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We introduce a behavioral model that effectively predicts auctioneers’ reserve choice patterns in English 

clock auctions across varying reserve price formats (whether reserve prices are set ex-ante or ex-post 

auction events), number of bidders and the distribution of suppliers’ costs. In a two-parameter model, 

which we call Subjective Conditional Probability (SCP), auctioneers have subjective judgement of condi- 

tional probabilities. We theoretically show that the SCP explains two intuitive, but sub-optimal, reserve 

price setting patterns. It predicts and provides rationalizations for ex-ante reserve prices that decrease in 

the number of bidders and ex-post reserve prices that increase in the realized auction price. We conduct 

two experiments; one with a uniform cost distribution and another with a left-skewed cost distribution. 

We validate the SCP model internally and externally by comparing it to a wide range of models, including 

reduced form linear regression, risk aversion, anticipated regret model, and subjective probability judge- 

ment via in-sample and out-of-sample predictions. We conclude that the SCP has strong external validity 

across a variety of procurement environments. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Auctions with reserve prices are commonly used in procure- 

ment. A strategic buyer sets a reserve price, a maximum accept- 

able price in the procurement setting, to increase the expected sur- 

plus of a purchase. 1 We introduce a behavioural model for setting 

reserve prices in which auctioneers have subjective judgement of 

conditional probabilities. Using controlled laboratory experiments, 

we establish its robustness vis-a-vis rational and other common 

behavioural models with respect to ex-ante and ex-post reserve 

prices formats, number of bidders, and distribution of suppliers’ 

costs. 

In procurement practice, two reserve prices formats are com- 

monly used. In one format the procurer sets an ex-ante reserve 

price. For example, Kawai & Nakabayashi (2014) report that be- 

tween 2003 and 2006 Japanese public construction projects spent 

more than 42 billion US dollars via this format. Ex-ante reserve 

∗ Corresponding author. 

E-mail addresses: jason.shachat@durham.ac.uk (J. Shachat), l.tan1@tue.nl (L. Tan) . 
1 There are other strategic and non-strategic reasons for adopting reserve prices. 

Reserve prices can play an important strategic role when the numbers of bidders 

is endogenously determined ( Menezes & Monteiro, 20 0 0 ). Procurers may also non- 

strategically adopt reserve prices to reflect budgetary constraints. 

prices are also commonly found in e-auctions, such as auctions on 

eBay, auctions for online advertisements ( Kanoria & Nazerzadeh, 

2021 ), and public procurement auctions in the United Kingdom 

and Australia. 2 In the other format, the procurer retains an op- 

tion to negotiate with the auction winner. Ex-post negotiations can 

happen after the auction winner is determined for ex-post coop- 

eration ( Xu, Feng, & He, 2017 ), ex-post split-award ( Kokott, Bich- 

ler, & Paulsen, 2019; Paulsen, Bichler, & Kokott, 2021 ), and also for 

price concession. For example, Muttitt (2011) reports after an auc- 

tion for the Rumaila oilfield in southern Iraq in 2009, the Iraqi gov- 

ernment privately renegotiated with the winning BP/CNPC consor- 

tium. Shachat & Tan (2015) report that in 2012, the Hunan Province 

(China) Procurement Center made over 90 0 0 orthopedic related 

purchases also using this format. While there are inevitably many 

ways in which ex-post auction negotiations are conducted, we pro- 

ceed assuming that the auctioneers in all cases have a limit price, 

potentially implicit, beyond which they walk away from the po- 

2 eBay’s link: https://www.ebay.com/help/selling/listings/selling-auctions/ 

reserve-prices?id=4143 ; UK cabinet office: https://assets.publishing.service.gov.uk/ 

government/uploads/system/uploads/attachment _ data/file/850566/PPN _ for _ New _ 

Thresholds _ 2020 _ pdf.pdf ; Australia: https://www.buyingfor.vic.gov.au/procurement- 

auctions- goods- and- services- procurement-guide . 

https://doi.org/10.1016/j.ejor.2022.04.025 

0377-2217/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ejor.2022.04.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.04.025&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jason.shachat@durham.ac.uk
mailto:l.tan1@tue.nl
https://www.ebay.com/help/selling/listings/selling-auctions/reserve-prices?id=4143
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/850566/PPN_for_New_Thresholds_2020_pdf.pdf
https://www.buyingfor.vic.gov.au/procurement-auctions-goods-and-services-procurement-guide
https://doi.org/10.1016/j.ejor.2022.04.025
http://creativecommons.org/licenses/by/4.0/


J. Shachat and L. Tan European Journal of Operational Research 304 (2023) 709–728 

tential transaction. We focus on this limit price and refer to as the 

ex-post reserve price. 

Choosing the optimal strategic reserve price is a cognitively 

challenging decision problem. 3 Two counter-intuitive prescriptions 

of the optimal reserve price exemplify these difficulties. First, op- 

timal ex-ante reserve prices in English auctions with symmetric 

and independently distributed private values or costs do not vary 

with the number of bidders. Davis, Katok, & Kwasnica (2011) ex- 

perimentally tested whether subjects follow this prescription in 

forward auctions, those for selling an object. Subjects’ ex-ante re- 

serve prices were increasing, not constant, in the number of bid- 

ders. Second, in English procurement auctions with ex-post bar- 

gaining the auctioneer’s optimal strategy is to make the winner a 

take-it-or-leave-it (TIOLI) offer if the auction price is too high. This 

optimal offer, the ex-post reserve price, is counter-intuitively in- 

variant to the auction price ( Bulow & Klemperer, 1996 ). Shachat & 

Tan (2015) report laboratory experiments on this setting and find 

subjects on average correctly choose when to bargain, but their ex- 

post reserve prices are increasing, not constant, in auction prices. 

These systematic deficiencies of the standard theory to pre- 

dict actual reserve price choices led the documenting researchers 

to identify more empirically accurate behavioral models. Davis 

et al. (2011) and Shachat & Tan (2015) use different behavioral ap- 

proaches to rationalize their participants’ choices. The former in- 

corporates anticipated regret into the auctioneer’s expected util- 

ity function. The auctioneer’s regret in this case reflects potential 

ex-post gains that an ex-ante reserve price does not capture. The 

latter model takes into account the auctioneer’s subjective distor- 

tion of the Bayesian posterior of the auction winner’s cost. Both 

behavioural models are parsimonious as each is characterized by 

just two parameters. However, the need to specify distinct models 

for the two formats raises questions of external validity. Specifi- 

cally, the anticipated regret model performs poorly in the ex-post 

reserve price case and the distorted Bayesian posterior performs 

poorly in the ex-ante reserve price case. 

In this paper we propose a robust behavioural model, referring 

to as the subjective conditional probability (SCP hereafter) model, 

to predict auctioneers’ reserve price choice patterns in ex-ante and 

ex-post formats. Support theory ( Tversky & Koehler, 1994 ) provides 

an intuition for the SCP model. In support theory, a decision maker 

discriminates among uncertain outcomes by their saliency, either 

by framing or focalness within context, and distorts their likeli- 

hood in accordance. In the SCP, the events in which the reserve 

price either sets the auction price or results in no purchase are 

more salient than the auction outcome in which the reserve price 

is not binding. Theoretically the SCP model predicts, under a wide 

range of parameter values, decreasing ex-ante reserve prices in En- 

glish procurement auctions as the number of bidders increases. 

And it is equivalent to Shachat & Tan ’s subjective posterior prob- 

ability model in the ex-post reserve price format; preserving the 

predicted positive relationship between auction and ex-post re- 

serve prices. 

Our goal is to formulate a parsimonious behavioral model that 

predicts reserve prices across settings with varying English auc- 

tion formats, number of bidders, and distributions of sellers’ pri- 

vate costs. We empirically evaluate the SCP model by blending 

the control of factors afforded by laboratory experiments and the 

model validation principles of structural econometrics. Our empiri- 

cal strategy starts by collecting a pair of data sets from two exper- 

iments of English procurement auctions. Our two experiments in- 

corporate three treatment variables: the auction format, the num- 

ber of bidders, and the distribution of sellers’ costs. The first treat- 

3 Note that we do not focus on repeated auctions in which the auctioneer can 

dynamically update a common reserve price based on the bidding history ( Kanoria 

& Nazerzadeh, 2021 ). 

ment variable, auction format, follows a between-subject design. 

We call the ex-ante format the EA format treatment and the ex- 

post format the EP format treatment. The second treatment vari- 

able, number of bidders, follows a within-subject design. Each sub- 

ject participates in auctions with one, two, and three bidders. The 

third treatment variable, cost distribution, delineates our two ex- 

periments. In the first experiment the distribution of sellers’ pri- 

vate costs follows a uniform distribution, the U cost treatment. In 

the second experiment, these costs follow a heavily left-skewed 

distribution, the S cost treatment. 

We conduct two types of model validation: classical specifica- 

tion tests or likelihood value comparisons, and forecasting accu- 

racy. First, we present structural maximum likelihood estimates for 

both the SCP and anticipated regret models using the data from 

Experiment 1. For the EA-U data, the two structural models’ per- 

formances are on par with each other as they have similar likeli- 

hood values and their respective parameter values are in line with 

previous studies. For the EP-U data, consistent with Shachat & Tan 

(2015) , the SCP model validates well but the estimated anticipate 

regret parameters reflect nonsensical positive utility for ex-post 

losses. Later, using the data from Experiment 2, we re-estimate 

the SCP model parameters and find they generate a similar pat- 

tern of subjective conditional probability distortions. However, the 

parameter estimates statistically differ between the uniform and 

left-skewed distributions of costs environments. 4 

A key benefit of an appropriate structural model is its use in 

counterfactual analysis such as ex ante policy modeling or pre- 

diction in a managerial setting. Keane (2010) suggests the proper 

validation exercises to establish a relative ranking of models are 

in-sample and out-of-sample forecast evaluations for internal and 

external validity respectively. The in-sample forecasts are formed 

by using the estimates of a linear reduced form model, the an- 

ticipated regret model and the SCP model from the Experiment 1 

data to forecast the subject choices included in that same data. The 

ranking of the mean squared error scores of these forecasts from 

lowest to highest are linear, SCP and anticipated regret. The linear 

model’s strong performance is driven by its specification that al- 

lows for maximum flexibility to adjust intercept and slope terms 

for the number of bidders and a time adjusting component. This 

over-fitting is revealed by the out-of-sample exercise. 

Out-of-sample forecasts always use the data from Experiment 

1 for model estimation and use these estimated models to predict 

reserve price decisions for Experiment 2. The external validity of 

our structural models is demonstrated by a strikingly low accuracy 

of the linear model predictions. Between the two structural mod- 

els, we find that the SCP is superior as it exhibits a lower mean 

squared error score for prediction accuracy than the anticipated re- 

gret model in the ex-ante auction frame. 

In the penultimate section of the paper we explore the rela- 

tive merit under the same criteria of the SCP model in compar- 

ison to a simple model of risk aversion, a SCP model that al- 

lows for risk aversion, and a subjective probability (SP) model that 

allows for subjective judgements that transform both conditional 

and unconditional probabilities. Estimates of the simple risk aver- 

sion model reflect moderate risk aversion. However, when incor- 

porated into the SCP the resulting estimates reflect nearly perfect 

risk neutrality. Estimates of the SP model, reflect transformations 

of unconditional probabilities that are strictly convex while uncon- 

ditional probabilities still maintain their S-shaped transformations. 

This suggests the ability of the SCP to track the comparative statics 

4 Parameter recovery in alternative contexts, sometimes referred to as sensitiv- 

ity in the structural econometrics literature ( DellaVigna, 2018 ), is a lofty standard 

seldom satisfied empirically. For example, estimates of risk aversion vary greatly 

for individuals across choice tasks ( Isaac & James, 20 0 0 ), as do the parameters of 

Delta-Beta time preferences ( Laibson, Maxted, Repetto, & Tobacman, 2017 ). 

710 



J. Shachat and L. Tan European Journal of Operational Research 304 (2023) 709–728 

on the number of bidders and auction price derive solely from the 

transformation of conditional probabilities. In out-of-sample fore- 

cast validations, we find the vast majority in predictive effective- 

ness derives from the simple SCP model. 

The contribution of the SCP model is twofold. On one hand, the 

SCP model effectively captures auctioneers’ behaviour regardless of 

English auction frames, revealing judgement biases are deeply em- 

bedded. On the other hand, the SCP model efficiently predicts re- 

serve prices across cost distributions. Analysts who intend to fore- 

cast reserve prices, can easily estimate this two-parameters model 

with one data set to build a tool capable of accurately forecasting 

reserve prices across a variety of procurement auction settings. 

2. Theoretical models of reserve prices 

2.1. The standard case 

We review the standard theoretical results for optimal ex-ante 

and ex-post reserve prices. Consider an auctioneer desiring an in- 

divisible object. Her valuation of the object, denoted v , is a random 

variable with the absolutely continuous distribution H and associ- 

ated density h whose supports are the interval [ v , v ] . There are n 

potential sellers, indexed by i , each of whom can provide the ob- 

ject at a cost of c i . Each seller’s cost is an independent draw from 

the interval [0 , c ] , with c < v , according to the distribution function 

F . The density function for F is denoted f . We order realized sell- 

ers’ cost by ascending value; i.e. c 1 is the lowest realized cost, c 2 
is the second lowest realized costs, et cetera . We denote the dis- 

tribution and density functions of the i th lowest cost by F (i ) and 

f (i ) respectively. We further assume c i + 

F (c i ) 

f (c i ) 
is strictly increasing 

on the support of F . The auctioneer’s value and sellers’ costs are 

all private information. Each individual knows their own realized 

value or cost, and the distributions of others’ private information. 

This information structure is known by all parties. 

