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We study the central production of QCD instantons at hadron colliders in events with two large rapidity
gaps. These gaps in rapidity are formed by either Pomeron or photon exchanges or a combination of the
two. The kT-factorization formalism is used to reduce the factorization scale dependence. We compute for
the first time the relevant differential cross sections for a complete set of central instanton production
processes at the LHC, including gluon-induced and quark-induced amplitudes, and also show that the
largest contribution comes from processes with Pomeron exchanges where a single gluon from each
Pomeron couples to the instanton.
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I. INTRODUCTION

Instantons are nonperturbative field configurations that
describe semiclassical transitions between topologically
inequivalent vacuum sectors in QCD. Instanton solutions
[1] have attracted a lot of interest over the years [2–6], but
so far they have not been observed experimentally in any
particle physics settings.
The possibility to observe instantons in inelastic proton-

proton collisions at hadron colliders was considered in [7]
and more recently in [8–10]. Instanton processes have large
production cross sections at small center-of-mass partonic
energies [8], but discovering them at hadron colliders
remains challenging [9]. It was shown in [11] that dif-
fractive events with larger rapidity gaps in the final state can
provide better conditions for instanton searches, since in
this case the soft QCD background caused by multiple
parton interactions is suppressed.
In the present paper we consider processes with central

instanton production where the secondaries coming from the
instanton are separated from the incoming protons (or the
proton dissociation products) by two large rapidity gaps
(LRGs). Strong interactions across each LRG are conven-
tionally described by a Pomeron emitted in the t-channel;
see Fig. 1. This kinematic setup implies that we consider

processes where the instanton was produced in a Pomeron-
Pomeron collision, PP → Instanton → X, where the
two Pomerons, PP, were emitted from the two initial
protons, pp.
Our approach is to search for instantons in the central

exclusive production,

pp → pþ Pþ Pþ p → pþ X þ p; ð1:1Þ

where the initial state protons survive into the final state.
The main advantage of such central instanton production
processes is a relatively low Pomeron-Pomeron colliding
energy which does not allow for a large multiplicity of the
background underlying events. Moreover, in this energy
range, the central detector becomes almost hermetic (close
to 4π) for the Pomeron-Pomeron secondaries and only a
small part of the finally produced hadron will avoid
detection.1 Note that we can consider tagging forward-
going protons (one or both of them) using dedicated
forward proton detectors [14–17]. In particular in the case
of the process (1.1) detecting two outgoing protons would
allow one to place an upper limit on the instanton mass.
New opportunities would be opened with the proposed
development of the CMS precision proton spectrometer for
the high luminosity LHC [18] which could allow one to

*v.a.khoze@durham.ac.uk
†valya.khoze@durham.ac.uk
‡daniel.l.milne@durham.ac.uk
§ryskin@thd.pnpi.spb.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The idea to observe instantons in a 2-Pomeron collision was
first put forward in [13] in the context of Pomeron collisions at
very low invariant mass, 2 < M < 5 GeV with a roughly
isotropic distribution of secondaries. In the present paper we
consider instead the central instanton production at larger
invariant masses M ≳ 25 GeV where QCD instantons are under
much better theoretical control. Of course, the expected instanton
production cross section gets smaller at higher instanton masses
which nevertheless should be reachable in LHC collisions.
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cover the missing mass range starting from 100 GeV (or
even 43 GeV after further modifications).
Since the QCD Pomeron is usually treated as a two-

gluon color-singlet state, in Sec. II we calculate the
amplitude of the interaction of these two gluons (correlated
both in color and in their helicities) with the instanton and
the cross section of the instanton production in the pro-
cesses of gluon plus gluon pair, gþ ðggÞ → Instanton, and
two gluon pair, ðggÞ þ ðggÞ → Instanton, fusion.
Recall that an instanton is not a particle of some fixed

mass, but an extended object in spacetime, characterized by
certain free parameters (instanton collective coordinates): the
instanton size ρ, instanton position xμ0, and the orientation in
color and Lorentz space. In terms of Feynman diagrams the
instanton acts as a multigluon vertex (or more precisely a set
of multigluon vertices, each with a different number of gluon
legs). Besides this any instanton vertex creates one pair of
light quarks of each flavor, f (mf < 1=ρ). We emphasize
that the number of gluons emitted by a particular instanton is
not fixed. For this reason we cannot consider the pure
exclusive instanton production. The process can be accom-
panied by the radiation of additional partons, and it is not
clear how to separate these additional gluons (or quarks)
from those emitted by the instanton. Therefore in Sec. III we
compare the cross sections of a few different processes:

(i) pure exclusive instanton production Pþ P →
ðggÞ þ ðggÞ → Inst,

(ii) instanton plus bremsstrahlung gluons Pþ P →
ðggÞ þ ðggÞ → Instþ ng,

(iii) instanton plus a spectator gluon gs, such as
Pþ P → ðggÞ þ gþ gs → Instþ gs,
Pþ P → gþ gs þ gþ gs → gs þ Instþ gs.

(iv) Furthermore, large rapidity gaps can also be formed
by a photon exchange,
γ þ P → qq̄s þ ðggÞ → q̄s þ Inst,
γ þ γ → qq̄s þ qsq̄ → q̄s þ Instþ qs.

The diagrams describing all these cases are shown in Figs. 1,
2, and 3.
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FIG. 2. Instanton production in central diffractive processes
with two LRGs and (a) one or (b) two spectator jets. Pomerons
are represented by thick double lines. Solid and dashed lines
denote the gluon and quark jets, and the dotted lines indicate the
possibility of soft gluon emission off the incoming partons.

Inst.

p

p

p

p

xPom

zQ

fD(xPom,z)

(a)

Inst.

p

p

p

p

xPom

z

z′

Q

fD(xPom,z)

(b)

FIG. 1. Semiexclusive instanton production in a central dif-
fractive process with two LRGs. (a) ðggÞ þ ðggÞ → Instanton
subprocess; (b) gluon-gluon fusion subprocess similar to the
Durham model [12]. The Pomeron exchange is shown as a thick
double line. Solid and dashed lines to the right of the instanton
blob denote gluon and quark jets while the dotted lines indicate
the possibility of soft gluon emission off the incoming partons.

Inst.

p

p

p

p

z

fD(xPom,z)

γ

(a)

Inst.

p

p

p

p

γ

z

(b)

Inst.

p

p

p

p

γ

z

γ

(c)

FIG. 3. Instanton (plus spectators) production in (a), (b) photon-Pomeron and (c) photon-photon collisions. Notation is the same as in
Figs. 1 and 2.
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The photon-exchange initiated central instanton produc-
tion processes corresponding to Fig. 3 will be discussed
in Sec. IV.
In Sec. V we present numerical estimates for the

processes listed above and also discuss the possibility to
select events with a large pT jet formed by the gluon or
quark spectator. The large transverse momentum, pT , of the
jet is compensated by the instanton. This rejects contribu-
tions of large size instantons and allows one to search for
small size instantons in cleaner theoretical settings. We
present our conclusions in Sec. VI.

II. GLUONS IN THE INSTANTON
BACKGROUND

Here we collect some useful formulas for the sum over
polarizations and color indices of the initial state gluons
computed on the instanton configuration. These expres-
sions will be relevant for computing elementary parton-
level instanton cross sections for different sets of initial
gluon configurations considered in this paper. Specifically,
as can be inferred from Figs. 1(a), 1(b), 2(a), and 2(b), the
desired hadronic cross sections σ for these processes rely on
the knowledge of the following parton-level instanton cross
sections σ̂,

σð1aÞ∶σ̂ðggÞþðggÞ→Inst; ð2:1Þ

σð2aÞ∶σ̂gþðggÞ→Inst; ð2:2Þ

σð1bÞ & σð2bÞ∶σ̂gþg→Inst: ð2:3Þ

Each elementary instanton cross section σ̂ is obtained via
the optical theorem by computing the imaginary part of the
forward scattering amplitude in an instanton–anti-instanton
background. For example, for the instanton cross section
σ̂gþg→Inst with two gluons in the initial state, we have

σ̂gþg→InstðŝÞ ¼
1

ŝ
ImAIĪ

4 ðp1; p2;−p1;−p2Þ; ð2:4Þ

where
ffiffiffî
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 þ p2Þ2

p
is the partonic centre-of-mass

(c.m.) energy, and the forward elastic scattering amplitude
reads [8,9]

AIĪ
4 ¼

Z
∞

0

dρ
Z

∞

0

dρ̄
Z

d4R

×
Z

duDðρÞDðρ̄Þe−SIĪ−
αs
16πðρ2þρ̄2Þŝ log ŝ

μ2r

×KfermAinst
LSZðp1ÞAinst

LSZðp2ÞAinst
LSZð−p1ÞAinst

LSZð−p2Þ:
ð2:5Þ

In the expression above we integrate over all collective
coordinates: ρ and ρ̄ are the instanton (I) and anti-instanton

(Ī) scale sizes, Rμ ¼ ðR0; R⃗Þ is the separation between the
instanton and anti-instanton positions, and u is the 3 × 3

matrix of relative IĪ orientations in the SUð3Þ color space.
DðρÞ and Dðρ̄Þ represent the known instanton and anti-
instanton densities, SIĪ is the Euclidean action of the
instanton–anti-instanton configuration, andKferm is another
known factor accounting for the presence of quarks in the
theory.
The term − αs

16π ðρ2 þ ρ̄2Þŝ log ŝ
μ2r

appearing in the expo-

nent represents the leading-order quantum effects from
radiative exchanges between the hard initial states in the
instanton background computed in [19].
The two-gluon initial state is represented on the right-

hand side of (2.5) by the field insertions of Ainst
LSZðp1Þ

and Ainst
LSZðp2Þ, and the similar factor involving the anti-

instanton fields appearing in (2.5) represents the two-gluon
final state of the forward elastic scattering amplitude.
We can now write down a single expression to represent

all elementary instanton cross sections in (2.1)–(2.3) as

σ̂jini→Instðŝ; Q2
1; Q

2
2Þ ¼

1

ŝ
Im

Z
∞

0

dρ
Z

∞

0

dρ̄
Z

d4R

×
Z

duDðρÞDðρ̄ÞKferm

× h� � �ijinie
−SIĪ−

αs
16πðρ2þρ̄2Þŝ log ŝ

μ2r : ð2:6Þ

The quantity h� � �i on the right-hand side of (2.6) represents
the instanton (and anti-instanton) field insertions that cor-
respond to the initial state jini (and its conjugate hinj) in the
cross section. The arguments of the instanton cross section
σ̂jini→Inst are the partonic center of mass energy ŝ (also
referred to as the instanton mass) and the virtualities,Q2

1 and
Q2

2, of the initial partonic states. In fact, aswill become clear a
little later, it will oftenmake sense to distinguish between the
momenta of the incoming parton statesQ2

1,Q
2
2 in the forward

elastic scattering amplitude (2.6) and the momenta of the
outgoing states that we denote Q̄2

1, Q̄
2
2, which are no longer

assumed to be identical to the incoming momenta. In this
case the instanton cross section is a function of five argu-
ments, σ̂jini→Instðŝ; Q2

1; Q̄
2
1; Q

2
2; Q̄

2
2Þ.

