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Abstract

If buyers are asymmetric in terms of their operating costs, researchers and managers broadly agree that the supplier
can optimize her/his own profit by offering the more efficient buyer a higher price. In this paper, we develop a game
theoretical model to investigate the interaction between one supplier and two asymmetric buyers within a supply
chain. We formulate buyers operating costs as a function of their process innovation levels, which implies that they
can reduce the unit operating cost via investments in process innovation in the long run. Our research demonstrates
that the uniform wholesale price (UWP) is always preferred over the buyer-specific wholesale price by the supplier
because of the effect of innovation stimulation. The optimal timing of pricing is contingent on the level of market
demand variance. If two buyers have the same ability to reduce their operating costs via process innovation, the
UWP strategy forms a win-win-win situation to the supplier and two buyers. Our results provide the supplier with
suggestions regarding when to adopt the UWP strategy and how to enhance downstream innovation performance
within the supply chain.
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1. Introduction

The supplier of a homogeneous product/component (e.g., P&G or Intel) generally sells to multiple buy-
ers, and then these buyers compete in the same market. The prior literature on pricing policy (reviewed
in the next section) has enormous consensus that the supplier is better off with a buyer-specific wholesale
price (BSWP), i.e., charging each buyer a specific wholesale price, if buyers are asymmetric in terms of
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their operating costs. We acknowledge that this view is right in the short run. However, it is worth noting
that few firms are born to be more efficient than competitors (Plambeck and Taylor 2005).

Innovation in a supply chain involves changes in products, processes, or services that can reduce costs
or improve efficiency (Roy, Sivakumar et al. 2004). Therefore, the most important way for firms to be
more efficient is to reduce their operating costs via process innovation continually. As is well known,
Walmart is one of the most efficient retailers in the world, and it can be found from its history (see wal-
mart.com) that this company is dedicated to the investment in process innovation, e.g., in 1987, Walmart
installed the largest private satellite communication system to link its operations through voice, data,
and video communication; In 2017, Walmart launched Store No 8, a tech incubator, which will change
the operations of the retail industry through the use of new technologies like autonomous vehicles, vir-
tual reality, drone delivery and personalized shopping (see storeno8.com). By the end of 2025, more
than 580,000 autonomous mobile robots (AMR) will be used in warehouses to fulfill customer orders
(Forbes, 2019). Another example is Kroger, a leading American retailing company. In the past few years,
it pioneered a faster checkout process named QueVision that greatly reduced the time customers wait in
line to check out (see Kroger.com). The competitor, Amazon, followed by Amazon Go in America. A-
mazon Go is a new kind of store with no checkout required (see Amazon.com). Especially Covid-19
makes more retailers focus on continuous innovation, like developing new grocery delivery services and
technology to achieve healthier and safer purchasing. The possibility of downstream innovation (i.e., in-
novation adopted by downstream buyers, i.e., retailers in our motivational examples) that leads to a unit
cost reduction in the long run should be considered by the upstream supplier when deciding its pricing
strategy.

In this paper, we aim to develop a general understanding of the desirability of a BSWP and a u-
niform wholesale price (UWP), i.e., charging all buyers the same wholesale price, from the supplier’s
perspective considering downstream process innovation. Although uniform wholesale price contracts are
observed in practice (Ferrari and Verboven 2012), wholesale price discrimination is commonly adopt-
ed in many important markets, including markets such as petroleum distribution, steel, heavy trucking,
tobacco, and pharmaceuticals (Villas-Boas 2009). Specifically, in the retail market, after merging with
another retailer, one of the largest German retail chains learned that the suppliers were charging five per-
cent higher wholesaler price to the retail chain than to the merging partner. Moreover, anecdotal evidence
suggests that suppliers indeed have an incentive to adjust their wholesale prices according to downstream
innovation. For example, Dell invested in developing a new generation of personal computer that is less
expensive to assemble; after observing Dell’s cost-efficient design, Intel and other powerful suppliers
respond by setting wholesale prices higher than they otherwise would (Gilbert and Cvsa 2003).

The above examples illustrate that the wholesale price strategy is not a trivial issue for the supplier,
especially considering the possibility of downstream innovation. In this context, we answer the following
research questions: (1) What is the supplier’s optimal pricing strategy, a BSWP strategy or a UWP
strategy? (2) What is the optimal timing for the supplier to determine the pricing strategy? (3) What
are the impacts of the suppliers pricing strategy on downstream buyers’ profitability? Although there
are also other non-linear wholesale pricing mechanisms that could be adopted, we focus on the constant
wholesale price because of its pervasiveness in practice (Vakharia and Wang 2014). The UWP can signal
that all buyers are being treated equally, which is critical if buyers concern about price fairness (Chen and
Cui 2013, Wu and Niederhoff 2014, Li, Cui et al. 2019). However, to isolate the strategic issue related
to the suppliers preference for pricing, we do not consider the impact of fairness concern.



By considering two buyers that can simultaneously decide on the level of process innovation in the
model, our findings suggest that the supplier’s UWP strategy is superior to the BSWP strategy. This is
because the BSWP strategy blunts the buyer’s incentive to invest in process innovation and ultimately
reduces the supplier’s profits. The findings make a substantial contribution to the literature on buyer-
specific price discrimination and innovation decisions in supply chain management. In addition, the op-
timal timing of pricing depends on the degree of variability in market demand. When market uncertainty
is sufficiently low, the supplier commit to the wholesale price in advance and the optimal wholesale price
is independent of the parameters associated with downstream innovation. Our findings can help suppliers
set optimal pricing policies.

The remainder of this paper is organized as follows. Section 2 reviews related literature and high-
light our contributions. Section 3 formulates the model. Section 4 analyzes the optimal decisions of all
players in different sub-games contingent on the supplier’s pricing strategy. Section 5 identifies the dom-
inant pricing strategy for the supplier and examines its impacts on downstream innovation and buyers’
profitability. Section 6 describes the key implications and directions for future research. Appendix A
contains the proofs of all analytical results.

2. Literature review

Our work mainly draws on and contributes to two streams of research: (1) the literature on the supplier’s
pricing strategy when there is more than one buyer; (2) the literature on managing innovation in a supply
chain. These two streams are largely independent of each other. Our work is one of a few papers that
bridge the gap between them.

Buyer-specific price discrimination has been a topic of significant research interests for decades, al-
though it is governed by the primary US law, the RobinsonCPatman Act of 1936. Numerous papers in
the economics literature have examined the impact of price discrimination on welfare, see, e.g., Yoshida
(2000) and O’Brien (2014). In the field of operations management, it is confirmed that the supplier will
be better off with a BSWP strategy in a wide variety of settings, see, e.g., Dukes, Gal-Or et al. (2006),
Cui, Raju et al. (2008), and Wu and Zhou (2019). Letting the supplier offer a uniform wholesale price to
all buyers, as required by the RobinsonCPatman Act, Ingene and Parry (1995) design a quantity-discount
schedule to coordinate the channel. With the same requirement, Wu, Chen et al. (2012) investigate the
supplier’s pricing decisions in six power structures that characterize exclusively horizontal competition
between downstream buyers and vertical competition between the supplier and buyers. Vakharia and
Wang (2014) find that the total supply chain profit is greater when the supplier adopts a UWP strategy as
compared to a BSWP strategy, and propose a unique UWP contract with a slotting allowance or a side
payment to coordinate the channel. Jin, Wu et al. (2017) find that under a BSWP strategy, a downstream
retailer has a stronger incentive to introduce a store brand. Lou, He et al. (2021) investigate a BSWP
strategy when two competing retailers have different brand reputations. However, all these papers con-
sider the suppliers pricing in the short run and ignore the possibility of downstream innovation in the
long run.