2.1.1. Ex-post reserve prices 

In an ex-post format, the process begins with an auction with 

a price clock starting at c and all sellers in the auction. As the 

price clock ticks down sellers can exit. The auction closes once 

n − 1 sellers have exited, or the clock reaches zero. The remain- 

ing seller is the auction winner. 5 The auction price is the last tick 

of the price clock. The auctioneer then has the option to either ac- 

cept the auction outcome, or to issue the auction winner a lower 

take-it-or-leave-it offer, which we call the ex-post reserve price 

r p ∈ [ 0 , min { v , c 2 } ] . 6 If the auctioneer accepts the auction outcome 

her payoff is her value less the auction price, the auction winner’s 

payoff is the auction price less her realized cost, and all other sell- 

ers’ payoffs are zero. If the auctioneer chooses the ultimatum bar- 

gaining option and the seller accepts, the auctioneer’s payoff is her 

value less r p , the auction winner’s payoff is r p less his realized cost, 

and all other sellers’ payoffs are zero. If the counter offer of r p is 

rejected, there is no trade and all parties’ payoffs are zero. 

In this format a seller has a weakly dominant strategy to exit 

the auction at the price equal to her cost, and to accept any take- 

it-or-leave-it offer that does not generate a loss. Accordingly the 

seller holding c 1 will win the auction and the auction price will 

be c 2 . The auctioneer’s strategy is a function that maps from pos- 

sible value-auction price pairs to possible counter offers joint with 

accepting the auction outcome. The auctioneer’s payoff function, 

when sellers follow their weakly dominant strategy, is 

E [ π(r p ; v , c 2 ) ] = max { v − c 2 , (v − r p ) D (r p | c 2 ) } . (1) 

5 If there are multiple winners one is selected at random. 
6 For simplicity in upcoming arguments, we rule out reserve prices in which the 

auctioneer exposes themselves to negative payoff outcomes. 

The conditional probability of purchasing at r p is D (r p | c 2 ) = 

Pr { c 1 ≤ r p | c 1 < c 2 } = F (r p ) /F (c 2 ) via Bayes Rule. The first order 

condition for an interior maximum of the second argument of 

(1) implies, 

r ∗p = v − F (r ∗p ) 

f (r ∗p ) 
. (2) 

Bulow & Klemperer (1996) show the maximized value of the first 

argument exceeds the second when c 2 ≤ r ∗p . In other words, the 

auctioneer should accept the auction outcome when the auction 

price is less than the optimal ex-post reserve price; otherwise 

make the auction winner a take-it-or-leave-it offer at the optimal 

ex-post reserve price. 

2.1.2. Ex-ante reserve prices 

In the ex-ante format, the auctioneer chooses a reserve price 

r a ∈ [ 0 , min { v , c } ] . This pre-committed maximum price is an- 

nounced to all sellers. Each seller then decides whether or not to 

participate in the auction. The auctioneer conducts an English auc- 

tion with a price clock starting at r a . The only action that an auc- 

tion participating seller can take is to exit as the clock ticks down. 

The auction closes once n − 1 sellers have exited. The auction price 

is the last tick and the remaining seller is the winner. 7 A seller has 

a weakly dominant strategy to enter the auction when her cost 

is no more than r a and to exit when the clock price equals her 

cost ( Vickrey, 1961 ). Accordingly the auction price is the minimum 

of either the second lowest realized cost c 2 or the r a . When no 

seller’s cost is less than r a there is no auction and all parties re- 

ceive a payoff of zero. When there is an auction the auctioneer’s 

payoff is v less the auction price, the winning seller’s payoff is the 

auction price minus her cost, and all other sellers’ payoffs are zero. 

When sellers follow their weakly dominant strategy, the auc- 

tioneer’s ex ante expected payoff, as a function of r a , is 

E [ πa (r a ; v ) ] = (v − r a ) B (r a ) + 

∫ r a 

0 

(v − y ) f (2) (y ) dy. (3) 

The reserve price r a is the purchase price when it lies between 

the second lowest and lowest realized costs. The probability of this 

event is B (r a ) = Pr { c 1 ≤ r a < c 2 } = nF (r a )(1 − F (r a )) 
n −1 . The sec- 

ond lowest realized cost is the purchase price when it is ex- 

ceeded by the reserve price, r a > c 2 . This occurs with probability, 

F (2) (r a ) = 1 − nF (r a ) 
(
1 − F (r a ) 

)n −1 −
(
1 − F (r a ) 

)n 
. Note, the den- 

sity function of the second lowest realized cost is f (2) (y ) = n (n −
1) F (y ) f (y )[1 − F (y )] n −2 . The auctioneer’s optimal ex-ante reserve 

price r ∗a , derived from the first order condition of Eq. (3) , is 

r ∗a = v − F (r ∗a ) 
f (r ∗a ) 

. (4) 

We highlight three counter-intuitive properties of the optimal 

reserve prices. First, inspection of Eqs. (4) and (2) reveals that the 

optimal ex-ante and ex-post reserve prices are the same. Despite 

the ex-post format clearly providing the auctioneer more infor- 

mation this does not change the optimal action; rather just the 

valuation of the maximized expectation changes for different real- 

ized values of c 2 . Second, both the optimal ex-ante and ex-post re- 

serve prices are invariant to the number of bidders. Third, the opti- 

mal ex-post reserve price is independent of the observable auction 

price. 

2.2. Optimal reserve prices with subjective conditional probabilities 

There are three key mutual exclusive events as the consequence 

of setting a reserve price: (1) a reserve price sets the purchase 

7 Again, in the case of multiple winners, one is chosen randomly. All winners 

have the same probability of being selected. 
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price; (2) there is no purchases due to a low reserve price; and 

(3) the auction price sets the purchase price. According to support 

theory developed by Tversky & Koehler (1994) , probability judge- 

ments are influenced by the focalness or framing of events. A re- 

serve price’s functionality enhances its salience, and the support, 

of the first two outcomes given above. Explicitly, when auctioneers 

consider a reserve price, they judge the probability it sets the pur- 

chase price or it is low enough that it results in a failure to pur- 

chase. With this perception, the relevant probability judgements 

most likely are distorted. What are the relevant probability judge- 

ments about? Notice the first two events occurs only occur when 

the reserve price is lower than the realized second lowest supplier 

cost. 

Shachat & Tan (2015) find that auctioneers do distort condi- 

tional probability when the reserve price is ex-post, and model this 

distortion with a two-parameter function. In this study, we employ 

a similar two-parameter function, as Eq. (5) shows, 

ψ(K) = e −μ(− ln (K)) λ , μ > 0 , λ > 0 , K ∈ [0 , 1] , (5) 

to capture the auctioneers’ distortion on a conditional probabil- 

ity of K in both ex-ante and ex-post formats. This equation has 

five potential shapes based on the values of μ and λ. In partic- 

ular, when μ = λ = 1 the equation reduces to the identity func- 

tion ψ(K) = K. 8 In this case, the auctioneer’s subjective conditional 

probability judgement is not distorted. 

Based on Shachat & Tan (2015) ’s finding, the transformation 

function takes on an S-shape. Unlike a probability weighting func- 

tion, the SCP considers the probability of an event which is con- 

ditional on another event, e.g. in the auction context, the event of 

auctioneer’s reserve price setting the purchase price is conditional 

on the auction price exceeding the reserve price. The behavioural 

implication of the S-shaped transformation function is that, the 

auctioneer is overconfident that her reserve price will set the pur- 

chase price when she sets it slightly below the auction price, and 

is overly pessimistic of not purchasing when she sets her reserve 

price far below the auction price. 

2.2.1. Ex-post reserve prices 

We first consider how subjective conditional probabilities im- 

pact optimal reserve prices in the ex-post auction format and how 

optimal reserve prices respond to changes in the auction price. The 

auctioneer’s subjective expected utility from making the take-it-or- 

leave-it offer r p is 

E[ πp (r p ; v , c 2 )] = max 
{
v − c 2 , (v − r p ) ψ 

(
D (r p | c 2 ) 

)}
. (6) 

The auctioneer’s optimal strategy ( Shachat & Tan, 2015 ) is, 

Proposition 1. 

(i) The optimal ultimatum offer is r ∗p = v − �(r ∗p ) 
�′ (r ∗p ) 

, where �(r ∗p ) = 

ψ 

(
F (r ∗p ) 
F (c 2 ) 

)
, and 

(ii) Accept the auction outcome if r ∗p ≥ c 2 . 

Subjective conditional probabilities result in optimal ex-post re- 

serve prices which generally vary with respect to the realized auc- 

tion price. The following proposition, for proof see Proposition 2 of 

Shachat & Tan (2015) , conveys the relevant comparative static re- 

sult. 

Proposition 2. If λ > 1 , then 
∂r ∗p 
∂c 2 

> 0 . 

8 Prelec (1998) introduced this functional form for the probability weighting 

function, with an inverted S-shape, component of Prospect Theory ( Kahneman & 

Tversky, 1979 ). However, probability weighting is mathematically and behaviourally 

distinct from the conditional probability distortions we study. 

The condition of λ > 1 guarantees an S-shaped transformation 

function ψ . This shape implies that, the auctioneer over-weighs 

the probability of her reserve price setting the purchase price 

when the reserve price is slightly below the auction price c 2 , 

whereas she under-weighs this probability when a reserve price 

is far below the auction price. Therefore, a lower auction price 

encourages auctioneers setting a lower reserve price, and vice 

versa. 

2.2.2. Ex-ante reserve price format 

In the ex-ante format the auctioneer receives no information re- 

garding the lowest realized cost. Consequently, the lens of Shachat 

& Tan (2015) yields the same optimal reserve price as the stan- 

dard model. We extend the transformed judgement notion from 

Bayesian updating to the more general case of conditional proba- 

bility. The auctioneer’s key conditional judgement is the likelihood 

of a reserve price exceeding the lowest cost conditional on not ex- 

ceeding the second lowest cost. Restating the probability of a re- 

serve price setting the purchase price highlights this: 

B (r a ) = Pr { c 1 ≤ r a < c 2 } = Pr { c 1 ≤ r a | c 2 > r a } Pr { c 2 > r a } . 
For convenience let G (r a ) = Pr { c 1 ≤ r a | c 2 > r a } , or more explic- 

itly, G (r a ) = 

nF (r a ) 
(n −1) F (r a )+1 

. If the auctioneer transforms the condi- 

tional probability of the auction price setting the purchase price 

by Eq. (5) , then the objective probability of B (r a ) becomes to the 

subjective probability of 

Z(r a ) = ψ(G (r a )) 
(
1 − F (2) (r a ) 

)
. 

We note that the auctioneer may have a subjective probability 

judgement on the probabilities of Pr { c 2 > r a } and 1 − Pr { c 2 > r a } . 
This possibility is examined in Section 6 . 

Corresponding under the SCP model, the auctioneer’s expected 

utility from choosing r a is 

E[ πa (r a ; v )] = (v − r a ) Z(r a ) + 

∫ r a 

0 

(v − y ) f (2) (y ) dy. (7) 

The optimal ex-ante reserve price r ∗a derived from the first 

order condition needs to satisfied the condition Z ′ (r ∗a ) ̃  Z (r ∗a ) −
Z (r ∗a ) ̃  Z ′ (r ∗a ) + ̃

 Z (r ∗a ) 2 > 0 that guarantees an interior maximum. 

Proposition 3 characterizes the auctioneer’s optimal ex-ante re- 

serve price. 

Proposition 3. The optimal ex-ante reserve price for auctioneers with 

subjective conditional probability judgement is 

r ∗a = v − Z(r ∗a ) ˜ Z (r ∗a ) 
, (8) 

where ̃  Z (r a ) = Z ′ (r a ) + f (2) (r a ) . 

Proof: Provided in the appendix. 

How do subjective conditional probabilities impact optimal re- 

serve prices as the number of bidders varies? Under subjective 

conditional probabilities, the optimal ex-ante reserve price is no 

longer invariant to the number of bidders. Note that ˜ Z (r a ) and 

Z(r a ) are functions of the number of bidders n . When the condi- 

tional probability is not distorted it has Z(r a ) ˜ Z (r a ) 
= 

F (r a ) 
f (r a ) 

and the stan- 

dard model is recovered. At the optimal ex-ante reserve price of 

r ∗, we assume the condition Z ′ (r ∗a ) ̃  Z (r ∗a ) − Z (r ∗a ) ̃  Z ′ (r ∗a ) + ̃

 Z (r ∗a ) 2 > 0 

holds. Proposition 4 characterizes the comparative static on how 

the optimal ex-ante reserve price relates to the number of bidders. 

We will relate this proposition to the parameters λ and μ when 

we discuss hypotheses in the next section. 
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Proposition 4. 

(i) If 
∂ ̃  Z (r ∗a ) 

∂n 
Z(r ∗a ) = 

∂Z(r ∗a ) 
∂n 

˜ Z (r ∗a ) , then 
∂r ∗a 
∂n 

= 0 . This occurs when the 

auctioneer does not distort the conditional probability of G (r a ) . 

(ii) If 
∂ ̃  Z (r ∗a ) 

∂n 
Z(r ∗a ) < 

∂Z(r ∗a ) 
∂n 

˜ Z (r ∗a ) , then 
∂r ∗a 
∂n 

< 0 . 

(iii) If 
∂ ̃  Z (r ∗a ) 

∂n 
Z(r ∗a ) > 

∂Z(r ∗a ) 
∂n 

˜ Z (r ∗a ) , then 
∂r ∗a 
∂n 

> 0 . 

Proof. Provided in the appendix. There is some intuition for this 

proposition. For auctioneers whose Z(r a ) ˜ Z (r a ) 
is increased by n , they 

perceive a low reserve price has a higher chance of setting the pur- 

chase price when the number of bidders increases. This leads to a 

lower reserve price when n increases. �

2.3. Optimal reserve prices when an auctioneer has anticipated regret 

When an auctioneer experiences disutility of inefficient ex-post 

outcomes resulted by her ex-ante decisions, she incorporates these 

potential disutilities into her ex-ante calculations of expected util- 

ity. These disutitlities are referred to as win regrets and lose re- 

grets according to the auction outcomes ( Davis et al., 2011 ). An 

auctioneer experiences win regret after a purchase and realizes a 

lower reserve price would have increased her ex-post payoff. Note 

in the ex-post format, when an auctioneer accepts the auction out- 

come no further uncertainties resolve and her win regret is zero. 