In Secs. II A–II D we specify the classical field insertions
h� � �i for each of the cases in Eqs. (2.1)–(2.3). The
expressions for DðρÞ, Kferm, and SIĪ are taken from [8,9]
and for completeness are listed in Appendix A.

A. Initial gluons of arbitrary color
and polarizations

An incoming gluon of momentum p, helicity λ, and color
a is represented in the path integral for the scattering
amplitude by an insertion of the LSZ-reduced instanton
configuration Aainst

LSZ ðp; λÞ, which for the on-shell massless
gluon reads (see, e.g., [8])
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Aainst
LSZ ðp; λÞ ¼ lim

p2→0
p2ϵμðp; λÞAainst

μ ðpÞ

¼ ϵμðp; λÞη̄aμνpν
4iπ2ρ2

g
eip·x0 : ð2:7Þ

In the expression above ϵμðp; λÞ is the gluon polarization
vector and Aainst

μ ðpÞ is the instanton configuration (in the
singular gauge) Fourier transformed into momentum
space. The instanton size is ρ, the instanton center is x0,
and η̄aμν are the ’t Hooft eta symbols. It is often convenient
to work with the instantons in matrix representation, in
which case we define Aμ ¼ Aa

μTa, where Ta ¼ λa=2 are the
conventional generators of SUð3Þc and only the first three
generators contribute since the instanton lives in the SUð2Þ
subgroup of SUð3Þc. In matrix notation we have

Ainst
LSZðp; λÞ ¼

2π2ρ2

g
ϵμðp; λÞðσμp̄ − pμ1Þeip·x0 ; ð2:8Þ

where p̄ ¼ σ̄μpμ and σμ and σ̄μ are the usual sets of four
sigma matrices.
To take into account the contribution of a single gluon

with the helicity λ and color index a we use the insertion

1

2

X
λ¼1;2

1

8

X8
a¼1

Aainst
LSZ ðp; λÞAainst

LSZ ð−p; λÞ ð2:9Þ

in the path integral representation for the forward scattering
amplitude. This is easiest to evaluate using the matrix
representation (2.8) for the instanton field and

Ainst
LSZðp; λÞ ¼

2π2ρ̄2

g
ϵμðp; λÞðuσ̄μpū − pμ1Þeip·x̄0 ð2:10Þ

for the anti-instanton, where u denotes the matrix of relative
instanton–anti-instanton orientation in color space, and ρ̄
and x̄0 are the anti-instanton scale size and position. We
now evaluate the sum in (2.9) and find (reproducing the
result in [20])

1

8

X
λ¼1;2

TrðAinst
LSZðp; λÞAinst

LSZð−p; λÞÞ ¼
π3

αs
ðp · R̂Þ2ρ2ρ̄2eiR·p:

ð2:11Þ
In deriving this expression we chose the maximally
attractive instanton–anti-instanton orientation for which u
lives in the SUð2Þ subgroup of SUð3Þ2 and is given by
u ¼ σμR̂μ (where R̂μ ¼ Rμ=

ffiffiffiffiffiffi
R2

p
and R is the instanton–

anti-instanton separation) and used the standard complete-
ness relation for the sum over gluon polarizations,

X
λ¼1;2

ϵμðp; λÞϵ�νðp; λÞ ¼ −gμν⊥ : ð2:12Þ

After an analytic continuation to Minkowski space iR → R
and also allowing for the possibility of virtuality Q in the
gluon momentum, Q2 ¼ −p2 ≪ ŝ, we find

1

8

X
λ¼1;2

TrðAinst
LSZðp; λÞAinst

LSZð−p; λÞÞ

¼ π3

4

1

αs
ŝρ2ρ̄2JðQρÞJðQρ̄ÞeR·p; ð2:13Þ

where JðQρÞ is a form factor associated with the gluon of
virtuality Q and is given by the Bessel function K1,

JðxÞ ¼ xK1ðxÞ: ð2:14Þ
The form factor interpolates between Jð0Þ ¼ 1 for the on-
shell gluon and the exponential JðxÞ → ffiffiffiffi

πx
2

p
e−x for the

highly virtual one at x ≫ 1. The formula (2.14) was
obtained in [21,22] using the Fourier transformation of
the instanton field with a general value of Q and paying
careful consideration to preserving gauge invariance in the
context of applications to deep inelastic scattering.3

In the expression on the right-hand side in (2.13) we
also made the substitution ðp · R̂Þ2 ¼ ŝ=4 which follows
from the fact that in the center of mass frame the saddle-
point solution for the instanton–anti-instanton separation is
along the time direction, R̂ ¼ ð1; 0; 0; 0Þ, and that for
the two-gluon initial state, p0 ¼

ffiffiffî
s

p
=2. The expression

(2.13) agrees with the formula used in [8] if the latter is
corrected by an overall “normalization” factor of 2=3 and
one accounts for the instanton and anti-instanton form
factors (2.14).
The contribution of two such initial state gluons with

momenta p1 and p2 gives a factor of

h� � �iðgþgÞQ ¼
�
π3

4

1

αs

�
2

ðŝρ2ρ̄2Þ2J2ðQρÞJ2ðQρ̄ÞeR·ðp1þp2Þ;

ð2:15Þ
to the integrand of the expression for the parton-level
instanton cross section in (2.3). Here ŝ ¼ 2p1 · p2. Thus for
the initial state jini ¼ gþ g the instanton cross section in
(2.3) is computed by substituting4 the expression (2.15)

2So that in the maximally attractive channel for the instanton–
anti-instanton potential, both instantons are located in the same
SUð2Þ subgroup.

3Specifically the derivation in [21] concerned the photon-
quark–antiquark vertex and the associated quark propagators in
the instanton background. In our case the consideration would
involve the Pomeron-gluon-gluon vertex, but we do not expect
that the resulting form factor would be different. In any case, the
precise expression is not particularly important as we are
concerned here with rather small values of Q ∼ GeV ≪

ffiffiffî
s

p
. In

Ref. [11] we used the simplified formula JðxÞ ≃ e−x instead of the
more complete form in (2.14).

4It is easily seen that (2.15) has the correct dimensions of ρ2ρ̄2
as expected for the insertion of four LSZ-reduced gluon fields.
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into the integral in Eq. (2.6). The subscript Q displayed in
our notation for the ðgþ gÞQ initial state on the left-hand
side of (2.15) indicates that both of these initial state gluons
have virtualities Q.
Combining Eqs. (2.6) and (2.15) gives us the parton-

level instanton cross-section formula that will be used in
Sec. III in obtaining the proton-proton cross sections σð2bÞ

in Eqs. (3.4) and (3.10), and σð1bÞ following (3.16).
In the case of σð1bÞ it will be important to formally

distinguish between the momenta of gluon states in
the amplitude and in the complex conjugate amplitude.5

Thus we denote the virtualities of the incoming gluons in
the instanton background as Qt, for the conjugate ampli-
tude these virtualities in the anti-instanton background are
denoted as Q̄t, and we rewrite (2.15) as

h� � �iðgþgÞQt;Q̄t
¼

�
π3

4

1

αs

�
2

ðŝρ2ρ̄2Þ2J2ðQρÞJ2ðQ̄ ρ̄ÞeR·ðp1þp2Þ:

ð2:16Þ

B. A gluon pair in a color-singlet state

We now consider the contribution of a single pair of
initial state gluons in a color-singlet state ðggÞ. From one
ðggÞ pair the scattering amplitude receives the contribution

1

8

X3
a¼1

1

2

X
λ¼1;2

Aainst
LSZ ðp1; λÞAainst

LSZ ðp2; λÞ

¼ 4π3

16

1

αs
ŝ12ρ4J2ðQρÞeix0·ðp1þp2Þ: ð2:17Þ

In evaluating the expression on the right-hand side of (2.17)
we used the sum over polarization vectors that corresponds
to the relevant for us Jz ¼ 0 mode of the gluon pair,

X
λ¼1;2

ϵμðp1; λÞϵνðp2; λÞ ¼ −gμν þ pμ
1p

ν
2

p1 ·p2

þ pμ
2p

ν
1

p1 ·p2

: ð2:18Þ

along with the simplifying relation for the sum of eta
symbols, X

a

η̄aμνη̄
a
αβ ¼ δμαδνβ − δμβδνα − εμναβ:

This implies

X
a

X
λ

η̄aμνη̄
a
αβϵ

μðp1; λÞpν
1ϵ

αðp2; λÞpβ
2

¼ ðϵ1 · ϵ2Þðp1 · p2Þ − ðϵ1 · p2Þðϵ2 · p1Þ
¼ −2p1 · p2; ð2:19Þ

and Eq. (2.17) follows. Then the contribution to the cross
section from such a gluon pair in the color-singlet state
amounts to

�
π3

4

1

αs

�
2

ðŝ12ρ2ρ̄2Þ2J2ðQρÞJ2ðQρ̄ÞeR·ðp1þp2Þ: ð2:20Þ

Note that this expression is the same as in (2.15).
When the initial state of the instanton process originates

from a Pomeron P, the Pomeron can emit a gluon pair. This
gluon pair is in a color-singlet state and also has collinear
momenta, pg1 ¼ zpP and pg2 ¼ ð1 − zÞpP. For the strictly
massless on-shell gluon momenta, the expressions in (2.17)
and (2.20) will vanish since for the collinear on-shell gluon
momenta ŝ12 ¼ 0.
The leading correction to this vanishing result comes

from the inclusion of gluon virtualities which in Eqs. (3.11)
and (3.14) will be identified with the transverse momentum
Q2

t of gluons in the ðggÞ loop. The contribution of these
gluon insertions to the cross section is determined by (2.20)
with the substitution ŝ12 ¼ Q2

t .
When computing the hadronic cross section based on

this parton level instanton cross section in Sec. III, it will be
important to formally distinguish between the momenta of
the incoming ðggÞ gluon pair in the amplitude and the
corresponding ðggÞ state in the complex conjugate ampli-
tude.6 Thus we denote the virtualities of the incoming
gluons in the instanton background as Qt, and for the
conjugate amplitude these virtualities in the anti-instanton
background are denoted as Q̄t. In summary, for the field
insertion relevant to a single gluon pair of states we have

h���iðggÞQt;Q̄t
¼
�
π3

4

1

αs

�
2

Q2
t Q̄2

t ρ
4ρ̄4J2ðQtρÞJ2ðQ̄tρ̄ÞeR·ðp1þp2Þ:

ð2:21Þ

C. Three gluons in the initial state σ̂g+ ðggÞ→Inst

Here we consider the process shown in Fig. 2(a) where
the first proton of momentum p1 emits a single gluon g1
with momentum pg1 ¼ x1p1, and the second proton p2

emits a Pomeron with momentum pP ¼ x2p2 that sub-
sequently produces two gluons with momenta pg2 ¼ zpP

and pg3 ¼ ð1 − zÞpP. The instanton process initiated by
these three gluons is

g1 þ ðg2g3Þ → X; ð2:22Þ

where the brackets indicate that the gluon pair originated
from the Pomeron. The corresponding parton-level instan-
ton cross section is σ̂gþðggÞ→Inst.

5So that we can integrate over the gluon loop momentum in
Fig. 1(b) at the level of the amplitude.

6So that we can integrate over the loop momenta of each ðggÞ
state in (3.14) independently.
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The corresponding three-gluon insertion factor is given
by the product of the expressions in Eqs. (2.21) and (2.13).
It reads

h� � �igQ1t
þðggÞQ2t;Q̄2t

¼
�
π3

4

1

αs

�
3

Q2
2tQ̄

2
2tŝρ

6ρ̄6JðQ1tρÞJðQ1tρ̄Þ

× J2ðQ2tρÞJ2ðQ̄2tρ̄ÞeR·ðp1þp2þp3Þ:

ð2:23Þ
Here ŝ ¼ x1x2spp ¼ M2

inst; the virtuality of the single gluon
g is denoted as Q1t; and the virtualities of the gluon in
the ðggÞ pair are Q2t for the amplitude and Q̄2t for the
conjugate amplitude. These conventions correspond to
what will be used in (3.17) in Sec. III for the proton-
proton cross section σð2aÞ.
The overall dimensionality of the expression in (2.23) is

ρ3ρ̄3, which correctly represents three instanton and three
anti-instanton fields in the cross section. The instanton
cross section σ̂gþðggÞ→Inst is then obtained by plugging
(2.23) into the integral in Eq. (2.6). In Sec. III we will
use this to obtain the proton-proton cross section σð2aÞ.
For completeness, we should also comment on the

function in the exponent in the instanton cross-section
integral (2.6), though it will turn out that these additional
contributions [see Eq. (2.26) below] will vanish in the
relevant for us z → 1 limit dictated by Eq. (3.13) in Sec. III.
The only modifications relevant to the three gluon initial
state arise in the term

exp

�
−

αs
16π

ðρ2 þ ρ̄2Þŝ log ŝ
�
; ð2:24Þ

which describes the radiative exchanges between the two
initial gluons, and should now be modified as follows. For
our present case of three gluons in the initial state, we
should account for the interactions between g1 and g2, and
between g1 and g3 (there are no new effects for g2 − g3
exchanges, as these gluons are collinear). We have

exp
�
−

αs
16π

ðρ2 þ ρ̄2Þðŝ13 log ŝ13 þ ŝ12 log ŝ12Þ
�
: ð2:25Þ

Comparing the expressions (2.24) and (2.25) gives the
overall relative factor

R¼ exp

�
−

αs
16π

ðρ2 þ ρ̄2Þŝðz log zþ ð1− zÞ logð1− zÞÞ
�
;

ð2:26Þ
which should be included in the integral in Eq. (2.6).

D. Four gluons in the initial state σ̂ðggÞ + ðggÞ→Inst

We can now repeat the analogous steps for the sub-
process in Fig. 1(a) with two gluon pairs in the initial state,

ðggÞ1 þ ðggÞ2 → X: ð2:27Þ

The relevant field insertion in the integral for the cross
section is given by the product of the two insertions in
(2.21),

h� � �iðggÞ1þðggÞ2 ¼ h� � �iðggÞQ1t;Q̄1t
· h� � �iðggÞQ2tQ̄2t

; ð2:28Þ

with the virtualities of the first ðggÞ pair set to Q1t in the
amplitude and Q̄1t in the conjugate amplitude, and for the
second ðggÞ pair we use Q2t and Q̄2t for the amplitude and
conjugate amplitude, respectively.
The parton-level instanton cross section σ̂ðggÞþðggÞ→Inst ×

ðŝ; Q2
1t; Q̄

2
1t; Q

2
2t; Q̄

2
2tÞ for the process (2.27) is obtained by

plugging in the expression for the field insertions (2.28)
into the integral (2.6). In Sec. III we will use this to obtain
the proton-proton cross section σð2aÞ in Eq. (3.14).

III. INSTANTON PRODUCTION IN
POMERON COLLISIONS

A. Partons created by a Pomeron

The presence of an LRG on a large rapidity interval is
conventionally described by a Pomeron exchange in the
t-channel. Pomerons do not interact with the instanton
directly; they first produce partons (gluons or quarks)
which then couple to the instanton. The spectra of these
partons are described by the diffractive parton distribution
functions (dPDF) denoted as fDi ðxP; z; μ; tÞ where xP is the
proton momentum fraction carried by the Pomeron, z is the
Pomeron momentum fraction carried by the parton i, μ is
the scale at which the dPDF of interest enters (measured),
and t is the square of the momentum transferred through the
Pomeron: i ¼ g; qf.
In our calculations we will use the diffractive parton

distributions given by fit B of the H1 group [23] which
reasonably well describe the deep inelastic events with
LRGs observed at HERA. The dPDF in this analysis was
calculated as

fD;t
i ðxP; z; μ2; tÞ ¼ fP=pðxP; tÞfiðz ¼ x=xP; μÞ: ð3:1Þ

Here

fP=pðxP; tÞ ¼ g2N
eBPt

x2αPðtÞ−1P

ð3:2Þ

is the Pomeron flux written in terms of the simple Regge
pole parametrization, αPðtÞ is the Pomeron pole trajectory,
gN is the proton-Pomeron coupling, and BP=2 is its slope.
The parton distributions inside the Pomeron, fiðz; μÞ, were
parametrized at the initial value of μ2 ¼ μ20 ¼ 2.5 GeV2

and then evolved via the QCDNUM package [24].
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The distribution function fD;t
i ðxP; z; μ2; tÞ in (3.1) is

the probability to find a parton i in the Pomeron that has
a fixed value of t. We also define the more conventional
t-independent diffractive PDF by integrating the expression
in (3.1) over t,

fDi ðxP; z; μ2Þ ¼
Z

dt fD;t
i ðxP; z; μ2; tÞ: ð3:3Þ

The resulting dPDF is a dimensionless quantity, which is as
expected for the probability of finding a parton in a
Pomeron with no constraints imposed on the value of
the Pomeron momentum.
Below in Secs. III B and III C we will present and outline

the derivation of hadronic cross-section integrals for the
instanton production processes shown in Figs. 1(a)–2(b).
Readers primarily interested in the final expressions for
these cross sections can skip directly to Sec. III D where we
present a brief summary of this section’s results.

