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A B S T R A C T 

In this work, we revisit five different point sources within or behind galaxy clusters to constrain the coupling constant between 

axion-like particles (ALPs) and photons. We use three distinct machine learning (ML) techniques and compare our results with a 
standard χ2 analysis. For the first time, we apply approximate Bayesian computation to search for ALPs and find consistently good 

performance across ML classifiers. Further, we apply more realistic 3D magnetic field simulations of galaxy clusters and compare 
our results with previously used 1D simulations. We find constraints on the ALP-photon coupling at the level of state-of-the-art 
bounds with g aγ γ � 0 . 6 × 10 

−12 GeV 

−1 , hence improving on previous constraints obtained from the same observations. 

Key words: astroparticle physics – elementary particles – galaxies: clusters: general. 
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 I N T RO D U C T I O N  

xion-like particles (ALPs) arise within various high-energy physics 
xtensions of the Standard Model of particle physics. In particular, 
hey are guaranteed to appear within supersymmetric extensions 
ith field-dependent couplings, which include supersymmetric string 

ompactifications (cf. for example Conlon ( 2006 ), Svrcek & Witten 
 2006 ), Cicoli, Goodsell & Ringwald ( 2012 )). Thus, the y pro vide a
ell-moti v ated extension to the Standard Model of particle physics.
hey couple to photons via the following Lagrangian: 

 = 

1 

2 
∂ μa ∂ μa − 1 

2 
m 

2 
a a 

2 + g aγ γ a E · B , (1) 

here a denotes the ALP field, m a the ALP mass, g a γ γ the coupling
onstant of ALPs and photons, and E / B the electric/magnetic field.
n a background magnetic field, ALPs and photons can interconvert 
nto each other (Raffelt & Stodolsky 1988 ). This is the basis of most
LP searches across different ALP masses and couplings (Zyla et al. 
020 ). X-ray observations of bright point sources in or behind galaxy
lusters hav e pro v en to be v ery useful environments to constrain
LPs (Wouters & Brun 2013 ; Berg et al. 2017 ; Conlon et al. 2017 ;
arsh et al. 2017 ; Mukherjee, Khatri & Wandelt 2019 ; Mukherjee

t al. 2020 ; Reynolds et al. 2020 ).The main reason for this sensitivity
s that galaxy clusters are usually entirely permeated by a magnetic 
eld. Thus, the spectra of point sources, such as active galactic nuclei
AGNs) or quasars shining through the cluster would be altered if
LPs exist. As re vie wed belo w, these spectral changes correspond to
odulations in the X-ray and γ -ray regime (cf. Fig. 1 for an example

isualization) and hence render X-ray observations of such point 
ources a very valuable observational window for ALP searches. 

Concretely, spectral modulations arise from photons which are 
onverted to ALPs in the magnetic field of a galaxy cluster, which
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n a first approximation can be modelled as a series of domains,
ach with a different constant magnetic field and electron density 
cf. Section 2 for a detailed discussion of the magnetic field models).
n such a domain, we can calculate the photon survi v al probability,
.e. that a photon remains in a photon state, analytically (Raffelt &
todolsky 1988 ): 

 γ→ γ = 1 − � 

2 

1 + � 

2 
sin 2 

(
� 

√ 

1 + � 

2 
)

, (2) 

here � = 2 B 0 ,n g aγ γ ω/m 

2 
eff , � = m 

2 
eff L/ (4 ω) and m 

2 
eff = m 

2 
a −

 

2 
pl . In this work, we are interested in constraining ALPs with a mass

maller than the ef fecti ve photon mass in astrophysical plasmas,
.e. m a � 10 −12 eV , which allows us to treat ALPs as massless.
 0, n is the magnetic field perpendicular to the direction of travel of

he photon, ω the photon frequency, ω pl = 

√ 

4 παn e /m e the plasma 
requency, α the fine-structure constant, n e the electron density, m e 

he electron mass, and L the length of the domain. 
As our knowledge about the cluster magnetic field is limited, it is

pproximated by a statistical turbulent magnetic field model that can 
e constrained by Faraday rotation measures (Bonafede et al. 2010 ;
f. Section 2 ). To obtain information about the expected spectral
odulations due to ALPs, a large sample of magnetic fields drawn

rom the rele v ant statistical distribution is used. For such a random
agnetic field sample, we calculate the survi v al probability where

he initial state of a domain is given by the final state of the previous
ne. An illustrativ e e xample of a photon survi v al probability is gi ven
n Fig. 1 for one of the sources we discuss in this article, the type
 Seyfert galaxy 2E3140 within A1795. The overall amplitude of 
he oscillations depends on the strength of the coupling and on the

agnetic field B 0, n – larger values of g a γ γ and B 0, n lead to larger
scillations. The position of the oscillations differs among magnetic 
eld configurations. 
As this estimate of the ALP-signal depends on how realistic the
agnetic field of the galaxy cluster is, we consider e xtensiv ely for

he first time more realistic 3D magnetic field simulations in order

http://orcid.org/0000-0001-9475-8856
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Figure 1. Simulated photon survi v al probability for the Sy1 galaxy 2E3140 
within A1795 for a large energy range. The grey shaded area shows the energy 
range that we have considered for this source. In this simulation we use an 
ALP-photon coupling of g aγ γ = 5 × 10 −12 GeV 
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o constrain ALPs with X-rays. 1 Although they are computationally
ore involved than 1D magnetic field models, they are more realistic

nd theoretically better moti v ated as the underlying magnetic field
s divergence free. In order to compare the differences between the
wo models, we apply the 3D model to five sources that have been
lready investigated with 1D simulations (Conlon et al. 2017 ; Day &
rippendorf 2020 ). We also introduce a re-scaled 1D model that

esembles more features of the 3D model (e.g. the mean strength of
he magnetic field). 

In particular, we use observations of these sources with the
handra X-ray telescope (ACIS instrument) (Evans et al. 2010) .
hese point source spectra can be well-fitted with a power-law
nd absorption from neutral hydrogen. For instance, the fit of the
pectrum of the Sy1 2E3140 galaxy within A1795 is shown on the left
f Fig. 2 . In order to constrain ALPs, we need to generate f ak e spectra,
ncluding the effects of ALPs. These are generated from the product
f this fitted point source spectrum and a sampled photon-survi v al
robability for a certain value of g a γ γ . We then obtain f ak e spectra
sing SHERPA (version 4.12; Freeman, Doe & Siemiginowska 2001 ),
hich adds Poisson noise and instrumental effects such as the detec-

or energy resolution. An example of such a f ak e spectrum for the Sy1
E3140 galaxy within A1795 is plotted on the right of Fig. 2 where
e have used the photon survi v al probability of Fig. 1 . Overall, f ak e

pectra with ALPs show three distinct features with respect to spectra
ithout ALPs. The former have an overall lower flux and oscillations,
hich increase in their wavelength and intensity with increasing

nergy. 
From such f ak e spectra with ALPs constraints on the coupling to

hotons g a γ γ can be obtained by comparing the fits of multiple f ak e
pectra – accounting for the intrinsic Poisson noise and our uncer-
ainty of the cluster magnetic field – using a χ2 statistic (Wouters &
run 2013 ; Conlon et al. 2017 ; Marsh et al. 2017 ). This procedure
oes not directly take into account the intrinsic oscillatory features
f the ALP signals. Different data representations such as analysing
pectra in Fourier space and machine learning (ML) techniques have
een shown to increase sensitivity to ALPs (Conlon & Rummel 2019 ;
ay & Krippendorf 2020 ; Marsh et al. 2022 ). 
In this work, we impro v e these ML methods with a more detailed

yperparameter search and apply approximate Bayesian computation
ApBC; Rubin 1984 ; Beaumont, Zhang & Balding 2002 ) for the first
ime on ALP searches. We find that the latter leads to more stable
ounds across ML approaches. 
NRAS 514, 329–341 (2022) 