We assume that an expected amount of win regret x w 

generates 

a proportional disutility, w (x w 

) = δw 

· x w 

, with δw 

≥ 0 . We measure 

x w 

as the auctioneer’s purchase price less the revised expectation 

of the winner’s cost, c 1 , whose distribution function is F (x w ) 
F ( min { c 2 ,r} ) . 

Explicitly, 

x w = 

{ 
r − k (r) , for r ≤ c 2 and r ≥ c 1 
c 2 − k (c 2 ) , for r > c 2 

, where k (y ) = 

∫ y 

0 

ν
f (ν) 

F (y ) 
dν. 

An auctioneer experiences loss regret when he fails to purchase 

the object which he could have done so profitably given the real- 

ized auction outcome. We assume that an expected amount of loss 

regret x l generates a proportional ex-ante disutility, l(x l ) = δl · x l , 

with δl ≥ 0 . The auctioneer experiences loss regret in the ex-post 

format when setting aside an auction outcome yielding a certain 

positive payoff, and then her ultimatum offer is rejected. The loss 

regret is calculated, 

x l = 

{
0 , for v − c 2 ≤ 0 and r p ≤ c 1 
v − c 2 , for v − c 2 > 0 and r p ≤ c 1 

. 

When the auctioneer experiences a loss regret in the ex-ante auc- 

tion format, we assume it is proportional to the difference between 

her value and reserve price. In this case the loss regret is calculated 

as x l = v − r a . 
9 

2.3.1. Ex-post reserve prices 

We first examine the impact of anticipated regret on the opti- 

mal reserve price and its response to varying auction prices in the 

ex-post format. The auctioneer’s expected utility function is 

E[ πp (r p ; v , c 2 )] = max 
{
v − c 2 , −l(v − c 2 ) 1 { v −c 2 > 0 } (1 − D (r p | c 2 )) 
+(v − r p − w (r p − k (r p ))) D (r p | c 2 ) 

}
. 

The optimal ex-post reserve price is characterized by the following 

proposition. 

Proposition 5. The optimal ex-post reserve price for an anticipated 

regret auctioneer is 

r ∗p = 

1 

1 + δw 

(
V (r ∗p ) + δl max { 0 , v − c 2 } + δw 

M(r ∗p ) 
)
, (9) 

9 We are following specification of loss regret provided by Davis et al. (2011) , 

although we recognize an alternative valid calculation is to let x l = v − E[ c 1 | c 1 ≥ r a ] . 

where δl ≥ 0 and δw 

≥ 0 , V (r ∗p ) = v − F (r ∗p ) 
f (r ∗p ) 

and M(r ∗p ) = k (r ∗p ) −
F (r ∗p ) 
f (r ∗p ) 

(1 − k ′ (r ∗p )) . 

Proof. Provided in the appendix. �

With respect to varying auction prices c 2 , we find that optimal 

ex-post reserve price r ∗p , depends only upon the coefficient of loss 

regret. Further, we find there is a negative relationship between 

the auction price and the auctioneer’s optimal ex-post reserve. 

Proposition 6. If δl > 0 and v − c 2 > 0 , then 
∂r ∗p 
∂c 2 

< 0 . 

Proof. Provided in the appendix. �

There is some intuition for this comparative static result. At 

higher auction prices the potential loss regret from setting aside 

the auction outcome is smaller. This leads to more aggressive ex- 

post auction bargaining. 

2.3.2. Ex-ante reserve prices 

We revisit the analysis of Davis et al. (2011) , allowing for v to be 

a random variable, regarding the optimal ex-ante reserve price for 

an auctioneer with anticipated regret, and the comparative static 

of this reserve price with respect to the number of bidders. The 

auctioneer’s expected utility for reserve price r a is, 

E[ πa (r a ; v )] = −l(v − r a )(1 − F (2) (r a ) − B (r a )) 

+(v − r a − w (r a − k (r a ))) B (r a ) 

+ 

∫ r a 

0 

(v − y − w (y − k (y ))) f (2) (y ) dy. 

The auctioneer’s optimal action in this case is given in the fol- 

lowing proposition. 

Proposition 7. The optimal ex-ante reserve price for an auctioneer 

with anticipated regrets is 

r ∗a = 

1 

1 + δl + δw 

( V (r ∗a ) + δl L (r ∗a , n ) + δw 

M(r ∗a ) ) , 

where δl ≥ 0 , δw 

≥ 0 , V (r ∗a ) = v − F (r ∗a ) 
f (r ∗a ) 

, L (r ∗a , n ) = v + 

1 −F (r ∗a ) 
f (r ∗a ) 

1 
n 

and M(r ∗a ) = k (r ∗a ) − F (r ∗a ) 
f (r ∗a ) 

(1 − k ′ (r ∗a )) . 

Proof. Provided in the appendix. �

The impact of varying the number of bidders on the optimal 

ex-ante reserve price is given in the following proposition. 

Proposition 8. If δl > 0 , then 
∂r ∗a 
∂n 

< 0 . 

Proof. Provided in the appendix. The intuition is that auctioneers 

with loss regret tend to set lower reserve prices when failing to 

purchase is less likely happen, as is the case when the number of 

bidders is larger. �

3. Experimental design and hypotheses 

3.1. Experimental design 

Our experimental treatment design had two factors. The first 

factor was the English auction format, which we implemented 

between-subjects. The second factor was the number of bidders, 

which we implemented within-subject. All subjects assumed the 

role of the auctioneer. An auctioneer took part in a sequence of 

90 procurement auctions without any practice. In each auction, 

the auctioneer’s value v was an independent random draw from 

a Uniform distribution between 50 to 150. An auctioneer knew 
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that (1) the bidders were computerized and programmed to fol- 

low their respective weakly dominant strategy in each format 10 

Further, Shachat & Tan (2015) used human sellers in their ex-post 

format study and found human subjects overwhelmingly exit the 

auction at cost and almost always accept any ultimatum offer that 

does not generate a loss. and (2) each seller’s cost was an inde- 

pendent draw from a Uniform distribution over the range 0 to 100. 

Note, we created paired sequences of values and costs by randomly 

drawing the value and costs for the 90 auctions for one subject 

participating in the ex-post format, and then using the same se- 

quence for a subject participating in the ex-ante format. 

All auctioneers faced a varying number of bidders across auc- 

tions. The number of bidders in an auction was either 1, 2, or 3. An 

auctioneer’s sequence of auctions was broken into three blocks of 

30 auctions each; one block for each of the three levels of bidders. 

As we will discuss shortly, we conducted four sessions for each 

auction format, and each session’s block sequence of n uniquely 

followed one of four orders: { 1 , 2 , 3 } , { 2 , 1 , 3 } , { 2 , 3 , 1 } and { 3 , 2 , 1 } . 
This was done to control for order effects. You may notice the 

one bidder case auction closely more resembles one-to-one nego- 

tiations starting from the price of 100 rather than a conventional 

auction. However, this is a meaningful baseline in which auction- 

eers are given exact the same information (auction price constantly 

equals to 100) across formats while making reserve price decisions. 

Thus, this baseline controls for the pure framing effect generated 

by the two reserve price formats. 

The two experimental English auction format treatments were 

Ex-post reserve price (EP-U) and Ex-ante reserve price (EA-U). In 

an auction, the computer software 11 first informed a subject of her 

current value and the number of bidders. In the EP-U treatment, 

the software presented n cards, one for each bidder, sorted left- 

to-right by descending cost. When n = 2 or 3, the left most n − 1 

cards displayed the corresponding seller’s bid, and the right most 

card displayed “W” to indicate the auction winner. The auctioneer 

was informed of the auction price, which matched the number on 

the second farthest right card. In the case of n = 1 , the auctioneer 

saw a single card with a “W” and was informed the auction price 

was 100. Next the auctioneer decided to either accept the auction 

price or make a take-it-or-leave-it offer, r p , to the winning seller. 

The winning seller accepted r p if it exceeded his cost, otherwise he 

rejected it and there was no purchase. 12 

In the EA-U treatment, an auction started with the auction- 

eer learning her value and the number of bidders. Then she was 

prompted to select a reserve price, r a . Next the software presented 

n -cards in similar fashion to the EP-U treatment. However, if a 

seller’s cost exceeded r a , her card displayed “D”. If all cards dis- 

played “D,” there was no purchase. Otherwise the auctioneer pur- 

chased at price equal to the lower of r a and c 2 . 

We recruited 16 subjects for each session, conducted four ses- 

sions for both formats, giving us a total of 128 subjects. The sub- 

jects were undergraduate and graduate students at a large pres- 

tigious university in Southern China and recruited via the subject 

pool management software ORSEE ( Greiner, 2004 ). Subjects could 

only participate in one session. An experimental session lasted no 

more than two hours. We paid subjects their accumulated earnings 

from their 90 auctions, with an exchange rate of 60 experimental 

currency units to 1 Chinese RMB. We also paid subjects a 5 RMB 

10 We are assuming that individuals would also strongly adhere to the weakly 

dominant strategy to exit at cost and that individuals in the auctioneer role will not 

hold consequential social preferences for human bidders’ welfare. These assump- 

tions are also implicit to Davis et al. (2011) who adopted computerized sellers. 
11 All experiments were computerized with a program developed using zTree 

( Fischbacher, 2007 ). 
12 We provide full instructions for both treatments in an appendix. 

show-up fee. Overall subjects earned approximately 60 RMB on av- 

erage from their participation. 

3.2. Hypotheses 

Our hypotheses are developed around three alternative mod- 

els of auctioneer expected utility: risk neutrality, SCP, and antici- 

pated regret. Our hypotheses concern the equality of reserve prices 

across auction formats, the comparative statics of reserve prices 

with respect to the number of bidders in the ex-ante format and 

with respect to the level of realized auction prices in the ex-post 

format. We develop the specific nature of the hypotheses by using 

the value and cost respectively adopted Uniform distributions. 

In the standard model, optimal ex-ante and ex-post reserve 

prices are the same. Thus for any realized value and set of costs, 

the same allocation and price results in the two formats. With 

the adopted distributions for value and costs, the optimal reserve 

price in both formats, according to Eqs. (4) and (2) , respectively, 

is r ∗(v ) = v − F (r ∗(v )) / f (r ∗(v )) = v / 2 . 13 Hypothesis 1 summarizes 

these predictions. 

Hypothesis 1 Risk neutral benchmark. (a) Selected reserve prices 

are invariant to the English auction format. (b) Reserve prices are 

invariant to the number of bidders in both formats. (c) Reserve 

prices are invariant to the realized auction price in the ex-post for- 

mat. 

In the SCP model the two comparative statics results of in- 

terest depend upon the specific distributions of value and costs, 

and the value of the SCP transformation parameters λ and μ. 

Shachat & Tan (2015) find the estimated values of λ for most 

subjects exceeds 1. This implies an S-shaped transformation func- 

tion of ψ , which redistributes probability density away from the 

ends of the support towards the interior. 14 For the ex-post for- 

mat, Proposition 2 shows when λ > 1 that ex-post reserve prices 

increase with auction prices. 

For the ex-ante format, Proposition 4 gives a condition in which 

optimal reserve prices are decreasing in n . Under our uniform dis- 

tributions for value and costs the sign of the ∂ r ∗a (v ) /∂ n is am- 

biguous with respect to absolute bounds on λ and μ. We de- 

velop a numerical characterization of the (μ, λ) pairs for which 

∂ r ∗a (v ) /∂ n < 0 . 

We consider the sign of the ∂ r ∗a /∂ n for the range of (μ, λ) = 

[0 . 9 , 2] × [1 . 05 , 1 . 3] with a grid size of 0.05. For each grid point, 

we evaluate the sign of ∂ r ∗a /∂ n for each integer value of v = 

50 , 51 , . . . , 150 and for each number of bidders of n = 1 , 2 , . . . , 10 . 

We then calculate the percentage of cases in which this sign is 

negative. We report these percentages in the heat map of Fig. 1 . 

The figure reveals that as long as μ does not greatly exceed λ, 

then the relationship between the optimal ex-ante reserve prices 

and the number of bidders is certainly negative. 

Hence, when the parameter of λ is sufficient larger than 1 and 

additionally μ does not greatly exceed λ, we can obtain Hypothe- 

sis 2 based on the subjective conditional probability model. 

Hypothesis 2 Subjective conditional probability. (a) Ex-post re- 

serve prices are positively related to realized auction prices. (b) Ex- 

ante reserve prices are negatively related to the number of bidders. 

We notice as μ increasingly exceeds λ, the SCP converges to 

a convex function. This convergence is depicted by Fig. 2 , particu- 

13 Note that if the auctioneer is risk averse that both the optimal ex-ante reserve 

price ( Hu, 2011 ) and ex-post Shachat & Tan (2015) are increasing in the degree of 

risk aversion, but invariance to the number of bidders and realized auction price 

remain. 
14 While the value of λ exceeding 1 determines the function of ψ is S-shaped, the 

value of μ decides the crossing point of the function of ψ and the 45 ◦ line. 
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Fig. 1. The percentage of cases that ∂ r ∗a (v ) /∂ n < 0 for alternative (μ, λ) pairs. 

Fig. 2. S-shaped ψ(K) when μ differs. 

larly in the case where ( μ = 4 , λ = 1 . 4 ). In this case, the auction- 

eer only over-weights conditional probabilities that are nearly one 

while under-weighting all other probabilities. With this SCP, she 

will behave like a risk averse auctioneer, and the number of bid- 

ders is unlikely to impact her ex-ante reserve price. 

In the anticipated regret model, Proposition 5 shows that 

the optimal ex-post reserve prices are r ∗p (v ) = 

v + δl max { 0 , v −c 2 } 
2+ δw 

, and 

Proposition 6 demonstrates that when δl > 0 and v − c 2 > 0 , 
∂r ∗p 
∂c 2 

< 

0 . Proposition 7 indicates when auctioneers have anticipated regret 

their ex-ante reserve prices vary with the number of bidders. In 

the uniform-distributed cost environment, winning regret reduces 

to w (r) = 

δw r 
2 and losing regret to l(v − r) = δl (v − r) . The optimal 

ex-ante reserve price is r ∗a (v ) = 

100 
δl 
n +(δl +1) v 

δl 
n + δl +(2+ δw ) 

. This implies the op- 

timal ex-ante reserve price r ∗a is decreasing in n , when 1 + 2 δw 

> 

δl > 0 . 