B. Instanton production in gluon fusion processes 2(b)

The total cross section for the central instanton produc-
tion in Fig. 2(b) is essentially a standard expression given
by the convolution of the t-independent diffractive PDFs in
(3.3) with the parton-level instanton cross section σ̂ij
computed using the formalism of Sec. II,

σð2bÞpp→I ¼ S2
Z

ŝmax

ŝmin

dxP;1dxP;2dz1dz2
X
ij

fDi ðxP;1; z1; Q2Þ

× fDj ðxP;2; z2; Q2Þ · σ̂ijðŝ; Q2; Q2Þ: ð3:4Þ

In this expression S2 denotes the rapidity gap survival
factor, and σ̂ij is the partonic instanton cross section for
the initial partons i and j. The kinematic-invariant energy
of the instanton is ŝ ¼ x1x2sPp, where x1 ¼ xP;1z1 and
x2 ¼ xP;2z2 are the proton momentum fractions carried by
each of the two gluons entering the instanton in Fig. 2(b),
and spp is the center-of-mass energy squared of the hadron
collider. In our setup we assume that the Pomeron
momentum fractions xP;1 and xP;2 are measured and fixed
by detecting the original protons with the momenta
pL ¼ xLp ¼ ð1 − xPÞp. The virtualities of the two single
gluon states emitted from the two Pomerons are fixed in
(3.4) at the same characteristic values Q ¼ 2 GeV as
in Ref. [11].
The parton-level instanton cross section σ̂ijðŝ; Q2; Q2Þ

that appears on the right-hand side of (3.4), and later in
(3.10), is given by the formula (2.6) with the field insertion
given by (2.15), as explained in Sec. II.
The limits in the integral (3.4) are written in terms of the

instanton energy squared ŝmin and ŝmax. The value of ŝmax ¼
xP;1xP;2spp is fixed kinematically. Formally we have to put

ŝmin ¼ 0. However, small mass (
ffiffiffî
s

p ¼ Minst) instantons

have a large size, ρ, and correspondingly we have to work
with a large QCD coupling αsðμ ¼ 1=ρÞ. Here we cannot
guarantee the accuracy of our theory. Moreover, in this low
ŝ region it appears impossible to distinguish the instanton
from the background and underlying event experimentally.
Therefore we have to choose appropriate cuts on the final
state to select the events where the role of low mass
instantons is suppressed. The value of ŝmin is chosen in such
a way that after these cuts the final contribution from the
ŝ < ŝmin region becomes negligible.
If one wishes to further suppress the low mass instan-

tons,7 one can additionally require that the spectator jet [for
example, the upper gluon in Fig. 2(a)] has a large transverse
momentum, Qt. In this case we have to work with the
unintegrated parton distribution, FD

i ðxP; z; Q2
t Þ, where not

only the energy momentum fraction x ¼ xPz carried by the
parton i but also its transverse momentum Qt are fixed.
This is used to determine the differential cross section with
respect to the Qt of the spectator jet, which reads

Q2
t

d
dQ2

t
σð2bÞpp→Iþi ¼ S2

Z
dxP;1dxP;2

xP;1

dz1
z1

dz2

×
X
j

FD
i ðxP;1; z1; Q2

t ÞfDj ðxP;2; z2; Q2Þ

· σ̂ijðŝ; Q2
t ; Q2Þ: ð3:5Þ

Note that the virtuality of the first gluon Qt is set by the
transverse momentum of the spectator jet and is different
from the intrinsic virtuality of the second gluon that we
keep at Q ¼ 2 GeV as before.
In general, an unintegrated distribution, Fðx;Q2

t ; μ2Þ, at
leading order can be calculated from the usual integrated
parton distribution using the DGLAP evolution equation, as
explained in [25],8

Fiðx;Q2
t ;μ2Þ ¼ TiðQt;μÞ

αsðQtÞ
2π

×
X
j

Z
1−ΔðQtÞ

x
Pijðz̃Þaj

�
x
z̃
;Qt

�
dz̃: ð3:6Þ

Here Pijðz̃Þ is the real part of the splitting functions,
ΔðQtÞ ¼ Qt=ðQt þ μÞ provides the angular ordering of a
subsequent gluon emission, and aiðx; μ0Þ denotes the
integrated distributions taken at the scale μ0 ¼ Qt.

7And consequentially pay the price of having much lower
instanton cross sections (as was also discussed in Sec. 3 of
Ref. [9]).

8One could also use other formalisms (such as the transverse
momentum dependent formalism [26] or other unintegrated PDF
prescriptions) for the calculation of the unintegrated PDFs but we
would expect the difference between these approaches to be a
next-to-leading-order effect. The approach chosen here is quite
standard in the literature and has been used in, e.g., [27,28] to
successfully describe experimental data.
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Specifically, aiðx; μ0Þ ¼ xgðx; μ0Þ for i ¼ g and aiðx; μ0Þ ¼
xqfðx; μ0Þ for i ¼ qf.
The Sudakov factor TðQt; μ̄Þ on the right-hand side of

(3.6) represents the probability not to emit additional
partons with transverse momentum kt > Qt which would
change the final virtuality and the transverse momentum.
At leading order (LO) these additional partons can be
radiated within the interval Qt < kt < μ̄. The scale μ̄ is set
by the instanton mass μ̄ ≃MInst (see [29]),

TiðQt; μ̄Þ ¼ exp

�
−
Z

μ̄2

Q2
t

dk2

k2
αsðk2Þ
2π

X
j

Z
1−ΔðkÞ

0

Pjiðz̃Þdz̃
�
;

ð3:7Þ

where for the g → gg splitting we have to insert a factor z in
front of PggðzÞ to account for the identity of the produced
gluons; ΔðkÞ ¼ k=ðkþ μ̄Þ. When the value of Qt > μ̄,
there is no phase space for LO gluon emissions, and this
implies that the Sudakov factor becomes TiðQt; μ̄Þ ¼ 1.
With this simplification, the unintegrated distribution can
be written as [30]

Fiðx;Q2
t Þ ¼

daiðx;QtÞ
d lnQ2

t
: ð3:8Þ

Diffractive events with LRGs are then described by the
unintegrated diffractive distribution FD

i given by the same
expression (3.8) with the incoming distribution ai replaced
by xfDi ðxP; z; μ0Þ,

FD
i ðxP; z; Q2

t Þ ¼
d

d lnQ2
t
xPzfDi ðxP; z; μ2 ¼ Q2

t Þ: ð3:9Þ

We can now use the formula (3.5) to write down the total
cross section for the process in Fig. 2(b) in terms of
unintegrated distributions,

σð2bÞ ¼ S2
Z

dxP;1dxP;2
xP;1xP;2

dz1dz2
z1z2

Z
dQ2

t;1dQ
2
t;2

Q2
t;1Q

2
t;2

×
X
ij

FD
i ðxP;1; z1; Q2

t;1ÞFD
j ðxP;2; z2; Q2

t;2Þ

× σ̂ijðŝ; Q2
t;1; Q

2
t;2Þ: ð3:10Þ

The factors of 1=xP in (3.10), and before that in (3.5), are
the consequence of the factor of xP included in the
definition of FD

i thanks to ai ¼ xfDi ¼ xPzfDðxP; z;…Þ
in (3.9), (3.8), and (3.6).9

Similar to the earlier case in (3.4), the parton-level
instanton cross section σ̂ijðŝ; Q2

t;1; Q
2
t;2Þ that appears on

the right-hand side of (3.10) is found by plugging in the
field insertion given by (2.16) into the integral (2.6). Note
that the transverse momentum Q2

t is now an integration
variable in (3.10).
The expression (3.10) is relevant to the case where we

choose to trigger on a spectator jet with the transverse
momentum Qt in a certain range. Otherwise, one should
use the simpler expression in (3.4).

C. Instanton production processes 1(a), 1(b), and 2(a)

Cross-section formulas for the remaining central instan-
ton production processes in Figs. 1(a),1(b), and 2(a) require
a little more work. In all these cases, as can be seen in the
figures, there is a pair of partons coming from a Pomeron to
the instanton that forms a loop and involves an integration
over (the longitudinal and transverse components of) the
loop momenta. Also the parton-level instanton amplitudes
can now contain 2, 3, or 4 initial partons.
Selecting one pair of gluons entering the instanton

vertex from a Pomeron [either one of the two ðggÞ pairs
in Fig. 1(a) or the ðggÞ pair in Fig. 2(a)] we can write the
loop integral over the transverse momentum components
Qt as

Z
dQ2

t

Q2
t
F̂gðxP; z; Q2

t ; tÞAðggÞ→Inst

∝
Z

dQ2
t

Q2
t
F̂gðx;Q2

t ; tÞe−2Qtρ: ð3:11Þ

The quantity AðggÞ→Inst on the left-hand side of (3.11)
denotes the instanton amplitude with the initial state that
includes the gluon pair ðggÞ which appears in the loop
integral. This integral is convergent at large Q2

t thanks to
the virtual gluons in the ðggÞ state that lead to the
appearance of the form factor J2ðQtρÞ ∝ e−2Qtρ on the
right-hand side of (3.11) [as dictated by (2.17) and (2.14)].
The convergence at small Qt → 0 is provided by the
TðQt; μÞ factor hidden in F̂g.
We also note that the PDF function F̂g in (3.11) is not the

diffractive PDF FD
g , but the gluon distribution Fi¼g calcu-

lated via (3.6) based on the standard inclusive distribution
ai ¼ xfiðx; μ; tÞ at fixed t.10 That is, the Pomeron exchange
is represented by the singlet (in color and in flavor) parton
distribution fiðx; μ; tÞ.
We also note that for the parton distribution F̂ appearing

in (3.11) one should use the generalized (or skewed)
distribution since the longitudinal momentum fractions,
x0 ¼ xPð1 − zÞ and x ¼ xPz, transferred through the left

9It is convenient since in this form at a very small xP (and/or z)
we deal only with a weak (mainly logarithmic) xP (or z)
dependence.