 For ALP searches in γ -ray spectra, 3D magnetic field models have been 
sed previously in Fermi-Lat Collaboration et al. ( 2016 ). 

B

w  

d  
This paper is organized as follows. Section 2 discusses our models
f magnetic fields in galaxy clusters. Section 3 provides an overview
f the astrophysical sources that we use in this article. In Section 4 ,
e present our different bounds methods and in Section 5 , we present

heir results. Finally, we conclude and give an outlook in Section 6 . 

 MAGNETI C  FIELD  M O D E L S  O F  G A L A X Y  

LUSTERS  

n the presence of ALPs, the survi v al probability of a photon is
ighly dependent on the magnetic field through which it propagates
cf. equation 2 ). The most thorough analysis for magnetic field
etermination has been performed for the Coma cluster where
umerical simulations were compared to Faraday Rotation Mea-
ure images (Bonafede et al. 2010 ). These simulations assumed a
urbulent, 3D magnetic field model, which is initialized randomly
n Fourier space (Murgia et al. 2004 ). As these 3D simulations
re computationally more e xpensiv e and time consuming than 1D
pproximations, in most previous works, simpler 1D magnetic field
odels along the line of sight have been used to constrain ALPs. 
After outlining the 3D model, we compare both approaches and

iscuss characteristic differences between both approaches. We also
ntroduce an appropriately re-scaled 1D model that can mimic some
f the characteristics of the 3D model. 

.1 3D model 

e are interested in simulating a magnetic field, following an
nv erse power-la w po wer spectrum with a radial profile follo wing
he gas distribution. Our simulation follows the approach presented
n Murgia et al. ( 2004 ), which proceeds as follows: we first simulate
ur 3D magnetic field on a lattice with size 2000 3 , which corresponds
o a resolution of 1 kpc when the cluster has a radius of 1 Mpc . To
enerate a divergence-free magnetic field (i.e. ∇ · B = 0) with an
ppropriate power spectrum, we start in Fourier space by randomly
enerating a vector potential with the following power spectrum: 

 

˜ A k | 2 ∼ k −( n + 2) , (3) 

here k is only non-zero within a range of k min = 2 π / � max and
 max = 2 π / � min . � min, max denote the scales o v er which the magnetic
eld fluctuates, i.e. it defines the length scale on which it completely
hanges its direction. The amplitude of each component of ˜ A is drawn
rom a Rayleigh distribution, which leads to a Gaussian distribution
n real space, and its phase φ is randomly chosen from a uniform
istribution in the interval [0,2 π ]. The scales � min, max and the power-
aw scaling n are determined empirically by comparing magnetic
eld simulations to the observ ed F araday rotation measures of radio
ources located in or behind the cluster (Bonafede et al. 2010 ). We
iscuss our numerical choices for these parameters below. We then
btain the magnetic field in Fourier space by ˜ B ( k ) = i k × ˜ A ( k )
here its components are described by a power spectrum: 

 ̃

 B k | 2 ∼ k −n . (4) 

pplying a Fourier transform, we get the magnetic field in real space.
he radial profile of the magnetic field follows the gas distribution

n the cluster and is added as a multiplicative factor on top of the
revious randomly generated magnetic field B gen : 

 ( r) = C B 0 

(
n e ( r) 

n e, 0 

)η

B gen , (5) 

here the exponent η is a parameter of order-one (specific values are
iscussed later) that has to be fit to the data and B 0 is the magnetic

art/stac1224_f1.eps
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Figure 2. Left: spectrum of the Sy1 galaxy 2E3140 within A1795 as observed with Chandra . Right: simulated f ak e spectrum produced by SHERPA, where we 
have assumed an ALP-photon coupling of g aγ γ = 5 × 10 −12 GeV 

−1 . Both spectra were fitted with a power-law and absorption from neutral hydrogen. 
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eld strength at the centre of the cluster. The radial profile of the
lectron density is described with a β-model (Cavaliere & Fusco- 
emiano 1976 ): 

 e ( r) = n e , 0 

(
1 + 

r 2 

r 2 c 

)− 3 
2 β

, (6) 

here n e, 0 denotes the electron density in the cluster centre, r the
adial distance from the centre, and r c the core radius of the cluster.
he normalization factor C ensures that the average magnetic field 
trength within the cluster core is equal to B 0 and is defined as (Angus
t al. 2014 ): 

 = 

N r<r c ∑ 

r<r c 
B gen · n e ( r) 

n e, 0 

η , (7) 

here N r<r c is the number of lattice points within the cluster core
egion. 

Since the Coma cluster magnetic field is the most accurately 
tudied one, we adopt the values found for Coma � min = 2 kpc ,
 max = 34 kpc and n = 11/3 for all sources (Bonafede et al. 2010 ).

or η, we use the same value of 0.7 as in Conlon et al. ( 2017 ) in order
o compare our 3D results with the previously used 1D model. This
alue η = 0.7 is in between the values of Coma η = 0.5 and Hydra A
= 1.0 (Wouters & Brun 2013 ). Since a larger η means a faster drop

n magnetic field strength with increasing radius, η = 0.7 is a more
onserv ati ve estimate than the η derived from the Coma cluster. 

In order to obtain enough samples of magnetic fields (especially 
or the ML methods) within a reasonable amount of time, we make
se of the radial symmetry of the magnetic field and the fact that
e are only interested in the field along the line of sight where the
-ray source is located. This means that we can take multiple lines
f sight from each simulation. To reduce the correlation between 
hese, we require a distance of 3 kpc (for training data) and 40 kpc
for test data) between the lines of sight we consider. The value for
he test data was chosen because of the value of � max = 34 kpc ,
hich is the maximal length o v er which the magnetic field reverses

ts direction and hence, for lines of sight with a larger distance the
orrelation between the magnetic fields should be minimal. This was, 
o we ver, not possible to adopt also for the training data because the
omputation time would be too long, which is the reason for the
ignificantly smaller distance. It is not necessary for magnetic fields 
sed to generate training data to be completely uncorrelated since 
hese are not used to obtain the final bounds. Furthermore, we utilize
ines of sight from all three directions of the lattice. For sources
hich are located within the cluster, we split the lines of sight in half

nd use both. In all cases, the Pearson correlation coefficient does
ot show any significant correlations. 