There is a growing amount of literature on supply chain management that incorporates the decision
on innovation. Innovation is extensively investigated in the supply chain, e.g., Bellamy, Ghosh et al.
(2014), Sabri, Micheli et al. (2018) and Niu, Zeng et al. (2021). The innovation may be undertaken by
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the upstream firm or/and the downstream firm, and the investment may be incurred by a single firm
or shared by both firms. There are some papers that have studied how innovation affects upstream and
downstream business relationships, e.g., Hall and Andriani (2003), Roy and Sivakumar (2010). Vander-
werf (1992) shows that downstream firms tend to innovate when the supply industrial is concentrated.
Kim (2000) analyzes the downstream buyers strategy to coordinate the supplier’s innovation that can
eventually lead to a cost reduction. Gilbert and Cvsa (2003) show that the supplier can stimulate down-
stream innovation by simply committing to price in advance. If both firms have innovation opportunities
to enhance the market demand, Gurnani, Erkoc et al. (2007) consider three different decision-making
structures and discuss the optimal configuration from each firms perspective. Bhaskaran and Krishnan
(2009) design three mechanisms revenue sharing, investment sharing, and innovation sharing to improve
the performance of collaborative innovation in the supply chain. Ge, Hu et al. (2014) demonstrate that
the upstream firm and the downstream firm can achieve win-win in a supply chain where they first co-
operate in innovation and then decide the production quantity according to a wholesale price contract.
Usta, Erhun et al. (2014) find that the downstream buyer’s full commitment to invest in innovation may
enable a proprietary component supplier to license the technology. Ashok, Day et al. (2018) find no
direct association between the level of buyer dissatisfaction and process innovation. Reimann, Xiong et
al. (2019) investigate the optimal process innovation level for remanufacturing in a closed-loop supply
chain, and find that there might be an overinvestment problem in process innovation. Xu, Liu, Huang,
Zhou, and Wei (2022) consider a two competing supply chains with one supplier and one manufacturer
each to explore the innovation information sharing strategy of the manufacture. Although this research
stream has generated fruitful insights, it mostly focuses on a bilateral monopoly. In the current study,
we consider two downstream buyers (one or both have process innovation opportunities) and examine
the suppliers preference between a BSWP and a UPW. We find that a UPW can stimulate downstream
buyers to set a higher process innovation level and hence benefit the entire supply chain because of the
lower operational costs.

The supplier’s pricing considering downstream innovation is relatively understudied. To the best of
our knowledge, Degraba (1990) makes the first attempt in this direction. Two downstream buyers move
first by choosing their process innovation level with the knowledge of whether the supplier will employ
a UWP. However, these two buyers are symmetric in terms of their process innovation abilities, and the
market demand is deterministic. Degraba (1990) examines only the impact of the supplier’s pricing s-
trategy on the optimal innovation level, production quantities, and welfare. Similarly, Inderst and Valletti
(2009) assume that the supplier is a constrained monopolist with the threat of demand-side substitution,
and demonstrate that the UWP benefits consumers in the short run but reduces consumer surplus in the
long run. Brunner (2013) and Li (2013) pay attention to this direction as well, but both consider the
BSWP strategy only. Our paper makes a substantial contribution to the literature on the suppliers pric-
ing strategy for the supply chain with downstream innovation. The unique contribution of our work lies
in that we examine the preference of a BSWP and a UWP from the perspective of the supplier in an
uncertain market, and find that the UWP is a dominant strategy in light of downstream innovation: if
the demand uncertainty is low enough, the supplier is better off by committing to a uniform wholesale
price in advance of the downstream buyers innovation; otherwise, the supplier should commit to a UWP
strategy, but announce the wholesale price after demand information is revealed.



3. Model

In order to examine the impact of the supplier offering either a BSWP or a UWP to downstream buyers,
we consider a simple two-echelon supply chain consisting of one supplier and two buyers (indexed by
i = 1, 2, j = 3 − i). Game theory is used in this paper to investigate the interaction within the supply
chain, which has been widely used in the literature on supply chain management (Li and Zhou 2016, Wu
and Zhou 2017, Huang, Meng et al. 2019). The supplier provides a homogeneous product/component to
buyers at a constant unit production cost, which is normalized to 0. The primary decision for the supplier
is to set a constant per unit wholesale price for each buyer {w1, w2}.

Each buyer makes her/his order quantity decision to satisfy downstream demand in the same market
(Jin, Hu et al. 2019). We assume that the inverse demand function is linear in the quantity offered (Arya,
Mittendorf et al. 2008). In particular, let qi be Buyer i’s quantity and define the market-clearing price as
follows:

pi =
1

2
(a+ ε)− qi − bqj , (1)

where (a+ ε) represents the uncertain market potential, a is a positive constant and ε is an additive
error term, with density f (ε), mean of 0, standard deviation of σ, and positive support in the range
(εmin, εmax), b ∈ (0, 1) is the competitive intensity between the two buyers.

In our model, at the very beginning of the planning horizon, we assume that two buyers are symmetric
in terms of their operating costs but asymmetric in terms of their process innovation opportunities. Buyer
i can reduce her/his marginal cost from c to (c− riθi) by investing 1

2Iθi
2. Here, ri is the maximum

amount of cost reduction that can be achieved via process innovation by Buyer i, and without loss of
generality, we have 0 ≤ r2 ≤ r1 ≤ c; θi is Buyer i’s process innovation level, and I is the innovation
cost parameter. Following the relevant literature on innovation management (Bhaskaran and Krishnan
2009, Reimann, Xiong et al. 2019, Hong, Li et al. 2020), we assume that I is high enough, i.e., I > Imin,
1 such that the optimal process innovation level in the model is always less than 1. It implies that the
marginal cost of Buyer i cannot be less than c− ri within the limits of current technology, regardless of
how much the buyer invests. It is worth noting that process innovation as a long-run investment must be
made before the realization of demand uncertainty. To avoid trivial situations, we require that the cost
parameter is not prohibitively high, i.e., c < a/2, such that for every realization of the demand there
always exist equilibrium solutions with which all firms obtain positive profits.

Based on the above assumptions, the supplier’s, Buyer 1’s and Buyer 2’s profit functions can be written
as

πsw2 = w1q1 + w2q2, (2)

πi = (pi − wi − c+ riθi) qi −
1

2
Iθi

2, i = 1, 2. (3)

Our model is developed to analyse the supplier’s optimal pricing strategy from two dimensions: the
form and the timing of pricing. As for the form of pricing, the supplier decides to use either a BSWP

1The detailed proofs of all parameter constraints are provided in Appendix B.



strategy or a UWP strategy, denoted by the superscript B and U , respectively. Provided that the supplier
adopts a UWP strategy, we have w1 is always equal to . As for the timing of pricing, the supplier decides
to set wholesale prices before or after downstream process innovation. Figure 1 shows the timeline of
events in the model. Process innovation is a strategic decision, and the investment 1

2Iθ
2 is sunk once if

the innovation level is determined; whereas pricing is a tactical decision, and it can be changed easily.
Therefore, the supplier has the flexibility to price the product after the buyer’s process innovation, which
we refer to as a flexible pricing strategy, denoted by the superscript F . In addition, we are interested in
the strategy under which the supplier commits to wholesale prices before the buyers invest in process
innovation. The latter strategy is referred to as a committed pricing strategy, denoted by the superscript
C.

Fig. 1: Timing of the Game

Consequently, combining the form and the timing of the supplier’s pricing strategy, we obtain four
sub-games between the supplier and the two buyers. We first analyse the optimal solutions in each sub-
game, and then we identify the supplier pricing strategy by comparing its profits in all sub-games.

4. Analysis

In this section, we solve for the optimal decisions of all players in each sub-game using backward
induction, which is followed by a sensitivity analysis on all model parameters. The first scenario is the
sub-game with flexible BSWP, in which the supplier charges each buyer a specific price after observing
the buyer’s process innovation. The second scenario is the sub-game with flexible UWP, in which the
supplier charges two buyers the same price after observing buyers process innovation. The third scenario
is the sub-game with committed BSWP, in which the supplier charges each buyer a specific price before
observing the buyers process innovation. The fourth scenario is the sub-game with committed UWP, in
which the supplier charges two buyers the same price before observing buyers’ process innovation.



4.1. Flexible BSWP

At the final stage of this sub-game, the two buyers are given the realization of demand uncertainty (ε), the
wholesale prices (wFB1 and wFB2 ), and each buyer’s process innovation level (θFBi ), and determine their
order quantities simultaneously and separately to maximize their profits, as shown in Equation (3). It is
easy to prove that πFBi

(
ε, wFBi , wFBj , θFBi , θFBj , qFBj ; qFBi

)
is concave in qFB1 and qFB2 , respectively.

