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A B S T R A C T

Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertain-
ties inherent in the modelling process of real-world complex systems. The methods are directly applicable to
stochastic models in epidemiology, however they have thus far not been widely used in this context. In this
paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate
the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators
of applied systems. We provide a formal workflow including the important decisions and considerations that
need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2
transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity
analyses and uncertainty quantification more generally in high input and/or output dimensions.
0. Introduction

Uncertainty Quantification (UQ) is a statistical framework for con-
ducting formal analysis of sensitivities and deficiencies in computer
models, often referred to as simulators, and their subsequent calibration
to known measured quantities, allowing for a greater understanding
of influential parameters and variables in an efficient manner. Due to
the fact that these simulators can be highly computationally intensive
to run for a single set of parameters, running likelihood-based meth-
ods for calibration and inference can be challenging or prohibitive,
despite parameter estimation and model fitting being a vital part of
the modelling process. The process of UQ allows modellers to calibrate
these types of models to real data (that is find (ranges of) parame-
ter values that give model outputs close to the equivalent observed
reality); understand aspects of the model that are otherwise hidden
to them; and inform possible directions for model improvement. The
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process involves the construction of a computationally more simplistic
statistical model called an emulator, carefully trained on a set of test
runs of the simulator, that is able to take the place of the much more
computationally demanding simulator in calibrating the parameters to
observed data. The emulator is then used to interpolate regions of
parameter space that the underlying simulator was not run for.

Predictive mathematical models for epidemics are fundamental for
understanding the spread of the epidemic and also plan effective con-
trol strategies (Giordano et al., 2020), the success of which is essential
given the dangers to public health and the economy. One type of
predictive mathematical model is an SIR model, which categorises the
whole population into susceptible (S), infectious (I) and recovered/died
(R) individuals. Variations on the SIR model have been studied to
more accurately model more complex infection mechanisms, by way
https://doi.org/10.1016/j.epidem.2022.100574
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Fig. 1. Diagram showing the flow of the population between the different classes. 𝑆𝑎 = number of susceptibles, 𝐸𝑎 = number of exposed, 𝐼𝑝𝑎 = number of pre-clinically infectious,
𝑎 = number of infectious and asymptomatic, 𝐼𝑠

𝑎 = number of infectious and symptomatic, 𝑅𝑎 = number of recovered, 𝐻𝑎 = number of hospitalised, 𝐷𝑎 = number of fatalities.
The arrows show how people can move from one class to another (Porphyre et al., 2020).
of adding further classes (Chauhan et al., 2014). Many variants and
extensions of these models can be implemented, such as SEIR model
(where E stands for exposed), which acts as an intermediate between
the susceptible and the infected populations. These models have many
uses, including simulating trajectories of epidemics under different
scenarios or be used to determine the basic reproduction number
(or 𝑅0), which informed on the average number of cases generated
by a single infectious individual in a fully susceptible population. It
can also help explain the change https://www.overleaf.com/project/
600028e6d235b9658ae980c6 in the number of people needing medical
attention throughout the pandemic (Beckley et al., 2013).

Elsewhere in this special issue, Swallow et al. (2021) discuss major
challenges in UQ for epidemic models, whilst here we specifically
explain how to conduct UQ for an exemplar stochastic model of SARS-
CoV-2 transmission, based on the current recommended methodologies
for stochastic computer models. In this paper we will outline a frame-
work for conducting formal sensitivity analysis and uncertainty quan-
tification on a stochastic forward simulation epidemic model applied to
the SARS-COV2 pandemic in Scotland. This tutorial will highlight the
main aspects of the uncertainty quantification paradigm and the deci-
sions that need to be considered, using the case study as an exemplar
for other models. We also propose novel visualisation approaches for
easily inferring important quantities from high-dimensional uncertainty
outputs. The paper is outlined according to the steps taken in a full UQ
framework, that is sensitivity analysis, emulation, validation, calibra-
tion and finally visualisation. We then work through each of these steps
for the stochastic epidemic model under consideration.

We note here that there many choices that need to be made as
part of the process and the choices made will vary dependent on the.
The implications of these choices should be tested and justified for the
specific simulator of interest.

1. Application: the epidemic model

1.1. Epidemic modelling framework

In this paper, we used a simple stochastic modelling framework de-
signed to predict the level of infection of COVID-19 at community level
during the first epidemic wave occurring in Scotland (Porphyre et al.,
2020). The simulator was designed to answer 2 main questions: (1)
how long COVID was circulating before lockdown was implemented?
(2) what is the impact of lockdown during the first wave, and would
it be sufficient to control outbreak? In addition, the model aimed to
clarify the role of asymptomatic people in the population. The aim is to
outline the general process of UQ in a simplified tutorial fashion, with
the aim of enabling other modellers to implement similar approaches
to their own simulators. The epidemiological model is structured as an
SEIR with hospitalisation and death model, where there are 3 levels
of infection (hence I3), a class H for hospitalised people and class
D for those that have died. R relates to a compartment for those
recovered from the disease. The three levels of infection in this model
are pre-clinically infectious (𝐼𝑝𝑎), infectious and asymptomatic (𝐼𝑎) and
infectious and symptomatic (𝐼𝑠𝑎), with the way that they connect with
other classes shown in Fig. 1.

1.2. Inputs

This model has a total of 16 inputs shown in Table 1. Of these
inputs, 14 are treated as unknown parameters and will be formally
included in the sensitivity analysis and calibration. The remaining two
are choices that are simulation-specific quantities, such as hospital
bed capacity. These inputs are required to run the simulator but are
not considered as part of the model calibration procedure. For each
parameter, a suitable sample range is given, obtained from elicitation
with a domain expert, and a description can also be found in Table 1.

1.3. Outputs

The output of the model for a single run is a time series consisting
of 200 days where the number of cases, hospital deaths and total
deaths taking place is listed on each day. In this paper, we are only
emulating over the total deaths over the 200 day period. As this model
is stochastic, running the model with the same input values will yield a
different answer each time. To gain an understanding of the distribution
of the outputs, the mean and variance of 1000 model runs for each set
of input runs is taken and used to build the emulator. The mean will
act as a design point in the sense that the mean of the emulator 𝑓 (𝐱)
will pass through that point, however the uncertainty will not reduce
to 0 at that point as it normally would for a Gaussian Process emulator;
instead the uncertainty at that point will be represented by the variance
of those 1000 runs. Therefore two emulators are being built, one for the
mean of the 140 sets of 1000 model runs and one for the variance of
140 sets of 1000 model runs. Although here we emulate the mean and
variance of the model output, other quantities such as quantiles and
could also be emulated if these are of interest. This could be the case if,
for example, extreme values are of particular concern to practitioners.

We now work through the UQ approach on the specific stochastic
epidemic model outlined in Section 3.

https://www.overleaf.com/project/600028e6d235b9658ae980c6
https://www.overleaf.com/project/600028e6d235b9658ae980c6
https://www.overleaf.com/project/600028e6d235b9658ae980c6
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Table 1
The name, description and recommended range of each input parameter into the model
(Porphyre et al., 2020).