.2 Comparison with the 1D model 

nstead of simulating the whole cluster magnetic field as for the 3D
odel, the 1D approach used in previous work emulates the magnetic
eld only along the line of sight to the source considered. This line-
f-sight field is approximated by cells in which the magnetic field
s constant and randomly orientated. Their lengths are drawn from a
ower -law distrib ution, which is limited by L min = � min /2 and L max =
 max /2. The number of cells is chosen such that it corresponds to the

otal propagation length of the source through the cluster. The radial
rofile again follows the gas distribution defined by equation ( 6 ) as for
he 3D model. It must be mentioned that in contrast to the 3D model
he 1D model does not generate a divergence-free magnetic field. 
urther, we want to emphasize that even though we are only interested 

n the magnetic field along the line of sight, the 3D magnetic field
odel is qualitatively different from the 1D model. The former does

ot contain discontinuities and, hence, represents a more realistic 
odel of the real magnetic field. See Galanti & Roncadelli ( 2018 )

or an analysis of ALP conversion in smoothed out domain-like 
agnetic fields. An e xtensiv e analysis of the effect of different
agnetic fields on ALP bounds from the AGN NGC 1275 is also

resented in Matthews et al. ( 2022 ; which appeared after this work).
The main difference lies within the normalization of the magnetic 

elds. For the 3D model, we normalize it such that the mean
alue within the core region of the cluster equals B 0 as given by
quation ( 7 ). For the 1D model, this is not possible because the
agnetic field only gets simulated along the line of sight. In this case,

t gets normalized such that at the centre of the cluster the maximum
alue of the magnetic field is B 0 . This is a more conservative estimate
han for the 3D model, emerging from their different simulation 

ethods. Therefore, we also expect the constraints from the 1D 

odel to be more conserv ati ve than those arising from the 3D model.
his can be seen in Fig. 3 where we have plotted examples for the
agnetic fields (absolute values) along the line of sight, as well as the
MNRAS 514, 329–341 (2022) 
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Figure 3. Examples of the magnetic fields (absolute values) along the line of sight, as well as the means of all generated fields of the quasar B1256 + 281 
behind the Coma cluster for the 3D (top left), 1D (top right), and upscaled 1D model (bottom left). The means of all models are shown in the bottom right. 

Table 1. Comparison of mean maximum values and mean variance of the 
magnetic field strength for the 1D, 3D, and upscaled 1D models. 

Model Max B ( μG) Var B ( μG) 

1D 2.9 1.1 
3D 7.4 2.7 
Upscaled 1D 4.2 2.3 
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ean of all generated magnetic fields for the quasar B1256 + 281,
hich is located behind the Coma cluster. In the two top plots, this
as been done for the 3D (left) and 1D model (right), where we can
irectly see that the different normalizations lead to larger magnetic
eld strengths in the 3D model. 
In order to check later whether there are inherent differences

etween the 1D and 3D model apart from the different magnetic
eld strengths, we introduce an upscaled 1D model. For the latter,
e increase B 0 by hand in the 1D model in order to match the mean
agnetic field of the 3D model. This is shown in the bottom left

f Fig. 3 . Ho we ver, this ne w model still does not fully capture all
eatures of the 3D model. As the examples in Fig. 3 already indicate,
he fluctuations of the 3D model are still larger than those of the
pscaled 1D model. By larger fluctuations, we mean that the magnetic
eld strength reaches larger values. In order to demonstrate this, we
ave calculated the mean of the maximum values of the magnetic
elds, as well as their mean variance across all 20 000 samples, which
e have generated. The results given in Table 1 show the discrepancy

n the amplitude of the fluctuations. 
NRAS 514, 329–341 (2022) 
 ASTROPHYSI CAL  SOURCES  

or comparability with previous work (Conlon et al. 2017 ; Day &
rippendorf 2020 ), we use the same five point sources which are

ither located in or behind galaxy clusters: 

(i) The Sy1 galaxy 2E3140 within A1795 (A1795Sy1). 
(ii) The AGN NGC 3862 within A1367 (A1367). 
(iii) The quasar CXOU J134905.8 + 263752 behind A1795

A1795Quasar). 
(iv) The quasar B1256 + 281 behind Coma (Coma1). 
(v) The quasar SDSS J130001.48 + 275120.6 behind Coma

Coma2). 

We use the same Chandra ACIS observations as in Conlon
t al. ( 2017 ), Day & Krippendorf ( 2020 ) and the corresponding
bservation IDs are listed in Appendix A . In brackets we denote
he abbreviations by which they are mentioned throughout this
rticle. The observations of the sources have been processed with
IAO 4.8.1 (Fruscione et al. 2006 ). Multiple observations of the
ame source have been stacked and the background of the galaxy
luster subtracted. All these sources have already been studied using
D magnetic field simulations with conventional statistical methods
n Conlon et al. ( 2017 ) and with ML methods in Day & Krippendorf
 2020 ) which we compare later in Section 5 with our new results. 

For the first three sources, we scan o v er a coupling range
f (0 . 1 − 2 . 0) × 10 −12 GeV 

−1 as in Day & Krippendorf ( 2020 ),
hereas for the sources behind Coma, we consider a range of

1 . 1 − 3 . 0) × 10 −12 GeV 

−1 . We use the increased range of couplings
n these latter sources to be able to still obtain bounds. Even though

art/stac1224_f3.eps
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Table 2. Summary of the parameters for all sources. 

Source 2E3140 NGC 3862 CXOU J134905.8 + 263752 B1256 + 281 SDSS J130001.47 + 275120.6 

Cluster A1795 A1367 A1795 Coma Coma 
z source 0.059 0.0216 1.30 0.38 0.975 
z cluster 0.063 0.0225 0.063 0.023 0.023 
Offset (kpc) 456 186 194 232 215 
L tot (Mpc) 1 1 2 2 2 
� min (kpc) 2 2 2 2 2 
� max (kpc) 34 34 34 34 34 
η 0.7 0.7 0.7 0.7 0.7 
n 11/3 11/3 11/3 11/3 11/3 
B 0 ( μG) 20 3.25 20 4.7 4.7 
n e , 0 (10 −3 cm 

−3 ) 50 1.15 50 3.44 3.44 
r c (kpc) 146 308 146 291 291 
β 0.631 0.52 0.631 0.75 0.75 

Figure 4. Left: performance of the QDA classifier trained on the resid data of A1795Sy1. The colours denote different couplings whose test sets are fed to 
the different classifiers. The couplings g a γ γ in the legend are given in 10 −13 GeV 