Hypothesis 3Anticipated regret. : (a) The auctioneers’ ex-post re- 

serve prices are negatively related to the auction price, and (b) 

their ex-ante reserve prices are negatively related to the number 

of bidders. 

To summarize, the SCP and anticipated regret models pre- 

dict specific deviations from the standard model in terms of the 

counter intuitive predictions of reserve prices that are invariant to 

the number of bidders and, in the ex-post format, the realized auc- 

tion prices. The SCP and anticipated regret models disagree on the 

direction by which ex-post reserve prices vary with respect to re- 

Table 1 

Reserve prices and auction outcome rejection rates. 

n = 1 n = 2 n = 3 Pooled 

Ex-ante reserve price 

EA-U 59.07 ∗∗∗ 55.25 ∗∗∗ 52.29 55.54 ∗∗∗

(8.44) (10.66) (15.18) (9.45) 

Risk neutral 49.71 50.08 50.26 50.02 

benchmark (2.22) (2.27) (2.14) (0.38) 

Ex-post reserve price 

EP-U 57.41 ∗∗∗ 48.31 42.06 ∗∗∗ 50.46 ∗∗∗

(7.64) (6.67) (6.97) (5.81) 

Risk neutral 49.71 47.03 44.15 47.61 

benchmark (2.22) (3.00) (3.31) (0.80) 

Auction price rejected rate 

EP-U 0.97 ∗∗∗ 0.80 ∗∗∗ 0.61 ∗∗ 0.80 ∗∗∗

(0.06) (0.18) (0.28) (0.15) 

Risk neutral 1.00 0.74 0.49 0.74 

benchmark (0.00) (0.08) (0.09) (0.03) 

Note, standard deviations are in parentheses and each subject is an independent 

observation. ∗∗∗ Observed data is significantly different from the risk neutral bench- 

mark at the 1% level, ∗∗ 5% and ∗ 10% based on Wilcoxon rank sum test. 

alized auction prices, but agree on direction by which ex-ante re- 

serve price vary with number of bidders. 

4. Experimental results 

4.1. Descriptive statistics on reserve prices 

We start with a visual examination of the auctioneers’ reserve 

prices. Fig. 3 displays scatter plots of ex-post and ex-ante reserve 

prices versus value, overlaid with a line for the optimal reserve 

price of the risk neutral benchmark, r ∗ = v / 2 , and a regression 

fitted line. The first row of Fig. 3 presents the scatter plots for 

the EP-U treatment. Recall that ex-post reserve prices are right- 

censored at realized auction prices. We observe ex-post reserve 

prices when auction outcomes are rejected, i.e.auction outcome re- 

jection rates of 0.97, 0.80, and 0.61 for n = 1 , 2 , and 3 respectively 

(reported in the third panel of Table 1 ). The fitted lines for the 

EP-U treatment are derived from linear regressions of observable 

ex-post reserve prices (shown by grey triangles) on values. 15 The 

differences between the observable ex-post reserve prices and the 

optimal risk neutral reserve prices reported in the second panel of 

Table 1 are significant at the levels of n = 1 and n = 3 ( p-values 

are < 0.01, = 0.15 and < 0.01 when n = 1, 2 and 3, respectively.) 

15 We report more appropriate Tobit regressions below. 
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Fig. 3. Reserve prices in treatments. 

The second row of Fig. 3 presents the scatter plots for the EA- 

U treatment. The ex-ante reserve prices do not align with the risk 

neutral benchmark, but the differences between the fitted line and 

the risk neutral benchmark grow less stark as the number of bid- 

ders increases. By Wilcoxon rank sum tests, the ex-ante reserve 

prices and risk neutral optimal reserve prices are significantly dif- 

ferent at the levels of n = 1 and n = 2 ( p-values are < 0.01, < 0.01 

and = 0.40 when n = 1, 2 and 3, respectively), as shown in the first 

panel of Table 1 . 

In the two treatments, the values and costs are fully paired, 

allowing us to compare the non-censored ex-post reserve prices 

with matched ex-ante reserve prices. The p-values derived from 

Wilcoxon signed rank test are 0.02, < 0.01 and < 0.01 for n = 

1 , 2 , and 3 respectively. Thus the difference between ex-ante and 

ex-post reserve prices is significant at the level of 5%. Disaggregat- 

ing by the number of bidders, we find the average observed ex- 

post reserve prices of 57.47, 48.59 and 41.42 are lower than aver- 

age of their respectively matched ex-ante reserve prices are 58.48, 

52.78 and 48.93 for n = 1 , 2 , and 3 . 

Based on these results above, we reject the first two parts and 

confirm the last part of Hypothesis 1 (a) to obtain Result 1 . 

Result 1. Ex-ante reserve prices significantly differ from ex-post 

reserve prices, and both deviate significantly from the optimal re- 

serve price. 

4.2. Do auctioneers’ values solely determine the reserve prices? 

We next evaluate, via reduced form regressions, the hypotheses 

regarding the relationship between reserve prices and other fac- 

tors, such as, value, the number of bidders, and realized auction 

prices. Table 2 shows that linear model estimates for reserve prices 

in the two treatments. Relevant standard errors are clustered by 

subject. Models (1) - (3) are Tobit regression models for the EP-U 

treatment, accommodating the right-censoring of ex-post reserve 

prices by realized auction prices. Model (1) only includes a con- 

stant and the factors value, v , and auction price. The risk neutral 

benchmark predicts that the constant and auction price coefficients 

are 0 and the coefficient for v is 0.5. However, estimated constant 

is significantly positive, the estimated price coefficient is 0.30, and 

the estimated value coefficient is 0.39. 16 The significant and posi- 

tive price coefficient is evidence in favor of the SCP model over the 

risk neutral and anticipated regret models. 

Model (2) takes into account the number of bidders in terms 

of constant and interaction terms with value and realized auction 

price. Note there is no estimate for the auction price coefficient in 

1-bidder auctions, because the auction price is always 100 in these 

cases. We reject the Model (1) in favor of Model (2) by a Likeli- 

hood Ratio test with a p -value < 0 . 01 . As n increases, the auction- 

eers’ ex-post reserve prices grow more sensitive to realized auction 

prices and less sensitive to values. These countervailing effects do 

not allow us to sign the direction of change in r p in response to 

changes in n . 

Model (3) allows evaluation of the impact of experience on 

the constant term. We reject the Model (2) in favor of Model (3) 

( p -value < 0 . 01 ). This suggests auctioneers’ ex-post reserve price 

increase as they experience more periods. By the last period the 

ex-post reserve price increases by 4.5 on average. 

For the EA-U treatment, Models (4) and (5) presents OLS esti- 

mations for ex-ante reserve prices. Model (4) only considers the 

intercept and value, while Model (5) additionally takes into ac- 

count the number of bidders. An F -test rejects the Model (4) in 

16 A Chi-squared test rejects the restricted model where intercept is 0 and value 

coefficient is 0.5 imposed by the risk neutral model, at the 1% significant level. 
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Table 2 

Estimates of linear models in EP-U and EA-U treatments. 

Variable EP-U treatment EA-U treatment 

Model(1) Model(2) a Model(3) Model(4) Model(5) a Model(6) 

Intercept -9.25 ∗∗∗ 7.17 ∗∗∗ 4.82 ∗∗∗ 17.94 ∗∗∗ 16.89 ∗∗∗ 12.41 ∗∗∗

(1.58) (2.20) (2.31) (1.74) (2.04) (2.40) 

1 { n =2 } - -15.45 ∗∗∗ -14.65 ∗∗∗ - 1.25 2.92 ∗

(2.36) (2.31) (1.68) (1.71) 

1 { n =3 } - -11.11 ∗∗∗ -11.29 ∗∗∗ - 1.40 1.22 

(2.65) (2.66) (2.20) (2.30) 

Value 0.39 ∗∗∗ 0.52 ∗∗∗ 0.52 ∗∗∗ 0.38 ∗∗∗ 0.42 ∗∗∗ 0.42 ∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

Value ·1 { n =2 } - -0.17 ∗∗∗ -0.16 ∗∗∗ - -0.05 ∗∗∗ -0.05 ∗∗∗

(0.02) (0.02) (0.02) (0.02) 

Value ·1 { n =3 } - -0.25 ∗∗∗ -0.25 ∗∗∗ - -0.09 ∗∗∗ -0.08 ∗∗∗

(0.03) (0.03) (0.03) (0.03) 

Period - - 0.05 ∗∗∗ - - 0.09 ∗∗∗

(0.02) (0.03) 

Auction price 0.30 ∗∗∗ - - - - - 

(0.03) 

Auction price ·1 { n =2 } - 0.35 ∗∗∗ 0.35 ∗∗∗ - - - 

(0.03) (0.03) 

Auction price ·1 { n =3 } - 0.45 ∗∗∗ 0.45 ∗∗∗ - - - 

(0.03) (0.03) 

Log(scale) 2.63 ∗∗∗ 2.58 ∗∗∗ 2.58 ∗∗∗ - - - 

(0.03) (0.04) (0.04) 

R 2 - - - 0.33 0.35 0.36 

F test( p-value) - - - - < .001 < .001 

ln( Likelihood) -19216 -19040 -19023 -24014 b -23897 b -23845 b 

LR test ( p-value) - < .001 < .001 - - - 

Number of observations 5760 5760 5760 5760 5760 5760 

Standard deviations clustered by subject are in parentheses. ∗∗ Coefficient is significant at the 5% level. ∗∗∗

Coefficient is significant at the 1% level. a We also consider models for which the number of bidders only 

impacts the intercept. We report estimations of these models in Table A.12 , found in the Appendix. When 

we compare the differences between the Log(L ) values of Model (24) and Model (2), and the R 2 values of 

Model (25) and Model (5), the Likelihood Ratio test and F -test reject Model (24) and Model (25) in favor 

of Model (2) and Model (5), respectively ( p-values < 0.01). These results validate the interaction effect of the 

number of bidders and value as the appropriate channel of the number of bidders impact. b Log-likelihood 

is extracted from OLS estimations. 

favor of Model (5). Strong evidence that the number of bidders in- 

fluences ex-ante reserve prices, and the negative values of the esti- 

mated coefficients for the interaction of the number of bidders and 

value are indicative of auctioneers who more aggressively set re- 

serve prices based when there are more bidders. This is consistent 

with both the SCP and anticipated regret models, but contradicts 

the risk neutral benchmark. Another F -test rejecting Model (5) in 

favor of (6) indicates the similar experience effect as in EP-U treat- 

ment. In addition, the amount of ex-ante reserve prices increased 

by experiencing 90 periods is about 8.1 on average, which is higher 

than in EP-U treatment. We summarize the conclusions of these 

reduced form analyses. 

Result 2. Reserve prices do not solely depend on auctioneers’ val- 

ues. When the number of bidders increases, ex-ante reserve prices 

decrease. Ex-post reserve prices are not independent from realized 

auction prices or the number of bidders. Hence we reject Hypothe- 

ses 1 (b) and (c) . 

We also note the impact of the number of bidders on reserve 

prices might not be linear and thus the linear models estimated 

above would encounter a difficulty of capturing the actual relation- 

ship between them. The alternative relationship will be discussed 

in the next subsection. 

4.3. Structural estimates of the SCP and anticipated regret models 

Table 3 presents the maximum likelihood estimates of the SCP 

model parameters for each auction format and then pooled. We 

first note that for all models, the estimated values of μ and λ are 

all greater than 1, suggesting that S-shaped transformation func- 

tions, ψ(p) prevails in both EP-U and EA-U treatments. With re- 

spect to EP-U treatment, Model (7) is an estimate of our base SCP 

formulation. Model (8) extends by allowing the parameters of ψ
to depend on the number of bidder in the most general way by 

letting μn = μ + μ · 1 { n =2 } + μ · 1 { n =3 } and λn = λ + λ · 1 { n =2 } + λ ·
1 { n =3 } . A Likelihood Ratio test rejects Model (8) in favor of Model 

(7) ( p-value = 0.63). This is strong evidence in favor of the SCP 

model as it demonstrates an ability to explain the comparative 

statics of the ∂ r ∗p /∂ n without having λ and μ depend on n . Fur- 

thermore, recall that in our reduced form regression Model (2) we 

found n significantly impacts the marginal effects of value and re- 

alized auction prices on ex-post reserve prices. 

We consider the same specifications for the EA-U treatment in 

Models (9) and (10). The estimated values of μ are similar for EP-U 

and EA-U; However, the estimated values of λ are larger for EA-U. 

Further in this case, we can’t conclude that λ and μ are jointly un- 

affected by the number of bidders. A Likelihood Ratio test rejects 

Model (9) in favor of Model (10). The estimates of Model (10) sug- 

gests these differences arise from large differences in the estima- 

tions of μ for each of the level of bidders; however the estimated 

values are not monotonic in n and thus difficult to interpret. 17 We 

summarize these findings in our next result. 

17 In the linear regression model we found reserve prices evolve with experience, 

and one might wonder if the SCP model parameters adjust in a meaningful way. In 

Table A.16 of Appendix A.3 , we report SCP parameter estimates for both the first 

and second half sub-samples. The estimated parameter values change from the first 

half to the second half with increasing μ and decreasing λ. While the curvature of 

the estimated transformation function decreases, it retains its critical S-shape. 
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Table 3 

Maximum Likelihood estimates of the SCP model for Experiment 1. 