Parameter
name

Description Range

𝑝𝑖𝑛𝑓 Probability of Infection (0, 1)
𝑝ℎ𝑐𝑤 Probability of Infection for

Health Care Workers
(0, 1)

𝑐ℎ𝑐𝑤 Mean number of Health Care
Worker to patient contacts per day

(1, 80)

𝑑 Proportion of population
observing social distancing

(0, 1)

𝑞 Proportion of normal contact
made by people self-isolating

(0, 1)

𝑝𝑠 Age-dependent probability
of developing symptoms

(0, 1)

𝑟𝑟𝑑 Risk of death if not
hospitalised

Fixed at 1

𝑖𝑛𝑡𝑟𝑜 Rate of primary infection
prior to lockdown

(10−9 , 10−3)

𝑇𝑙𝑎𝑡 Mean latent period (days) (0.1, 14)
𝑗𝑢𝑣𝑝𝑠 Probability of juvenile

developing symptoms
(0, 1)

𝑇𝑖𝑛𝑓 Mean asymptomatic
period (days)

(0.1, 21)

𝑇𝑟𝑒𝑐 Mean time to recovery
if symptomatic (days)

(1, 28)

𝑇𝑠𝑦𝑚 Mean symptomatic period
prior to hospitalisation (days)

(0.1, 14)

𝑇ℎ𝑜𝑠 Mean hospitalisation
stay (days)

(1, 35)

𝐾 Hospital bed capacity Fixed at 10000
𝑖𝑛𝑓 𝑎𝑠𝑦𝑚 Reduction factor of infectiousness

for asymp. infectious people
(0, 1)

2. Sensitivity analysis

When considering a deterministic model 𝑦 = 𝑓 (𝐱) (note that a
stochastic model can be made deterministic by making a random seed
an input O’Hagan, 2006), sensitivity analysis (SA) is the process of
understanding how changes in the input parameters 𝐱 influence 𝑦.
Generally, the SA can be divided into two groups: local and global.
While, in the former, we study the impact of input variation on the
output uncertainty at a specific point in the input space, the whole
variation range of the input parameters is considered in the latter. The
advantage of a local SA, such as a Morris design (Morris, 1991), is
that it does not require a prior distribution for the inputs. However,
a local SA is of limited value when understanding the consequences of
uncertainty about 𝐱 (Oakley and O’Hagan, 2004). In the global SA, each
input is considered as a random variable and the associated uncertainty
is described in terms of probability distributions. This makes the model
output a random variable, even if 𝑓 is deterministic, because the input
uncertainty induces the response uncertainty. As per convention that
random variables are represented by capital letters, we show the model
output as 𝑌 = 𝑓 (𝐗) where 𝐗 = (𝑋1,… , 𝑋𝑝)⊤ consists of 𝑝 independent
random variables. From now on, any reference to SA refers to global
SA.

In this work we focus on ‘‘variance-based’’ SA as proposed by
Sobol (Sobol’, 2001). This method breaks down the output variance
and attributes portions of that uncertainty to the uncertainty in each
of the input variables (Saltelli et al., 1999; Sobol’, 2001). This is key to
understanding how much influence each input has on the changes in
the output and can assist in informing what. If we can conclude that one
or more inputs have negligible effect on the output, that input no longer
necessarily needs to be included in the calibration and can instead
be modelled as a random variable. This is cheaper computationally as
modelling one less input means fewer design points required to build
an accurate emulator.
The Sobol method is based on the following functional ANOVA
decomposition (Sobol’, 2001)

𝑌 = 𝑓 (𝐗) = 𝑓0 +
𝑝
∑

𝑖=1
𝑓𝑖(𝑋𝑖) +

∑

𝑖

∑

𝑗>𝑖
𝑓𝑖𝑗 (𝑋𝑖, 𝑋𝑗 ) +⋯ + 𝑓12…𝑝(𝐗),

in which 𝑓0 is a constant and the remaining elementary functions
are mean zero and mutually independent with each other. Taking the
variance of the terms in the above equation, we have:

𝑉 𝑎𝑟(𝑌 ) =
𝑝
∑

𝑖=1
𝐷𝑖 +

∑

𝑖

∑

𝑗>𝑖
𝐷𝑖𝑗 +⋯ +𝐷12…𝑝,

here 𝐷𝑖 represents the response uncertainty caused by the uncertainty
f 𝑋𝑖, 𝐷𝑖𝑗 reflects the output uncertainty due to the second order effect
interaction) of (𝑋𝑖, 𝑋𝑗 ), and so on. More precisely, 𝐷𝑖 and 𝐷𝑖𝑗 are
efined as

𝑖 = 𝑉 𝑎𝑟
(

𝑓𝑖(𝑋𝑖)
)

= 𝑉 𝑎𝑟𝑋𝑖

(

E𝐗∼𝑖
[𝑌 ∣ 𝑋𝑖]

)

, (1)

𝑖𝑗 = 𝑉 𝑎𝑟
(

𝑓𝑖𝑗 (𝑋𝑖, 𝑋𝑗 )
)

= 𝑉 𝑎𝑟𝑋𝑖 ,𝑋𝑗

(

E𝐗∼𝑖,𝑗
[𝑌 ∣ 𝑋𝑖, 𝑋𝑗 ]

)

−𝐷𝑖 −𝐷𝑗 , (2)

here 𝐗∼𝑖 (𝐗∼𝑖,𝑗) stands for all input factors except 𝑋𝑖 (𝑋𝑖 and 𝑋𝑗).
ividing the 𝐷𝑖 terms by 𝑉 𝑎𝑟(𝑌 ) gives the first order/main effect of 𝑋𝑖:
𝑖 = 𝐷𝑖∕𝑉 𝑎𝑟(𝑌 ) that shows the relative importance of 𝑋𝑖. The same rule
pplies in computing the higher order effects, e.g. 𝑆𝑖𝑗 = 𝐷𝑖𝑗∕𝑉 𝑎𝑟(𝑌 ).
he total order effect of 𝑋𝑖 (denoted by 𝑆𝑇𝑖 ) measures the main effect
f 𝑋𝑖 together with its interactions with all the other inputs. The total
rder effect is useful to determine noninfluential inputs; 𝑋𝑖 is said to
e insignificant if 𝑆𝑇𝑖 is close to zero. The interaction of 𝑋𝑖 with the
ther factors is simply the difference between its main and total order
ffects: 𝑆𝑇𝑖 − 𝑆𝑖.

The sensitivity indices (first and total order effects) can be es-
imated using Monte Carlo and in section 3.3 we show the results
f that calculation. In addition to Monte Carlo (which can often be
een as expensive computationally (Aderibigbe, 2014)), we can use
arts of the Gaussian Process emulator to remove the Monte Carlo
spect from the calculations (Oakley and O’Hagan, 2004). This is laid
ut in https://mogp-emulator.readthedocs.io/en/latest/methods/proc/
rocVarSAGP.html.

Given that our model is stochastic, we first emulate the simulator
nd then apply the variance-based sensitivity analysis to the predictive
ean of the emulator. This approach is a valid way to estimate the

irst order indices (Iooss and Ribatet, 2009; Marrel et al., 2012) and
till can be used to have an approximation to the total order effect
f parameters. The results of the analysis can be found in Fig. 2. The
otal effect of all 14 input variables are shown segregated into main
ffects and interaction terms, clearly showing the extreme importance
f 𝑝𝑠 (age-dependent probability of developing symptoms) compared to
he other variables with 𝑝𝑖𝑛𝑓 (probability of infection) the second most
ignificant. There are 3 more inputs that seem to have more than a
egligible effect on the output, namely 𝑑, 𝑞, and 𝑇𝑖𝑛𝑓 .