10Indeed, the standard PDF describes the probability to find
the corresponding parton. Our case concerns the probability
amplitude that is given by the generalized parton distribution
(GPD). The amplitude described by the GPD, by definition,
provides the interaction across the rapidity gap.
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and the right gluons in the loop are different. Nevertheless,
for xP ≪ 1 this generalized parton distribution function,
GPDðX; ξ; μÞ, can be calculated from the usual, measured
in deep inelastic scattering, PDFðx; μÞ with the help of a
Shuvaev transform [31,32] with OðξÞ accuracy. Here we
use the conventional for GPD functions notations:

x ¼ ξþ X ¼ zxP; x0 ¼ ξ − X ¼ ð1 − zÞxP; ð3:12Þ

so that ξ ¼ xP=2 and X ¼ ðz − 1=2ÞxP. In this notation the
contribution to the loop integral from integrating over z
takes the form11

−
i
π

Z
1

−1

ξdX
ðX − ξþ iϵÞðX þ ξ − iϵÞGPDðX; ξÞ: ð3:13Þ

Since the GPDðX; ξÞ distribution decreases for jXj ≫ ξ, the
integral can be calculated by closing the contour on the
1=ðX − ξÞ pole which sets z ¼ 1.
We can now express the cross section for the process

shown in Fig. 1(a) in the form

σð1aÞ ¼ S2
1

ð4πÞ4
Z

ŝmax

ŝmin

dx1dx2
x1x2

Z
dt1dt2

×
Z

dQ2
1t

Q2
1t

R1gF1gðx1; Q2
1t; t1Þ

×
Z

dQ̄2
1t

Q̄2
1t

R1gF1gðx1; Q̄2
1t; t1Þ

×
Z

dQ2
2t

Q2
2t

R2gF2gðx2; Q2
2t; t2Þ

×
Z

dQ̄2
2t

Q̄2
2t

R2gF2gðx2; Q̄2
2t; t2Þ

× σ̂ðggÞþðggÞ→Instðŝ; Q2
1t; Q̄1t; Q2

2t; Q̄2tÞ: ð3:14Þ

Here, as before, S2 denotes the gap survival factor.
The factors R1g (R2g) are the ratios of the generalized
parton distributions to the nonskewed PDFs, Ri ¼
GPDiðξ; ξ; μÞ=fið2ξ; μÞ [31], where we set X ¼ ξ (i.e.,
z ¼ 1), and the elementary instanton cross section
σ̂ðggÞþðggÞ→Inst is also calculated at z1 ¼ 1 ¼ z2. The unin-
tegrated distributions Fig are calculated from the standard
gluon PDFs via (3.6).
The parton-level instanton cross section σ̂ðggÞþðggÞ→Instðŝ;

Q2
1t; Q̄1t; Q2

2t; Q̄2tÞ is given by the integral (2.6) with the
field insertion given by Eqs. (2.28) and (2.21) derived
in Sec. II.

For each of the two gluon loops in Fig. 1(a) the

expression in (3.14) contains the factor 1
ð4πÞ2

R dQ2
it

Q2
it
×

RigFigðxi; Q2
it; tiÞ

R dQ̄2
it

Q̄2
it
RigFigðxi; Q̄2

it; tiÞ reflecting the

fact that the gluon loop contribution to the amplitude is
squared in the cross section. Note that writing the cross
section in terms of the unintegrated distributions in (3.14)
we, to a large extent, solve the problem of the choice
of an appropriate factorization scale. The characteristic
values of Qit in the integrals (and correspondingly
the factorization scale) are determined by the factors
expð−2ðQitρþ Q̄itρ̄ÞÞ already present in the instanton
cross section σ̂ðggÞþðggÞ→Instðŝ; Q2

1t; Q̄1t; Q2
2t; Q̄2tÞ and in

the Sudakov factors TðQit;MinstÞ hidden in the uninte-
grated distributions Fðxi; Q2

it; tiÞ. The first factor prefers
lower values of Qit (for a fixed instanton size) while the T
factor prefers higher values of the transverse momentum as
T increases withQit. At the same time the Sudakov T factor
ensures the infrared convergence of the Qit integrals
in (3.14).
Calculating the pþ p → pþ Instantonþ p cross

section we have also included into (3.14) integration
over the transverse momenta, pt, of outgoing protons
which amounts to the dt1dt2 integral in (3.14).12

The pt dependence is hidden in the generalized parton
distribution, Fgðx;Qt; tÞ, where t is the momentum trans-
fer squared t1 ¼ −p2

t1 (t2 ¼ −p2
t2). This t dependence

originates mainly from the proton form factors in
(3.2). In our calculations we will take the exponential
parametrization,

dσ
dt1dt2

∝ ebðt1þt2Þ; ð3:15Þ

with the slope b ¼ 6 GeV−2. This value of b is consistent
with that used in the H1 analysis [23]. [In terms of (3.2)
the slope is given by b ¼ BP − 2α0Pð0Þ log xP.]
Within the DGLAP approach the “Pomeron-parton-

parton” vertex conserves parton helicity. On the
other hand, fermion zero modes of light quarks in
the instanton background, which at the leading order
describe the quark-antiquark-instanton interaction, con-
tain quarks of different helicities (such as qLq̄R →
Instanton). Therefore in (3.14), (3.16), (3.17), and
(4.14) we have set the initial partons to be gluons
and neglected the quark loops.
The cross section for the process shown in Fig. 1(b) can

be written analogously to (3.14) as follows:

11Since xP is measured and fixed, the integration over z
translates into the integration over X. The denominator 1=ððX −
ξÞðX þ ξÞÞ comes from the gluon polarization vectors which,
using gauge invariance, can be written in the form ϵμ ¼ −Qt;μ=x.

12The integration over the longitudinal momentum fractions is
written in (3.14) as the integral

R
dx1dx2. Note that in the earlier

equations (3.4) and (3.10), the corresponding dt integrations were
not displayed as they were already included in the Pomeron flux
in accordance with (3.3).
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σð1bÞ ¼ S2
Z

ŝmax

ŝmin

dx1dx2
x1x2

Z
dt1dt2

×

�Z
dQ2

t

Q4
t
R1gF1gðx;Q2

t ; t1ÞR2gF2gðx2; Q2
t ; t2Þ

�
2

×
π2

ðN2
c − 1Þ2 σ̂gg→Instðŝ; Q2

t ; Q2
t Þ: ð3:16Þ

In (3.16) (and also in subsequent expressions below) we

use the shorthand notation ½R dQ2
t

Q4
t
� � ��2 ¼ R dQ2

t
Q4

t
� � � R dQ̄2

t
Q̄4

t
� � �

and σ̂gg→Instðŝ; Q2
t ; Q̄2

t ; Q2
t ; Q̄2

t Þ ¼ σ̂gg→Instðŝ; Q2
t ; Q2

t Þ. The
parton-level instanton cross section is computed using the
field insertion h� � �iðgþgÞQt;Q̄t

defined in (2.16).

The factor 1=ðN2
c − 1Þ in (3.16) reflects the requirement

that the partons in the upper and lower parts of Fig. 1(b)
must have the same color. This expression (3.16) has the
same form as that given by Eq. (7) in Ref. [12].13

Strictly speaking, we have to sum the processes in Figs. 1
(a) and 1(b) at the level of amplitudes. However, since the
Pomeron intercept αPð0Þ is close to 1, the amplitude Fig. 1
(a) is (mainly) real while the amplitude Fig. 1(b) is (mainly)
imaginary. Thus we may neglect their interference and sum
over the respective cross sections.
Finally, we can now present the expression for the cross

section of the process in Fig. 2(a), again using the short-
hand notation in terms of the squared dQ2

2t integral,

σð2aÞ ¼ S2

ð4πÞ2
Z

ŝmax

ŝmin

dxP;1dx2
xP;1x2

dz1
z1

×
X
i

Z
dQ2

1t

Q2
1t

FD
1iðxP;1; z1; Q1tÞ

×
Z

dt2

�Z
dQ2

2t

Q2
2t

R2gF2gðx2; Q2t; t2Þ
�
2

× σ̂iþðggÞ→Instðŝ; Q2
1t; Q

2
2tÞ: ð3:17Þ

As before, the parton-level instanton cross sections σ̂gg→Inst

and σ̂iþðggÞ→Inst appearing in the hadronic cross-section
formulas (3.16) and (3.17) are given by the integral (2.6)
over the instanton collective coordinates, and the relevant
field insertion was derived in (2.23).
Comparing the expressions for the cross sections of the

processes in Figs. 1(a),2(a), and 2(b) in Eqs. (3.14), (3.17),
and (3.10), we see that when a Pomeron interacts with the
instanton via a gluon loop, the cross-section integral
receives a factor of

1

ð4πÞ2
Z

dt

�Z
dQ2

t

Q2
t
RgFgðx;Qt; tÞ

�
2

ð3:18Þ

from the loop integral squared. On the other hand, for a
single parton exchange between the Pomeron and the
instanton, with the second parton being a spectator jet,
the cross section gets a factor of

Z
dQ2

t

Q2
t
FD
i ðx1; QtÞ: ð3:19Þ

Notice that (3.19) does not depend on the t variable, and we
can also simplify (3.18) by carrying out the dt integration
with the help of the cross-section parametrization for-
mula (3.15); that is, we can replace (3.18) by

1

b
1

ð4πÞ2
�Z

dQ2
t

Q2
t
RgFgðx;QtÞ

�
2

: ð3:20Þ

As a result, both final expressions in the factors (3.19) and
(3.20) contain no integrations over t left over.