−1 . Right: test statistic quantiles for the different test sets, as well as the test 
statistic of the real spectrum for the same classifier and data as on the left. 
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he corresponding bounds will not be as tight as for the other sources,
e still were interested in them due to the well constrained magnetic
eld of the Coma cluster. 
In all situations, these ranges were chosen such that for couplings 

t the lower end the ALP-induced oscillations are indistinguishable 
rom the Poisson noise, whereas for couplings at the upper end 
he oscillations are large enough such that they would be easily 
etected. For A1795Sy1 and A1367, we considered an energy range 
f (1 − 5) keV and for the other sources (0 . 5 − 7) keV . A1795Sy1,
1367, and A1795Quasar have been fitted with a power law with 

dditional absorption from neutral hydrogen, Coma1 only with a 
ower law and Coma2 with a power law and a Fe K α-line ( E =
 . 4 keV ). The parameters for the electron density and the magnetic
eld are the same as in Conlon et al. ( 2017 ), which have been taken
rom Bonafede et al. ( 2010 ), Vacca et al. ( 2012 ), Govoni et al. ( 2017 ),
uchar & Ensslin ( 2011 ), Ge & Owen ( 1993 ), Dennis & Chandran

 2005 ), Ettori ( 2000 ), Klapdor-Kleingrothaus & Krivosheina ( 2009 ),
nd Ensslin et al. ( 1998 ). For sources that are located behind the
luster, we assume a total propagation length of 2 Mpc , whereas for
ources within its host cluster, we set L tot = 1 Mpc . These numbers
re based on the typical size of a galaxy cluster. The exact position
f the Sy1 galaxy 2E3140 within A1795 is not exactly known. We
ssume a mid-way position, but if the galaxy was actually towards 
he front of the cluster, the bounds would be reduced, see Conlon
t al. ( 2017 ) for a detailed discussion. 
In Table 2 , we have listed all parameters that have been used for
ll astrophysical systems where the redshifts have been taken from 

IMBAD (Wenger et al. 2000 ). 

 M E T H O D S  

Below we describe the four different methods used in this paper to
onstrain the ALP-photon coupling. The basic idea of all methods 
s to compare the response of the real spectrum as observed by
handra to f ak e spectra with or without ALPs. These f ak e spectra
an be produced with Chandra’s software package SHERP A . SHERP A’S

unction fake pha generates spectra with a certain source model and
andom Poisson noise that is determined by the exposure time which
e set equal to the observation time of the real spectrum. fake pha

lso simulates instrumental effects such as the detector’s finite energy 
esolution ( ∼150 eV). As a source model for spectra without ALPs,
e use the function with which the real spectra have been fitted: 

 0 ( E) = AE 

−γ
(× e −n H σ ( E(1 + z)) 

)
( + Fe Kα) . (8) 

he first part corresponds to the power-law model (free parameters 
re the amplitude A as well as the exponent γ ) with which every
ource is fitted. The second part denotes the absorption from neutral
ydrogen (free parameter column density n H ), whereas the last part
ndicates the Fe K α line (given in brackets since these are not applied
or all sources, see Section 3 for details). For spectra with ALPs, we
MNRAS 514, 329–341 (2022) 
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Figure 5. ApBC-approximated posterior distribution and its 95th percentile 
for the QDA classifiers of the Sy1 galaxy 2E3140 within A1795. 
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ultiply model F 0 with the simulated photon survi v al probability: 

 1 ( E, B , g aγ γ ) = F 0 ( E) × P γ→ γ ( E(1 + z) , B , g aγ γ ) . (9) 

.1 Bounds from a χ2 statistic 

e follow the exact procedure from Conlon et al. ( 2017 ). We start
y generating 1000 f ak e spectra for each coupling. We then fit each
pectrum with the model F 0 and compute the reduced χ2 -statistic.
inally, we compare it with the χ2 

red of the real spectrum and if
5 per cent of the f ak e spectra lead to a worse fit (i.e. a larger χ2 

red )
han the real data, we can exclude g a γ γ at a 95 per cent confidence
ev el. F or sources where χ2 

red is smaller than 1, we only consider
pectra with χ2 

red > 1 as a worse fit. 

.2 Single coupling ML method 

his method refers to the procedure presented in Day & Krippendorf
 2020 ). Its main idea is to train a ML classifier to distinguish between
 ak e spectra without ALPs and spectra with ALPs of a certain
oupling strength. For all upcoming three ML methods, we use
raining sets with 8000 and test sets with 2000 samples. In order to
enerate these, we have simulated the photon survi v al probability for
ach source 800 and 200 times, respectively, where we have al w ays
sed a different magnetic field configuration. From each survival
robability, we have generated 10 f ak e spectra which differ in their
oisson noise. 
Since the photon survi v al probability is al w ays smaller or equal

o 1, the f ak e spectra with ALPs have an overall lower flux than
pectra without ALPs, a difference that would be readily picked up
y the classifiers. Hence, we cannot take these spectra as input data.
his is because when fitting AGN spectra, the o v erall amplitude of

he spectrum is a free parameter, so cannot be used to test for the
resence of ALPs. Therefore, we use three different data products.
irst, we fit every f ak e spectrum with the model F 0 and use the
esiduals (resid). Secondly, we generate f ak e spectra with source
odel F 1 multiplied with the inv erse, av erage survi v al probability

up). This results in upscaled spectra that do not suffer from a flux
eduction due to the ALP-photon interconversion but still contain the
scillatory features. Thirdly, we can refit the upscaled spectra with F 0 

nd store the residuals (up-resid). In brackets, we have denoted the
bbreviations by which the different data products will be referred
o in the upcoming sections. 
NRAS 514, 329–341 (2022) 
We use various different classifiers from SCIKIT-LEARN (Pedregosa
t al. 2011 ; version 0.23.2): quadratic discriminant analysis (QDA),
aussian naive bayes (GNB), decision tree classifier (DTC), random

orest classifier (RFC), AdaBoost classifier (ABC), and support
ector machine classifier (SVM). We use a grid search in order to
ptimize their hyperparameters. This is performed for one specific
oupling and we adopt the values for all other couplings. Further-
ore, we perform no additional grid search for the up-resid data

roduct since these data are quite similar to the resid type. More
etails are listed in Appendix B . In order to use these classifiers to
onstrain ALPs, we have to define a test statistic for a data set D: 

TS D 

= highest value of g a γ γ such that C g classifies D as ALPs, 
where C g is a classifier trained on a specific coupling g . Further-
ore, we have to define a null hypothesis: 
H 0 = ALPs exist with g a γ γ = g null . 
We can then feed all test sets to all the classifiers and thereby

btain the null distribution. If 95 per cent of TS D 

i ( g null ) are larger than
S real , the test statistic for the real data, we can exclude g null at a
5 per cent confidence level. 
To illustrate the performance of our classifiers, we plot the

erformance of the QDA classifier trained on the resid data of
1795Sy1 on the left of Fig. 4 . The x -axis shows the coupling
n which the classifier is trained and the y -axis denotes the mean
rediction where 0 refers to no ALPs and 1 to ALPs. Classifiers that
re trained on small couplings ( g aγ γ ≤ 2 × 10 −13 GeV 