What is also notable is the level of interaction taking place between
he variables, whether second-order, third-order, fourth-order etc is not
ossible to tell. However, it seems probable that a large amount of
nteraction is taking place between 𝑝𝑖𝑛𝑓 and 𝑝𝑠 given the size of the
nteraction effect on Fig. 2 compared with the size of interaction from
, 𝑞, 𝑇𝑖𝑛𝑓 . The majority of the effect from 𝑑, 𝑞, 𝑇𝑖𝑛𝑓 is from interaction
howing that they are not significant enough to affect the output on
heir own.

The importance of this analysis is determining which of the input
arameters are important in terms of variation in the output. This
ay be of interest directly in helping inform policy. Clearly from

his model, the probability of developing systems is one of the most
mportant parameters. This could suggest community testing to identify
symptomatic cases may be an appropriate intervention to reduce the
everity of the epidemic. Sensitivity analysis can also be important
n informing the next step of the UQ framework, that is building the
tatistical emulator and choosing which inputs to build into it, but care
hould be taken in using it to completely define the emulator structure.

https://mogp-emulator.readthedocs.io/en/latest/methods/proc/ProcVarSAGP.html
https://mogp-emulator.readthedocs.io/en/latest/methods/proc/ProcVarSAGP.html
https://mogp-emulator.readthedocs.io/en/latest/methods/proc/ProcVarSAGP.html
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Fig. 2. The main effect (blue) and interaction (red) of all 14 inputs to the output, as calculated by Monte Carlo. The height of the bar represents the total order effect. All
variables are in the same order as in Table 1. Notable ones are 𝑋1 ∶ 𝑝𝑖𝑛𝑓 , 𝑋4 ∶ 𝑑, 𝑋5 ∶ 𝑞, 𝑋6 ∶ 𝑝𝑠 , 𝑋10 ∶ 𝑇𝑖𝑛𝑓 . Plotted in R. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
3. Emulation

A simulator can be regarded as a mathematical function 𝑓 that
produces an output 𝐲, here denoted as a vector but could equally be
a scalar or matrix, from an input vector 𝐱, i.e. 𝐲 = 𝑓 (𝐱) (O’Hagan,
2006). Throughout this paper, however, we are only considering one
output from the simulator at a time, i.e. 𝑦 = 𝑓 (𝐱), to simplify the process
for those new to these techniques. These simulators can take anywhere
between a fraction of a second to minutes, hours, days or even weeks to
complete one input run. This is a major problem because processes such
as variance-based sensitivity analysis, one type of sensitivity analysis,
could require millions of model runs (O’Hagan, 2006; Lee et al., 2011)
to get reasonable measures of uncertainty. Running the simulator for
each of these input combinations in this case would take far too long.

Emulation is the process by which the simulator is replaced by a
statistical surrogate model, which can be run more efficiently than the
simulator can (Lee et al., 2011). The emulator hence acts as a statistical
approximation of the simulator (O’Hagan, 2006) and its behaviour
as a function of its inputs. There are many choices for what that
statistical approximation should be, from simple linear regression up
to complex multivariate predictive models, but frequently a stochastic
process is used, where the mean is denoted as 𝑓 (𝐱) with a distribution
around that mean describing how likely those points are to be part of
𝑓 (𝐱) (O’Hagan, 2006). A common feature of the simulator 𝑓 is that it is
a smooth function as this allows information about values of 𝑓 (𝐱′) to in-
form our judgements about 𝑓 (𝐱) for 𝐱′ close to 𝐱 (Oakley and O’Hagan,
2002). To train the emulator, we evaluate the simulator at a number
of locations in the input space 𝐱𝑖, these points are called design points.
Also, 𝑓 (𝐱) should represent a plausible interpolation and extrapolation,
and the distribution around 𝑓 (𝐱) should express uncertainty on how
the simulator might interpolate and extrapolate (O’Hagan, 2006). The

specific type of emulator that is being used in this paper is a Gaussian
Process (GP) emulator. GPs have many attractive properties that make
them desirable for emulation, including their analytical tractability and
the variety of covariance kernels that can be used to represent the
dependence structures and associated uncertainties. However, we note
here that this is a specific choice for which there are many alternatives.
The process for building a GP emulator is described in the following

Building Gaussian process emulators

Gaussian Process emulators have several features:

1. design points: for a deterministic model the mean of the dis-
tribution - 𝑓 (𝐱) - passes through each design point 𝐱𝑖, and the
variance around 𝑓 (𝐱𝑖) at each design point is 0, given that we
know the function 𝑓 (𝐱) is certain to pass through the point
(𝐱𝑖, 𝑓 (𝐱𝑖)). These design points need to be evaluated by the
simulator (consequently taking up the majority of computation
time to build the emulator) to construct the Gaussian Process
emulator.

2. prior mean function: as there are only a finite amount of design
points to use in the building of the emulator, this implies that
we only have certainty on the outputs of the simulator 𝑓 (𝐱) in a
finite region of space. Therefore an initial estimation is needed
to emulate 𝑓 (𝐱) away from the design points and in space where
we are uncertain. The prior mean function takes the form of

𝑓𝑝(𝐱) = 𝐡(𝐱)𝑇 𝜷,

where 𝐡(𝐱) contains 𝑞 regression functions which we are required
to specify and 𝜷 is calculated using the form of the regression
functions, design points and covariance functions. For now, we
only need to specify 𝐡(𝐱), i.e. the form of the prior. For example
𝐡(𝐱) = (1, 𝐱𝑇 )𝑇 for a linear prior or 𝐡(𝐱) = 1 for a constant prior.
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3. covariance function: whilst we have the requirement that the
emulator passes through the design points and the space away
from the design points is represented by the prior; we still need
to have the ability to interpolate between the design points but
then gradually regress to the prior when we are far away from
any design points. This is where the covariance function comes
in. It is of the form

𝑐𝑜𝑣(𝑓 (𝐱), 𝑓 (𝐱′)) = 𝜎2𝑐(𝐱, 𝐱′)

where 𝑐(𝐱, 𝐱′) is the correlation function that decreases as |𝐱−𝐱′|
increases and satisfies 𝑐(𝐱, 𝐱) = 1 (Oakley and O’Hagan, 2002).
This acts as the prior covariance function. In this work, 𝑐(𝐱, 𝐱′)
is the squared exponential/Gaussian function which is of the
following form

𝑐(𝐱, 𝐱′) =
𝑛
∏

𝑖=1

[

exp

(

−
|𝐱𝐢 − 𝐱′𝐢 |

2

2𝜽𝒊2

)]

, (3)

with hyperparameter 𝜽𝒊 defining the characteristic length-scale
for each input variable 𝑖 ∈ {1,… , 𝑛}. This covariance function
is infinitely differentiable meaning the subsequent GP will be
very smooth (Rasmussen and Williams, 2008) and is useful
under the assumption that the output varies smoothly across
the input space. It can frequently be the case that a smooth
covariance function is not appropriate for modelling the rela-
tionship between input and output, and alternatives such as
Matèrn covariance functions are often more appropriate. The
exact choice should be governed by the model output, with
the smoother option specified here chosen as the optimum in
minimising RMSE. The values of these length-scales are deter-
mined using a process called ‘model-selection’ which requires us
to maximise this log-likelihood function (derived in section 2.3
of Rasmussen and Williams, 2008):

log 𝑝(𝐲|𝑋, 𝜃) = −1
2
(

𝑑𝑇𝐾−1𝑑 + log |𝐾| + 𝑛 log 2𝜋
)

, (4)

where 𝐾 = 𝐴+𝜎2𝐼 ; with 𝐴 being the Gram matrix which in itself
depends on the model length scales (defined below), 𝜎 a vector
of nugget terms on each design point and 𝑛 the number of design
points. The parameters 𝜃 are estimated from data 𝑋 by finding
the parameter combination that maximises the likelihood in Eq.
(4).