From first-order conditions, we have

qFBi =
(2− b) (a− 2c+ ε) + 4riθ

FB
i − 2brjθ

FB
j − 4wFBi + 2bwFBj

2 (4− b2)
. (4)

With the anticipation of the two buyers’ optimal responses as above, the supplier sets the wholesale
prices (wFB1 and wFB2 ) to maximize the following profit function

πFBs
(
ε, θFB1 , θFB2 ;wFB1 , wFB2

)
= (a+ε−2c)(wFB

1 +wFB
2 )

2(2+b)

+ (2r1θFB
1 −br2θFB

2 −2wFB
1 +2bwFB

2 )wFB
1 −(br1θFB

1 −2r2θFB
2 +2wFB

2 )wFB
2

4−b2
. (5)

It is easy to prove that Equation (5) is concave in both wFB1 and wFB2 . Thus, we have the suppliers
optimal wholesale prices concerning the realization of demand and downstream innovation are

wFBi =
a+ ε

4
− c

2
+
riθ

FB
i

2
. (6)

In line with the literature (Degraba 1990, Vakharia and Wang 2014), we confirm that the supplier
has an incentive to charger a higher wholesale price to the more cost-efficient buyer after observing
downstream innovation; that is, wFB1 > wFB2 if r1θFB1 > r2θ

FB
2 , vice versa.

At the time of making the process innovation investment, Buyer i anticipates these responses for every
realization of demand and seeks to maximize the expected profit. By substituting Equations (4) and (6)
into Equation (3), and integrating over ε, Buyer i’s expected profit can be expressed as

E
(
πFBi

(
θFBi

))
=

(
2a− 4c− ab+ 2bc+ 4riθ

FB
i − 2brjθ

FB
j

)2
16(2− b)2(2 + b)2

+
σ2

16(2 + b)2
− 1

2
I
(
θFBi

)2
. (7)

With the assumption I > Imin, it can be easily proven that E
(
πFBi

(
θFBi

))
is concave. Thus, we can

get Buyer i’s optimal process innovation level in this sub-game.

θFB∗
i =

(a− 2c)
(

(2 + b) (2− b)2I − rj2
)
ri

2 (4− b2)
(

(4− b2)2I − 2 (ri2 + rj2)
)
I + 2ri2rj2

. (8)

Substituting θFB∗
i back into Equations (4) and (6) and integrating over ε give the expected flexible

wholesale prices and the expected order quantities, which are shown in the first column of Table 1.



Table 1: Comparison of equilibrium solutions under different pricing strategies in the basic model

CaseFB CaseFU

θ∗i
(a−2c)((2+b)(2−b)2I−rj

2)ri
2(4−b2)

(
(4−b2)2I−2(ri2+rj2)

)
I+2ri2rj2

(2(2+b)(2−b)2I−(6+b)rj
2)(a−2c)(6+b)ri

16(4−b2)3I2−2((4−b2)(ri2+rj2)I−ri2rj2)(6+b)2

E [w∗
i ]

(
(4−b2)2I−bri

2−2rj
2
)
(a−2c)(4−b2)I

4(4−b2)
(
(4−b2)2I−2(ri2+rj2)

)
I+4ri2rj2

(4(2+b)(2−b)2I−(6+b)(ri2+rj
2))(a−2c)(2−b)(2+b)2I

16(4−b2)3I2−2((4−b2)(ri2+rj2)I−ri2rj2)(6+b)2

E [q∗i ]
((2−b)2(2+b)I−rj

2)(a−2c)(4−b2)I
4(4−b2)

(
(4−b2)2I−2(ri2+rj2)

)
I+4ri2rj2

(2(2+b)(2−b)2I−(6+b)rj
2)(a−2c)(4−b2)I

8(4−b2)3I2−((4−b2)(ri2+rj2)I−ri2rj2)(6+b)2

CaseC

θ∗i
(a−2c)((2+b)(2−b)2I−4rj

2)ri
(4−b2)

(
(4−b2)2I−8(ri2+rj2)

)
I+16ri2rj2

E [w∗
i ]

a−2c
4

E [q∗i ]
((2+b)(2−b)2I−4rj

2)(a−2c)(4−b2)I
4(4−b2)

(
(4−b2)2I−8(ri2+rj2)

)
I+64ri2rj2

4.2. Flexible UWP

In this sub-game, the supplier is to offer a uniform wholesale price to the two buyers after observing
their process innovation. For the sake of clarity, we denote wFU1 = wFU2 = wFU . At the final stage,
consistent with the sub-game of flexible BSWP, we have

qFUi =
2a+ 2bc+ (2− b) ε− ab− 4c+ 4riθ

FU
i − 2brjθ

FU
j − 2 (2− b)wFU

2 (4− b2)
. (9)

With the anticipation of buyers’ optimal responses as above, the supplier’s profit function turns out to
be

πFUs (ε, θFU1 , θFU2 ;wFU ) =

(
a+ ε− 2c+ r1θ

FU
1 + r2θ

FU
2 − 2wFU

)
wFU

2 + b
. (10)

From the first condition, we have the optimal uniform wholesale price

wFU =
a+ ε

4
− c

2
+
r1θ

FU
1 + r2θ

FU
2

4
. (11)

Following from Equations (6) and (11), it is shown that, for the given levels of process innovation, the
optimal uniform wholesale price wFU falls in between two buyer-specific wholesale prices.



Finally, when it comes to the first stage of this sub-game, substituting Equations (9) and (11) into
Equation (3) and integrating over ε give Buyer is expected profit

E
(
πFUi

(
θFUi

))
= −(8(4−b2)2I−(6+b)2ri2)(θFU

i )2

16(4−b2)2

+
2(2a+2bc−ab−4c−(2+3b)rjθFU

j )(6+b)riθFU
i

16(4−b2)2

+
(2a+2bc−ab−4c−(2+3b)rjθFU

j )
2
+(2−b)2σ2

16(4−b2)2

(12)

With the assumption I > Imin, E
(
πFUi

(
θFUi

))
is concave in θFUi . From the first-order condition, we

have

θFU∗
i =

(
2 (2 + b) (2− b)2I − (6 + b) rj

2
)

(a− 2c) (6 + b) ri

16(4− b2)3I2 − 2 ((4− b2) (ri2 + rj2)− ri2rj2) (6 + b)2
. (13)

Substituting θFU∗
i back into Equations (9) and (11) and integrating over ε give the expected flexible

wholesale prices and the expected order quantities in this sub-game, which are shown in the second
column of Table 1.

4.3. Committed BSWP

In this sub-game, at the final stage, the two buyers determine their order quantities to maximize their
profit functions. At the second stage, with anticipation of the two buyers’ optimal order quantities, each
buyer maximizes her/his expected profit by deciding the process innovation level taking the wholesale
prices as given. By substituting the two buyers’ optimal order quantities and integrating over ε, each
buyer’s expected profit function is

E
(
πCi

(
wCi , w

C
j ; θCi , θ

C
j

))
= − (4−b2)2I−8ri2

2(4−b2)2
(
θCi
)2

+
2(2a−ab+2bc−4c−2brjθCj −4wC

i +2bwC
j )ri

(4−b2)2 θCi

+
(2a−ab+2bc−4c−2brjθCj −4wC

i +2bwC
j )

2
+(2−b)2σ2

4(4−b2)2

(14)

With the assumption I > Imin,E
(
πCi
(
wC1 , w

C
2 ; θCi

))
is concave in θCi . From the first-order condition,

we have

θCi =
2ri

((
4− b2

) (
2a+ 2bc− ab− 4c− 4wCi + 2bwCj

)
I − 4rj

2
(
a− 2c− 2wCi

))
2 (4− b2)

(
(4− b2)2I − 8 (ri2 + rj2)

)
I + 16ri2rj2

. (15)

At the first stage of this sub-game, the supplier’s problem is to determine the committed wholesale
prices. With the anticipation of the two buyers’ process innovation level, the order quantities, and the



demand uncertainty, the suppliers expected profit is

E
(
πCs
(
wC1 , w

C
2

))
=

(4−b2)

 (
4− b2

) (
2a+ 2bc− ab− 4c− 4wC1 + 4bwC2

)
I

−4r2
2 (a− 2c− 2w1)

IwC
1

2(4−b2)((4−b2)2I−8(r12+r22))I+32r12r22

+ (4−b2)((4−b2)(2a+2bc−ab−4c−4wC
2 )I−4r12(a−2c−2wC

2 ))IwC
2

2(4−b2)((4−b2)2I−8(r12+r22))I+32r12r22

(16)

Because Equation (16) is concave in both wC1 and wC2 , from the first-order conditions, we have the
optimal wholesale prices in this sub-game

wC∗
i =

a− 2c

4
. (17)

The above solutions reveal that before downstream innovation, even if the supplier can charge a BSWP,
the supplier is better off by committing to a UWP. This finding is consistent with the literature that proves
the supplier’s optimal strategy is to commit to a static price over multiple periods, see, e.g., Stokey
(1979), Hart and Tirole (1988), and Borgs, Candogan et al. (2014).This is because under the committed
pricing strategy, the supplier commits to wholesale prices before the buyers invest in process innovation,
and wholesale prices and process innovation level are determined before demand uncertainty is realized.
Therefore, if the supplier charges the buyer a higher wholesale price, the buyer is willing to invest less.
Then based on each buyers’ expected process innovation level, the supplier has no incentive to charge
a BSWP. More interestingly, this is also the reason that the optimal wholesale price is independent of
the two buyers’ process innovation parameters (ri and I). Thus, even the supplier does not know the
downstream buyers’ innovation ability, (s)he can commit to the optimal price.