−1 ) return a
ean prediction of 0.5 for all test sets. Hence, in this coupling regime,

he no-ALP and ALP data show no differences, i.e. the Poisson
oise is larger than the ALP-induced oscillations. This can also be
een by looking at the curves of the no-ALP data ( g a γ γ = 0) and
he ALP data with g aγ γ = 2 × 10 −13 GeV 

−1 which match almost
erfectly. Their mean prediction approaches 0 as the coupling on
hich the classifiers have been trained increases. Test sets with large

ouplings ( g aγ γ ≥ 14 × 10 −13 GeV 

−1 ) are very well classified as
LP data if the coupling on which the classifiers have been trained

s larger than 5 × 10 −13 GeV 

−1 . Test sets of intermediate couplings
3 × 10 −13 GeV 

−1 ≤ g aγ γ ≤ 13 × 10 −13 GeV 

−1 ) have a maximum,
hich is located at a coupling equal or slightly smaller than its own.
fter the maximum, the mean prediction drops because for classifiers

rained on larger couplings the smaller oscillations of the test sets
ith intermediate couplings are not as large as those on which they
ave been trained on and therefore are not as easy to detect. 
The right of Fig. 4 shows the 5th and 95th percentile of the test

tatistic of the ALP test sets for the QDA classifier trained on the
esid data of A1795Sy1. Additionally, we plot the 5th percentile and
he mean of the no-ALP test set, as well as the test statistic of the
eal data. The constraint on g a γ γ (at a 95 per cent confidence level)
orresponds to the value on the x -axis where the 5th percentiles of
he ALP test sets cross the line of the real spectrum. 

.3 Approximate Bayesian computation 

pBC is an inference method used when the likelihood either cannot
e calculated or would be computationally too e xpensiv e. Therefore,
t has to be simulated based on the prior probability distribution.
or more details and a good o v erview, see Sisson, Fan & Beaumont
 2018 ). In our case, we simply assume a uniform prior across the
ouplings g a γ γ considered (cf. Section 3 ) and use the classifiers and
he test statistic from the previous method. We then perform the
ollowing three steps: 

(i) Feed all test sets into all classifiers. 
(ii) Calculate the test statistic. 
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Figure 6. Left: the distribution of predicted values of the resid data for A1795Sy1 where the true coupling constant is g aγ γ = 10 −12 GeV 

−1 . The QDA classifier 
is used. Right: the 5th and 95th percentiles of the distribution of g pred , as well as g pred, real and the predicted couplings of the no-ALP data (mean and 5th 
percentile). 

Table 3. Architecture of the DNN that we apply for the multiclass classification method. We 
use categorical cross-entropy as loss function, a batch size of 32 and the Adam optimizer with 
a learning rate of 0.0001. 

Type of layer Dimension Acti v ation Initializer 

Input Number of energy bins 
(source dependent) 

Dense 80 SELU lecun initializer 
Dense 70 SELU lecun initializer 
Dense 60 SELU lecun initializer 
Dense 50 SELU lecun initializer 
Dense 40 SELU lecun initializer 
Dense 21 softmax 

Table 4. Constraints on the ALP-photon coupling in units of 10 −12 GeV 

−1 

for a 1D and 3D magnetic field model from the χ2 statistic. 

Sources 1D model 3D model 

A1795Sy1 1.5 0.9 
A1367 2.4 2.0 
A1795Quasar 10.0 (75 per cent C.L.) 1.3 (87 per cent C.L.) 
Coma1 6.0 2.5 
Coma2 10.0 (87 per cent C.L.) 3.0 (90 per cent C.L.) 
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(iii) If the test statistic of the test data is the same as for the real
ata, we accept the coupling g a γ γ of the test data. 

As output, we obtain a set of g a γ γ sampled from the posterior
istribution π ( g a γ γ | y real ), which can be used to approximate the
osterior. Values for g a γ γ larger than the 95th percentile of the 
pproximated posterior distribution can then be excluded at a 
5 per cent confidence level. In Fig. 5 , we plot an example of an
pBC-approximated posterior distribution and its 95th percentile, 

s well as the test statistic of the real data for the QDA classifiers
rained on the resid data of A1795Sy1. 

.4 Multiclass classification method 

ulticlass classification has been already suggested in Conlon & 

ummel ( 2019 ) to constrain ALPs. Instead of training a new classifier
or each coupling to distinguish between ALP and no-ALP data, we
uild one classifier which tries to predict the exact coupling of each
ata set. Since the differences of two data sets with similar couplings
re very subtle, the performance of the classifier will be far from
erfect. Ho we ver, we hope that the distribution of predicted couplings
ill be distributed around the true coupling. As an example, we plot

he distribution of predicted values of the resid data for A1795Sy1
QDA) on the left in Fig. 6 . From that, we can see that the predicted
ouplings indeed are distributed around the true value. We can then
se this multiclass classifier to place bounds on ALPs by applying
he following procedure where we use the predicted couplings as a
est statistic: 

(i) Predict the coupling of the real data g pred, real . 
(ii) Predict the couplings for the test data of all couplings g pred ,D 

i .
(iii) If 95 per cent of the g pred ,D 

i are larger than g pred, real , the
oupling of the corresponding test data is excluded at a 95 per cent
onfidence level. 

The right of Fig. 6 shows these results for the same example as the
lot on the left. As for the single coupling ML method, the bound on
 a γ γ (at a 95 per cent confidence level) is represented by the value
n the x -axis where the red dots cross the blue line. 
With this method we use the QDA from SCIKIT-LEARN, as well as

 deep neural network (DNN) implemented within KERAS (Chollet 
t al. 2015 ). The architecture of our neural network is shown in
able 3 . 
MNRAS 514, 329–341 (2022) 
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Table 5. Constraints on the ALP-photon coupling in units of 10 −12 GeV 

−1 

for various methods, classifiers, and data products from the source A1795Sy1. 

A1795Sy1 
Method Classifier Data product Constraint 

χ2 -statistic 0.9 
Single ML DTC resid 0.5 

RFC up-resid 0.5 
DTC up 0.5 
DTC up-resid 0.6 
SVM resid 0.8 
QDA up-resid 0.8 
GNB up-resid 0.8 
ABC up-resid 0.8 
GNB up 0.8 
RFC up 0.8 
ABC up 0.8 
QDA resid 0.9 
GNB resid 0.9 
RFC resid 0.9 
ABC resid 0.9 
QDA up 0.9 

ApBC ABC up-resid 0.8 
QDA up 0.8 
GNB up 0.8 
RFC up 0.8 
ABC up 0.8 
QDA resid 0.9 
GNB resid 0.9 
RFC resid 0.9 
ABC resid 0.9 
QDA up-resid 0.9 
GNB up-resid 0.9 
DTC up-resid 0.9 
RFC up-resid 0.9 
DTC up 0.9 
SVM up 0.9 
SVM up-resid 1.0 
DTC resid 1.1 
SVM resid 1.4 

Multiclass DNN up-resid 0.6 
DNN up 0.6 
DNN resid 0.8 
QDA up-resid 0.8 
QDA up 0.9 
QDA resid 1.0 
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Table 6. Constraints on the ALP-photon coupling in units of 10 −12 GeV 

−1 

for various methods, classifiers, and data products from the source A1367. 