Using these assumptions we can construct the emulator as follows:

𝑓 (𝐱) = 𝐡(𝐱)𝑇 𝜷 + 𝐭(𝐱)𝑇𝐴−1(𝐝 −𝐻𝜷); (5)

𝑐𝑜𝑣∗(𝐱, 𝐱′) = 𝜎2𝑐∗(𝐱, 𝐱′) (6)

where:

𝑐∗(𝐱, 𝐱′) = 𝑐(𝐱, 𝐱′) − 𝐭(𝐱)𝑇𝐴−1𝐭(𝐱′)
+ (𝐡(𝐱)𝑇 − 𝐭(𝐱)𝑇𝐴−1𝐻)(𝐻𝑇𝐴−1𝐻)−1(𝐡(𝐱′)𝑇 − 𝐭(𝐱′)𝑇𝐴−1𝐻)𝑇 ;

𝜎2 =
𝐝𝑇𝐴−1𝐝 − 𝜷𝑇𝐻𝑇𝐴−1𝐻𝜷

𝑛 − 2
;

𝜷 = (𝐻𝑇𝐴−1𝐻)−1(𝐻𝑇𝐴−1𝐝);
𝑡𝑖(𝐱) = 𝑐(𝐱, 𝐱𝑖) for 𝑖 ∈ {1,… , 𝑛};

𝐻𝑖,𝑗 = ℎ𝑗 (𝐱𝑖) for 𝑖 ∈ {1,… , 𝑛}, 𝑗 ∈ {1,… , 𝑞};

𝐴𝑖,𝑗 = 𝑐(𝐱𝑖, 𝐱𝑗 ) for 𝑖, 𝑗 ∈ {1,… , 𝑛};

𝑑𝑖 = 𝑓 (𝐱𝑖) for 𝑖 ∈ {1,… , 𝑛}.

ooking at Eqs. (5) and (6), note that 𝑓 is the posterior mean function
where 𝑓𝑝 is the prior mean function) and 𝑐𝑜𝑣∗ is the posterior co-
ariance function (where 𝑐𝑜𝑣 is the prior covariance function) (Oakley
nd O’Hagan, 2002, 2004), where posterior means after the Gaussian
rocess emulator has been built, whereas prior means before it was

uilt. t
To construct an approximate 95% uncertainty bound, one only has
o plot two lines

= 𝑓 (𝐱) ± 1.96 𝑐𝑜𝑣∗(𝐱, 𝐱), (7)

here the uncertainty bound lies between them.

.1. Building the emulator

The emulator was built using the Gaussian process methodology
escribed in previous sections. Prior ranges for the parameters are given
n Table 1, which determined the limits of the Latin Hypercube design.
robabilities and proportions were assumed to be between zero and
ne.

. Validation

The fitted Gaussian process emulator is used to make inferences
bout the simulator, and equally take its place in calibration to the
eal world. As such, it is therefore very important that confidence in
hose inferences using the emulator can be ensured. To do this we
an use validation to verify the ability of the emulator to mimic the
ehaviour of the underlying model (Challenor, 2013). Validation often
eans comparing the output of the emulator with that of the simulator

o minimise their differences (O’Hagan, 2006). We can use the posterior
ovariance function 𝑐𝑜𝑣∗(., .) to construct an approximate frequentist
onfidence interval around the posterior mean function 𝑓 (.) (seen in
Eq. (7))). Although we are conducting Bayesian updating of the mean
nd variance functions, the Gaussian marginal distributions will mean
hat a central limit theorem approximation to the uncertainty will be
elatively accurate. If, for example, 95% of the validation points are
n the 95% confidence interval then that represents a good fit. If not
hen the emulator may be overfitting/underfitting: overfitting being the
mulator is so reliant on the training data that anything outside it is
ess likely to be well represented; and underfitting being the emulator
s not using the training data to its full extent to accurately represent
he simulator (see Bastos and O’Hagan, 2009 for more details).

To test how well the GP emulator represents the simulator, 20
urther points were sampled (called validation points) across the same
nput space as the design points and using Latin Hypercube Sampling.
hese points are listed in appendix 2. Looking at Fig. 3, 19 points out
0 (95%) lie in the 95% confidence interval, implying that the emulator
s a good fit and coverage probability.

. Calibration

Calibration is the mechanism of using data to constrain the model
arameters such that the model output matches some aspect of the
bserved reality. There are many ways of calibrating models, whether
hrough minimising a loss function, maximising a statistical likelihood
r conducting a full Bayesian inference procedure (see Swallow et al.,
021 for discussion of these approaches in epidemic modelling). In
he case of the epidemiological model under consideration here, direct
alibration using approaches such as particle MCMC (pMCMC) (An-
rieu et al., 2010) may be feasible, and calibration using Approximate
ayesian Computation (Beaumont, 2003) is also possible. In fact, the

atter is an option in the model code directly. In more complex models,
owever, this will not be feasible due to computational costs and
alibration using emulation will be the most realistic or only approach.

In the UQ framework, the method of history matching is commonly
sed to conduct model calibration Vernon et al. (2014). History match-
ng is the process of sequentially ruling out regions of parameter space
hat are inconsistent with the observed data, where inconsistency will
e discussed further below. Parameter combinations are generated, in
hat are called parameter ‘waves’, and used to build a new emulator.
hose regions of parameter space that are sufficiently inconsistent with

he observed data to lie outside of an acceptable region of error are
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Fig. 3. The GP Prediction (black points) of the mean response (red points) at 20 test points. Dashed lines is 95% confidence interval. Plotted in R. (For interpretation of the
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deemed ‘ruled out’ and the remaining space, the ‘not ruled out yet
(NROY)’ space then forms the basis of the next parameter wave. The
process terminates according to a specified stopping rule, which can be
based on a specified tolerance threshold of remaining parameter space
or when subsequent waves fail to reduce the NROY space any further.

In terms of notation, the goal of calibration is using observations
𝐳 to learn about the parameter inputs 𝐱 (Salter et al., 2019). These
observations represent measurements of the real (but unknown) system
y, a process represented via the formula

𝑧 = 𝑦 + 𝑒 (8)

where 𝑒 is the observation error (Bower et al., 2010). This represents the
discrepancy between the recorded observation and reality. There also
exists another type of discrepancy between the appropriate choice 𝑓 (𝐱)
and true system value 𝑦 (Bower et al., 2010). This can be expressed by
he formula

= 𝑓 (𝐱∗) + 𝜖 (9)

here 𝜖 is the model discrepancy. Combining Eqs. (8) and (9) gives the
xpression

= 𝑓 (𝐱∗) + 𝑒 + 𝜖. (10)

he aim is to find all possible values 𝑥∗ such that (10) is satisfied where
he collection of these points are defined in Vernon et al. (2014) as
(𝑧). This is done by ruling out points in 𝜒 that feasibly cannot give an
valuation sufficiently close to 𝑧. The portions of input space that are
eft after this procedure are called NROY space.