Variable EP-U treatment EA-U treatment Pooled 

Model(7) h Model(8) Model(9) h Model(10) Model(11) 

μ 1.45 ∗∗∗ 1.45 ∗∗∗ 1.57 ∗∗∗ 1.47 ∗∗∗ 1.50 ∗∗∗

( < .001) (0.02) ( < 0.01) ( < 0.01) ( < 0.01) 

λ 1.25 ∗∗∗ 1.23 ∗∗∗ 1.42 ∗∗∗ 1.55 ∗∗∗ 1.35 ∗∗∗

( < .001) (0.03) ( < 0.01) ( < 0.01) ( < 0.01) 

μ · 1 { n =2 } - -0.07 ∗∗ - 0.35 ∗∗∗ - 

(0.03) ( < 0.01) 

μ · 1 { n =3 } - 0.10 ∗∗∗ - 0.17 ∗∗∗ - 

(0.03) ( < 0.01) 

λ · 1 { n =2 } - 0.02 - 0.03 ∗∗∗ - 

(0.03) ( < 0.01) 

λ · 1 { n =3 } - 0.02 ∗∗∗ - 0.01 ∗∗∗ - 

( < .001) ( < .001) 

Log(scale) 12.71 ∗∗∗ 12.32 ∗∗∗ 15.33 ∗∗∗ 15.27 ∗∗∗ 14.27 ∗∗∗

(0.15) (0.12) (0.15) (0.15) (0.10) 

ln (Likelihood) -19063.6 -19062.3 -23898.8 -23874.9 -43067.9 

LR -test( p-value) - 0.63 - < 0.01 < 0.01 

Number of observations 5760 5760 5760 5760 11520 

Standard deviations are in parentheses. ∗ Coefficient is significant at the 10% level, ∗∗ 5% level 

and ∗∗∗ 1% level. h In addition to estimating parameters from the aggregate data, we estimate 

the parameters of (μ, λ) for each subject. We find 76.6% of subjects in EP-U and 87.5% subjects 

in EA-U have estimated λ greater than 1, i.e. S-shaped transformation functions. We report the 

individual estimates of λ for the EP-U and EA-U treatments in Fig. A.4 (a) of Appendix A.2 . 

Table 4 

The estimates of anticipated regret model. 

Variable EP-U treatment EA-U treatment 

Lossing regret ( δl ) -0.59 ∗∗∗ 2.25 ∗∗∗

(0.01) (0.56) 

Winning regret ( δw ) -0.46 ∗∗∗ 2.70 ∗∗∗

(0.01) (0.70) 

Log(scale) 13.23 ∗∗∗ 15.46 ∗∗∗

(0.14) (0.16) 

ln( Likelihood) -19043.1 -23946.3 

Number of observations 5760 5760 

Standard deviations are in parentheses. ∗∗∗ Coefficient is significant at the 1% level. 

Result 3. In EA-U treatment, ex-ante reserve prices are negatively 

correlated to the number of bidders, and, in EP-U treatment, ex- 

post reserve prices are positively correlated to the auction price. 

These two correlations are consistent with the subjective condi- 

tional probability model in which auctioneers have an S-shaped 

transformed function. 

We next consider the structural estimates of the anticipated re- 

gret model. Table 4 presents the results of maximum likelihood 

estimates of the anticipated regret model parameters for each auc- 

tion format. For the EP-U treatment, the estimates of δl and δw 

are 

both negative, as Shachat & Tan (2015) also found, indicating that 

regret generates utility rather than disutility. This is largely driven, 

at least with respect to loss regret, by auctioneers selection of ex- 

post reserve prices that are increasing in realized auction prices 

rather than decreasing. Thus, we confirm that the anticipated re- 

gret model is an inappropriate behavioral model for the ex-post 

format. 

However, the anticipated regret performs well for the EA-U 

treatment. In EA-U treatment, the estimates of δl and δw 

are 

2.25 and 2.7 respectively. This suggests that the anticipated re- 

gret model has some degree of robustness for explaining ex-ante 

reserve price setting. Our estimates are similar to those of Davis 

et al. (2011) in a quite different environment. For example, in our 

experiment the auctioneers’ values vary across the range 50 to 150 

while in Davis et al. ’s study the auctioneers’ values are constant. 

Overall, the first half of Hypothesis 3 is confirmed but the second 

half has to be rejected, which gives us Result 4 . 

Result 4. Anticipated regret model predicts the right direction for 

EA-U treatment in which auctioneers’ ex-ante reserve prices are 

decreased by the number of bidders. But it predicts an opposite 

direction for EP-U treatment in which auctioneers’ ex-post reserve 

prices positively correlate to auction prices. 

4.4. Model validation by in-sample prediction 

We conduct an in-sample prediction exercise using the esti- 

mated linear, anticipated regret and SCP models to predict auction- 

eers’ reserve prices and ex-post auction outcome rejection and ac- 

ceptance consistency 18 for Experiment 1. The parameters used for 

linear model predictions are based on the estimates in Model (3) 

and (6) for ex-post and ex-ante formats, respectively. The param- 

eters for SCP are derived from Model (7) and (9) where μ = 1 . 45 

and λ = 1 . 25 for ex-post format, and μ = 1 . 57 and λ = 1 . 42 for ex- 

ante format. For each model we report the mean squared errors 

(MSE) for each prediction type. 

Table 5 reports the MSE at different levels of n as well as the 

pooled data. The risk neutral model yields high MSE relative to the 

other models. The linear model actually provides the smallest MSE 

of predict reserve prices, although the SCP provides lower MSE 

for predictions of reserve prices when n = 1 . However, the linear 

model is reduced form and we will observe this model has poor 

external validity and fails rather miserably at out-of-sample fore- 

casting. With respect to the two structural models, the SCP per- 

forms slightly better than anticipated regret model in the ex-ante 

format. 

5. Experiment 2: Left-skewed cost distribution 

We conduct a second experiment to evaluate the hypothesis 

auctioneers use the SCP model to set both ex-post and ex-ante re- 

serve prices, versus the alternative hypothesis auctioneers use dis- 

tinct models to set these reserve prices. The alternative hypothe- 

sis more specifically stated: auctioneers set ex-post reserve prices 

18 The ex-post auction outcome rejection and acceptance consistency measure re- 

port the frequency at which a model accurately predicts whether a subject rejects 

or accepts the auction outcome in the EP treatment. 
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Table 5 

In-sample prediction performance of different models. 

n = 1 n = 2 n = 3 Pooled 

MSE of predicted ex-ante reserve price 

Risk neutral model 240.51 254.01 370.01 288.18 

Linear model 159.96 208.39 324.38 230.91 

Anticipated regret 152.55 215.05 349.66 239.09 

SCP 149.43 212.59 343.50 235.17 

MSE of predicted ex-post reserve price a 

Risk neutral model 244.83 156.43 125.28 184.40 

Linear model 178.15 125.45 99.64 140.26 

SCP 175.36 129.74 108.57 142.86 

Ex-post auction outcome rejection and acceptance consistency 

Risk neutral model 0.97 0.81 0.73 0.84 

Linear model 0.97 0.83 0.75 0.85 

SCP 0.97 0.79 0.70 0.82 

a Reserve price conditional upon auction price rejects. Note, the MSE is computed 

by the formula of 1 
5760 

∑ 5760 
i =1 (r i − ˆ r i ) 

2 , for 5760 observations, where r i is the actual 

reserve price in observation i and ˆ r i is the corresponding model prediction on re- 

serve price for observation i . 

using the SCP model and set ex-ante reserve prices using the an- 

ticipated regret model. Further, we use this new data to assess 

the robustness of structural SCP parameter estimates. This exper- 

iment uses identical procedures and sampling as the first, except 

it substitutes the Uniform distribution of cost for a left-skewed 

one. 

In the second experiment, bidders’ costs are drawn from a left- 

skewed cumulative distribution F (c) = (c/ 100) 4 . We call the two 

treatments in this experiment EA-S and EP-S. Left-skewed distri- 

butions are commonly used in various auction environments to 

capture the features of specific markets, such as, markets with bid 

rigging ( Imhof, 2017 ), and stock markets ( Jovanovic & Menkveld, 

2017 ). Left-skewed distributions are also in a variety of settings 

such as analyzing the costs of orthotopic liver transplantation 

( Kraus et al., 2005 ), modeling life expectancies in developed coun- 

tries ( Nations, 2017 ), portfolio payoffs ( Krawczyk, 2015 ), et cetera . 

An additional benefit of using left-skewed cost distribution in this 

study is that more ex-post reserve prices should be observed due 

to a high auction outcome rejection rate. 

We start by generating, for 64 auctioneers each, a 90-element 

sequence of values and costs as we did in the first experiment, but 

this time drawing costs from its new distribution. Second, we pre- 

dict the auctioneers’ ex-ante reserve prices, by using the parame- 

ter values of δw 

= 2 . 7 and δl = 2 . 25 , as well as the parameters of 

μ = 1 . 57 and λ = 1 . 42 , the structural parameter estimates reported 

in Tables 3 and 4 . 

Our empirical strategy is threefold. We first focus on the ex- 

ante reserve prices. Using these parameters to predict ex-ante re- 

serve prices in the second experiment. Second, we generate out 

of sample predictions of ex-ante and ex-post reserve prices by us- 

ing different models and evaluate their prediction performances 

via MSE. Third, we re-estimate the SCP parameters using the new 

data to evaluate parameter recovery when the cost environment 

differs. 

Table 6 reports the predicted average ex-ante reserve prices un- 

der the anticipated regret and SCP models and formats. The antic- 

ipated regret model predicts higher reserve prices, for each level 

of n , relative to the SCP model (all p-values ≥ 0.01). These predic- 

tions facilitate a horse race between the SCP and anticipated regret 

models on predicting ex-ante reserve prices. If we observe the SCP 

model offers a closer prediction, relative to the observed data, this 

favors the conjecture of the auctioneers following the SCP model in 

both formats. However, if we observe the anticipated regret model 

provides a better prediction, this favors the format-specific model 

where the anticipated regret for ex-ante format and SCP model for 

ex-post format, respectively. Hypothesis 4 summarizes this. 

Table 6 

Predicted and observed ex-ante reserve prices under left-skewed cost distribution. 

n = 1 n = 2 n = 3 Pooled 

Predictions 

SCP 81.66 80.26 79.13 80.35 

(2.51) (2.43) (2.19) (0.45) 

Anticipated regret 83.83 82.54 81.80 82.72 

(2.21) (2.36) (2.21) (0.43) 

Experimental results 

EA-S 80.33 78.18 77.18 78.56 

(4.09) (6.12) (5.72) (3.83) 

Differences between observed and predicted ex-ante reserve prices 

SCP - EA-S 1.33 ∗∗ 3.48 ∗∗∗ 4.48 ∗∗∗ 1.79 ∗∗∗

Anticipated regret - EA-S 3.50 ∗∗∗ 5.65 ∗∗∗ 6.65 ∗∗∗ 4.16 ∗∗∗

Note, standard deviations are in parentheses and each subject is an independent 

observation. The ex-post reserve prices predicted by regret model are significantly 

higher than those predicted by SCP model, for all levels of n (all p-values ≤ 0.01). 
∗∗∗ Difference is significantly different from zero at the 1% level, ∗∗ 5% and ∗ 10%. 

Table 7 

Out of sample prediction performance by different models. 

n = 1 n = 2 n = 3 Pooled 

MSE of predicted ex-ante reserve price 

Risk neutral model 90.87 111.68 133.87 112.14 

Linear model 536.99 640.69 712.71 630.13 

Anticipated regret 62.35 102.78 118.75 94.63 

SCP 49.48 81.47 89.35 73.50 

MSE of predicted ex-post reserve price a 

Risk neutral model 90.93 76.27 68.48 79.40 

Linear model 470.38 321.75 203.56 341.95 

SCP 78.34 63.57 50.60 65.22 

Ex-post auction outcome rejection and acceptance consistency 

Risk neutral model 0.84 0.79 0.75 0.79 

Linear model 0.85 0.78 0.69 0.77 

SCP 0.85 0.80 0.74 0.80 

a Reserve price conditional on auction outcome rejection. Note, the MSE is com- 

puted by the formula of 1 
5760 

∑ 5760 
i =1 (r i − ˆ r i ) 

2 , for 5760 observations, where r i is the 

actual reserve price in observation i and ˆ r i is the corresponding model prediction 

on reserve price for observation i . 

Hypothesis 4. In the left-skewed cost environment, the format- 

specific models hypothesis predicts that auctioneers select ex-ante 

reserve prices are closer to the anticipated regret model predic- 

tions. The SCP model hypothesis predicts auctioneers select ex- 

ante reserve prices are closer to those predicted by the SCP model. 

Table 6 summarizes the observed ex-ante reserve prices in the 

new experiment. The SCP model makes more accurate predictions 

than the anticipate regret model does at all levels of n . However, 

for both models the predicted prices are demonstrably higher than 

the observed prices (all p-values < 0.01 except for SCP- EA-S at the 

level of n = 1 which p − value = 0 . 02 ). We view these as evidence 

in favour of the SCP model for both formats hypothesis. 

Next, we conduct an out-of-sample prediction to evaluate the 

prediction performance of the risk neutral, linear, and SCP models 

in the ex-post format, and these model together with anticipated 

regret model in ex-ante format. As the same as we have done in 

Section 4.4 , the performance is measured by MSE. Note, the pa- 

rameters used to generate predictions are the same as we used in 

Table 5 for the in-sample predictions. 

Table 7 reports the prediction results. Unlike what we found 

in the in-sample prediction, the linear model exhibits the worst 

performance among these models. It is not surprising that the lin- 

ear regression model forecasts well in-sample but poorly out-of- 

sample, as it is a reduced form regression, particularly when the 

cost environment changes. In the ex-ante format, the anticipated 

regret model generates higher MSE than the SCP for all levels of 

n . Overall, the SCP model more accurately predicts the auctioneers’ 

behaviour than both the linear and risk neutral models, as well as 
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Table 8 

The estimates of the SCP model - left-skewed cost distribution. 