D. Summary of PDFs and cross-section formulas

In our discussion of hadronic cross sections in the
preceding section we have encountered the following
diffractive parton distribution functions:

dPDF at fixed t∶fD;t
i ðxP; z; μ2; tÞ

¼ fP=pðxP; tÞfi
�
z ¼ x

xP
; μ2

�
; ð3:21Þ

Pomeron flux∶fP=pðxP; tÞ ¼ g2N
eBPt

x2αPðtÞ−1P

; ð3:22Þ

PDF inside the Pomeron∶fiðz; μÞ; ð3:23Þ

dPDF∶fDi ðxP; z; μ2Þ ¼
Z

dt fD;t
i ðxP; z; μ2; tÞ; ð3:24Þ

as well as the so-called unintegrated diffractive distribution
FD
i ðxP; z; Q2

t ; μ2Þ that we will present in a moment.
The most elementary object in this list is the diffractive

PDF at fixed t given in (3.21), where t is defined as
the momentum transfer squared through the Pomeron and
μ2 is the factorization scale. The distribution function
fD;t
i ðxP; z; μ2; tÞ is the probability to find a parton i in

the Pomeron where the parton carries a fraction z of the
Pomeron momentum and the Pomeron carries a fraction xP
of the proton momentum. The Pomeron is assumed to have
a fixed value of momentum squared t, and as a result the
dPDF in (3.21) has mass dimension −2,

13Note also that the momentum fractions z and z0 in Fig. 1(b)
correspond to the different components of the 4-vector momen-
tum. In the upper part of the diagram the proton momentum pμ is
mainly pþ and z corresponds to the fraction of pþ momentum
while in the lower part of the diagram we deal with the p−

component. For the left gluon both the pþ and p− components
are very small.
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½fD;t
i ðxP; z; μ2; tÞ� ¼ ½fP=pðxP; tÞ� ¼ ½g2N � ¼ −2;

½fiðz; μÞ� ¼ 0: ð3:25Þ

The Pomeron flux function fP=pðxP; tÞ in (3.22) and the ith
parton PDF inside the Pomeron fiðz; μÞ in (3.23) are used
as the building blocks to construct the dPDF at fixed t in
Eq. (3.21). After integrating over dt we obtain the more
conventionally normalized probability—the t-independent
diffractive PDF defined in (3.24)—which is a dimension-
less quantity.
It is the t-independent dPDF (3.24) that is relevant for the

central instanton production process in Fig. 2(b). The total
pp cross-section formula for the process 2(b) when we do
not tag the spectator jets (i.e., no requirements are placed on
their transverse momentum) is given by

σð2bÞ ¼ S2
Z

ŝmax

ŝmin

dxP;1dxP;2dz1dz2

×
X
ij

fDi ðxP;1; z1; Q2
1ÞfDj ðxP;2; z2; Q2

2Þ

· σ̂ijðŝ; Q2
1; Q

2
2Þ: ð3:26Þ

If we choose to trigger on a spectator jet with transverse
momentum Qt in a certain range, the cross-section integral
for σð2bÞ takes the form

σð2bÞ ¼ S2
Z

dxP;1dxP;2dz1dz2
xP;1xP;2z1z2

×
X
ij

Z
dQ2

t;1dQ
2
t;2

Q2
t;1Q

2
t;2

FD
i ðxP;1; z1; Qt;1Þ

· FD
j ðxP;2; z2; Q2

t;2Þσ̂ijðŝ; Q2
t;1; Q

2
t;2Þ; ð3:27Þ

which now involves the new unintegrated diffractive PDF
function, FD

i ðxP; z; Q2
t Þ taken at the scale μ2 ¼ ŝ. For a

transverse momentum, Qt, greater than the instanton mass
the expression for the unintegrated dPDF can be written as
a derivative of the original dPDF fDi ,

For Qt > MInst∶FD
i ðxP; z; Q2

t Þ

¼ d
d logQ2

t
xPzfDi ðxP; z; μ2Þ: ð3:28Þ

For lower values of Qt, one should instead use the more
general expression, analogous to (3.6), that involves the
Sudakov form factor TiðQt; μÞ where we set the scale μ to
be equal to the instanton mass Minst ¼

ffiffiffî
s

p
.

It is easy to see that both expressions, (3.26) and (3.27),
have the correct dimension for the cross section since the
unintegrated dPDF in (3.28) and the t-independent dPDF
function fDi ðxP; z; μ2Þ from which it is derived are both
dimensionless.

For the cross section for the process in Fig. 1(a) we have

σð1aÞ ¼ S2
Z

ŝmax

ŝmin

dx1dx2
x1x2

Z
dt1dt2

1

ð4πÞ4

×

�Z
dQ2

1t

Q2
1t

R1gF1gðx1; Q2
1t; t1Þ

�
2

×

�Z
dQ2

2t

Q2
2t

R2gF2gðx2; Q2
2t; t2Þ

�
2

× σ̂ðggÞþðggÞ→Instðŝ; Q2
1t; Q

2
2tÞ: ð3:29Þ

Here the functions Fgðx;Q2
t ; tÞ denote standard (i.e., non-

diffractive) unintegrated gluon PDFs at fixed t (and with the
scale chosen at μ2 ¼ Q2

t ). The factors Rg are the known
ratios of the generalized (skewed) PDFs to the standard
ones given by Fg.
How do we carry out the integrations in (3.29)

over dt1dt2? The t dependence of the cross section is
hidden in the unintegrated PDFs Fgðx;Q2

t ; tÞ and can be
traced to the proton form factors contained therein.
Adopting a simple exponential parametrization of the cross
section,

dσ
dt1dt2

∝ ebðt1þt2Þ; ð3:30Þ

with the slope b ¼ 6 GeV−2, we can effectively carry out
the integrations over dt1dt2 in (3.29) with the result

σð1aÞ ¼ 1

b2
S2

ð4πÞ4
Z

ŝmax

ŝmin

dx1dx2
x1x2

�Z
dQ2

1t

Q2
1t

R1gF1gðx1; Q2
1tÞ

�
2

×

�Z
dQ2

2t

Q2
2t

R2gF2gðx2; Q2
2tÞ

�
2

× σ̂ðggÞþðggÞ→Instðŝ; Q2
1t; Q

2
2tÞ: ð3:31Þ

There is now a factor of b−2 in front of the integral and the
unintegrated gluon PDFs Fgðx;Q2

t Þ have now lost their t
dependence. In the simplified case, where one can ignore
the Sudakov form factor, they are given by the analogous to
(3.28) expression,

Unintegrated PDF∶Fgðx;Q2
t Þ ¼

d
d logQ2

t
xgðx;Q2

t Þ;

ð3:32Þ

where gðx; μ2Þ ¼ fgðx; μ2Þ is the usual gluon PDF.
The expression for Fgðx;Q2

t Þ is dimensionless, and
taking into account the mass-dimension 4 factor of 1=b2

along with the fact that the parton-level instanton cross
section σ̂ðggÞþðggÞ→Inst has mass-dimension equal to −6 on
account of having four initial state partons rather than the
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usual two, we thus obtain the correct dimensionality −2 of
the total cross section in (3.32).14

In the case of the low spectator jet transverse momentum
Qt < μ ¼ Minst where the Sudakov form factor cannot be
ignored, the unintegrated PDF (for parton i) is given by the
more general expression (3.6).
For the remaining processes, there are no new ingre-

dients with the relevant PDFs being already defined above,
and from (3.16) and (3.17) we have

σð1bÞ ¼ 1

b2
S2

Z
ŝmax

ŝmin

dx1dx2
x1x2

×

�Z
dQ2

t

Q4
t
R1gF1gðx;Q2

1tÞR2gF2gðx2; Q2
2tÞ

�
2

×
π2

ðN2
c − 1Þ2 σ̂gg→Instðŝ; Q2

1t; Q
2
2tÞ ð3:33Þ

and

σð2aÞ ¼ 1

b
S2

ð4πÞ2
Z

ŝmax

ŝmin

dxP;1dz1dx2
xP;1z1x2

×
X
i

Z
dQ2

1t

Q2
1t

FD
1iðxP;1; z1; Q2

1tÞ

×

�Z
dQ2

2t

Q2
2t

R2gF2gðx2; Q2
2tÞ

�
2

× σ̂iþðggÞ→Instðŝ; Q2
1t; Q

2
2tÞ: ð3:34Þ

IV. PHOTON-INDUCED CENTRAL
INSTANTON PRODUCTION

In addition to Pomerons, processes with large rapidity
gaps can also be initiated by a photon exchange in the
t-channel, as shown in Figs. 3(a)–3(c). These processes
include quarks and antiquarks in the initial states entering
the instanton vertex.

A. Fermion line insertions

To account for processes with quarks and antiquarks on
the incoming lines in the instanton process we need to
specify the fermion field insertions analogously to what
has been done in Sec. II for gluons. The fermion field
component of the instanton solution is conventionally
described by the fermion zero mode configuration [2],

ψ̂ ð0Þ
_αα ðxÞ ¼

ρ

π

xμσ̄μ _αα
ðx2Þ1=2ðx2 þ ρ2Þ3=2 θ: ð4:1Þ

These fermion zero mode configurations describe both the
right-handed quarks qR and the left-handed antiquarks q̄L
in the instanton background. Here for compactness of
notation we position the instanton at x0 ¼ 0 and assume
the trivial instanton orientation matrix in color space,
placing the instanton in the upper 2 × 2 corner of the
SUð3Þ color matrix. The indices α ¼ 1, 2 and _α ¼ 1, 2 refer
to the Weyl spinor components and the orientation in the
2 × 2 corner of the color space, respectively. The variable θ
defines the Grassmann collective coordinate of the fermion
zero mode and, as can easily be seen from dimensional
counting, it has mass-dimension −1=2. The expression
(4.1) is conventionally referred to as the normalized
fermion zero mode since

R
d2θ

R
d4xψ̂ ð0Þ†ψ̂ ð0Þ ¼ 1.