The expected process innovation level and order quantities in this sub-game are shown in the third
column of Table 1.

4.4. Committed UWP

In this sub-game, at the final stage, the two buyers determine their order quantities to maximize their
profit functions. At the second stage, with anticipation of buyers optimal order quantities, each buyer
maximizes her/his expected profit by deciding the process innovation level taking the UWP as given. By
substituting buyers’ optimal order quantities and integrating over ε, Buyer i’s expected profit function is
equal to the profit function in Equation (14) with the same wholesale price, i.e., wC1 = wC2 = wC .

With the assumption I > Imin, E
(
πCi
(
wC ; θCi

))
is concave in θCi . From the first-order condition, we

have θCi
(
wC
)
, which is similarly equal to the innovation level in Equation (15) with wC1 = wC2 = wC .

At the first stage of this sub-game, the supplier’s problem is to determine a committed UWP. With an-
ticipation of the two buyers’ process innovation levels, the order quantities, and the demand uncertainty,
we can obtain the suppliers expected profit, which is concave in wC . From the first-order condition, we
have the optimal committed UWP is equal to the price in Equation (17). Therefore, under the commit-
ted pricing strategy, the supplier always determines same wholesale prices due to two buyers’ expected
process innovation level, then all results in the sub-game with a committed UWP strategy are identical
to those in the sub-game with a committed BSWP strategy.
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5. Comparison and discussion

In this section, based on the results shown in Table 1, we first compare the optimal process innovation
levels and the optimal wholesale prices in all sub-games. It is easy to obtain the following two Corollar-
ies.

The following results are obtained through a comparison of consumer surplus in different scenarios.
THEOREM 1.In each sub-game, we have θ∗1 ≥ θ∗2; and for each buyer, we have θC∗

i > θFU∗
i > θFB∗

i .
Buyer 1 is more efficient than Buyer 2 in process innovation, i.e., r1 ≥ r2. Therefore, in a certain sub-

game, we always have Buyer 1’s process innovation level is higher than Buyer 2’s process innovation
level. For each buyer, the optimal process innovation level is heavily influenced by the suppliers pricing
strategy. In the sub-game with a flexible pricing strategy, that is the sub-games with flexible BSWP
and flexible UWP, the more Buyer i invests in process innovation, the higher the wholesale price for
her/him is. Such an opportunistic behavior of the supplier creates a hold-up problem that makes Buyer
i underinvest. Therefore, Buyer i always invests the most in the sub-game with a committed pricing
strategy where the supplier seems to ignore the possibility of downstream innovation. With a flexible
BSWP strategy, the wholesale price E

[
wFB∗
i

]
is increasing in θi only, while with the flexible UWP

strategy, E
[
wFU∗
i

]
is increasing in both θi and θj . Thus, the flexible BSWP strategy blunts downstream

buyers’ incentives to invest in process innovation compared with the flexible UWP strategy. As a result,
θFU∗
i > θFB∗

i .
THEOREM 2.E

[
wC∗
1

]
< min

{
E
[
wFU∗
1

]
, E
[
wFB∗
1

]}
and E

[
wC∗
2

]
< E

[
wFB∗
2

]
< E

[
wFU∗
2

]
.

This finding reveals that buyers pay the lowest wholesale price in the sub-game with a committed
pricing strategy. This is because of that given θi = 0, these optimal wholesale prices E [w∗

i ] in all sub-
games are the same. E

[
wC∗
i

]
is independent of θi, while E

[
wFU∗
i

]
and E

[
wFB∗
i

]
are increasing in θi,

so E
[
wC∗
i

]
is the lowest wholesale price for Buyer i. We interpret the economic intuition behind this

finding as follows. Downstream process innovation will enhance the efficiency of the supply chain. If
the supplier adopts a flexible pricing strategy, (s)he can directly benefit from the enhanced efficiency
by charging a high wholesale price. However, if the supplier adopts a committed pricing strategy, a
high wholesale price charged before downstream innovation will discourage buyers investment. Thus,
to stimulate downstream innovation, the supplier should charge a relatively low wholesale price in the
sub-game with a committed pricing strategy.

Next, we identify the suppliers optimal pricing strategy by comparing her/his expected profits in these
sub-games , which is characterized by the following proposition.

Proposition 1. There exists a threshold of market demand variance T such that for σ2 ≤ T, E
[
πCs
]
≥

E
[
πFUs

]
> E

[
πFBs

]
, while for σ2 > T,E

[
πFUs

]
> max

{
E
[
πCs
]
, E
[
πFBs

]}
.

The optimal timing of pricing is dependent on the level of market demand variance: the supplier
prefers to commit to prices before downstream innovation if the demand uncertainty is low enough;
otherwise, the supplier is better off by committing to a UWP strategy but postponing the announcement
of prices until the demand uncertainty is revealed.

In Appendix C, we also examine the impacts of other parameters, i.e., a, b, c, r1 and r2, on the
supplier’s optimal choice of the pricing strategy. The results show that the supplier prefers a committed
pricing strategy if (i) the market size a is sufficiently large, or (ii) the competitive intensity b is sufficiently
low, or (iii) the unit cost c is sufficiently low, or (iv) the potential of process innovation ri is sufficiently
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large; otherwise, the supplier prefers a flexible pricing strategy.
Finally, we examine the impact of the supplier’s UWP strategy on the buyers profitability.

Proposition 2. The UWP strategy is always beneficial to Buyer 1 (who is more efficient in process
innovation).

It can be seen from Equations (8) and (9), the supplier’s incentive to offer a higher wholesale
price to the more cost-efficient buyer certainly erodes the reward of downstream innovation, and
then Buyer 1 should reduce the investment, which shrinks the total channel profit. The UPW strat-
egy can solve this problem well. Although the supplier shares a smaller portion, i.e., E

[
wC∗
1

]
<

min
{
E
[
wFU∗
1

]
, E
[
wFB∗
1

]}
, Buyer 1’s incentive to invest in process innovation is enhanced, and the

channel profit is increased. As a result, the UPW strategy forms a win-win outcome for the supplier and
Buyer 1.

Proposition 3. The UWP strategy is beneficial to Buyer 2 (who is less efficient in process innovation)
when r2 > r1

√
b.

Buyer 2 can also benefit from the committed UWP strategy if the market uncertainty is high enough.
However, the supplier then does not commit to prices. The UPW strategy reduces Buyer 2’s expected
profit if Buyer 1 is a more cost-efficient buyer. The reason for this finding is straightforward. With the
UPW strategy, Buyer 2 may be offered a higher wholesale price, while the rival, Buyer 1, will be offered
a lower wholesale price and invests more in process innovation. All these impacts are detrimental to
Buyer 2.

6. Conclusions

The wholesale price is the key determinant of the volume of orders received by the supplier, which
heavily impacts her/his profitability. Moreover, the wholesale price is a significant determinant of the
market price, which in turn impacts the profitability and market shares of buyers (Vakharia and Wang
2014). In this paper, we investigate the supplier’s optimal pricing strategy from two dimensions: the form
and the timing.