Variable EP-S treatment EA-S treatment Pooled c 

Model(12) a , h Model(13) Model(14) b , h Model(15) Model(16) 

μ 1.31 ∗∗∗ 1.22 ∗∗∗ 1.41 ∗∗∗ 1.55 ∗∗∗ 1.20 ∗∗∗

( < 0.01) (0.03) ( < 0.01) ( < 0.01) ( < 0.01) 

λ 1.15 ∗∗∗ 1.21 ∗∗∗ 1.65 ∗∗∗ 1.84 ∗∗∗ 1.35 ∗∗∗

( < 0.01) ( < 0.01) ( < 0.01) ( < 0.01) ( < 0.01) 

μ × 1 { n =2 } - 0.08 ∗∗ - -0.26 ∗∗∗ - 

(0.03) ( < 0.01) 

μ × 1 { n =3 } - 0.54 ∗∗∗ - 0.28 ∗∗∗ - 

( < 0.01) ( < 0.01) 

λ × 1 { n =2 } - -0.05 ∗∗∗ - -0.26 ∗∗∗ - 

( < 0.01) ( < 0.01) 

λ × 1 { n =3 } - -0.16 ∗∗∗ - 0.14 ∗∗∗ - 

( < 0.01) ( < 0.01) 

Log(scale) 8.58 ∗∗∗ 8.55 ∗∗∗ 8.27 ∗∗∗ 8.34 ∗∗∗ 8.64 ∗∗∗

(0.10) (0.09) (0.08) (0.08) (0.06) 

ln( Likelihood) -16742.75 -16721.53 -20345.07 -20341.22 -37437.53 

LR test( p-value) - < 0.01 - = 0.10 < 0.01 

Number of observations 5760 5760 5760 5760 11,520 

Standard deviations are in parentheses. a Log(L ) of pooled model (EP-U & EP-S) is -36173.55 and esti- 

mated (μ, λ) is (1.35, 1.15). b Log(L ) of pooled model (EA-U & EA-S) is -45347.69 and estimated (μ, λ) 

is (1.61, 1.51). c EP-S and EA-S treatments. ∗ Coefficient is significant at the 10% level, ∗∗ 5% level and ∗∗∗

1% level. h 60.9% of subjects in EP-S and 95.3% of subjects in EA-S have estimated λ greater than 1. The 

estimated λ over all subjects are plotted in Fig. A.4 (b) of Appendix A.2 . 

the anticipated regret model. We view this as evidence in favour 

of the SCP model for both format hypotheses. 

Result 5. The SCP model provides more accurate predictions on 

ex-ante reserve prices than the anticipated regret model does in 

left-skewed cost distribution environment. 

We next take the opportunity to evaluate the models accord- 

ing to the high-bar of parameter consistency. We re-estimate the 

parameter values of μ and λ for the left-skewed cost treatments 

and report them in Table 8 . First, we note the estimated param- 

eters of (μ, λ) for the EP-U treatment move from (1.45, 1.25) to 

(1.31, 1.15) in the EP-S treatment; and, the estimated parameters 

for the EA-U treatment move from (1.57, 1.42) to (1.41, 1.65) in the 

EA-S treatment. Likelihood ratio tests reject that these parameters 

values within format are the same. Second, we reject that the pa- 

rameters values of (μ, λ) are the same for the EP-S and EA-S treat- 

ments. This is evidenced by the Likelihood ratio test reported for 

model (16) - the last column of Table 8 . Finally we reject, via a 

Likelihood ratio test, that our estimates of (μ, λ) are invariant to 

the number of bidders in the EP-S treatment; but we only weakly 

reject parameter invariance with respect to the number of bidders 

in the EA-S treatment. While these hypothesis test do not favor pa- 

rameter recovery, we are encouraged that estimates of (μ, λ) uni- 

formly reflect the S-shaped character of the conditional probability 

transformation function. 

6. Examination of alternative models 

After establishing that the SCP model outperforms both the an- 

ticipated regret and linear regression models in out-of-sample pre- 

diction, we examine the SCP model’s out-of-sample prediction per- 

formance relative to a wider set of alternative models. The first 

type of alternative models incorporate risk aversion. There are two 

variants: a risk averse model with standard conditional probabil- 

ity judgements and a SCP model with risk aversion. The second 

type of alternative models consider transformations of uncondi- 

tional probabilities in the ex-ante format. In this section, we first 

present these alternative model and relevant estimate results by 

using the data of Experiment 1, and then we use these parame- 

ter values to calculate out-of-sample predictions of the individual 

choices of Experiment 2. 

6.1. Risk averse model and SCP model with risk aversion 

We utilize the constant relative risk averse utility function 

U(x ) = x γ , where γ > 0 , to capture the risk attitude of the auc- 

tioneers. Note auctioneers are risk neutral when γ = 1 , risk averse 

when γ < 1 and risk loving when γ > 1 . The risk averse model’s 

reserve price setting rule for Experiment 1 is, 19 

ˆ r a = 

ˆ r p = 

4 

4 + γ
v . 

These risk-averse reserve prices are identical in both ex-ante and 

ex-post formats given the same value of γ . 

Next, we incorporate risk aversion into the SCP model, refer- 

ring to it as the SCP model with risk aversion. One can derive the 

optimal reserve prices for this model for each of the two consid- 

ered auction frames from the first order conditions to the auction- 

eer’s maximization of expected surplus problem 

20 and find, the 

predicted ex-post reserve price is 

ˆ r p = v − γ
�( ̂ r p ) 

�′ ( ̂ r p ) 
, 

and the predicted ex-ante reserve price is 

ˆ r a = v − γ
Z( ̂ r a ) ˜ Z ( ̂ r a ) 

. 

Table 9 presents the estimation results for the risk averse and the 

SCP with risk aversion models in the two reserve price formats of 

Experiment 1. Surprisingly, while the risk aversion model estima- 

tion does find significant risk aversion, once we allow for subject 

conditional probability judgements via the SCP with risk aversion 

model the estimated values of γ are essentially one, i.e. risk neu- 

trality. Likelihood ratio tests reject the risk averse models (17) and 

(19) in favor of the SCP with risk aversion models (18) and (20). 

However, likelihood ratio tests do not reject the original SCP model 

19 These reserve prices are derived from the first order condition of r ∗ = v − γ F (r ∗ ) 
f (r ∗ ) 

that maximizing the expected payoff function of E[ πa (r a ; v )] = (v − r a ) γ B (r a ) + ∫ r a 
0 (v − y ) γ f (2) (y ) dy , as well as the expected payoff function of E[ πp (r p ; v , c 2 )] = 

max { (v − c 2 ) 
γ , (v − r p ) γ

(
F (r p ) /F (c 2 ) 

)} . 
20 The expected payoff functions, developed from Eq. (7) and (6) , are 

E[ πa (r a ; v )] = (v − r a ) γ Z(r a ) + 

∫ r a 
0 (v − y ) γ f (2) (y ) dy in ex-ante format, and 

E[ πp (r p ; v , c 2 )] = max { (v − c 2 ) 
γ , (v − r p ) γ 
(r p ) } in ex-post format. 
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Table 9 

Estimates of the risk averse model and the SCP model with risk aversion for Exper- 

iment 1. 

EP-U treatment EA-U treatment 

Risk averse SCP with RA Risk averse SCP with RA 

Variable Model(17) Model(18) Model(19) Model(20) 

μ - 1.42 ∗∗∗ - 1.47 ∗∗∗

( < 0.01) ( < 0.01) 

λ - 1.23 ∗∗∗ - 1.55 ∗∗∗

( < 0.01) ( < 0.01) 

γ 0.73 ∗∗∗ 0.99 ∗∗∗ 0.85 ∗∗∗ 1.05 ∗∗∗

( < 0.01) (0.03) ( < 0.01) ( < 0.01) 

Log(scale) 13.18 ∗∗∗ 12.67 ∗∗∗ 16.42 ∗∗∗ 15.35 ∗∗∗

(0.13) (0.13) (0.16) (0.15) 

ln (Likelihood) -19198.1 -19061.7 -24293.4 -23898.2 

LR test( p-value) - < 0.01 - < 0.01 

Number of observations 5760 5760 5760 5760 

Standard deviations are in parentheses. RA is the abbreviation of the term of risk 

aversion. ∗ Coefficient is significant at the 10% level, ∗∗ 5% level and ∗∗∗ 1% level. 

Notes, we compare the SCP models with and without risk aversion. The p-value of 

LR -test for the comparison between Model(7) and Model(18) is 0.18, and between 

Model(9) and Model(20) is 0.27. That means adding the risk averse parameter does 

not significantly improve the goodness of fit of the SCP model. 

(7) and (9) when there is comparison between the SCP models 

with and without risk aversion factor. 

6.2. The SP model: Transformations of conditional and unconditional 

probabilities 

In this type of alternative model, we extend our base SCP model 

to allow transformations on the unconditional probability judge- 

ment in the ex-ante auction format. We call this the SP - subjective 

probability - model. Explicitly, we incorporate a subjective transfor- 

mation of the unconditional probability of F (2) (r a ) . With this ex- 

tension, the SP’s predicted ex-ante reserve price has the similar 

structure to that of the standard SPC given by Eq. (3) : 

r ∗a = v − Z Z (r ∗a ) ˜ ZZ (r ∗a ) 
, 

where ZZ = ψ con (G (r a ))(1 − ψ uncon (F (2) (r a ))) , and 

˜ ZZ (r a ) = 

Z Z ′ (r a ) + ψ 

′ 
uncon 

(
F (2) (y ) 

)
. 21 

The function ψ con , with parameters of (μcon , λcon ) , transforms 

conditional probabilities and the function of ψ uncon , with parame- 

ters of (μuncon , λuncon ) , transforms unconditional probabilities. We 

consider two cases for the shape parameters of the SP model. 

In the restricted version, unconditional and conditional proba- 

bilities are transformed by the same function, i.e. (μcon , λcon ) = 

(μuncon , λuncon ) . In the unrestricted version, these shape parame- 

ters may differ for the two types of probabilities. Table 10 reports 

the parameter estimates of the SP model using the data from Ex- 

periment 1. 

By looking over the estimates in Table 10 , the S-shaped trans- 

formation on conditional probability is very stable while μcon 

and λcon are larger than 1 in two models. In the unrestricted 

model, the unconditional probability transformation with parame- 

ters of (2 . 06 , 0 . 90) . These parameter values generate a strictly con- 

vex transformation function of unconditional probabilities. A be- 

havioural intuition of such transformation is that an auctioneer 

under-weights the probability of the auction price setting the pur- 

chase price. This interesting insight survives likelihood ratio speci- 

fication tests reject both the restricted model in favor of the unre- 

21 The ex-ante reserve price is derived from maximizing the auctioneer’s ex- 

pected utility function of E[ πa (r a ; v )] = (v − r a ) ψ con (G (r a ))(1 − ψ uncon (F (2) (r a ))) + ∫ r a 
0 (v − y ) dψ uncon (F (2) (y )) . 

Table 10 

Estimates of the SP model for the EA-U treatment. 

Restricted Unrestricted 

( μcon = μuncon , λcon = λuncon ) 

Variable Model (21) Model (22) 

μcon 1.53 ∗∗∗ 1.48 ∗∗∗

( < 0.01) ( < 0.01) 

λcon 1.70 ∗∗∗ 1.59 ∗∗∗

( < 0.01) ( < 0.01) 

μuncon - 2.06 ∗∗∗

( < 0.01) 

λuncon - 0.90 ∗∗∗

( < 0.01) 

Log(scale) 15.48 ∗∗∗ 15.28 ∗∗∗

(0.12) (0.15) 

ln (Likelihood) -23953 -23875 

LR test( p-value) - < 0.01 

Number of observations 5760 5760 

Standard deviations are in parentheses. ∗ Coefficient is significant at the 10% level, 
∗∗ 5% level and ∗∗∗ 1% level. Notes, we compare Model (22) to Model (9). The LR -test 

reject Model(9) in favor of Model (22) with p-value < 0.01. 

Table 11 

Out-of-sample prediction performance of alternative models. 

n = 1 n = 2 n = 3 Pooled 

MSE of predicted ex-ante reserve price 

Risk averse model 76.54 106.13 131.19 104.62 

SCP with RA 46.84 77.25 82.84 68.98 

SCP 49.48 81.47 89.35 73.50 

SP with restricted parameters 46.53 78.22 84.58 69.78 

SP with unrestricted parameters 46.86 77.09 84.22 69.39 

MSE of predicted ex-post reserve price a 

Risk averse model 92.43 75.60 59.96 77.22 

SCP with RA 77.97 62.57 48.39 64.10 

SCP 78.34 63.57 50.60 65.22 

Ex-post auction outcome rejection and acceptance consistency 

Risk averse model 0.70 0.65 0.66 0.67 

SCP with RA 0.85 0.81 0.76 0.81 

SCP 0.85 0.80 0.74 0.80 

a Reserve price conditional on auction outcome rejection. Note, the MSE is com- 

puted by the formula of 1 
5760 

∑ 5760 
i =1 (r i − ˆ r i ) 

2 , for 5760 observations, where r i is the 

actual reserve price in observation i and ˆ r i is the corresponding model prediction 

on reserve price for observation i . 

stricted model and the original SCP model (9) in favor of the unre- 

stricted model (22). 

6.3. Prediction performance assessments of alternative models and 

the SCP model 

Based on the estimates of Model (17) - (22), we use these esti- 

mated parameters to predict out-of-sample the corresponding re- 

serve prices under the left-skewed cost distribution. MSE is again 

used to measure the prediction performance. Table 11 reports the 

prediction performances of risk averse model, SCP model with risk 

aversion (RA), and the SP model with and without restricting the 

shape parameters of the transformation function. We additionally 

provide the predictions based on the SCP model as a benchmark. 

First, the overall high MSE and low consistency rates based on risk 

averse model demonstrate that risk aversion alone is a poor alter- 

native to SCP model and its variants. For example in the ex-post 

format, the SCP forecasts generate an improvement over the risk 

averse forecasts of average MSE that range from 30 to 50% for the 

different number of bidders; this improvement is approximately 

18% for the different number of bidders in the ex-ante format. Sec- 

ond, incorporating either risk aversion or unconditional probability 

into the SCP model improves the prediction performance. However, 

the improvements from SCP to the SP models are limited. Incorpo- 

rating transformed unconditional probabilities improves the aver- 

age MSE by approximately 6% in the ex-ante format, and incorpo- 
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Fig. A1. Estimates of λ in SCP model, 64 subjects in each treatment. 

rating risk aversion into the SCP model improves the average MSE 

by less than 5% in the ex-post format and up to 9% in the ex-ante 

format. 