It is actually more convenient to switch to the dimen-
sionless Grassmann variable θ̃ ¼ θ=ρ1=2, in which case all
grassmanian integrations in the collective coordinate mea-
sure of the instanton path integrals can be straightforwardly
carried out, adding no extra dimensional factors to the
instanton density DðρÞ [and Dðρ̄Þ] in (2.6). After stripping
off the θ̃ factor we get the fermion zero mode expression
with the factor ρ3=2, i.e., in the form (cf. [20,21])

ψ ð0Þ
_αα ðxÞ ¼

ρ3=2

π

xμσ̄μ _αα
ðx2Þ1=2ðx2 þ ρ2Þ3=2 : ð4:2Þ

The next step is to Fourier transform (4.2) to momentum
space, remove the free fermion propagator ipα _α=p2 and go
on mass-shell,

lim
p2→0

ipα _αψ̃ ð0Þ
_αβ ðpÞ ¼ 2πρ3=2: ð4:3Þ

Combining this instanton LSZ-reduced fermion zero mode
contribution with the corresponding anti-instanton fermion
zero mode, ψ̃ ð0Þ†, and including the external spinor factors
we obtain the desired quark-line field insertion (for a single
incoming fermion) to the forward elastic scattering ampli-
tude in the instanton–anti-instanton background:

Trðψ̃ ð0Þ†ψ̃ ð0ÞÞ ¼ 4π2ρ3=2ρ̄3=2ðp · R̂ÞeiR·p; ð4:4Þ

where we have restored the instanton–anti-instanton sep-
aration R and the relative instanton–anti-instanton orienta-
tion matrix, in the same way as explained in the paragraph
below Eq. (2.11). We now analytically continue to
Minkowski space and further generalize the expression
above to allow for a nonzero virtuality Q of the quark
momentum, as we did earlier for the gluon in (2.13). This
gives

1

ωferm
Trðψ̃ ð0Þ†ψ̃ ð0ÞÞ¼4π2

ffiffiffî
s

p
ρ3=2ρ̄3=2JðQρÞJðQρ̄ÞeR·p 1

ωferm
;

ð4:5Þ

14While it is not at all surprising that the t-independent gluon
distribution in (3.32) was dimensionless, we should note that the
t-dependent unintegrated PDF Fgðx;Q2

t ; tÞ appearing in (3.29)
was dimensionless as well. This is different from the diffractive
PDF at fixed t in (3.21).
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where the form factors JðQρÞ and JðQρ̄Þ are the same
functions [21,22] as in the gluon case in (2.14). Note that
we have also included in (4.5) the factor of 1=ωferm, where
ωferm is the fermionic action term computed on the anti-
instanton and instanton zero modes,

ωferm ¼
Z

d4xψ̃ ð0Þ†ðxÞi=Dψ̃ ð0ÞðxÞ; ð4:6Þ

and is computed in (A8). If 2Nf fermions were present in
the final state, such as in the original two-gluon initiated
process,

gþ g → ng × gþ
XNf

f¼1

ðqRf þ q̄LfÞ; ð4:7Þ

they would contribute to the total cross section a factor of
Kferm ¼ ðωfermÞ2Nf , i.e., one factor of ωferm for each
fermion/antifermion in the final state, which is precisely
what we have in Eqs. (2.5) and (2.6). In the present case,
however, when a fermion is present in the initial state, we
have one less fermion in the final state,

qL þ g → ng × gþ qR þ
XNf−1

f¼1

ðqRf þ q̄LfÞ; ð4:8Þ

q̄R þ g → ng × gþ q̄L þ
XNf−1

f¼1

ðqRf þ q̄LfÞ: ð4:9Þ

This implies that we have to correct the Kferm factor in the
instanton cross section for (4.8) or (4.9) by including a
1=ωferm factor in the initial-state fermion line insertion.
This is what we have done in (4.5). We also note that there
are Nf processes of the type (4.8) and the same for the
processes (4.9) initiated by the antiquark. Instanton fermion
zero mode expressions are the same for qL and q̄R; hence
there is essentially an additional enhancement factor of 2Nf

to be included in (4.5) counting all light quarks and
antiquarks in the initial state.
We can now comment on the relative effect of having an

incoming fermion versus an incoming gluon by taking the
ratio of the expressions on the right-hand sides of (4.5) and
(2.13). This gives the relative suppression factor of

αs
ρ

ffiffiffî
s

p 16

π

1

ωferm
∝
16

π
αs

1

hρiE ; ð4:10Þ

which using the data from Table 1 in [11] gives
0.11 for the instanton mass E ¼ 30 GeV,
0.086 for the instanton mass E ¼ 50 GeV,
0.063 for the instanton mass E ¼ 100 GeV.
For the partonic instanton cross sections for the process

in Fig. 3(a) we use one insertion of (4.5) and one insertion

of (2.13). Also there is an α2em in the cross section coming
from the emission and the splitting of the photon. For
Fig. 3(b) we use one insertion of (4.5) and one insertion of
(2.21). And we have α2em as above. For Fig. 3(c) we use two
insertions of (4.5). Also since there are two photons we
have an additional α4em in the cross section.

B. Physical photon induced cross sections

The photon flux in the LO approximation is

dnγ
dx

¼αem
xπ

Z
ðxmpÞ2

dq2

q2
F2
Nðq2Þ¼

αem
xπ

2 ln

�
1

xmpR

�
; ð4:11Þ

where αem ¼ 1=137 is the QED coupling, mp is the proton
mass, and FNðq2Þ is its form factor; R2 ∼ 5–6 GeV−2 is the
slope of F2

Nðq2Þ.
The photon does not interact with the gluon and the

quark photon vertex conserves the helicity of light quarks.
Therefore there are no parton loops from the photon side.
Recall that the light quark zero mode in the instanton field
contains a quark and an antiquark of different helicities
(such as qLq̄R). Thus we have to consider the three
diagrams of Fig. 3 only.
An effective unintegrated quark distribution produced by

the photon reads

Fγ
i ðz;QÞ ¼ αem

2π
e2i TiðQ; μ̄Þðz2 þ ð1 − zÞ2Þ; ð4:12Þ

where ei is the electric charge of quark i and Ti is given
by (3.7).
Thus the Fig. 3 cross sections can be written as

σð3aÞ ¼ dnγ
dxγ

Z X
ij

dxPdz1dz2
xPz1

dxγ ·
Z

FD
i ðxP; z1; Q1tÞ

× Fγ
jðz2; Q2tÞσ̂ijðŝ; Q1t; Q2tÞ

dQ2
1tdQ

2
2t

Q2
1tQ

2
2t

; ð4:13Þ

σð3bÞ ¼ dnγ
dxγ

Z X
i

dz1dx2
x2

dxγ

×
�Z

dQ2
2t

Q2
2t

R2gF2gðx2; Q2t; t2Þ
�
2

dt2

·
1

16π2

Z
Fγ
jðz1; Q1tÞσ̂igðŝ; Q1t; Q2tÞ

dQ2
1t

Q2
1t

; ð4:14Þ

σð3cÞ ¼ dn1γ
dx1γ

dn2γ
dx2γ

Z X
ij

dz1dz2dx1γdx2γ

·
Z

Fγ
i ðz1;Q1tÞFγ

jðz2;Q2tÞσ̂ijðŝ;Q1t;Q2tÞ
dQ2

1tdQ
2
2t

Q2
1tQ

2
2t

:

ð4:15Þ
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Here we neglect the gap survival factor since the photon
exchange occurs at large impact parameters where S2 is
close to 1 [33,34].

V. RESULTS

As was shown in Sec. IVA the instanton production
cross section induced by quarks is an order of magnitude
suppressed in comparison with that induced by gluons. The
processes where the energy across the LRG is transferred
by a photon instead of the Pomeron are additionally
suppressed by the QED coupling α2em ∼ 10−4. Therefore
below we will consider the central instanton production
caused by the gluon component of the Pomeron only.15

As in [11] we have used the diffractive PDF given by the
H1 fit B [23] and for the inclusive PDFs we use the NNPDF
3.1 NNLO set with αsðMZÞ ¼ 0.118 [37]. For the instanton
part the one loop running QCD coupling αsðμÞ was
normalized at the τ mass, αsðmτÞ ¼ 0.32, and was frozen
at αs ¼ 0.35 at μ < 1.45 GeV (see [11] for more details).
The gap survival factor was taken to be S2 ¼ 0.05—

twice smaller than that in [11]. While in [11] we consider
the single dissociation (one LRG), here we deal with the
central diffractive process (with two LRGs). As was shown
in, e.g., [38] (see also [39]) in this case the expected gap
survival probability is about 2 times smaller due to a lower
typical impact parameter, bt.
Our results are presented in Table I for the LHC pp

energy
ffiffiffi
s

p
pp ¼ 14 TeV. Specifically, for the central instan-

ton production processes shown in Figs. 1(a) and 1(b), the
second and the third columns in Table 1 present the
differential cross sections dσð1aÞ and dσð1bÞ defined via

ð1aÞ& ð1bÞ∶dσ ¼ dσ=ðd lnðxP1Þd lnðxP2ÞÞ
¼ dσ=ðd lnðM2

instÞdYÞ; ð5:1Þ

at xP1 ¼ xP2 ¼ Minst=
ffiffiffiffiffiffiffispp

p . This corresponds to the
instanton rapidity Y ¼ 0 and, as always, the instanton
mass Minst denotes the c.m. partonic energy entering the
instanton vertex, Minst ≔

ffiffiffî
s

p
.

For the case of the 2(a) and 2(b) processes, the
corresponding differential cross sections dσð2aÞ and
dσð2bÞ shown in the last three columns of Table I are

ð2aÞ& ð2bÞ∶dσ ¼ dσ=ðd lnðxP1Þd lnðxP2Þd lnðM2
instÞdYÞ;

ð5:2Þ

at xP1 ¼ xP2 ¼ 0.03 integrated over z. This value of xP
corresponds to the characteristic region of the PPS and AFP
detectors.
The differential cross sections (5.1) and (5.2) depend on

the instanton mass, and Table I shows our predictions for
different values of Minst.
As is seen from Table I the contribution of diagrams

Fig. 1(a) [2(a)], where both gluons created by the Pomeron
couple to the instanton, is much smaller than that from
Fig. 1(b) [2(b)]. This is explained by the fact that we have
the elementary gluon pair insertion (2.21), h� � �igg ∝ Q2

t Q̄2
t

instead of the much larger factor M4
inst in the single gluon

case (2.16), h� � �igþg ∝ ŝ2 ¼ M4
inst.