A1367 
Method Classifier Data product Constraint 

χ2 -statistic 2.0 
Single ML RFC up-resid 1.2 

SVM up-resid 1.2 
QDA up 1.2 
GNB up 1.3 
DTC up 1.6 
RFC up 1.6 
SVM up 1.6 
GNB up-resid 1.8 

ApBC QDA up 1.4 
GNB up 1.6 
RFC up 1.6 
SVM up 1.6 
RFC up-resid 1.7 
GNB up-resid 1.8 
ABC up-resid 1.8 
SVM up-resid 1.8 
DTC up 1.8 
QDA resid 1.9 
RFC resid 1.9 
ABC resid 1.9 
QDA up-resid 1.9 
ABC up 1.9 

Multiclass QDA up 1.2 
DNN up 1.4 

Table 7. Constraints on the ALP-photon coupling in units of 10 −12 GeV 

−1 

for various methods, classifiers, and data products from the source 
A1795Quasar. 

A1795Quasar 
Method Classifier Data product Constraint 

χ2 -statistic 1.0 (84 per cent C.L.) 
Single ML SVM resid 0.4 

DTC up-resid 0.5 
GNB up-resid 0.7 
QDA resid 0.9 
RFC resid 1.0 

ApBC SVM resid 0.6 
QDA resid 1.6 
DTC up-resid 1.8 
RFC resid 1.9 
GNB up-resid 1.9 

Multiclass DNN resid 0.6 
QDA up-resid 0.8 
QDA resid 1.0 
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 RESULTS  

We apply the methods presented in the previous section to the
ve different sources presented in Section 3 . We have listed the
onstraints on g a γ γ in Tables 4 –9 , which can be found at the end of
his paper. All reported constraints are at a 95 per cent confidence
evel unless otherwise stated. Here, we discuss the results from
if ferent perspecti ves: 

(i) 1D versus 3D magnetic field model: In order to compare the
ounds arising from a 1D and 3D magnetic field model, we use the
ounds from the χ2 statistic. In Table 4 , we list the constraints from
ll sources where those for the 1D model are taken from Conlon
t al. ( 2017 ). As we can see the 3D model returns tighter bounds
hroughout all sources. This impro v ement is not surprising as we have
een in Section 2 that the 1D model uses a different normalization of
he magnetic field, which leads to an o v erall weaker field. In order
o check whether the better bounds arise from the differences in the
NRAS 514, 329–341 (2022) 
trength of the magnetic field, we derive the constraint using the
pscaled 1D model presented in Section 2 for the source A1795Sy1.
or that, we obtain g aγ γ � 1 . 1 × 10 −12 GeV 

−1 which is already
loser to the constraint from the 3D model but still not as tight.
n Section 2 , we hav e seen that ev en though the mean of the upscaled
D and the 3D model match perfectly, the amplitude in the magnetic
eld strength of the 3D model is still larger. Therefore, we argue

hat probably these larger amplitudes are responsible for the tighter
onstraints. 

(ii) Source comparison: The bounds from the different sources
epend on two things: the quality of the spectrum and the amplitude
f the potential ALP-induced oscillations. The former relies on the
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Table 8. Constraints on the ALP-photon coupling in units of 10 −12 GeV 

−1 

for various methods, classifiers, and data products from the source Coma1. 

Coma1 
Method Classifier Data product Constraint 

χ2 -statistic 2.5 
Single ML SVM resid 1.5 

DTC up-resid 1.7 
RFC up-resid 1.9 
ABC up-resid 2.2 
SVM up-resid 2.5 
GNB up-resid 2.7 

ApBC SVM resid 2.1 
RFC up-resid 2.8 
QDA up-resid 2.9 
GNB up-resid 2.9 
ABC up-resid 2.9 
SVM up-resid 2.9 

Multiclass QDA up-resid 1.7 
DNN resid 1.8 
DNN up-resid 2.0 
QDA resid 2.2 

Table 9. Constraints on the ALP-photon coupling in units of 10 −12 GeV 

−1 

for various methods, classifiers, and data products from the source Coma2. 

Coma2 
Method Classifier Data product Constraint 

χ2 -statistic 3.0 (90 per cent C.L.) 
Single ML ABC resid 1.3 

DTC up-resid 1.7 
QDA resid 1.8 
RFC resid 1.9 
SVM resid 1.9 
QDA up-resid 2.9 
ABC up-resid 3.0 

ApBC QDA resid 2.8 
ABC resid 2.8 
GNB resid 2.9 
RFC resid 2.9 
SVM resid 2.9 
QDA up-resid 2.9 

Multiclass QDA resid 1.8 
DNN resid 2.0 
QDA up-resid 2.9 
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bservation time, the redshift, and the source luminosity. The larger 
he observation time and luminosity and the smaller the redshift, the 
etter the quality of the spectrum. Thus, the Poisson noise becomes 
ess, which makes the ALP-induced oscillations easier to detect. 
rom equation ( 2 ), we know that the amplitude of the oscillations
epends on the magnetic field which relies on its strength in the
entre of the galaxy cluster B 0 , 2 and the cluster electron density n e .
he larger the central magnetic field, the larger the ALP-induced 
scillations. On the other hand, a larger electron density suppresses 
he interconversion of ALPs and photons. From equation ( 6 ), we can
ee that the electron density depends on three parameters: a smaller 
 e, 0 , a smaller β, and a larger r c lead to a smaller electron density
nd thus, to larger ALP-induced oscillations. 
 Obviously, the magnetic field depends on more parameters but apart from 

he central magnetic field strength and the electron density, those parameters 
re assumed to be equal for all sources. 

c  

R  

t  

f  

D  
nother influence is the position of the source: if it lies behind the
alaxy cluster, it has twice the propagation length in comparison 
o sources which are located within the cluster. Furthermore, the 
istance of the source with respect to the cluster centre impacts the
ize of the oscillations. A source with a position further away from
he centre experiences a smaller magnetic field and therefore, smaller 
LP-induced oscillations. 
ut of the five sources, the two within/behind A1795 gave the best

onstraints (at least for the ML methods). The main reason for that
s the strong magnetic field of A1795, which is larger by a factor of
 compared to that of A1367 and 4 compared to the Coma cluster. 
(iii) Data product comparison: For the source A1795Sy1, the 

onstraints are homogeneous across different data products. For 
1367, the bounds from the up-resid and up data are significantly
etter than for the resid data. For all quasars behind A1795 and
oma, we do not obtain any constraints for the up data. This happens
ue to the large test statistic of the real data, i.e. all classifiers trained
n the up data of these three sources classified the real spectrum as
aximally ‘axiony’. In the case of the multiclass method, the real

ata get classified as data with the largest possible coupling. 
(iv) Classifier comparison: In order to compare the classifiers, 

e count how many times the respective classifier provides the best
onstraint across different data products and sources using the single 
oupling ML method: 1. DTC (5 ×); 2. SVM (3 ×); 3. RFC (2 ×);
. ABC, QDA (1 ×). For the ApBC method we find: 1. QDA, RFC,
BC (4 ×); 4. SVM (3 ×); 5. GNB (2 ×); 6. DTC (1 ×). 