This means we need to be able to evaluate all of the input space 𝐱
o test the implausibility of these points in relation to the observations
. For most complex models however, this is not possible therefore
e need to represent the uncertainty for points we haven not yet
valuated (Vernon et al., 2014). We build an emulator with the form
rom Section 3 to resolve this issue. For any 𝐱 in the NROY space 𝜒
e can examine how plausible the difference in value between 𝑧 and

he evaluation 𝑓 (𝐱𝟎) is for any 𝐱𝟎 ∈ 𝜒 using an implausibility measure
(𝐱) (Williamson and Vernon, 2013). This takes the form of

(𝐱) = |𝑧̄ − 𝑓 (𝐱)|
√

𝑐𝑜𝑣∗(𝐱, 𝐱) + Var[𝜖] + Var[𝑒]
, (11)

where 𝑓 is the Gaussian Process emulator. Therefore the desired points
𝐱∗ are defined by the set

𝜒 = {𝐱 ∈ 𝜒 ∶ 𝐼(𝐱) ≤ 𝑎}, (12)
𝑁𝑅𝑂𝑌 i
here 𝑎 is chosen to maintain an upper-bound for that distance be-
ween observation 𝑧 and model evaluation 𝑓 (𝐱𝟎) whilst taking into
ccount the uncertainty in the emulator at 𝐱𝟎 for any 𝐱𝟎 ∈ 𝜒 . The
hreshold 𝑎 is usually chosen to have the value of 3 (see Pukelsheim,
994 for justification).

lgorithm for History Matching
We define an algorithm to conduct History Matching (HM) for a

ingle output 𝑧. Steps 1-3 denote the first wave of HM, with steps
–5 denoting the second. Repeat steps 4–5 to perform more waves if
equired.

1. Create a large (maximin) Latin Hypercube of points (in this
paper 106 points) in 𝑝 dimensions, using the same upper and
lower bounds for those dimensions as used when creating the
Latin Hypercube Sample (LHS) for the emulator. This allows us
to judge what percentage of input space has been ruled out as
it will correspond with what proportion of those 106 points are
not in NROY space as calculated by the implausibility function
in Eq. (11).

2. Build a GP emulator using 𝑛 design points (recommended 𝑛 = 10𝑝
from Loeppky et al., 2009) where the length scales of that emu-
lator are chosen according to Maximum Likelihood Estimation
from Eq. (4). The emulator is constructed using the package
‘DiceKriging’ in the statistical environment 𝑅.

3. Input all of the 106 points into Eq. (11) where 𝑓 is the GP
emulator from step 2. As explained above, the inputs that give
an implausibility greater than 3 will be ruled out (see below for
more detail), the inputs that give an implausibility less than or
equal to 3 are defined as 𝜒(𝑧) a.k.a. NROY space. This completes
the first wave of History Matching.

4. Build a GP emulator with another set of design points uniformly
sampled from 𝜒(𝑧).

5. Input all NROY points into (11) where 𝑓 is the GP emulator from
step 4. The inputs that give an implausibility greater than 3 will
be ruled out, the inputs that give an implausibility less than or
equal to 3 are defined as 𝜒(𝑧) a.k.a. NROY space.

ere, we aimed to remove individual points in space that have very
ittle to no chance to give the desired output. Although a value of
= 3 is chosen as per Pukelsheim (1994), one could adjust 𝑎 to make
ROY space more restrictive (by lowering 𝑎) or less restrictive (by

ncreasing 𝑎). By reducing input space, the range of the individual input
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parameters can be shortened which has the benefit of giving a smaller
posterior uncertainty on the output. This may be driven by implications
of uncertainty or by the requirements of policy makers.

Vernon et al. (2018) presented a similar algorithm but has some
differences to one presented here; mainly that after wave 1, the samples
from 𝜒 that are chosen to build the next emulator are sampled from the
roportion of 106 points that still remain in NROY, however Vernon
t al. (2018) used a ‘well chosen’ set of runs potentially using Latin
ypercube which we only use for the first wave in this paper. A second
ifference is that we are only emulating one output whereas Vernon
t al. (2018) not only emulate more than one but also the amount of
mulated outputs can change in each wave.

alibration of the epidemiological model
Firstly we must choose the value(s) we wish to use to calibrate

he model. One aspect of the pandemic that has been challenging for
any statisticians and modellers is the variety of data streams available

nd their associated definitions of the population they are measuring.
e therefore choose to calibrate the model to two different measures

f mortality in Scotland. Firstly we calibrate the model to cumulative
eaths reported on death certificates, and then we conduct a second
ndependent calibration to the model using deaths reported within 28
ays of a positive test.

The algorithm for this process is shown in , where in this application
= 14, the upper and lower bounds for the input dimensions are

efined in Table 1, 𝑧1 represents the first death figure, 𝑧2 represents the
second and when building the emulator at each wave, a Gaussian kernel
is used (see Eq. (3)). These length scales are chosen using maximum
likelihood via maximising Eq. (4) using the R package ‘DiceKriging’.
𝜎𝑖 for 𝑖 ∈ {1,… , 𝑛} from Eq. (4) corresponds to the variance at each
evaluation 𝑦 (because the model is stochastic we run it 1000 times for
each set of inputs).

The two death statistics are:

1. Those who died within 28 days of a positive test in Scotland
in the first 200 days of the pandemic. This date being 17th
September 2020. This figure is 𝑧1 = 2562.

2. Those who had COVID-19 on their death certificate in Scotland
over the same time period. This figure is 𝑧2 = 4248.

This data has been obtained from https://coronavirus.data.gov.uk/.
The variance for the observation error Var[𝑒] = 1002 and the

variance for the model discrepancy Var[𝜖] = (0.2𝑧𝑖∕2.5)2 which repre-
sents the model predicting the output within ±20% of the observation
95% of the time. Andrianakis et al. (2015) also use an additional
error term which accounts for the stochasticity of the model which is
denoted as Ensemble Variability. Whilst they add an extra term in the
implausibility measure Eq. (11) to account for this, in this paper we
account for the stochasticity by building two emulators; one for the
mean of the outputs, and one for the variance of the outputs.

In this subsection, we are looking:

1. to see if it is possible to reduce the ranges of the input parameters
from those seen in Table 1 by calibrating towards the two death
figures. This can be visualised by analysing an Optical Density
Plot (ODP) which displays (amongst other things) what portion
of an inputs’ range is contained in NROY space.

2. at how changing the prior of the emulators built in each HM
wave influences the amount of space ruled out.

3. at how modelling different variables as noise influences the
amount of space ruled out. It is likely to change the uncertainty
levels in the emulator given that the uncertainty attributed to
the variables modelled as noise would be reduced.

4. to see if all uncertainty was removed from the emulator at each
wave, what the NROY space would be. This would show how
much influence the model discrepancy and observation error
have on the overall input space and show the effectiveness of

the History Matching process.
Table 2
Column 2 shows the percentage of space satisfying eq. (12) after the corresponding
wave of history matching. Column 3 shows the percentage of space that could have
been ruled out had there been no uncertainty in both the emulator for the mean and
the emulator for the variance built for the corresponding wave.

Wave no NROY Max NROY

1 33.29% 0.8%
2 21.59% 1.98%
3 20.74% 2.18%
4 20.58% 2.15%

5. at how the length scales of each variable impact on the uncer-
tainty on each variable and thus the amount of ruled out space
on that wave.

Mortality within 28 days of a positive test
In this subsection, we perform 4 waves of history matching, cali-

brating towards 𝑧1. We use a constant prior and no variables are treated
as noise. It serves as an introduction towards the second death figure
where a more in-depth analysis takes place.

We found that very quickly, the rate of change of NROY decreases
rapidly the more waves are completed, particularly by wave 3. What
we also found is when we remove all uncertainty from the emulator
(i.e. we have a perfect emulator in that it matches the simulator for all
inputs) the amount of NROY space is much smaller. Thus showing how
little effect the observation error 𝑒 and model discrepancy 𝜖 have on
the overall uncertainty compared to the emulator uncertainty. Both of
these facts are demonstrated using Table 2 and are trends found across
all the waves of History Matching that are conducted in this section.