Researchers and managers have long viewed the BSWP as a strategy to optimize the supplier’s prof-
it. Consistent with the prior literature, we confirm that the supplier has the incentive to offer a higher
wholesale price to the more efficient buyer (after the buyers investment in process innovation). In prac-
tice, although BSWP is governed by the RobinsonCPatman Act, in recent years, there still are firms
being found guilty of violating the act (Luchs, Geylani et al. 2010). But this paper makes a substantial
contribution to the literature and the practice by demonstrating that the UWP is a dominant strategy for
the supplier considering downstream innovation. The BSWP would blunt buyers’ incentive to invest in
process innovation, and finally reduce the supplier’s profit. The optimal timing of pricing depends on
the level of market demand variance. When the market uncertainty is low enough, the supplier com-
mits to the price in advance, and the optimal price is independent of parameters related to downstream
innovation. Our analytical results provide clear guidelines on the suppliers optimal pricing policy.

All these results are preserved if two buyers have the same opportunity of process innovation, i.e.,
r1 = r2. It is worth noting that, equilibrium process innovation levels of buyers are then the same,



and the supplier would offer the same wholesale price after downstream innovation. However, if buyers
anticipate that the supplier may adopt a BSWP strategy, they invest less in process innovation. This
finding further highlights the importance of committing to the UWP strategy before buyers choose their
process innovation levels.

There are several potential avenues for future research stemming from our investigation. Firstly, a
natural extension of our research is to compare other types of wholesale pricing mechanisms (such
as the quantity discount) to the UWP. Another issue of interest could be to examine how competing
suppliers’ price considering downstream innovation, which means adding a new supplier into our model.
Thirdly, when the market uncertainty is high enough, the optimal UWP is dependent on parameters
related to downstream innovation. Thus, a fruitful direction is to consider the information asymmetry on
downstream innovation abilities.
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Appendix A: Proofs

For ease of exposition, we define the following thresholds:

N1 =
(
4− b2

) ((
4− b2

)2
I − 2

(
r1

2 + r2
2
))
I + r1

2r2
2,

N2 =
(
4− b2

) ((
4− b2

)2
I − 8

(
r1

2 + r2
2
))
I + 16r1

2r2
2,

N3 = 8
(
4− b2

)3
I2 − (6 + b)2

((
4− b2

) (
r1

2 + r2
2
)
I − r12r22

)
.

Proof of sensitivity analysis

With the assumption I > Imin, it is easy to obtain the impact of model parameters, a, c, r, and I . To save
place, we present the sensitivity analysis on the parameter b only.

(1) ∂θFB∗
i

∂b =

(a−2c)


(2 + b)3(2− b)4 (3b− 2) I2

+2
(
4− b2

)2 (
(1− b) rj2 + ri

2
)
I

−
((

4− 3b2
)
ri

2 − 4brj
2
)
rj

2

Iri
2N1

2 , only if b < 2
3 and I >

(2+b)((3b−1)rj2−ri2)−((2+b)(ri2−rj2)((2+b)ri2−(9b3−3b+2)rj2))
1
/2

(3b−2)(4−b2)2 , ∂θ
FB∗
i

∂b < 0; otherwise, ∂θ
FB∗
i

∂b > 0.

(2)
∂θC∗

i

∂b =

(a−2c)


(2 + b)3(2− b)4 (3b− 2) I2

+8
(
4− b2

)2 (
(1− b) rj2 + ri

2
)
I

−16
((

4− 3b2
)
ri

2 − 4brj
2
)
rj

2

Iri
2N2

2 , only if b < 2
3 and I >

4(2+b)((3b−1)rj2−ri2)−4((2+b)(ri2−rj2)((2+b)ri2−(9b3−3b+2)rj2))
1
/2

(3b−2)(4−b2)2 ,
∂θC∗

i

∂b < 0; otherwise, ∂θ
C∗
i

∂b > 0.

(3) ∂θFU∗
i

∂b =

(a−2c)


16
(
4− b2

)3 (
b2 + 8b− 4

)
(2− b) I2

−8
(
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)
rj
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2
)
I
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(6 + b)2brj
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3b2 + 28b+ 12

)
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)
ri

2
)
rj

2

riI
N3
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b < 2
√
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(2 + b)
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2b2 + 17b− 2

)
rj

2 − (6 + b) ri
2
)

−
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(2 + b)
(
ri
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)
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∂θFU∗
i

∂b < 0; otherwise, ∂θ
FU∗
i

∂b > 0.

(4) ∂E(wFB∗
i )

∂b =

(a−2c)


(2 + b)3(2− b)4 (3b− 2) I2

+2
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4− b2

)2 (
(1− b) rj2 + ri

2
)
I

−
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4− 3b2
)
ri

2 − 4brj
2
)
rj

2

Iri2
4N1

2 , similarly, only if b < 2
3 and
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 (2 + b)
(
(3b− 1) rj

2 − ri2
)

−
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(
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2 − rj2
) (
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(
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)
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2
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(3b−2)(4−b2)2 , ∂E(wFB∗
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(5) ∂E(wFU∗)
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2
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4
(
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(
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2 − r22
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, ∂E(wFU∗)
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otherwise, ∂E(wFU∗)
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Proof of equilibrium outcomes

(1) In the sub-game with flexible BSWP, at the final stage, πFBi =(
1
2 (a+ ε) + riθ

FB
i − qFBi − bqFBj − wFBi − c

)
qFBi − 1

2I
(
θFBi

)2 is concave in qFB1 and qFB2 , respec-

tively. From the first-order conditions, that is ∂πFB
i

∂qFB
i

= 1
4

(
a+ ε− 2c− 2riθ

FB
i − 2bqFBj − 2wFBi

)
= 0.

we have qFBi
(
θFBi , θFBj , wFBi , wFBj

)
in Equation (4). Then maximize the profit function of the supplier

in Equation (5). The first partial derivatives of πFBs with respect to wFB1 and wFB2 are derived as follows:
∂πFB

s

∂qFB
i

=
(2−b)(a−2c+ε)+4riθFB

i −2b(rjθFB
j −2wFB

j )qFB
j −8wFB

i

2(4−b2) . The second partial derivatives of πFBs with

respect towFB1 andwFB2 are derived as follows: ∂2πFB
s

∂(qFB
1 )2

= − 4
4−b2 , ∂2πFB

s

∂(qFB
2 )2

= − 4
4−b2 , ∂2πFB

s

∂qFB
1 ∂qFB

2
= 2b

4−b2 .

The Hessian Matrix of πFBs is H =

(
− 4

4−b2
2b

4−b2
2b

4−b2 − 4
4−b2

)
, then |H| = 4

4−b2 > 0. Thus, the solution

to the first order conditions gives the unique maximiser. Let ∂πFB
s

∂qFB
1

= 0 and ∂πFB
s

∂qFB
2

= 0, we have wFBi
in Equation (6). At the first stage, buyer i maximize expected profit E

(
πFBi

(
θFBi

))
in Equation (7).

From the first-order conditions, that is ∂E(πFB
i (θFB

i ))
∂θFB

i
=

((2−b)(a−2c)−2brjθFB
j )ri

2(4−b2)I−4ri
= 0, we have θFB∗

i in

Equations (8). Then Substituting θFB∗
i back into Equation (6), we obtain E

[
wFB∗
i

]
= a

4 + riθFB∗
i
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2 =
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wFB∗
i

]
into and Equation

(4), E
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Substituting θFB∗
i and wFB∗

i back into Equation (5) and integrating over ε give the expected optimal
profits of the supplier:

E
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Substituting Equations (4) and (6) into Equation (3), we have πFBi
(
θFBi

)
=(

1
2 (a+ ε)− qFBi − bqFBj − c− wFBi − riθFBi

)
− 1

2I
(
θFBi

)2, then we integrate over ε,

E
(
πFBi

(
θFBi
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in Equation (7) are obtained. Substituting θFB∗

i back into Equations (10) and
(11) gives the expected optimal profits of supplier i:
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(2) In the sub-game with flexible UWP, at the final stage, consistent with the sub-game of flexible B-
SWP, from the first-order conditions of πFUi =

(
1
2 (a+ ε) + riθ

FU
i − qFUi − bqFUj − wFU − c

)
qFUi −

1
2I
(
θFUi

)2, that is ∂πFU
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∂qFU
i

= 1
4
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)
= 0, we have

qFUi

(
θFUi , θFUj , wFU

)
in Equation (9). Then maximize the suppliers profit function
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)
in Equation (10). From the first-order conditions, that is ∂πFU

s

∂wFU =
a+ε−2c+r1θFU

1 +r2θFU
2 −4wFU

(2+b) = 0, we have wFU in Equation (11). Then in the first stage, buyer i
decides θFUi to maximize expected profit E

