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1. Proof of Theorem 1

Let us first introduce some notation and preliminary results. Recall that η = (β,α,θ, ξ). Let η? =

(β?,α?,θ?, ξ?) be the true value of the parameters, which is assumed to be an interior point of the parameter

space Γ, and dim(Γ) = l = l1 + l2, where l1 is the number of parameters in the regression model, (β,α,θ),

and l2 is the number of parameters in the random effects distribution, ξ.

Note first that, by the weak law of large numbers

1

n
logm(η)

P→M(η),

as r →∞, where the function

M(η) = E [logm1(η)]

= EΨ

[
log

∫
exp {`1(η, u1, ũ1)} dG(u1, ũ1)

]

= EΨ

log

∫ n1∏
j=1

h(t1j | xi1, u1, ũ1)d1j exp

−
n1∑
j=1

H(t1j | x1j , u1, ũ1)

 dG(u1, ũ1)

 ,
represents the expected marginal likelihood, and the expectation is taken with respect to the true generating

distribution of z1 = (t1, n1, d11, . . . , d1n1 ,x1), Ψ.

We make the following technical assumptions.

A1. The parameter space Γ is compact.

A2. Censoring is non-informative and P (Cij ≥ t) > 0, for all t ∈ [0, τ ], where τ > 0 is a constant (for

instance, the end of follow-up); j = 1, . . . , ni and i = 1, . . . , r.

1



A3. (Identifiability and continuity) The baseline hazard function h0(t;θ) is continuous for each θ and

t > 0, and satisfies that h0(·;θ?) is different from the Weibull hazard function.

A4.

EΨ

[
sup
η∈Γ
|| logm(η)||

]
<∞.

A5. Let B be an open neighbourhood around η?, and suppose that∫
sup
η∈B
||∇η logm(η)||dx <∞,

and ∫
sup
η∈B
||∇2

η,η logm(η)||dx <∞.

A6. The expectation matrix I(η) = covΨ [∇η logm1(η)] exists and is positive-definite for η ∈ B.

A7. There exist functions Λk1k2k3(z), such that for all 1 ≤ k1, k2, k3 ≤ l and η ∈ B

∣∣∣∣ ∂3

∂ηk1∂ηk2∂ηk3
logm(η)

∣∣∣∣ ≤ Λk1k2k3(z),

where EΨ[Λk1k2k3(Z)] <∞.

The proof is based on adapting the proof of Theorem 2.1 and Lemma 2 in [1] together with Theorem 1

from [2].

(i) By Lemma 2 in [1] together with conditions A1–A4 , the expected marginal likelihood functionM(η)

is maximised at η?. Then, by Theorem 2.1 in [1] and Theorem 1 from [2], it follows that the marginal

maximum likelihood estimator η̂ P→ η? as r →∞.

(ii) A second order Taylor series expansion around η? of this estimating equation leads to

∇η logm(η?) +∇2
η logm(η?)(η̂ − η?) +R,

where R represents the remainder term. Following the proof of Theorem 2.1 in [1] and Theorem 1 in

[2], this Taylor series expansion can be shown to have stochastically bounded residual term by using
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A7. Re-arranging the first terms and multiplying by
√
r together with assumptions A1-A7 and the

consistency result in the previous point, it can be shown that [1, 2]

√
r (η̂ − η?)

d→ N(0, I(η?)−1),

as r →∞.

2. Two Baseline Hazard Distributions

2.1. Power Generalised Weibull

The PGW pdf, survival function and hazard functions of the PGW are as follows [3]:

f(t; η, ν, δ) =
ν

δην
tν−1

[
1 +

(
t

η

)ν]( 1
δ
−1)

exp

{
1−

[
1 +

(
t

η

)ν] 1
δ

}
,

S(t; η, ν, δ) = exp

{
1−

[
1 +

(
t

η

)ν] 1
δ

}
,

h(t; η, ν, δ) =
ν

δην
tν−1

[
1 +

(
t

η

)ν]( 1
δ
−1)

,

where η > 0 is a scale parameter and ν, δ > 0 are shape parameters.

2.2. Log-logistc

The log-logistic pdf and cdf are given by

f(t;µ, τ) =

g

(
log(t)− µ

τ

)
tτ

,

F (t;µ, τ) = G

(
log(t)− µ

τ

)
,

where τ > 0, µ ∈ R, g(t) =
e−t

(1 + e−t)2
, and G(t) =

1

1 + e−t
. The hazard and survival functions can be

obtained as usual, h(t;µ, τ) =
f(t;µ, τ)

S(t;µ, τ)
and S(t;µ, τ) = 1− F (t;µ, τ).
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3. Additional Simulation Results

In this section, we report some additional results regarding the simulations for the MEGH model (9). We

first present simulation results for the case when the variance of random effects is smaller, where we consider

σu = 0.5. The results, which are shown in Figure 1, indicate that the MEGH model with the correct mixed

hazard structure produces the smallest bias in this case as well.