Looking at Fig. 4 and in particular down the diagonal; despite ruling
out nearly 70% of input space on the first wave, it is only on two
variables that we are able to visualise the space being ruled out: 𝑝𝑠 and
𝑝𝑖𝑛𝑓 . Looking at Fig. 2 the reason behind this finding becomes clear.
As the two variables with the most total effect, the fact that they are
restricted to a smaller range shows their influence on the output. If
those variables were set to a higher value (closer to 1) then the number
of deaths would see an increase, however changing one of the other
variables (𝑝ℎ𝑐𝑤 for example), would make little to no change given its
lack of influence on the output seen from Fig. 2.

What we also see from Fig. 4 is the level of interaction between 𝑝𝑠
and 𝑝𝑖𝑛𝑓 , particularly in the upper triangle, we see a higher proportion
of points that are in NROY space if at least one of those variables
is close to 0. In addition, looking at that same window we see that
having both of these variables set to 0 is also in NROY space, but
having these variables set to 0 would result in no infections and no
symptoms resulting in no outbreak. This was also true in wave 3’s ODP
(not included in this paper LIST IN APPENDIX?) meaning the death
figures we are calibrating towards are actually quite low in respect to
how large the output could be. As a final point, looking again at the
upper triangle you again see the importance of these two variables;
this time the interactions that those variables have with the rest. Those
interactions consist only of restricting one of the important variables
whilst the other has free choice.

COVID-19 mentioned on the death certificate
In this subsection, we perform several experiments with varying

combinations of numbers of waves, forms of priors and noise settings.
We are calibrating towards 𝑧2.

As we have seen in the previous subsection and from Fig. 2, there
are a 5 variables which encapsulate the vast majority of the uncertainty,
namely 𝑝𝑠, 𝑝𝑖𝑛𝑓 , 𝑑, 𝑞 and 𝑇𝑖𝑛𝑓 with the first 2 being the most prominent.
The form of the prior on the emulator should be chosen to incorporate
any beliefs we have about the form of the simulator (Oakley and
O’Hagan, 2002) hence if the vast majority of the uncertainty is within
these 5 variables then representing them in the prior may help to obtain
a more accurate emulator which in turn would rule out more space.

https://coronavirus.data.gov.uk/
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Fig. 4. An optical density plot for wave 1 of calibration of model towards 𝑧1. On the diagonal shows a density plot displaying how the NROY space is concentrated for each
variable. For the upper and lower triangles, they are made up of windows showing the interactions between two variables. Each window has been divided up into a 50 × 50 grid
of cells where in each cell there is a colour. In the upper triangle, the colour shows what proportion of points in that cell are in NROY; this range is between 0 and 1 and shown
on the top scale. In the lower triangle, the colour shows what the smallest implausibility is out of the points in that cell; this range is between 0 and 3 (any implausibility greater
than 3 is set to 3) and shown on the bottom scale.
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Table 3
This table shows the percentage of space that remains after doing waves of History
Matching. At wave 4, two different seeds were used (denoted by 4 and 4.2) where
waves 5 and 6 follow from wave 4 and waves 5.2, 6.2, 7.2 and 8.2 follow from wave
4.2.

Wave no NROY (%) Wave No NROY (%)

1 34.98
2 24.60
3 21.22
4 21.19 4.2 20.90
5 20.41 5.2 20.26
6 19.87 6.2 20.04

7.2 19.76
8.2 19.06

For this reason in the first experiment, we calibrated towards 𝑧2
sing a constant prior, a linear prior over the 2 most influential vari-
bles and a linear prior over the 5 most influential variables. As the
emaining 9 variables have very little total effect we treated a varying
umber of them as noise in an attempt to reduce the uncertainty on the
utput. We combined the two options for emulation (priors and noise)
n our first experiment and conducted 3 waves of History Matching
ith different combinations of priors and noise. The list of priors were:

onstant (i.e. 1), 1+𝑝 , 1+𝑝 +𝑝 and 1+𝑝 +𝑝 +𝑑+ 𝑞+𝑇 . These
𝑠 𝑠 𝑖𝑛𝑓 𝑠 𝑖𝑛𝑓 𝑖𝑛𝑓 t
priors were chosen to gradually incorporate a higher proportion of in-
fluence on the output within the prior and therefore to measure to what
extent including more variables in the prior has on reducing space. The
list of noise settings were: ‘none treated as noise’, ‘all but 𝑝𝑠 and 𝑝𝑖𝑛𝑓
reated as noise’ and ‘all but 𝑝𝑠, 𝑝𝑖𝑛𝑓 , 𝑑, 𝑞 and 𝑇𝑖𝑛𝑓 treated as noise’.1
he cut off of three waves has been chosen given that the model acts
s a simpler version of the more complicated epidemiological model
which has closer to 30 input variables). We could have performed (and
ave in some cases did perform) more waves of History Matching with
ertain combinations of prior and noise, however as HM with the more
omplex model is more expensive computationally (due to it having
ore variables), we want to rule out as much space as possible with

he fewest number of waves.
Looking at Fig. 5, in the majority of cases, by wave 3 the NROY

pace had reduced to approximately 20%. However, given that we want
o remove input space in as few waves as possible, then analysis will

1 We used the 𝑘𝑚 function from the 𝑑𝑖𝑐𝑒𝑘𝑟𝑖𝑔𝑖𝑛𝑔 package in 𝑅 to build all the
mulators seen throughout this paper; by treating variables as noise we exclude
hem from the 𝑑𝑒𝑠𝑖𝑔𝑛 command within 𝑘𝑚 (note that the 𝑑𝑒𝑠𝑖𝑔𝑛 command
ithin 𝑘𝑚 is different to the sampling design specified before in this paper)
eaning that the excluded variables are then accounted for in the variance of
he emulator.
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Fig. 5. 4 plots showing how NROY space reduces over 3 waves of History Matching
whilst using different combinations of priors and noise. ‘No noise’: none of the variables
are treated as noise. ‘All but 2 Noise’: 𝑝𝑠 and 𝑝𝑖𝑛𝑓 are treated as variables, the rest as
noise. ‘All but 5 noise’: 𝑝𝑠, 𝑝𝑖𝑛𝑓 , 𝑑, 𝑞 and 𝑇𝑖𝑛𝑓 are treated as variables, the rest as noise.

not just be reserved for after 3 waves. When we treat all but the most
effective 5 variables as noise then by wave 1, a higher proportion of
space has been ruled out when compared to the other 2 noise settings.
The likely reason behind this can be attributed to less uncertainty
arising from those variables that are being treated as noise, meaning
less points will satisfy the condition from (12) given that the variance
would have decreased. What is also prevalent is that after three waves,
all the calibrations where all but 𝑝𝑖𝑛𝑓 and 𝑝𝑠 are treated as noise
performed the worst than the other two noise settings. Perhaps too
much of the uncertainty in the model was being attributed to noise
which causes the uncertainty bounds to increase and therefore less
regions of space are ruled out.

Despite the three wave cutoff, we want to see how much space can
be removed by doing more waves and whether this tailoring-off effect
continues. From Table 2 we see the maximum amount of space that can
be ruled out is far greater than the results we have seen thus far. Table 3
shows a very gradual decrease in NROY space and not getting close to
the maximum that can be achieved. However looking at the percentage
change of NROY between waves 3 and 4, it was much smaller compared
to the change between waves 4 and 5 or 5 and 6. Interestingly, by
running wave 4 but using a different random seed (meaning selecting
a new random set of design points from 𝜒(𝑧)) - named 4.2 - that wave
ruled out an order of magnitude more space. We consider the length
scales in the emulators to explore why this occurs.