(
πFUi

(
θFUi

))
in Equation (12), from the first-order con-

ditions, that is ∂E(πFU
i (θFU

i ))
∂θFU

i
=

((6+b)2ri2−8(4−b2)2I)θFU
i +(6+b)((2+b)(a−2c)ri−(2+3b)rirjθFU

j )
8(4−b2)2 = 0,

we have θFU∗
i in Equations (13). Then substituting θFU∗

i back into Equation (11), we ob-

tain E
[
wFU∗] = a

4 −
c
2 + r1θFU∗

1 +r2θFU∗
2

4 + ε
4 =

(4(2+b)(2−b)2I−(6+b)(ri2+rj2))(a−2c)(2−b)(2+b)2I
16(4−b2)3I2−2((4−b2)(ri2+rj2)I−ri2rj2)(6+b)2

,

then substituting θFU∗
i and E

[
wFU∗] into and Equation (9), E

[
qFU∗
i

]
=

(2(2+b)(2−b)2I−(6+b)rj2)(a−2c)(4−b2)I
8(4−b2)3I2−((4−b2)(ri2+rj2)I−ri2rj2)(6+b)2

. Substituting θFU∗
i and wFU∗ back into Equation (10)

and integrating over ε give the expected optimal profits of the supplier:

E
[
πFUs

]
=

2(a− 2c)2(2 + b)3(2− b)2
(

4 (2 + b) (2− b)2I
− (6 + b)

(
r1

2 + r2
2
) ) I2

N3
2 +

σ2

8 (2 + b)
.



Substituting θFU∗
i back into Equation (12) gives the expected optimal profits of the supplier i:

E
[
πFUi

]
=

2(a− 2c)2
(
4− b2

)2(
2 (2 + b) (2− b)2I − (6 + b) rj

2
)2
I2

N2
2 +

σ2

16(2 + b)2
.

(3) In the sub-game with committed BSWP(UWP), at the final stage, consistent with the sub-game
of flexible BSWP, we have qCi

(
θCi , θ

C
j , w

C
i , w

C
j

)
=

(2−b)(a−2c+ε)+4riθCi −2brjθCj −4wC
i +2bwC

j

2(4−b2) . Then

maximize each buyers expected profit E
(
πCi
(
wC1 , w

C
2 ; θCi

))
in Equations (14), from the first-order

condition, that is ∂E(πC
i )

∂θCi
=

2((2−b)(a−2c)−2brjθCj −4wC
i +2bwC

j )ri
(4−b2)I−8ri2

= 0, we have θCi
(
wCi , w

C
j

)
in Equations

(15). Then in the first stage, maximize the supplier’s expected profit E
(
πCs
(
wC1 , w

C
2

))
in Equation (16).

The first partial derivatives of E
(
πCs
)

with respect to wC1 and wC2 are derived as follows: ∂E(πC
s )

∂wC
i

=
(4−b2)((4−b2)((a−2c)(2−b)−8wC

1 +4bwC
2 )I−4r22(a−2c−4wC

1 ))I

2(4−b2)((4−b2)2I−8(r12+r22))I+32r12r22
. The second partial derivatives of E

(
πCs
)

with respect to wC1 and wC2 are derived as follows: ∂2πC
s

∂(wC
1 )2

= (4−b2)(8r22−4(4−b2)I)I
(4−b2)((4−b2)2I−8(r12+r22))I+16r12r22

,

∂2πC
s

∂(wC
2 )2

= (4−b2)(8r12−4(4−b2)I)I
(4−b2)((4−b2)2I−8(r12+r22))I+16r12r22

, ∂2πC
s

∂wC
1 ∂w

C
2

= 2b(4−b2)2I2
(4−b2)((4−b2)2I−8(r12+r22))I+16r12r22

.

Then with the assumption I > Imin, the determinant of the Hessian can be written as:

|H| = ∂2πC
s

∂(wC
1 )2

∂2πC
s

∂(wC
2 )2
−
(

∂2πC
s

∂wC
1 ∂w

C
2

)2
= 2(4−b2)2I2

(4−b2)((4−b2)2I−8(r12+r22))I+16r12r22
> 0, Thus, the solu-

tion to the first order conditions gives the unique maximizer. Let ∂E(πC
s )

∂wC
1

= 0 and ∂E(πC
s )

∂wC
2

= 0,
we have wC∗

i in Equations (17). Then substituting wC∗
i back into Equation (15), we obtain

θC∗
i = 2ri((4−b2)(2a+2bc−ab−4c−(4+2b)wC∗

i )I−4rj2(a−2c−2wC∗
i ))

2(4−b2)((4−b2)2I−8(ri2+rj2))I+16ri2rj2
=

(a−2c)((2+b)(2−b)2I−4rj2)ri
(4−b2)((4−b2)2I−8(ri2+rj2))I+16ri2rj2

.

Substituting wC∗
i and θC∗

i back into qCi

(
θCi , θ

C
j , w

C
i , w

C
j

)
, we have

E
[
qC∗
i

]
=

(2−b)(a−2c)+4riθC∗
i −2brjθC∗

j −4E[wC∗
i ]+2bE[wC∗

j ]
2(4−b2) =

((2+b)(2−b)2I−4rj2)(a−2c)(4−b2)I
4(4−b2)((4−b2)2I−8(ri2+rj2))I+64ri2rj2

.

Substituting wC∗
i back into Equations (16) gives the expected optimal profits of the supplier:

E
[
πCs
]

=
(a− 2c)2

(
4− b2

) (
(2 + b) (2− b)2I − 2

(
r1

2 + r2
2
))
I

8N2
.

Substituting wC∗
i and θC∗

i back into Equation (14) gives the expected optimal profits of supplier i:

E
[
πCi
]

=
(a− 2c)2

(
(2 + b) (2− b)2I − 4rj

2
)2 ((

4− b2
)2
I − 8ri

2
)
I

16N2
2 +

σ2

4(2 + b)2
.

All process innovation levels, wholesale prices and order quantities in equilibrium are summarized in
Table 1.
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Proof of Proposition 1

Let’s denote ∆s1 = E
[
πCs
]
− E

[
πFUs

]
, we have

∆s1 =
(a− 2c)2

(
4− b2

)
IH1

8N2N3
2 − σ2

8 (2 + b)
. (D1)

Here
H1 =

(
(2− b)2 (2 + b) I − 2

(
r1

2 + r2
2
))
N3

3

−4(2 + b)2 (2− b)
(

4(2− b)2 (2 + b) I − (6 + b)
(
r1

2 + r2
2
))2

IN2

. With the assumption I >

Imin, H1 > 0. Thus, if σ2 ≤ T, E
[
πCs
]
≥ E

[
πFUs

]
; if σ2 > T, E

[
πCs
]
< E

[
πFUs

]
. Here, T =

(a−2c)2(2+b)(4−b2)IH1

N2N3
2 .

Denote ∆s2 = E
[
πFUs

]
− E

[
πFBs

]
, we have

∆s2 =
(a− 2c)2

(
4− b2

)2
I2H2

8N3
2N1

2 . (D2)

Here
H2 = 4 (2 + b)

(
4(2− b)2 (2 + b) I − (6 + b)

(
r1

2 + r2
2
))2

N1
2

−
((

4− b2
)2 (

(2− b)2 (2 + b) I −
(
r1

2 + r2
2
))
I + br1

2r2
2 + r1

4 + r2
4
)
N3

2
. Note that

N1 − N3 is concave in I . It has an axis of symmetry I = −(2+(6+b)2)(r12+r22)

14(4−b2)2 <

0, and (N1 −N3)
∣∣
I=ICn2

= − r12((6+b)(37−b2)r22+(4b2+160b−376))
2−b < 0. With the assumption

I > max
{
ICn2, I

C
N

}
= Imin, it is easy to obtain N1 > N3 > 0, then N1

2 >

N3
2. Next, let N3 = N1 in H2, we have H2 > H2 (N3 = N1) = D1N1

2, where
D1 = 63(2 + b)3(2− b)4I2 −

(
4− b2

)2
(191 + 32b)

(
r1

2 + r2
2
)
I

+4
(
r1

2 + r2
2
)2

(14 + b) b2 + (240b+ 287)
(
r1

4 + r2
4
)

+ (479b+ 576) r1
2r2

2
, a convex function

in I . It has an axis of symmetry I = (191+32b)(r12+r22)

126(2−b)2(2+b) < ICn2. Then if I > Imin, D1 > 0. Thus,

we have N1
2 > N3

2 and D1 > 0, then E
[
πFUs

]
> E

[
πFBs

]
.