We then present simulation results for the case when the random-effects distribution is misspecified in the

simulations. For this, we generate the random effects from a two-piece normal distribution so that σu = 1,

while we fit the model assuming the standard normal distribution for random effects. The results presented

in Figure 2 suggest that the estimates from the MEGH model with the correct mixed hazard structure are

quite robust with respect to the misspecification of random-effects distribution. This finding is in line with

the existing literature on this type of misspecification. However, we observe that the MEGH model with both

the incorrect mixed hazard structure and the misspecified random-effects distribution produces substantially

inaccurate estimates.

We also present simulation results for the case when both mixed structures I and II are misspecified.

For this, we generate simulated data from model (9) with the general mixed structure (1) and PGW baseline

hazard. In this case, the two sets of random effects ui and ũi are generated from normal distributions with

σu = 1 and σũ = 0.5 respectively, and with cov(σu, σũ) = 0.2. The results, which are shown in Figure 3,

indicate that the estimates obtained from the MEGH-I are less affected compared to both the MEGH-II and

the MLE approaches, however there is substantial bias for the estimates of the baseline hazard parameters

for all methods under this misspecification.

To evaluate the behaviour of the proposed MEGH model with a different baseline hazard, we repeat the

previous simulations with the log-logistic baseline hazard. From the simulation results presented in Figures

4-7, one can see that the results are pretty similar to those obtained with the PGW baseline hazard.

As asked by a referee, we also investigate the power and Type I error of the test for random effects under

different number of clusters, censoring rates and variance values. For this, we calculate the rejection rate of

the test for random effects across 250 simulation replications for the model with structure MEGH-I evaluated

under different number of clusters r = 12, 24 and different censoring rates of 25% and 50%, when the

random effects are generated from a normal distribution with different variance values of σu = 0, 0.25, 0.50.
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Figure 1: The bias of the estimates from the three methods: MEGH1, MEGH2 and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the mixed structure I and
PGW baseline hazard, and a normal distribution for the generated random effects with σu = 0.5.
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The results, presented in Table 1, indicate that the Type I error of the test is at the nominal level 0.05 and the

power of the test is reasonably high even with smaller number of clusters or higher censoring rate.

Finally, Figure 8 shows the confidence intervals for the leukemia data. There seem to be slight differences

between the confidence intervals obtained by the MEGH model and the model ignoring random effects. One

may find the parameter β2 is not significant here using the model ignoring random effects, while the MEGH

model hardly shows that. It should be pointed out that the estimate of σu is relatively small for this data set,

and we would expect the differences to be larger if σu was bigger, as shown in our simulations.
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Figure 2: The bias of the estimates from the three methods: MEGH1, MEGH2 and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the mixed structure I and
PGW baseline hazard, and a two-piece normal distribution for the generated random effects with σu = 1.
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Figure 3: The bias of the estimates from the three methods: MEGH1, MEGH2 and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the general mixed structure
(1) (i.e., both mixed structures I and II are misspecified) and PGW baseline hazard. Note that the random effects ui
and ũi are generated from normal distributions with σu = 1, σũ = 0.5 and cov(σu, σũ) = 0.2.
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Figure 4: The bias of the estimates from the three methods: MEGH1, MEGH2 and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the mixed structure I and
log-logistic baseline hazard, and a normal distribution for the generated random effects with σu = 1.
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Figure 5: The bias of the parameter estimates from the three methods: MEGH1, MEGH2 and MLE for all the pa-
rameters based on 250 simulation replications when the simulated data are generated from model (9) with the mixed
structure II and log-logistic baseline hazard, and a normal distribution for the generated random effects with σu = 1.
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Figure 6: The bias of the estimates from the three methods: MEGH1, MEGH2 and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the mixed structure I and
log-logistic baseline hazard, and a normal distribution for the generated random effects with σu = 0.5.
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Figure 7: The bias of the estimates from the three methods: MEGH1, MEGH2 and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the mixed structure I and
log-logistic baseline hazard, and a two-piece normal distribution for the generated random effects with σu = 1.
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Table 1: Rejection rate of the test for random effects across 250 simulation replications for the model with structure
MEGH-I evaluated under different number of clusters r = 12, 24 and different censoring rates of 25% and 50%, when
the random effects are generated from a normal distribution with different variance values of σu = 0, 0.25, 0.50. Note
that the case σu = 0 is to evaluate the Type I error of the test as there is no random effect in the model, while the cases
σu = 0.25, 0.50 are to evaluate the power of the test.

Fitted model Number of clusters Censoring rate σu Rejection rate

MEGH-I

12 25% 0 0.03
12 25% 0.25 0.87
12 25% 0.50 1.0
12 50% 0 0.03
12 50% 0.25 0.69
12 50% 0.50 1.0
24 25% 0 0.04
24 25% 0.25 0.98
24 25% 0.50 1.0
24 50% 0 0.03
24 50% 0.25 1.0
24 50% 0.50 1.0

MEGH-II

12 25% 0 0.02
12 25% 0.25 0.83
12 25% 0.50 1.0
12 50% 0 0.03
12 50% 0.25 0.64
12 50% 0.50 0.98
24 25% 0 0.04
24 25% 0.25 0.97
24 25% 0.50 1.0
24 50% 0 0.02
24 50% 0.25 1.0
24 50% 0.50 1.0
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Figure 8: Leukemia data: the 90% confidence intervals for the regression parameters obtained from fitting both the
MEGH-I model (solid line) and the model ignoring random effects (dashed line).
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