nterestingly, for the single coupling ML method, the DTC gives 
ore often better constraints than the RFC or the ABC. This is

urprising since the RFC and ABC are impro v ed algorithms based
n the DTC and hence, should perform better. 
n order to understand why this happens, we show in Fig. 7 the
omparison of the performance and bounds plots for the DTC and
he RFC trained on the resid data of A1795Sy1. From the two
erformance plots, we can see that the RFC actually performs 
lightly better than the DTC. This leads to a different behaviour
f the 5th percentiles of the test statistic for the ALP data: For
 aγ γ > 1 . 3 × 10 −12 GeV 

−1 of the test data, the 5th percentiles of the
FC are larger than the corresponding ones of the DTC since the

ormer predicts the test set to be more ‘axiony’ (mean predictions
re larger) than the DTC. For smaller couplings, ho we ver, the 5th
ercentiles of the test statistic of the DTC are larger than the
orresponding ones of the RFC because for those couplings the 
TC is not as good as the RFC in classifying them as no-ALP
ata. Theoretically, the real data should then also have a larger test
tatistic for the DTC when we assume that it follows the no-ALP data,
.e. one would expect that it should be close to the mean of the no-
LP data (plotted as the green line in the two middle plots of Fig. 7 ).
o we ver, we can see that it is much lower than that. Therefore, the
TC delivers a better bound on ALPs because the 5th percentiles of

he test data cross the test statistic of the real data at a much smaller
oupling of the test data. Admittedly, this is problematic because it
nly comes up due to the weaker performance of the DTC on low
ouplings. This is also the case for the other sources or data products
here the DTC gives surprisingly good constraints. Fortunately, the 
pBC method is able to circumvent this problem. The two bottom
lots in Fig. 7 show the ApBC distributions of the DTC and RFC.
he difference is that for the DTC more test sets of intermediate
ouplings have the same test statistic as the real data than for the
FC. This happens due to the worse performance of the DTC on

est sets with those couplings. As an example, we consider the curve
or g aγ γ = 10 × 10 −13 GeV 

−1 in the two top plots of Fig. 7 . For the
TC, this curve is below that of the RFC. Hence, the probability
MNRAS 514, 329–341 (2022) 
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Figure 7. Top left: performance of the DTC. Top right: performance of the RFC. Centre left: bounds plot of the DTC. For the plots in the top, the couplings 
g a γ γ in the legend are given in 10 −13 GeV 

−1 . Centre right: bounds plot of the RFC. Bottom left: ApBC plot of the DTC. Bottom right: ApBC plot of the RFC. 
All plots are for the source A1795Sy1 where the classifiers have been trained on the resid data. 

Table 10. Constraints on the ALP-photon coupling in units of 10 −12 GeV 

−1 

for all sources and data products using only the low energy part of the spectra 
( E < 2 . 5 keV ). We have used the QDA classifiers and ApBC. 

Data product A1795Sy1 A1367 A1795Quasar Coma1 Coma2 

resid 1.3 1.8 2.0 - 2.9 
up-resid 1.1 1.8 - 2.9 3.0 
up 1.1 1.3 - - - 
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hat the test statistic is equal to 4 × 10 −13 GeV 

−1 (the test statistic of
he real data for the DTC) is larger. This leads to more samples with
igher couplings that have the same small test statistic as the real
ata and in the end to worse constraints on ALPs for the DTC than
he RFC. 

(v) Method comparison: We find that the ML methods return 
ighter constraints than those from the χ2 statistic. In particular, for 
ources where only a small number of counts is available (e.g. the
uasar behind A1795 and the quasar SDSS J130001.48 + 275120.6 
ehind Coma), the advantage of the ML methods is significant. For
hose sources the χ2 statistic does not return bounds at a 95 per cent
.L., whereas the ML methods are able to constrain ALPs very 
ell at that confidence level. Out of the three ML methods, the

ingle coupling method provides the best constraints. Ho we ver, these 
est bounds often arise from initially worse performing classifiers 
s discussed previously. We find that the ApBC method is able 
o resolve that problem and gives more consistent bounds across 
ifferent classifiers and data products. Furthermore, in cases where 
he test statistic of the real data is very large (e.g. for the resid data of
1367) and the single coupling method does not return bounds, we 

re able to report bounds with the ApBC method. This, ho we ver,
s only true if the test statistic of the real data is large but not
aximal. Therefore, the ApBC method cannot return constraints for 

he up data from all quasars either. Nevertheless, we argue that due
o these advantages the ApBC method should be used preferably. 
he multiclass classification method gave very good constraints 
 g aγ γ � 0 . 6 × 10 −12 GeV 

−1 ) for the DNN. 

.1 Bounds with restricted energy range 

 natural question is how important individual spectral feature are 
or the ML bounds. Here, we are interested in analysing the effect a
estriction of the energy range has on our results. Beyond the standard
ata analysis question of feature importance, this feature restriction 
s rele v ant for the on-going all-sk y surv e y eROSITA (Predehl et al.
010 ). Here, the energy range of the expected point-source spectra 
ill be restricted as ef fecti ve area × field of view is largest for

nergies smaller than 2 . 5 keV . 

To estimate how our ALP bounds are affected by this restricted 
nergy range, we have checked whether it is still possible to constrain
LPs when we restrict our analysis to this energy range below 

 . 5 keV . We list the bounds for all sources and data products using
pectra with this energy range in Table 10 . Even though the resulting
ounds are not as tight as when using the complete spectrum, they
emonstrate that we can obtain good bounds on the ALP-photon 
oupling in that energy range. 

 C O N C L U S I O N  A N D  O U T L O O K  

n this work, we were able to constrain the coupling constant between
LPs and photons to g aγ γ � 0 . 6 × 10 −12 GeV 

−1 (95 per cent C.L.).
hese are the best bounds on ALPs for the observations that 
e have used and at the same level as current state-of-the-art
ounds (Reynolds et al. 2020 ). 
We have applied for the first time 3D magnetic field simulations

f galaxy clusters in order to place bounds in the X-ray regime.
hroughout all sources, the 3D model gave tighter bounds than 
reviously used 1D simulations. As we have seen, this is due to a
ore precise (less conserv ati ve) normalization of the magnetic field. 
o we ver, e ven the upscaled 1D model did not match the bounds from

he 3D model. We suspect that this is due to an inherent difference
n the models where the 3D one leads to bigger amplitudes in the
agnetic field strength. A confirmation of this is left for the future. 
Furthermore, we present three different ML methods that are able 
o impro v e the constraints, especially for sources with a poor spectral
uality. For the first time, we use ApBC in order to constrain ALPs,
hich provides more consistent bounds across classifiers. Across 

lassifiers, the best bounds we find are in the multiclass classification
hen applying a DNN and in the ApBC method when using a support
ector machine. 