Proof of Proposition 2

We have E
[
πC1
]
− E

[
πFU1

]
= (a−2c)2M1I

16N2
2N3

2 + 3σ2

16(2+b)2
> 0, here

M1 =
(

(2− b)2 (2 + b) I − 4r2
2
)2 ((

4− b2
)2
I − 8r1

2
)
N3

2

−
(
4− b2

)2(
8(2− b)2 (2 + b) I − 4 (6 + b) r2

2
)2
IN2

2
. With the assumption
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M
(
Imin ≥ ICn2

)
=

64r16(r12−r22)2b



r2
4b6 + 4

(
2r1

2 + 7r2
2
)
r2

2b5

+4
(
4r1

4 − 12r1
2r2

2 + 15r2
4
)
b4

−16
(
20r1

4 − 66r1
2r2

2 + 55r2
4
)
b3

−16
(
608r1

4 − 1288r1
2r2

2 + 609r2
4
)
b2

−64
(
232r1

4 − 378r1
2r2

2 + 153r2
4
)
b

+64
(
14r1

2 − 9r2
2
)2


(2−b)2 > 0. Thus,

E
[
πC1
]
− E

[
πFU1

]
> 0.

We have E
[
πFU1

]
− E

[
πFB1

]
= (a−2c)2M2I

16N1
2N3

2 , here

M2 =
(
4− b2

)2(
8(2− b)2 (2 + b) I − 4 (6 + b) r2

2
)2
IN1

2

−
(

(2− b)2 (2 + b) I − r22
)2 ((

4− b2
)2
I − 2r1

2
)
N3

2
.

Because N1
2 > N3

2, we have M2 > M2 (N3 = N1) = D2N1
2, where

D2 = 63(2 + b)4(2− b)6I3 − 2(2 + b)2(2− b)4
(
(191 + 32b) (2 + b) r2

2 − r12
)
I2

+ (2 + b) (2− b)2
(
(25 + 4b) (23 + 4b) (2 + b) r2

2 − 4r1
2
)2
I + 2r1

2r2
4

. ∂D2/∂I is a

convex function in I . It has an axis of symmetry I = 2((32b2+255b+382)r22−r12)

189(4−b2)2 < ICn2 and δD2

δI

∣∣
I=ICn2

=

(2 + b) (2− b)2
(

(25 + 4b) (23 + 4b) (2 + b) r2
4 −

(
512b2 + 4080b− 6116

)
r1

2r2
2

+ (3024b+ 60642) r1
4

)
> 0

Then with the assumption I > Imin ≥ ICn2, ∂D2/∂I > 0. D2

(
Imin ≥ ICn2

)
=(

(8096 + 4032b) r1
4 +

(
64b3 + 896b2 + 3836b+ 4602

)
r2

4

+16
(
64b2 + 510b+ 765

)
r1

2r2
2

)
r1

2 > 0. Thus, we have

M2 > D2N1
2 > 0, then E

[
πFU1

]
− E

[
πFB1

]
> 0.

Therefore, the committed UWP strategy is always preferred by Buyer 1. However, when the supplier
chooses the flexible UPW strategy, Buyer 1 still obtains a greater profit compared with the flexible BSWP
strategy. Therefore, we say that the UPW strategy is beneficial to Buyer 1.

Proof of Proposition 3

Let’s denote ∆21 = E
[
πC2
]
− E

[
πFB2

]
, we have

∆21 =
(a− 2c)2M3I

16N1
2N2

2 +
3σ2

16(2 + b)2
. (F1)

Here
M3 =

((
4− b2

)2
I − 8r2

2
)(

(2 + b) (2− b)2I − 4r1
2
)2
N1

2

−
((

4− b2
)2
I − 2r2

2
)(

(2 + b) (2− b)2I − r12
)2
N2

2
. We have ∂∆21

/
∂
(
σ2
)
> 0.

Thus, the committed UWP is preferred over the flexible BSWP by Buyer 2 if σ2 is big enough. However,
the committed pricing will be adopted by the supplier only if σ2 is small. Given σ2 = T, with the as-
sumption I > Imin, if r22 < br1

2, ∂∆21/∂I < 0 and ∆21

(
Imin ≥ ICn2

)
< 0. That is to say, the flexible

BSWP is preferred over the committed UWP.
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Next, denote ∆22 = E
[
πFB2

]
− E

[
πFU2

]
, we have

∆22 =
(a− 2c)2M4I

16N1
2N3

2 . (F2)

Here
M4 =

((
4− b2

)2
I − 2r2

2
)(

(2 + b) (2− b)2I − r12
)2
N3

2

−16
(
4− b2

)2(
(2 + b) (2− b)2I − (6 + b) r1

2
)2
IN1

2
.

Because N1
2 > N3

2, M4 < M4 (N1 = N3) = D3N3
2 > 0, where

D3 = −63(2 + b)4(2− b)6I3 + 2(2 + b)2(2− b)4
(
(191 + 32b) (2 + b) r1

2 − r22
)
I2

+ (2 + b) (2− b)2
(
(25 + 4b) (23 + 4b) (2 + b) r1

2 − 4r2
2
)2
I + 2r1

4r2
2

.

Then with the assumption I > Imin, ∂M4/∂I > 0 and M4

(
Imin ≥ ICn2

)
=

r110(a−2c)2

 9
(
r2

2 − 2 (2 + b) r1
2
) ((

4b2 + 176b+ 400
)
r1

2 + (6 + b)2 (6− b) r22
)2

+32r1
2
(
8 (3 + 2b) r1

2 + (6 + b) r2
2
)2

(2 + b) (2− b)2


2(2+b)(2−b)4 > 0.

Thus, ∆22 > 0, that is to say, the flexible BSWP is preferred over the flexible UWP by Buyer 2.

Appendix B: Constraints on parameters

Note that the wholesale prices in the case of committed BSWP(UWP) must be positive, i.e., wC∗
i =

a−2c
4 > 0, so we obtain c ≤ a/2.
In order to obtain optimal process innovation level in the basic model is always great than 0 and less

than 1, we analyze θ∗i in three scenarios. Here, we use the subscript d(n) denote the roots when the
denominator (numerator) equals zero.

First, note that θFB∗
i =

(a−2c)((2+b)(2−b)2I−rj2)ri
2N1

. The denominator 2N1 is convex in I . Equate

2N1 to zero, and solve for I . We obtain when IFBd =
r21+r

2
2−
√
b2r21r

2
2+(r21−r22)2

(4−b2)2 < I < I
FB
d =

r21+r
2
2+
√
b2r21r

2
2+(r21−r22)2

(4−b2)2 , 2N1 < 0, otherwise, 2N1 > 0. Then equate the numerator of θFB∗
i to zero,

i.e., (a− 2c)
(

(2 + b) (2− b)2I − rj2
)
ri = 0. We have IFBni = rj2

(2+b)(2−b)2 , and IFBn1 < IFBn2 . Because

IFBd − IFBn1
=

r21−(1+b)r22−
√
b2r21r

2
2+(r21−r22)2

2+b < 0, IFBd − IFBn1
=

r21+
√

(r21−r22)2+b2r21r22−(1+b)r22
2+b > 0 and

I
FB
d − IFBn2

=
r22+
√

(r21−r22)2+b2r21r22−(1+b)r21
2+b < 0. It is easy to obtain IFBd < IFBn1 < I

FB
d < IFBn2 .

Therefore, only if IFBd < I < IFBn1 or I > IFBn2 , θFB∗
i > 0.