7. Conclusion 

We introduce a behavioral model for setting reserve prices 

based on upon subjective judgement of conditional probabilities. 

We use controlled laboratory experiments, establish the robustness 

of the behavioral model vis-a-vis rational and other common mod- 

els with respect to the English auction format, number of bidders, 

and distribution of supplier costs. The first experiment addresses 

two counter-intuitive prescriptions: first, the optimal ex-ante re- 

serve price is invariant to the number of bidders; second, the opti- 

mal ex-post reserve price is independent of auction prices. The ex- 

perimental results show that ex-ante reserve prices decrease with 

the number of bidders and ex-post reserve prices increase with 

auction prices. The anticipated regret ( Davis et al., 2011 ) effectively 

explains the first finding but provides an inaccurate prediction of 

the second. Although the SCP model successfully explains the two 

findings, it does not dominate the anticipated regret explanation 

for ex-ante reserve prices. Hence, it is not clear whether auction- 

eers use format-specific models or the unified SCP model across 

auction formats. 

The second experiment is designed to assess these two expla- 

nations, by redrawing costs from a left-skewed distribution. The 

experimental result shows the unified SCP model has a better per- 

formance of predicting auctioneers’ behavior in this experiment. In 

addition, although the specific values of (μ, λ) pair are varied over 

treatments, the S-shaped transformed function always hold accord- 

ing to the SCP structural model estimation. 

The extent to which procurement professionals subjectively 

transform conditional probabilities remains unknown, which re- 

quires future field studies. However, we do know that correcting 

this subjective judgement bias is challenging. Providing a decision 

support tool is a natural intervention, one would reasonably be- 

lieve confronting decision makers with the objective probabilities 

and consequences over outcomes from potential decision would 

stem the value loss. However, there is evidence that this type of 

subjective judgement is difficult to correct with such support tools. 

Shachat & Tan (2015) reported an experimental treatment in which 

auctioneers are provided such support tool, and find auctioneers’ 

judgement bias is more severe. The challenge of framing an effec- 

tive support system to correct this subjective judgement bias re- 

mains open. Perhaps auctioneer screening is a more effective solu- 

tion to mitigating auctioneers’ judgement biases. 

Appendix A 

A1. Proofs 

Proof of Proposition 3. The first order condition for expected util- 

ity maximization of Eq. (7) is, 

−Z(r ∗a ) + (v − r ∗a ) ̃  Z (r ∗a ) = 0 . 

Let ̃  Z (r ∗a ) = Z ′ (r ∗a ) + f (2) (r ∗a ) and then rewrite the first order condi- 

tion, 

r ∗a = v − Z(r ∗a ) ˜ Z (r ∗a ) 
. 

To guarantee r ∗a is interior maximum, the second order condition 

needs to satisfy 

−Z ′ (r ∗a ) − ˜ Z (r ∗a ) + (v − r ∗a ) ̃  Z ′ (r ∗a ) < 0 . 

Furthermore, substituting r ∗a for v − Z(r ∗a ) ˜ Z (r ∗a ) 
, the second order condi- 

tion comes to 

−Z ′ (r ∗a ) ̃  Z (r ∗a ) − Z (r ∗a ) ̃  Z ′ (r ∗a ) + ̃

 Z (r ∗a ) 
2 

˜ Z (r ∗a ) 
< 0 . 

Since ˜ Z (r ∗a ) > 0 , the negative of the numerator has to be 

Z ′ (r ∗a ) ̃  Z (r ∗a ) − Z (r ∗a ) ̃  Z ′ (r ∗a ) + ̃

 Z (r ∗a ) 2 > 0 . �

Proof of Proposition 4.. Differentiate r ∗a with respect to n at the 

optimal solution to obtain 

∂r ∗a 
∂n 

= 

−Z ′ (r ∗a ) ̃  Z (r ∗a ) + Z (r ∗a ) ̃  Z ′ (r ∗a ) ˜ Z (r ∗a ) 2 
∂r ∗a 
∂n 

+ 

− ∂Z(r ∗a ) 
∂n 

˜ Z (r ∗a ) + Z(r ∗a ) 
∂ ̃  Z (r ∗a ) 

∂n ˜ Z (r ∗a ) 2 
= 0 . (A.1) 

Rearranging terms, 

∂r ∗a 
∂n 

= 

Z(r ∗a ) 
∂ ̃  Z (r ∗a ) 

∂n 
− ˜ Z (r ∗a ) 

∂Z(r ∗a ) 
∂n 

Z ′ (r ∗a ) ̃  Z (r ∗a ) − Z (r ∗a ) ̃  Z ′ (r ∗a ) + ̃

 Z (r ∗a ) 2 
. (A.2) 

The second order condition implies Z ′ (r ∗a ) ̃  Z (r ∗a ) − Z (r ∗a ) ̃  Z ′ (r ∗a ) + ˜ Z (r ∗a ) 2 > 0 . Thus the sign of Eq. (A.2) is determined by the numer- 

ator. When the numerator is strictly negative, the partial derivative 

is strictly less than 0. �

Proof of Proposition 5. Since D (r p | c 2 ) = 

F (r p ) 

F (c 2 ) 
, if v − c 2 > 0 , the 

first order condition for maximizing the second argument of 
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E[ πp (r p ; v , c 2 )] is, 

l(v − c 2 ) 
f (r ∗p ) 

F (c 2 ) 
+ (−1 − w 

′ (r ∗p )) 
F (r ∗p ) 

F (c 2 ) 
+ (v − r ∗p − w (r ∗p )) 

f (r ∗p ) 

F (c 2 ) 
= 0 . 

Substituting l(v − c 2 ) = δl (v − c 2 ) and w (r ∗p ) = δw 

(r ∗p − k (r ∗p )) into 

the first order condition and dividing it by 
F (c 2 ) 
f (r ∗p ) 

on both sides, 

δl (v − c 2 ) + 

(
− 1 − δw 

+ δw 

k ′ (r ∗p ) 
)F (r ∗p ) 

f (r ∗p ) 

+ 

(
v − (1 + δw 

) r ∗p + δw 

k (r ∗p ) 
)

= 0 . 

Rearranging terms, 

V (r ∗p ) + δl (v − c 2 ) + δw 

M(r ∗a ) = (1 + δw 

) r ∗p , 

where V (r ∗p ) = v − F (r ∗p ) 
f (r ∗p ) 

and M(r ∗p ) = k (r ∗p ) −
F (r ∗p ) 
f (r ∗p ) 

(1 − k ′ (r ∗p )) . Di- 

viding by 1 + δw 

, 

r ∗p = 

1 

1 + δw 

(
V (r ∗p ) + δl (v − c 2 ) + δw 

M(r ∗p ) 
)
. 

If v − c 2 < 0 , since the lose regret has l(x ) = 0 , the second term 

δl (v − c 2 ) has to be 0. Generally, 

r ∗p = 

1 

1 + δw 

(
V (r ∗p ) + δl max { 0 , v − c 2 } + δw 

M(r ∗p ) 
)
. 

�

Proof of Proposition 6. To obtain the relationship between r ∗p and 

c 2 , we differentiate Eq. (9) with respect to c 2 , 

∂r ∗p 
∂c 2 

= 

1 

1 + δw 

(
V 

′ (r ∗p ) 
∂r ∗p 
∂c 2 

− δl + δw 

M 

′ (r ∗p ) 
∂r ∗p 
∂c 2 

)
. 

Rearranging terms, 

∂r ∗p 
∂c 2 

= 

−δl 

1 + δw 

− V 

′ (r ∗p ) − M 

′ (r ∗p ) 
. 

Since the denominator is the negative of the second order condi- 

tion, 1 + δw 

− V ′ (r ∗p ) − M 

′ (r ∗p ) > 0 . As δl > 0 , 
∂r ∗p 
∂c 2 

< 0 . �

Proof of Proposition 7. The first order condition for maximizing 

E[ πa (r a ; v )] is 

− ∂ l(v − r ∗a ) 
∂r ∗a 

(1 − F (r ∗a )) + l(r ∗a ) n f (r ∗a ) + (−1 − w 

′ (r ∗a )) nF (r ∗a ) 

+(v − r ∗a − w (r ∗a )) n f (r ∗a ) = 0 . 

Substituting l(r ∗a ) = δl (v − r ∗a ) and w (r ∗a ) = δw 

(r ∗a − k (r ∗a )) into the 

first order condition, 

δl − δl F (r ∗a ) − nF (r ∗a ) − δw 

(1 − k ′ (r ∗a )) nF (r ∗a ) 

+ v nF (r ∗a ) − r ∗a n f (r ∗a ) − δw 

(r ∗a − k (r ∗a )) n f (r ∗a ) 

+ δl (v − r ∗a ) n f (r ∗a ) = 0 . 

Dividing by n f (r ∗a ) , 

v − F (r ∗a ) 
f (r ∗a ) 

+ δl 

(
1 − F (r ∗a ) 

f (r ∗a ) 
1 

n 

+ v 
)

+ δw 

(
k (r ∗a ) −

F (r ∗a ) 
f (r ∗a ) 

(1 − k ′ (r ∗a )) 

)
= (1 + δw 

+ δl ) r 
∗
a . 

Dividing by 1 + δw 

+ δl on both sides, 

r ∗a = 

1 

1 + δl + δw 

(
V (r ∗a ) + δl L (r ∗a , n ) + δw 

M(r ∗a ) 
)
, 

where δl ≥ 0 , δw 

≥ 0 , V (r ∗a ) = v − F (r ∗a ) 
f (r ∗a ) 

, L (r ∗a , n ) = v + 

1 −F (r ∗a ) 
f (r ∗a ) 

1 
n and 

M(r ∗a ) = k (r ∗a ) − F (r ∗a ) 
f (r ∗a ) 

(1 − k ′ (r ∗a )) . �

Table A1 

Estimates of intermediate linear models for Table 2 : EP-U and EA-U. 

Variable EP-U treatment EA-U treatment 

Model(23) Model(24) † Model(25) 

Intercept 17.73 ∗∗∗ -18.34 ∗∗∗ 21.55 ∗∗∗

(2.18) (2.25) (1.92) 

1 { n =2 } -6.65 ∗∗∗ 4.24 ∗∗∗ -4.10 ∗∗∗

(0.90) (1.10) (1.05) 

1 { n =3 } -10.44 ∗∗∗ 6.26 ∗∗∗ -7.20 ∗∗∗

(1.31) (1.16) (1.75) 

Value 0.41 ∗∗∗ 0.39 ∗∗∗ 0.38 ∗∗∗

(0.02) (0.02) (0.02) 

Auction price - 0.38 ∗∗∗ - 

(0.03) 

Log(scale) 2.75 ∗∗∗ 2.62 ∗∗∗ - 

(0.03) (0.03) 

R 2 - - 0.35 a 

ln( Likelihood) -19640 -19180 b -23909 c 

Number of observations 5760 5760 5760 

Standard deviations clustered by subject are in parentheses. ∗∗∗ Coefficient is signif- 

icant at the 1% level. 
† The coefficients of 1 { n =2 } and 1 { n =3 } become to be positive because the added 

variable of auction price decreases with the number of bidders. 
a Comparing Models (25) and (5), F test rejects Model (25) in favor of Model(5), 

where p-value < 0.01. 
b Comparing Model (24) and (2), LR test rejects Model (24) in favor of Model (2), 

where p-value < 0.01. 
c Log-likelihood is extracted from OLS estimations. 

Proof of Proposition 8. Differentiate r ∗a with respect to n yields, 

∂r ∗a 
∂n 

= 

1 

1 + δl + δw 

(
V 

′ (r ∗a ) + δl 

∂L (r ∗a , n ) 

∂r ∗a 
+ δw 

M 

′ (r ∗a ) 
)
∂r ∗a 
∂n 

+ 

δl 

1 + δl + δw 

∂L (r ∗a , n ) 

∂n 

. 

Rearranging terms, 

∂r ∗a 
∂n 

= 

δl 
∂L (r ∗a ,n ) 

∂n 

(1 + δl + δw 

) −
(
V 

′ (r ∗a ) + δl 
∂L (r ∗a ,n ) 

∂r ∗a 
+ δw 

M 

′ (r ∗a ) 
)

The denominator is the negative of second order condition. There- 

fore the denominator is strictly positive. Consider the terms in 

the numerator. 
∂L (r ∗a ,n ) 

∂n 
= − 1 −F (r ∗a ) 

f (r ∗a ) 
1 

n 2 
> 0 , where 1 − F (r ∗a ) > 0 . The 

strict inequality is implied by r ∗a being an interior solution. Hence, 

the partial derivative has 
∂r ∗a 
∂n 

< 0 . �

A2. Heterogeneity 

Fig. A1 plots the estimates of λ in SCP Model, for 64 subjects in 

each treatment. 

A3. Additional empirical analyses 

In Fig. A2, The SCP model predictions are calculated at the ex- 

pected auction prices: 100 for n = 1 , 66.7 for n = 2 and 50 for 

n = 3 . Table A2~A5 present the results of the in-sample prediction 

performance and estimates of the alternative models. 

Appendix B. Instruction translation 

B1. EP-U Treatment - N varying from 1 to 3 

Preliminary Remark 

You are participating in an experiment studying individual 

decision-making in auctions. Contingent on your decisions in this 

experiment, you can earn money in excess of your participation fee 

of 5 RMB. Therefore, it is very important that you read the instruc- 

tions very carefully. 
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Fig. A2. SCP forecasts of reserve prices: EP-U and EA-U treatments. 

Table A2 

In sample prediction performance of alternative models for Experiment 1. 

n = 1 n = 2 n = 3 Pooled 

MSEs of predicted ex-ante reserve price 

Risk averse model 187.78 224.38 346.45 252.87 

SCP with RA 147.24 226.93 367.15 247.10 

SCP 149.43 212.59 343.50 235.17 

SCP with UPT-RE 147.27 228.44 350.96 242.22 

SCP with UPT-UN 146.66 246.69 398.94 264.10 

MSEs of predicted ex-post reserve price a 

Risk averse model 469.28 335.33 225.26 361.51 

SCP with RA 174.97 125.60 101.00 139.36 

SCP 175.36 129.74 108.57 142.86 

Ex-post auction outcome rejection and acceptance consistency 

Risk averse model 0.64 0.46 0.50 0.53 

SCP with RA 0.97 0.83 0.72 0.84 

SCP 0.97 0.79 0.70 0.82 

a Reserve price conditional on auction outcome rejection. The abbreviations are, 

RA: risk aversion; UPT-RE: unconditional probability transformation with restric- 

tion; UPT-UN: unconditional probability transformation without restriction. 