As discussed in the ‘Emulation’ section, Maximum Likelihood Es-
timation (MLE) is used to determine the length scales for the GP
emulator. Looking at Fig. 6, we see the length scales for each input
variable over many waves of history matching. Looking at the two most
influential variables (𝑝𝑠 and 𝑝𝑖𝑛𝑓 ), the length scales for wave 4 appear
to be outliers with respect to the length scales of other waves which
may have been caused by a poor optimisation of MLE from Eq. (4) due
to a local maxima. Compare this to wave 4.2 where the length scales
are close to those of other waves. This could explain why so little space
was ruled out for that wave. Given how a lot of other length scales for
wave 4 also appear to be outliers this can give evidence that is was a
so-called ‘rogue wave’ given how the length scales for wave 4.2 were

not outliers in respect to the other waves.
Table 4
This table shows the proportion of space that has been ruled out using 5 outputs
(cumulative number of deaths for days 60, 65, 70, 75 and 200.

5 Outputs NROY (%)

Wave 1 32.4
Wave 2 27.7
Wave 3 24.6
Wave 4 16.2

Extension to multiple outputs
Due to the time series nature of the outputs, aggregation to a

single output ignores the correlation inherent in the temporal data. This
temporal structure may further assist in ruling out regions of parameter
space. We therefore also conduct an additional calibration of the model
to multiple outputs as follows. This has multiple benefits:

1. One problem that arose when calibrating on a single output
was ‘rogue waves’. This occurred due to the length scales be-
ing improperly determined by way of the maximum likelihood
estimation (Eq. (4)) optimising to a poor result, leading to large
variances and resulting in not ruling much space out for that
wave. Calibrating to multiple outputs reduces the impact caused
by rogue waves as emulators are built for each output. This
means we can avoid ‘rogue waves’ as if one emulator does not
optimise well then there are other emulators to rely on for ruling
out space.

2. The biggest computational cost in uncertainty quantification is
running the model; so being able to make more use of data
obtained from the model runs will (relatively speaking) not take
a significant amount of extra computational resources.

In this section we choose 5 outputs to emulate, this being the total
number of deaths up to days 60, 65, 70, 75 and 200. Epidemic curves
are often highly sensitive to early time points, however the simulator
used had already been carefully calibrated to these early time points,
hence they were not deemed informative through sensitivity analysis.
We aim to capture the trajectory of the epidemic by including these
days as well as capturing the overall picture over the 200 days. The
total deaths on these days are 1620, 1839, 2018, 2184 and 2560
respectively (number of people who died from COVID-19 within 28
days of a positive test in Scotland).2 We use our algorithm for history
matching to calibrate separately towards each of these outputs and
calculate the implausibility for a given input 𝐱 to each observation and
take the maximum of those implausibilities. This ensures any parameter
must be plausible at all timepoints in order for it to not be ruled out.
In more formal terms, we define NROY space as the following.

𝜒𝑁𝑅𝑂𝑌 = {𝐱 ∈ 𝜒 ∶ max(𝐈(𝐱)) ≤ 𝑎},

with 𝐈(𝐱) being a vector of implausibilities for a given input vector
𝐱 towards each observation. We choose our observation error to be
1% of the observation with the model discrepancy remaining the same
calculation ((0.2𝑧∕2.5)2) as with one output.

We see in Table 4 that after 4 waves with 5 outputs we rule out more
space than was ruled out in 8 waves with one output (see Table 3).
Through using multiple outputs we have halved the computation time
as half the amount of ensembles were evaluated by the model as when
calibrating towards a single output. We do note, however, that further
waves were not particularly successful at ruling out further space as
tolerance below this level dropped within the emulator error and model
stochasticity.

2 The model in its calculations already calibrates towards days 0−58 hence
we are choosing the days following that.
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Fig. 6. This shows a plot of the length scales for each of the variables after extending the number of waves from 3 to 6. Wave 4 has 2 different versions: 4 and 4.2, with the
following waves named 5 and 6, and 5.2 and 6.2 respectively. Standardised hyperparameters are the length scales (𝜽 from (3)) divided by the respective ranges of each parameter
in Table 1.
6. Ensemble visualisation

In supporting the above processes involving the exploration of high
dimensional parameter spaces and the comparative analysis of model
runs and model calibration attempts, data visualisation literature offers
several techniques and approaches, which could broadly be classified
under the broad area of ensemble visualisation (Wang et al., 2018).
(Phadke et al., 2012) define ‘‘ensemble’’ as ‘‘a collection of datasets
representing independent runs of the simulation, each with slightly different
initial parameters or execution conditions’’ and stated visualisation to be
a ‘‘promising approach to analysing an ensemble’’. While the literature
on visualisation and visual analysis of ensemble data is substantial as
outlined by the survey by Wang et al. (2018), we discuss here two
important relevant areas for an UQ framework, namely multidimen-
sional visualisation and parameter space analysis. Examples of these
visualisation approaches will then be applied to the emulated model
below.

6.1. Multidimensional visualisation

Multivariate data, those which contain three or more variables,
make finding patterns and trends in large data tables challenging.
Effective data analysis can be provided, however, by the use of mul-
tivariate data visualisation techniques. The Survey of Surveys (SoS) on
information visualisation by McNabb and Laramee (2017) provided 13
surveys on multivariate and hierarchy topics, some of which approach
multivariate analysis more broadly as a multi-faceted analysis (Kehrer
and Hauser, 2012).

Multivariate visualisations use different design strategies in data
exploration on a two-dimensional plane. Keim and Kriegel (1996)
classify visual data exploring methods for multivariate data into six
categories: geometric, icon-based, pixel-oriented, hierarchical, graph-
based, and hybrid. Some of the multivariate visualisations are presented
and explained further.

Scatter plots show the relationship of 𝑥 and 𝑦 variables, while
the addition of colour and glyphs can represent two more variables.
However, a scatter plot matrix includes multiple scatter plots pre-
sented in a matrix format that displays a combination of attributes.

Another multivariate visualisation technique, Parallel coordinate plot,
introduced by Inselberg (2008), transforms multivariate relations into
2D patterns. Each data variable is represented by uniformly located
vertical axes. Data records are indicated by edges that intersect with
each scaled axis at a point corresponding to the value. The view
shows distributions of data attributes and reveals relationships between
adjacent data variables.

Glyphs are identified by Ward (2002) as graphical entities that
convey one or more data value(s) via attributes such as shape, size,
colour, and position. They are commonly used to represent complex,
multivariate data sets in data visualisation. A survey by Borgo et al.
(2013) describes glyphs as ‘‘a small visual object that can be used inde-
pendently and constructively to depict attributes of a data record or the
composition of a set of data records’’. Various visual elements, such as
shape, colour, size or orientation can be used in the creation of glyphs,
allowing the display of multi-dimensional data properties.

Interaction is a fundamental aspect of data visualisation that is
key for the exploration, analysis, and presentation of data (Dimara
and Perin, 2019). The survey by Kosara et al. (2003) focuses on
interaction methods that are used in information visualisation such as
focus+context and multiple views. Focus+Context (F+C) visualisation
is a popular approach that enables the user to zoom in on specific areas
of the data or filter the data when the data are too large to search
directly.