Next, from θFB∗
i < 1, we obtain

Ki =


(
4− b2

) (
2
(
4− b2

)2
I − (2− b) (a− 2c) ri − 4

(
ri

2 + rj
2
))
I

+ (a− 2c+ 2ri) rirj
2


2N1

> 0.
∂K1

∂I = − (a−2c)(4−b2)((4−b2)2((2−b)(4−b2)I−2r22)I+br12r22+2r24)r1
2N2

1
. Because
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(
4− b2

)2 (
(2− b)

(
4− b2

)
I − 2r2

2
)
I + br1

2r2
2 + 2r2

4 is convex in I , and
∆ = −b (2− b)

(
r1

2 − r22
)

< 0, ∂K1/∂I < 0. Let K1 = 0, I =
(

8 (a− 2c+ r1) r
2 + (a− 2c)2r1

)
b2r1

−4 (a− 2c)
(
(a− 2c) r1

2 + 2
(
r1

2 + r2
2
))
b

+4
(
(a− 2c) r1

2 + 2
(
r1

2 − r22
))2


1
/2

4(4−b2)2 + (a−2c)(2−b)r12+4(r12+r22)

4(4−b2)2 = IFBN , only if

I > IFBN , θFB∗
i < 1.

Finally, combine the above conditions, because of IFBN > IFBn1 , only if I > max
{
IFBn2 , I

FB
N

}
, 0 <

θFB∗
i < 1.

Similar to the proof of θFB∗
i > 0. Because θC∗

i =
(a−2c)((2+b)(2−b)2I−4rj2)ri

N2
, the de-

nominator N2 is convex in I , then when ICd =
4(r21+r

2
2−
√
b2r21r

2
2+(r21−r22)2)

(−b2+4)2 < I < I
C
d =

4(r21+r
2
2−
√
b2r21r

2
2+(r21−r22)2)

(−b2+4)2 , N2 < 0, otherwise, N2 > 0. And if I > ICn2 = 4r12

(2+b)(2−b)2 , the numerator,

i.e., (a− 2c)
(

(2 + b) (2− b)2I − 4rj
2
)
ri > 0. Therefore, only if ICd < I < ICn1 or I > ICn2, θC∗

i > 0.

Then from θC∗
i < 1, we obtain only if I >


(

(a− 2c)2(2− b)2 − 64
(
2− b2

)
r2

2
)
r1

2

+16 (2− b) (a− 2c)
(
r1

2 − (1 + b) r2
2
)
r1

+64
(
r1

4 + r2
4
)2


1
/2

2(4−b2)2 +

(a−2c)(2−b)r12+8(r12+r22)

2(4−b2)2 = ICN , θC∗
i < 1. Because of ICN > ICn1, only if I > max

{
ICn2, I

C
N

}
,

0 < θC∗
i < 1.

Similarly, only if IFUd < I < IFUn1 or I > IFUn2 , θFU∗
i > 0, where IFUn2 = (6+b)r12

2(2+b)(2−b)2 . Then from

θFU∗
i < 1, we obtain only if I >

(6+b)



(
(a− 2c)2(2− b)2
−2
(
28− 17b2

)
r2

2

)
r1

2

+2 (2− b) (a− 2c)
(

(6 + b) r1
2 − (10 + 7b) r2

2
)
r1

+(6 + b)2
(
r1

4 + r2
4
)2



1
/2

16(4−b2)2 +

(6+b)

 (a− 2c) (2− b) r12
+ (6 + b)

(
r1

2 + r2
2
) 

16(4−b2)2 = IFUN , θFU∗
i < 1. Because of IFUN > IFUn1 , only if I >

max
{
IFUn2 , I

FU
N

}
, 0 < θFU∗

i < 1.
Note that IFBn2 < IFUn2 < ICn2. If I > ICn2, we have IFBN < IFUN < ICN . Thus, only if

I > max
{
ICn2, I

C
N

}
= Imin, 0 < θ∗i < 1.

Recall that 0 < r2 ≤ r1 < c. Because when I > Imin, θ∗i > 0, N1 > 0, N2 > 0, and

N3 > 0. Then from θFB∗
i =

(a−2c)((2+b)(2−b)2I−rj2)ri
2N1

, we have (2 + b) (2− b)2I − r1
2 > 0. Then

E
[
qFB∗
i

]
=

(a−2c)((2+b)(2−b)2I−r12)r2
4N1

> 0, and E
[
wFB∗
i

]
=

((4−b2)2I−bri2−2rj2)(a−2c)(4−b2)I
4N1

>
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((2+b)(2−b)2I−r12)(a−2c)(4−b2)I
4N1

> 0. Because θFU∗
i =

(2(2+b)(2−b)2I−(6+b)rj2)(a−2c)(6+b)r

2N3
> 0,

2 (2 + b) (2− b)2I − (6 + b) r1
2 > 0. Then E

[
qFU∗
i

]
=

(2(2+b)(2−b)2I−(6+b)rj2)(a−2c)(4−b2)I
N3

>

0, and
E
[
wFU∗
i

]
=

(4(2+b)(2−b)2I−(6+b)(ri2+rj2))(a−2c)(2−b)(2+b)2I
2N3

>
2(2(2+b)(2−b)2I−(6+b)r12)(a−2c)(2−b)(2+b)2I

2N3
> 0

. Because I > ICn2 =

4r12

(2+b)(2−b)2 ≥ 4rj2

(2+b)(2−b)2 , E
[
wC∗] =

(a−2c)((2+b)(2−b)2I−4rj2)ri
N2

> 0 and E
[
qC∗
i

]
=

((2+b)(2−b)2I−4rj2)(a−2c)(4−b2)I
4N2

> 0. Thus, all constraints on parameters make equilibrium solutions
be positive.

Appendix C: Impacts of different parameters

We choose parameters a, c, b, r1 and r2 to discuss the supplier’s preference over price commitment and
flexible pricing strategy in Proposition 1. Because H1, N2 and N3 are all independent of a and c, we
have if the unite cost is low enough, i.e., c ≤ 1

2

(
a−N3

√
σ2N2

(4−b2)IH1

)
, the supplier prefers a committed

pricing strategy, i.e., E
[
πCs
]
≥ E

[
πFUs

]
> E

[
πFBs

]
; otherwise, the supplier prefers a flexible UWP

strategy, i.e., E
[
πFUs

]
> max

{
E
[
πCs
]
, E
[
πFBs

]}
. And if the market size is large enough, i.e., a ≥

2c+N3

√
σ2N2

(4−b2)IH1
,E
[
πCs
]
≥ E

[
πFUs

]
> E

[
πFBs

]
, otherwiseE

[
πFUs

]
> max

{
E
[
πCs
]
, E
[
πFBs

]}
.

Let σ2 = 1
200 , I = 1, a = 1, c = 1

4 , r1 = 2
3 and r2 = 1

2 . Then we obtain if the competitive intensity b
is sufficiently low, E

[
πCs
]
≥ E

[
πFUs

]
> E

[
πFBs

]
, otherwise E

[
πFUs

]
> max

{
E
[
πCs
]
, E
[
πFBs

]}
,

which can be seen in Figure G1.

Fig. H1: The impact of b on the suppliers pricing strategy
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Let σ2 = 1
200 , I = 1, a = 1, c = 1

4 , r2 = 1
4 and b = 1

2 , we have T is increasing in r1. Then if buyer
1’s capability of process innovation is high enough, i.e., r1 ≥ r1, E

[
πCs
]
≥ E

[
πFUs

]
> E

[
πFBs

]
,

otherwise E
[
πFUs

]
> max

{
E
[
πCs
]
, E
[
πFBs

]}
, which can be seen in Figure G2.
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Fig. H2: The impact of r1 on the suppliers pricing strategy

Let σ2 = 1
200 , I = 1, a = 1, c = 1

4 , r1 = 3
4 and b = 1

2 , we have T is increasing in r2. Then if buyer
2’s capability of process innovation is high enough, i.e., r2 ≥ r2, E

[
πCs
]
≥ E

[
πFUs

]
> E

[
πFBs

]
,

otherwise E
[
πFUs

]
> max

{
E
[
πCs
]
, E
[
πFBs

]}
, which can be seen in Figure G3.

Fig. H3: The impact of r2 on the suppliers pricing strategy



Table H1: The impacts of model parameters on optimal decisions

Parameter θFB∗
i θC∗

i θFU∗
i E

[
wFB∗

i

]
E
[
wC∗] E

[
wFU∗]

a + + + + + +

b ± ± ± ± 0 ±

c − − − − − −

ri + + + + 0 +

rj − − − − 0 +

I − − − − 0 −