In the experiment, we request you to switch off your hand 

phones and other devices; except for the experimental software 

application do not open other applications on the computer. Please 

read instruction quietly if there is a lull. Please do not talk with 

the other subjects in the entire experiment, or look at other’ com- 

puter monitors. If at some point you have a question, please raise 

your hand and we will address it as soon as possible. If you do not 

observe these rules, we will have to exclude you from this experi- 

ment and all associated payments, and ask you to leave. 

Today the experiment will consist of 90 rounds and you will 

receive earnings from each round. In the experiment, all monetary 

amounts are donated in experimental currency denoted as $. Any 

Table A3 

Estimates of the risk averse model and the SCP model with risk aversion for Exper- 

iment 2. 

EP-S treatment EA-S treatment 

Risk averse SCP with RA Risk averse SCP with RA 

Variable Model(26) Model(27) Model(28) Model(29) 

μ - 1.35 ∗∗∗ - 0.75 ∗∗∗

( < .001) ( < .001) 

λ - 1.18 ∗∗∗ - 1.68 ∗∗∗

( < .001) ( < 0.01) 

γ a 0.65 ∗∗∗ 1.05 ∗∗ 0.68 ∗∗∗ 0.51 ∗∗∗

( < .001) (0.03) ( < .001) ( < .001) 

Log(scale) 8.49 ∗∗∗ 8.27 ∗∗∗ 10.08 ∗∗∗ 8.28 ∗∗∗

(0.09) (0.14) (0.09) (0.08) 

ln (Likelihood) -16680.44 -16598.66 -21480.74 -20339.69 

LR -test( p-value) - < 0.01 - < 0.01 

Number of observations 5760 5760 5760 5760 

Standard deviations are in parentheses. ∗ Coefficient is significant at the 10% level, ∗∗

5% level and ∗∗∗ 1% level. a The utility function of risk averse auctioneers is U(x ) = 

x γ . LR -test is a comparison between the models with and without risk aversion. 

earnings will be converted to RMB at the exchange rate $60 = 1 

Yuan RMB. All payments will be made privately at the conclusion 

of the experiment. 

You will participate in a procurement auction in each round. 

In an auction, the buyer may purchase a single unit of a fictitious 

good from one of the N sellers, the auction winner. Your are the 

buyer and the computer plays the role of sellers. 

How are your earnings calculated? 

As a buyer, each round you will have a unit value of the good. 

These values generated by the computer varies over rounds. We 

will provide more details later about generating a value. If you pur- 

chase a unit, your earnings are 
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Table A4 

Estimates of the SCP model with UPT for EA-S treatment. 

Restricted Unrestricted 

( μcon = μuncon , λcon = λuncon ) 

Model (30) Model (31) 

Variable (Restricted) (Unrestricted) 

μcon - 1.16 ∗∗∗

(0.001) 

λcon - 1.86 ∗∗∗

( < .001) 

μuncon - 0.28 ∗∗∗

( < .001) 

λuncon - 2.48 ∗∗∗

( < .001) 

μcon = μuncon 1.44 ∗∗∗ - 

(0.04) 

λcon = λuncon 1.81 ∗∗∗ - 

(0.02) 

Log(scale) 8.31 ∗∗∗ 8.20 ∗∗∗

(0.08) (0.08) 

ln (Likelihood) -20366.9 -20294.9 

LR test( p-value) - < 0.01 

Number of observations 5760 5760 

Standard deviations are in parentheses. ∗ Coefficient is significant at the 10% level, 
∗∗ 5% level and ∗∗∗ 1% level. 

Table A5 

SCP model and learning in Experiment 1. 

EP-U treatment EA-U treatment 

Variable 1st half data 2nd half data 1st half data 2nd half data 

μ 1.38 ∗∗∗ 1.51 ∗∗∗ 1.48 ∗∗∗ 1.67 ∗∗∗

(0.002) ( < .001) ( < .001) ( < .001) 

λ 1.29 ∗∗∗ 1.23 ∗∗∗ 1.45 ∗∗∗ 1.40 ∗∗∗

(0.03) (0.02) ( < .001) ( < .001) 

Log(scale) 12.84 ∗∗∗ 12.47 ∗∗∗ 15.48 ∗∗∗ 15.06 ∗∗∗

(0.19) (0.19) (0.19) (0.08) 

ln (Likelihood) -9640.55 -9405.75 -11976.94 -11897.77 

Number of observations 2880 2880 2880 2880 

Standard deviations are in parentheses. ∗ Coefficient is significant at the 10% level, 
∗∗ 5% level and ∗∗∗ 1% level. 

Buyer’s profit = unit value − purchase price 

You are not obligated to purchase a unit, and if you do not 

make a purchase your earnings for that round are zero. For ex- 

ample, if a buyer’s unit value is $131.00 he purchases a unit at 

the price of $75.00, then his profit in a round is $56.00 ($131.00 

- $75.00). Your earnings in each round will be recorded and be 

summed up to pay you at the end of the experiment. Notice that, 

a buyer’s profit can be negative in a round. Please make a decision 

seriously. 

How do you buy a unit of fictitious good? 

You can purchase a unit of fictitious good through procurement 

auction in each round. As previously stated, today’s experiment 

consists of 90 rounds. Each round is an independent procurement 

auction. As a buyer, you will engage in the procurement auction to 

buy a good. In the rounds of 1 - 30, you will be matched with 1 

computer seller in each round; in the rounds of 31 - 60, you will 

be matched with 2 computer sellers; In the rounds of 61 - 90, you 

will be with 3 computer sellers. 

� The Auction Stage which computer sellers take part in: When 

an auction begins, the price starting at $100 will be dynam- 

ically reduced at a constant speed. At any point a seller can 

drop out the auction, but once a seller exits he cannot re- 

enter the auction. The current price when a seller drops out 

becomes his drop-out price. The auction is over once all N

seller exit. The last seller to exit is the auction winner. The 

auction price is the price when the N − 1 th seller exit the 

auction. Notice that, when N= 1, there is no N − 1 th seller 

and therefore the auction price will be the initial price of 

$100. In this experiment, a computer seller will exit the auc- 

tion when the price reaches his own cost. 

� The Decision Stage which you take part in: After the auc- 

tion outcome is presented, you have two options: accept the 

price or make a counter offer. 

� If you accept the auction price, you will purchase a unit 

of the fictitious good at the auction price, and this round 

will end. 

� If you make a counter offer (to less than the auction 

price, with a minimum unit of 0.01). There are two possi- 

ble results: If your counter offer is lower than the auc- 

tion winner’s drop-out price , this round ends up with- 

out a transaction and your profit in this round is zero. 

If your counter offer is higher than or equal to the 

winner’s drop-out price , this round ends up with a 

transaction. You can purchase a unit of the fictitious good 

at the price of counter offer. 

Note that the auction winner’s drop-out price is invisible to you. 

How are costs and unit values determined? 

At the beginning of a period, each seller’s cost is randomly se- 

lected to be between $0.00 and $100.00. Every cost level within 

this range is equally likely. Similarly, your unit value is randomly 

selected to be between $50.00 and $150.00. Every value level 

within this range is equally likely. Note that all sellers’ costs and 

other buyers’ unit values have no influence on your unit value. This 

random determination of costs and unit values is done every pe- 

riod, and the realization of these values is not influenced by past 

realizations nor they will influence future realizations. 

A simple example 

Let’s consider an example. Suppose computer Seller1 ′ s unit cost 

is $25.00 and that computer Seller2 ′ s unit cost is $67.00. In the 

auction, computer Seller 2 first drops out the auction at $67.00 

and computer Seller 1 drops out at $25.00 (invisible to you). Auc- 

tion ends and Computer Seller 1 becomes to the auction winner. 

The auction price is equal to computer Seller2 ′ s drop-out price of 

$67.00. The buyer, whose value is $108.00, has two choices: accept 

the price $67.00 or send a counter offer lower than $67.00. 

If the buyer accept the auction price of $67, this round is over 

and the buyer would receive a profit of $41.00 (buyer’s value - auc- 

tion price, or $108.00 - $67.00). 

If the buyer chooses to send a counter offer of $29.00 to the 

auction winner (computer Seller 1), which is higher than the win- 

ner’s drop-out price, the buyer receives a profit of $79.00 (buyer’s 

value - offer price, or $108.00 - $29); 

Or, if the buyer sends a counter offer of $20.00 to the auction 

winner, which is lower than his drop-out price. The buyer cannot 

purchase and earn $0 in this round. 

How to use the computer program 

After all participants have read the instructions and successfully 

completed the attached quiz, the experimenter will start the com- 

puterized auctions. There will be two phases in each round: an 

Auction and a bargaining phase. 

Fig. B.1 gives an example of what your computer screen looks 

like in the Auction phase. The left hand side window shows the 

price of computer seller exiting chronologically: price and W. 

• Shows W, he is the auction winner, and his drop-out price 

is not visible; 
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Fig. B1. A screen-shot for the Auction Phase. 

Fig. B2. A screen-shot for the Bargaining Phase. 

• Show price $XX.XX, he is not the winner, and his drop-out 

price is XX.XX. 

In this screen, you will be informed of your unit value and auc- 

tion price in this round. You can choose “accept auction price” or 

“bargain”. To accept the auction price you can simply click the “Ac- 

cept” button and you will purchase the fictitious good at the auc- 

tion price. 

If you choose ’Bargain’, the next page will display (as shown in 

Fig. B.2 ). You enter your counter offer into the “Your Offer” box and 

then click button “OK”. 

In the review page, you will be informed of the results, includ- 

ing whether you purchased or not, accept the auction price or send 

a counter offer, the purchase price, and your profit. 

B2. EA-U Treatment - N varying from 1 to 3 

Preliminary Remark 

( The same as in EP-U treatment ) 

How are your earnings calculated? 

( The same as in EP-U treatment ) 
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Fig. B3. A screen-shot for the phase to setting reserve price. 

Fig. B4. A screen-shot for the phase to reviewing auction outcome. 

How do you buy a unit of fictitious good? 

( The same as in EP-U treatment ) 

� The Auction Stage which computer sellers take part in: ( The 

same as in EP-U treatment ) 

� The Decision Stage which you take part in: Before the auc- 

tion begins, you will know the value of the good in current 

round. You need to decide a reserve price for the auction. 

The reserve price is the highest price which you would like 

to pay for the fictitious good in this round. The reserve price 

is over the range of from 0 to 100 with a minimum unit 

of 0.01. After the auction stage concludes, the auction price 

becomes the purchase price if it is lower than your reserve 

price; or your reserve price becomes the purchase price if 

your reserve price lower than the auction price and higher 

than the auction winner’s drop-out price; or you cannot pur- 

chase if your reserve price less than all drop-out prices. 

Note that the auction winner’s drop-out price is invisible to 

you. 

How are costs and unit values determined? 

( The same as in EP-U treatment ) 

A simple example 

Let’s consider an example. Suppose 2 computer sellers partici- 

pate in an auction, your unit value for a fictitious good is $90 and 

you set up a reserve price of $X. Computer Seller 1 has a unit cost 
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of $88 and Computer Seller 2 has a unit cost of $66. The following 

process (your invisible information) will run in the system: 

• In the auction, Computer Seller 1 first drops out the auction 

when the current price is $88; 
• Computer Seller 2 drops out the auction when the current 

price is $66; 
• Computer Seller 2 becomes the auction winner, and the auc- 

tion price is $88. 

Based on your reserve price of $X decided before auction, the 

following circumstances will occur (take three examples) (your vis- 

ible information): 

� If your reserve price is $X = 89, it is higher than the auction 

price. You will observe that the penultimate seller exiting 

the auction at the price of $88 and the winner being indi- 

cated as W. You will purchase the fictitious good at the auc- 

tion price of $88 and will yield a profit of $2 in this round 

(unit value - auction price, or $90 - $88); 

� If your reserve price is $X = 77, it is lower than the auction 

price but not less than the winner’s drop-out price. You will 

learn that one seller’s drop-out price is higher than your re- 

serve price, by observing of D (More details provided later). 

You will also learn that the winner’s drop-out price is not 

higher than your reserve price, by observing of W. You will 

purchase the fictitious good at the price of $77 and will yield 

a profit of $13 (unit value - reserve price, or $90 - $77). 

� If your reserve is $X = 55, it is less than all drop-out prices of 

computer sellers. You will know it by observing two D. You 

will not purchase in this round and your profit will be $0. 

How to use the computer program 

After all participants have read the instructions and success- 

fully completed the attached quiz, the experimenter will start the 

computerized auctions. There will be two phases in each round: 

a phase to setting reserve price and a phase to reviewing auction 

outcome. 

Fig. B.3 gives a screen-shot of setting up a reserve price before 

auction. You are informed of your unit value and the number of 

bidders. You have to decide a reserve price (from 0.00 to 10 0.0 0) 

and type it into the box and then press “confirm”. 

Fig. B.4 gives an example of what your computer screen looks 

like in auction phase. The duration of an auction is 5 seconds. After 

that, the left hand side window shows the price of computer seller 

exiting chronologically: D, W or price. 

• Shows D, the drop-out price of this computer seller higher 

than the reserve price; 
• Show price $XX.XX, the drop-out price of this computer 

seller lower than the reserve price but he is not the auction 

winner. The drop-out price (bid) is XX.XX. 
• Shows W, this computer seller’s drop-out price less than the 

reserve price and he is the auction winner. If all cards dis- 

play D, it means your reserve price less than all drop-out 

prices. There is no auction winner in the auction and you 

cannot purchase in that round. The right hand side window 

shows the result of a round, including reserve price, whether 

purchase or not, purchase price and profit. 
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