A radar chart is a visual representation of multiple data points
and their variations. Data variables are represented by axes, which
are evenly spaced and arranged radially around a central point. The
size and shape of the polygons can be used to compare variables
and see overall differences (Liu et al., 2008). Another technique is
pixel-based visualisation, in which the visualisation is filled with an
array of sub-windows portraying dense coloured pixel displays mapping
multivariate data dimensions (Keim, 2000). Each attribute value is
represented by the colour of a single pixel. The pixels are typically
sorted based on another variable, presenting similar values to be clus-
tered that enables easy comparisons and trend recognition. A stacked
display divides the data space into two-dimensional sub-spaces that are
stacked on top of each other, depicting one coordinate system within
another. The outer coordinates of a two-dimensional layout can be used
to display the first two attributes, dividing the area into smaller areas
(Claessen, 2011).
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When the multi-objective data is a continuous process it can help
to represent the data using a visual encoding that represents changes
on the continuous scale. For example, heatmaps (colour or otherwise)
or function plots can be used. Furthermore, slicing is a visualisation
method that retains this continuous nature in the data. Examples
include HyperSlice (van Wijk and van Liere, 1993) (a 2D heatmap
plot for every pair of input parameters where the change in colour
represents the function value around a particular ‘focus point’)and
Sliceplorer (Torsney-Weir et al., 2017) (which uses function plots to
show multiple focus points at a time).

Uncertainty visualidation. While uncertainty is involved in most data
processing, reasoning with uncertainty is difficult for both novices and
experts (Padilla et al., 2020). Besides the difficulty in the empirical
evaluation of uncertainty (Hullman et al., 2018), it is also a challenge
for visualisation designers due to practical problems in creating visual-
isations associated with decision making process (Kamal et al., 2021).
Ensemble data sets contain a collection of estimates for each simulation
variable, allowing for a better understanding of potential results and
the associated uncertainty while ensemble visualisations sample the
space of projections that can be generated by a model with uncertainty
(Potter et al., 2009; Liu et al., 2016).

Dimensionality reduction (DR). has been widely applied in informa-
tion visualisation over the past 20 years (Espadoto et al., 2019). DR
techniques aim to build a lower-dimensional space in which com-
pressed features are extracted to represent their corresponding high-
dimensional multivariate data (Engel et al., 2012). Assume 𝑥 = {𝑥1, 𝑥2,

, 𝑥𝑛} denotes a data observation 𝑥 ∈ 𝑅𝑛, a mapping function 𝑃 is
sed to project the data observation into a compact representation 𝑦 =
𝑦1, 𝑦2,… , 𝑦𝑡} ∈ 𝑅𝑡. In this manner, the transformed low-dimensional
ata can be easily plotted for visual analytics. Popular DR techniques
nclude traditional linear mapping functions, e.g., PCA and ICA (Fang
t al., 2013), and non-linear mapping functions, e.g., tsne (Van der
aaten and Hinton, 2008) and umap (McInnes et al., 2018) which

re useful for exploring uninformativeness or redundancy in data to
educe the feature dimensionality These DR methods can be further
ntegrated with above-mentioned visualisation tools for a range of
ultivariate analysis tasks (Sacha et al., 2016) such as exploring the

elations between variables (Turkay et al., 2012).

.2. Parameter space analysis

The role played by the input parameters is a key aspect that sets
nsemble data visualisation aside from traditional data visualisation
hallenges. Investigation of the parameter space is part of the journey
owards understanding the ensemble as a whole and how ranges of
utputs relate to ranges of input parameters. Visual parameter space
nalysis techniques support interactive sampling of the parameter space
o select candidate input parameter sets while also relating these combi-
ations to the collection of outputs (Sedlmair et al., 2014). Interaction
echniques aim to flexibly and iteratively define parameter sets and
anges (Konyha et al., 2006), and comparative visualisations meth-
ds aim to concurrently assess many collections of outputs (Gleicher
t al., 2011). Both of these approaches stand out as some fundamental
trengths of visualisation to support parameter space analysis.

arameter selection. such as in Sedlmair et al. (2014), classifies visual
arameter space exploration techniques into local-to-global and global-
o-local. Local-to-global strategies start from inspection of a specific
ampled simulation run and provide ways to navigate through other
uns. Global-to-local strategies start with an overview over all runs
nd then allow for detailed exploration of specific runs. No matter the
trategy which may be adopted analysis of the parameter space includes
everal tasks including, but not limited to: optimisation, partition-
ng, uncertainty, and sensitivity analysis. Pajer et al. (2017) introduce

everal visualisation techniques employed to address these challenges t
ncluding clustering (Bergner et al., 2013), slicing (van Wijk and van
iere, 1993), scatter plots (Chan et al., 2010). For optimisation in the
ontext of Pareto-optimal solutions, several approaches exist in visual-
sation. Approaches include matrices of bi-objective slices (Lotov et al.,
004; Torsney-Weir et al., 2018), parallel coordinates (Bagajewicz and
abrera, 2003; Heinrich and Weiskopf, 2013), and self-organising maps
Schreck et al., 2013).

odel visualisation. To explore aspects of the simulation model itself,
isualisations often employ coordinated multiple views (Roberts, 2007) of
he input and output parameter spaces. These use interactive selection
o explore the relationship between different combinations of input and
utput parameters. Visual representations include heat maps (Spence
nd Tweedie, 1998), parallel coordinates (Berger et al., 2011), or
ontour lines (Piringer et al., 2010). In some cases these visualisations
se an emulator model internally such as Torsney-Weir et al. (2011),
hich used a Gaussian process model, or Mühlbacher and Piringer

2013), which used linear regression models.

iscussion

In this paper we have outlined a principled approach to conducting
aussian process emulation of a stochastic epidemic model, which
llows the ability of the modeller to determine important sensitivities,
ncertainties and potential biases in the modelling framework. We have
hown that building an emulator for both the mean and variance for the
odel is possible using 𝑛 = 10𝑝 design points and shown to be accurate
sing validation (section 3.2) given that 95% of validation points lie in
he 95% confidence interval (as seen in Fig. 3), showing that neither
verfitting nor underfitting is occurring. This is despite the simulator
eing stochastic which could have made emulating it quite difficult, but
sing the mean and the variance of the 1000 runs meant being able to
apture the randomness of the outputs and still manage to incorporate
hat into the emulator.

Furthermore, it has been shown via Fig. 2 that only 5 inputs out
f the 14 have more than a negligible impact on the output with the
robability of developing symptoms and being infected being the first
nd second most influential inputs respectively. Levels of interaction
etween the variables was also important in some cases, with most of
he effect from the third, fourth and fifth most influential variables com-
ng from interactions with other variables. Accounting and assessing
hese higher order interactions is therefore highly important.

Uncertainty Quantification remains a highly under-used tool in
pidemic modelling and we provide here the main steps in the UQ
rocess. The challenge in encouraging the more general use of these
pproaches both in the building of models but also in the estimation
rocess is one that should not be underestimated, and the provision of
eneral software and tutorials facilitating users to apply these methods
or their own models is highly overdue. Some of the decisions in the
rocess may seem arbitrary, however in reality it is vital that these
re made carefully with input from knowledgeable domain experts
nd modellers. Our aim in this manuscript is to begin that process of
emystification.

There still remain significant challenges in modelling complex
tochastic models, and Swallow et al. (2021) in this issue outlines these
n detail. In particular this paper highlights challenges remaining in UQ
f stochastic models of a hypothetical future pandemic. Some of the
hallenges in visualisation of uncertainty have also been touched on
ere, more details of which can be found in Chen et al. (2020).
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