Next we can see that the pure exclusive Fig. 1(b) cross
section is suppressed in comparison with the Fig. 2(b) case
where we allow the radiation of “spectator” jet(s). The
suppression is mainly caused by the Sudakov-like T-factor
(3.7) and becomes stronger for a larger Minst.
We will now argue that our findings amount to large and

potentially observable instanton cross sections at the LHC.
It was expected from the outset that the probability to
centrally produce an instanton of not too low mass would
be rather small. Our data show that forMinst > 50 GeV this
ultimately translates into picobarn-level cross sections in
the exclusive case and hundreds of pb for the Fig. 2(b)
configuration. However, for the high-luminosity LHC runs
these predictions listed in Table I can, in fact, be interpreted
as sufficiently large effects. To give a rough estimate, the
differential cross sections (5.1) and (5.2) in Table I should
be multiplied by the available intervals in lnðxPÞ ∼ 1–2, in

TABLE I. Instanton cross sections at the 14 TeV LHC. The differential cross sections for the process in
Figs. 1(a),1(b) and 2(a), 2(b), given by Eqs. (5.1) and (5.2), are computed for a range of instanton masses Minst.

Minst [GeV] dσð1aÞpp [pb] dσð1bÞpp [pb] dσð2aÞpp [pb] dσð2bÞpp [pb] dσð2bÞpp , Qt > 20 GeV

15 13.3 4.56 × 104 3.72 × 103 1.83 × 105 � � �
35 6 × 10−3 1.69 × 102 8.10 2.28 × 103 1.99 × 10−3

55 3.82 × 10−5 3.27 1.19 × 10−1 8.96 × 101 2.95 × 10−3

75 8.8 × 10−7 1.61 × 10−1 4.72 × 10−3 7.06 1.70 × 10−3

95 4.27 × 10−8 1.38 × 10−2 3.42 × 10−4 8.58 × 10−1 7.26 × 10−4

115 3.37 × 10−9 1.74 × 10−3 3.68 × 10−5 1.39 × 10−1 2.80 × 10−4

135 3.77 × 10−10 2.86 × 10−4 5.29 × 10−6 2.75 × 10−2 1.04 × 10−4

15Note that photon-mediated processes could be of special
interest in the case of heavy ion ultraperipheral collisions, where
the flux of emitted photons is enhanced by a factor Z2 in
comparison to the proton case, where Z is the ion charge number
(see, for example, [35,36]). Thus the instanton production in
heavy ion collisions needs an additional study.
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lnM2
inst ∼ 2–4, and in ΔY ∼ 2–4 roughly giving an extra

order of magnitude. This enhancement is expected to be
lost after accounting for the detector acceptance and
imposing relevant kinematic cuts. The integrated luminos-
ity expected at the LHC high-luminosity runs is up to
L ¼ 3000 1=fb. That is, even in the pessimistic scenario
with σ ¼ 10−4 pb we expect 300 events. For a more
optimistic case of σ ∼ pb we have orders of magnitude
more events (though not accounting for background).
Properly accounting for large background from soft
QCD deserves a separate discussion that goes beyond
the scope of the present paper and that we plan to address in
the future [40].
We end this section with some additional comments. We

note that it is quite challenging to select pure exclusive
events. Most probably it will be impossible to distinguish
the jet radiated off the instanton from the “spectator” jet.
That is, we will deal mainly with the Fig. 2(b) configuration
and without additional cuts the major contribution will
come from the low mass (Minst) semi-inclusive events. On
the other hand, the theoretical accuracy of the predictions
for low mass instantons is less reliable. Moreover, it will be
hard to discriminate between the low mass instanton and
the relatively soft underlying events.
To select a reasonably large Minst we have to introduce

additional cuts such as those proposed in [11], say, to ask
for sufficiently large multiplicity and the sum of transverse
energies,

P
i ETi of the secondaries in some limited central

rapidity interval. These cuts will additionally reduce the
expected cross section up to an order of magnitude.
An alternative way to suppress small Minst is to enlarge

the virtuality, Q2, of the incoming gluon. Then the form
factor JðQρÞwill select only the small size (i.e., sufficiently
large mass) instantons. This idea was proposed in [41] for
deep inelastic scattering and was considered in [9] for the
case of proton-proton collisions. That is, we have to
consider the events with a rather large transverse momen-
tum of spectator jet. The corresponding cross sections are
shown in the last column of Table I. It is seen that the
Qt > 20 GeV cut strongly suppresses the low Minst ≲
150 GeV contribution. The resulting cross section in this
case ∼10−4 pb becomes quite small which puts these
processes at a significant disadvantage relative to the
processes in column 4 of Table I.

VI. CONCLUSION

We have considered how to produce the QCD instanton
in the central rapidity region in proton-proton collisions at
the LHC. These are events where the produced instanton is
separated from the two original protons on both sides by
two large rapidity gaps. We showed that the cross section
for pure exclusive processes in Fig. 1 is strongly suppressed
in comparison with the processes in Fig. 2 in which the
radiation of spectator jets is allowed.

The dominant contribution comes from the diagrams
where only one gluon from each Pomeron couples to the
instanton. The configurations where the energy needed to
create the instanton is transferred through the quark line is
also suppressed by about an order of magnitude. For a large
instanton mass these suppressions become stronger.
The photon induced QED contribution, shown in Fig. 3,

where the Pomeron in an LRG interval is replaced by the
photon, is negligible due to the quark suppression and a
very small QED coupling α2em.
For a reasonable instanton mass Minst ≳ 50 GeV the

expected cross sections for Pomeron-mediated central
instanton production are of the order of picobarns in the
pure exclusive case and increase up to hundreds of pb when
we allow the emission of spectator jets. These signal cross
sections are encouragingly large and assuming that back-
grounds are manageable and can be accounted for in the
future, there is a tantalizing chance that QCD instanton
effects can be either seen or ruled out in central processes at
the LHC.
As shown in [11], the kinematic regime with large

rapidity gaps offers a good possibility of detecting instan-
tons as the signal events outnumber the background events
significantly. One may compare this approach to that of [9]
where the requirement of large rapidity gaps was not
imposed. In this approach the signal events do not out-
number the background events but there still remains the
possibility of detecting the instanton. A first analysis of
data was carried out in [10] along similar lines.
Moving to the regime with large rapidity gaps suppresses

the instanton cross section quite heavily but the require-
ment of large rapidity gaps (along with other selection
criteria) suppresses the background cross section even more
leading to, on the whole, a cleaner experimental signature
with potentially better prospects of detection [11]. As
shown in this paper the requirement of two large rapidity
gaps suppresses the instanton cross section further but it
may suppress the background even more as was shown for
the case of one large rapidity gap. Although we pay the
price of a lower instanton cross section, this would not be
such a great concern at the high luminosity LHC where
even for ∼fb cross sections we would expect thousands of
signal events.
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APPENDIX: DðρÞ, SIĪðzÞ, and KfermðzÞ
The functions appearing in the instanton integrand for

the cross section in (2.6) are given by known expressions

CENTRAL INSTANTON PRODUCTION PHYS. REV. D 105, 036008 (2022)

036008-15



and are taken from [9]. We collect them here for the reader’s
convenience.
We start with the instanton density [3]

Dðρ; μrÞ ¼ κ
1

ρ5

�
2π

αsðμrÞ
�

2NcðρμrÞb0 ; ðA1Þ

where κ is the normalization constant in the MS scheme,

κ ¼ 2e5=6−1.511374Nc

π2ðNc − 1Þ!ðNc − 2Þ! e
0.291746Nf ≃ 0.0025e0.291746Nf :

ðA2Þ

The next function to specify is the instanton–anti-instanton
bosonic action, SIĪðzÞ ¼ 4π

αs
SðzÞ, where

SðzÞ ¼ 3
6z2 − 14

ðz − 1=zÞ2 − 17 − 3 logðzÞ

×

�ðz − 5=zÞðzþ 1=zÞ2
ðz − 1=zÞ3 − 1

�
; ðA3Þ

which is a function of a single variable z known as the
conformal ratio of the (anti)-instanton collective coordi-
nates [42,43],

z ¼ R2 þ ρ2 þ ρ̄2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ ρ2 þ ρ̄2Þ2 − 4ρ2ρ̄2

p
2ρρ̄

: ðA4Þ

The fermionic factor Kferm is

Kferm ¼ ðωfermÞ2Nf ; ðA5Þ

where

ωferm ¼
Z

d4xψ̃ ð0Þ†ðxÞi=Dψ̃ ð0ÞðxÞ ðA6Þ

is the fermionic action term computed on the anti-instanton
and instanton fermion zero modes. For a process, such as

gþ g → ng × gþ
XNf

f¼1

ðqRf þ q̄LfÞ; ðA7Þ

where there are 2Nf fermions present in the final state we
need to saturate 2Nf grassmanian integrations over instan-
ton and anti-instanton fermion zero modes. This brings
down the fermionic action term ωferm to the integration
measure 2Nf times, which is reflected in (A5).
For ωferm we use the expression derived in [41]

ωfermðzÞ ¼
3π

8

1

z3=2 2F1

�
3

2
;
3

2
; 4; 1 −

1

z2

�
ðA8Þ

as a function of the z-variable (A4).
Finally, as in the earlier works [9,11], the renormaliza-

tion scale in (A1) and for the running coupling αs is set to
the inverse instanton size. This prescription removes the
large ðρμrÞb0ðρ̄μrÞb0 factors from the instanton and anti-
instanton densities DðρÞ and Dðρ̄Þ. Hence we choose

μr ¼ 1=hρi ¼ 1=
ffiffiffiffiffi
ρρ̄

p
: ðA9Þ

For the reference point of αs we choose its value at the τ
mass, as explained in [11],

4π

αsðhρiÞ
≃
� 4π

0.32− 2b0 log ðhρimτÞ ∶for hρi−1 ≥ 1.45 GeV;
4π
0.35 ∶for hρi−1 < 1.45 GeV:

ðA10Þ

At these energy scales we are in the regime of

Nf ¼ 4 ðA11Þ

active quarks, and this is the Nf value we use in b0 ¼
11 − 2Nf=3 and in the instanton density expressions for κ
and Kferm in (A5).
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