We also find that restricting the energy range of our spectra only
esults in slightly worse bounds, which is of high rele v ance for the
n-going eROSITA mission. 
Giv en this impro v ement, when using ML-based methods to search

or ALPs, it would be of great interest to revisit the expected
ounds for the future X-ray mission ATHENA , which will have an
utstanding energy resolution combined with longer observations 
imes (Conlon et al. 2018 ). Also, X-ray polarimeters, such as IXPE ,
ay provide tighter bounds (Day & Krippendorf 2018 ). 
Additionally, given the sensitivity to the magnetic field model 

e find, an impro v ement in the modelling and the observational
onstraints on magnetic fields in galaxy clusters seems very rele v ant
or ALP searches. We hope that future radio observations such as with 
he Square Kilometre Array will improve upon these uncertainties 
n the magnetic fields and vitally provide magnetic field information 
or a large number of clusters (Braun et al. 2015 ). In conclusion,
agnetic field estimates, as well as the resolution of the spectra of

oint sources in the X-ray regime, will significantly impro v e in the
uture. To optimally utilize this new data for constraining ALPs, 
eveloping sophisticated techniques such as ML is important. 
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PPENDIX  A :  OBSERVATION  I D S  

n Table A1 , we list all incorporated Chandra observation IDs. 
NRAS 514, 329–341 (2022) 

Table A1. Chandra observation IDs of the galax

Cluster 

A1795 493, 494, 3666, 5286, 52
6161, 6162, 6163, 10898, 109

13107, 13108, 13109, 13110, 13
13416, 13417, 14268, 14269, 14
15485, 15486, 15487, 15488, 15
16438, 16439, 16465, 16467, 16
17399, 17401, 17402, 17403, 17
17411, 17683, 17684, 17685, 17
18429, 18430, 18431, 18432, 18

A1367 

Coma 555, 556, 1086, 1112, 111
13995, 13996, 14
PPENDI X  B:  H Y P E R PA R A M E T E R S  

his appendix summarizes the best hyperparameters that we found in
he grid search and used to train the classifiers for the single coupling

L and ApBC method. Here, we only mention hyperparameters
hat have been optimized in the grid search, i.e. for all other
yperparameters we have used the default values of SCIKIT-LEARN

version 0.23.2). 

1795Sy1 

oupling used for the grid search: g aγ γ = 10 −12 GeV 

−1 . We find the
ollowing best hyperparameters: 

(i) resid: 
DTC(max depth = 100, min samples split = 100, 
in samples leaf = 1) 
RFC(n estimators = 500, max depth = 100, min samples split = 10,
in samples leaf = 1) 
ABC(n estimators = 500, learning rate = 1.0) 
SVM(C = 100.0) 
(ii) up: 
DTC(max depth = 100, min samples split = 100, 
in samples leaf = 1) 
RFC(n estimators = 500, max depth = 100, min samples split = 5,
in samples leaf = 1) 
ABC(n estimators = 500, learning rate = 1.0) 
SVM(C = 100.0) 

1367 

e use the coupling g aγ γ = 1 . 5 × 10 −12 GeV 

−1 for the grid search.
elow we list the best hyperparameters: 
(i) resid: 
DTC(max depth = 800, min samples split = 100, 
in samples leaf = 35) 
RFC(n estimators = 150, max depth = 100, min samples split = 10,
in samples leaf = 2) 
ABC(n estimators = 150, learning rate = 1.0) 
SVM(C = 1.0) 

(ii) up: 

DTC(max depth = 550, min samples split = 150, 
in samples leaf = 80) 
y clusters. 

IDs 

87, 5288, 5289, 5290, 6159, 6160, 
00, 12026, 12027, 12028, 12029, 13106 
111, 13112, 13412, 13413, 13414, 13415 
270, 14271, 14272, 14273, 14274, 14275 
491, 15492, 16433, 16434, 16436, 16437 
468, 16469, 16471, 16472, 17397, 17398 
404, 17405, 17406, 17407, 17408, 17410 
686, 18423, 18424, 18425, 18426, 18427 
433, 18434, 18435, 18436, 18438, 18439 

514, 4916 

3, 1114, 9714, 10672, 13993, 13994 
406, 14410, 14411, 14415 

 on 14 July 2022
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RFC(n estimators = 150, max depth = 100, min samples split = 2,
in samples leaf = 1) 
ABC(n estimators = 150, learning rate = 0.5) 
SVM(C = 100.0) 

1795Quasar 

e use the coupling g aγ γ = 1 . 5 × 10 −12 GeV 

−1 for the grid search.
elow we list the best hyperparameters: 

(i) resid: 

DTC(max depth = None, min samples split = 100, 
in samples leaf = 10) 
RFC(n estimators = 150, max depth = None, 
in samples split = 2, min samples leaf = 2) 
ABC(n estimators = 150, learning rate = 0.9) 
SVM(C = 100.0) 

(ii) up: 

DTC(max depth = None, min samples split = 2, 
in samples leaf = 500) 
RFC(n estimators = 100, max depth = 100, min samples split = 2,
in samples leaf = 2) 
ABC(n estimators = 150, learning rate = 0.8) 
SVM(C = 100.0) 

oma1 

e use the coupling g aγ γ = 2 × 10 −12 GeV 

−1 for the grid search.
elow we list the best hyperparameters: 

(i) resid: 

DTC(max depth = None, min samples split = 500, 
in samples leaf = 10) 
RFC(n estimators = 150, max depth = None, 
in samples split = 5, min samples leaf = 10) 
ABC(n estimators = 150, learning rate = 0.9) 
SVM(C = 100.0) 

(ii) up: 

DTC(max depth = 10, min samples split = 100, 
in samples leaf = 5) 
RFC(n estimators = 150, max depth = 500, 
in samples split = 10, min samples leaf = 2) 
ABC(n estimators = 150, learning rate = 0.7) 
SVM(C = 100.0) 

oma2 

e use the coupling g aγ γ = 2 . 7 × 10 −12 GeV 

−1 for the grid search.
elow we list the best hyperparameters: 

(i) resid: 

DTC(max depth = 10, min samples split = 500, 
in samples leaf = 1) 
RFC(n estimators = 150, max depth = None, 
in samples split = 100, min samples leaf = 2) 
ABC(n estimators = 150, learning rate = 0.9) 
SVM(C = 100.0) 

(ii) up: 

DTC(max depth = None, min samples split = 500, 
in samples leaf = 1) 
RFC(n estimators = 150, max depth = 100, min samples split = 2,
in samples leaf = 5) 
ABC(n estimators = 150, learning rate = 0.9) 
SVM(C = 100.0) 
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