 6= couples to v* which are
the minimal positive and negative flux monopoles. The
resulting superpotential is of the form

W =ov+Tr(qgMq) + Z(Tr(l’ﬂmbl) +4qbipr)
T

+ ZTr(b,b,,b,),
1<J

(7.1)

with obvious modification to the case with unitary groups
to include appropriate additional or replacement terms with
antifundamental operators and replacing ov with otv*.
This fully determines the charges of the chirals M, ¢;, and

b;; as follows:

FIG. 13.

u(), | U, | U, | Ul
B, 1 0 0 rs,
0 0 0 1 ro
b, -1 0 0 1 —rg,
by 1 1 0 rg, + g,
¢; 2 0 0 2rp,
D1 1 0 1 rg, + 1o
M 0 0 2 2rg
q 0 0 -1 l—rg

(7.2)

with the charges of ¢ similarly determined by the charges of
the monopole v.

In the case of unitary gauge groups we also need to map
the topological fugacities. We expect that when dualizing a
gauge group G = U(N) with topological fugacity z and a
nonzero number of flavors, the dual theory has topological
fugacity 1/z for gauge node G. Also, for all the gauge
nodes G; = U(N;) connected to G in the quiver having
topological fugacities z;, in the dual theory they have
topological fugacities zz;. However, if G has no flavors, the
mapping of topological fugacities is trivial.

S

M

A star-shaped quiver with a single G gauge node coupled to k adjacent gauge nodes and its dual k-gonal bipyramid quiver.
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In terms of matching indices, the conjectures here,
allowing arbitrary extensions of the basic star-shaped
quiver, are equivalent to conjecturing that the duality holds
if we take the minimal star-shaped quiver (i.e., not includ-
ing any fields not defined above) and also remove the
vector multiplets for every Gy (i.e., consider these as global
symmetries) but still keep the dependence on the magnetic
charges mE” in the contributions from the chirals coupled to
G;. In the case of a boundary, the conjecture for the half-
indices is similarly equivalent to an identity without the
vector multiplet and any 2D matter contributions associated
to the G; nodes. In this sense it is possible to check the
matching of half-indices without knowing the details of the
matter coupled to the G; nodes. However, while this would
be the approach for any attempt to analytically demonstrate
the exact matching of indices and half-indices, it is rather
challenging for direct checking of the expansion to a given
order in g due to the very large number of terms in the
expansion. Indeed, in the examples we have presented we
have set the flavor fugacities to one for precisely this
reason.

B. Chern-Simons levels

It is also possible to derive dualities with nonvanishing
Chern-Simons levels for some or all gauge nodes. We do
this simply by considering the duality with Chern-Simons
levels zero but including additional fundamental chirals for
each gauge node. Turning on masses for these additional
flavors and integrating them out gives rise to a Chern-
Simons level for each gauge node as in the case of a single
gauge node [3,112]. For a unitary or symplectic gauge node
we shift the Chern-Simons level by 1/2 for each funda-
mental (or antifundamental) chiral integrated out, with the
sign correlated with taking the mass to +o0. For orthogonal
gauge groups the shift is by 1 for each fundamental flavor.
If we consider such a limit for some chirals Q to generate
Chern-Simons level k for gauge node G, then in the dual
theory we need to remove the same number of chirals ¢
which are flavors for G. However, in the dual theory this
also requires removing the same number of flavors p; for
each gauge node G, which is connected to G in the dual
quiver (equivalently, to G in the original quiver). In the
indices and half-indices this limit can be taken by send a
combination of axial and flavor fugacities to either 0 or co.
As the chirals ¢ have opposite charges to Q this means the
dual gauge node G will have Chern-Simons level —k.
However, the gauge nodes G; will get a shift in the Chern-
Simons level by k (or 2k if G; is orthogonal and G is not, or
k/2 if G is orthogonal and G, is not) since p; have opposite

relevant charges to ¢ due to the superpotential term
Tr(gb;p;). In all cases the singlet(s) ¢ (%) are removed
in this limit.

C. Boundary conditions

We further conjecture that with a boundary these theories
are dual with the boundary conditions being all Neumann
in the original theory, while in the dual all boundary
conditions are Neumann except for the G vector multiplet
and the chirals b;, ¢ and ¢ which all have Dirichlet
boundary conditions. For anomaly matching and to cancel
gauge anomalies we need to include for each gauge node in
the original theory a Fermi which is bifundamental under
the gauge group and its Seiberg-like dual. Note that to
specify these bifundamental Fermis for gauge nodes G;
requires details of the matter content of these gauge nodes,
i.e. knowledge of additional parts of the quiver diagram. In
the dual theory we need the same Fermis for each G; but no
Fermis for G. In the case of unitary gauge groups we also
need a bideterminant Fermi for each unitary bifundamental
Fermi, and for all unitary G, (but not G) in the dual theory a
determinant 2D chiral—however, we remind the reader that
we have not been able to check examples of dualities with
boundaries for unitary groups due to the presence of these
2D chirals.

Alternatively we expect the duality with boundaries to
hold if we swap all Neumann and Dirichlet boundary
conditions and then we need a bifundamental Fermi only
for G. Again, for unitary groups we will need additional 2D
matter in determinant representations.

We now present one example to illustrate the generali-
zation to a star-shaped quiver with the central node
connected to three other gauge nodes.

D. USp(4)-[1] x SO(2)®3

Let us consider a star-shaped quiver with gauge group
USp(4) x SO(2)®° and bifundamental chiral multiplets
between U Sp(4) and each of the SO(2) gauge nodes while
there are two U Sp(4) flavors. Taking the Seiberg-like dual
of the U Sp(4) gauge node gives a theory with gauge group
U Sp(2) x SO(2)®?, bifundamental chirals for each pair of
gauge nodes and 2 flavors for each gauge node. The dual
theory can be described as a triangular bipyramid quiver
(see Fig. 14).

As we conjecture, the full-indices of the proposed dual
theories beautifully agree with each other! In the following
we show the indices for r, = 1/14 and all r5, = 1/5
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FIG. 14. A star-shaped quiver with a single U Sp(4) gauge node coupled to SO(2)®3

quiver with a single U Sp(2) gauge node coupled to SO(2)®3
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