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Abstract

We consider senior-level labor markets and study a decentralized game where
firms can fire a worker whenever they wish to make an offer to another worker.
The game starts with initial matching of firms and workers and proceeds with a
random sequence of job offers. The outcome of the game depends on the ran-
dom sequence according to which firms make offers and therefore is a probability
distribution over the set of matchings. We provide theoretical support for the
successful functioning of decentralized matching markets in a setup with myopic
workers. We then identify a lower bound on outcomes that are achievable through
strategic behavior. We find that in equilibrium either any sequence of offers leads
to the same matching or workers (firms) do not agree on what matching is the
worst (best) among all possible realizations of the outcome. This implies that
workers can always act to avoid a possible realization that they unanimously find
undesirable. Hence, a well-known result for centralized matching at the entry-
level carries over to matching at the senior-level albeit without the intervention
of a mediator.

KEYWORDS: Senior-level markets; Stability; Random matching
JEL Classification: C78; J44

∗I am grateful to William Thomson for his very helpful comments and discussions. I would like
to thank Nejat Anbarcı, Xiaogang Che, Onur Kesten, Jordi Massó, Angel Hernando-Veciana, Anıl
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1 Introduction

Centralized job matching has received much attention in theory and practice since cen-
tralized procedures were introduced by market organizers to address market failures
such as uncontrolled unraveling of appointment dates, recontracting and welfare losses;
notable examples are medical residency matching and school choice. ‘Stability’ of out-
comes is considered to be the main property that accounts for the success of centralized
matching procedures. A matching is ‘stable’ if no agent and no firm-worker pair have
an interest to deviate, i.e., no agent prefers being unmatched to being matched to her
current partner and no firm-worker pair prefer each other to their current partners.1

It is generally thought that decentralized markets do not function well and will
therefore benefit from improved coordination or centralization. However, it is not well
understood why they remain decentralized.2 One possible reason offered by theoretical
studies is that these markets reach stable outcomes by means of decentralized decision-
making. However, this result does not suggest much about the incentives of market
participants to improve their prospects, in particular, the limits on successful (wel-
fare enhancing) strategic behavior and the welfare implications of strategic interaction
for agents. The theory of matching has clearly shown that there are systematic com-
mon/opposing interests among certain groups of agents over the set of stable matchings.
Unlike in decentralized systems, the clearinghouse in centrally organized institutions
decides which procedure to use and therefore can control the welfare consequences of
strategic interaction via restricting achievable outcomes. To the best of our knowl-
edge, this paper is the first study to understand the limits that agents face in strategic
behavior in decentralized senior-level labor markets.

Due to the functional differences between institutions at the entry-level and the
senior-level, studies of the former, albeit having advanced, do not apply to or address
how equilibrium is reached at the senior-level professional markets. Entry-level job
positions, e.g., the labor market for medical interns and residents, are initially vacant.
Senior-level positions may not be initially vacant and become available when an incum-
bent vacates a position due to retirement or termination/expiration of contract.

Among examples of matching at the senior-level are the markets for CEO’s and
sports coaches. Each December, at the end of the football season, colleges make coach
replacements prior to National Signing Day in February which is the last day for a
high school senior to sign with the football team of an American college. Firing and
hiring of head coaches mostly occur in December and the vacancy is filled in advance
of the National Signing Day (Thomas and Van Horn, 2016). Nevertheless, such a short
period of opportunity window for firing and hiring helps coordination in the market.
The internal governance structure of some colleges may lead them to act faster than
others; therefore some offers may reach candidates earlier than others. In the firing and

1In one-to-one matching, the set of stable matchings is equal to the core.
2In non-cooperative models of decentralized bilateral bargaining/trade in networks,

Abreu and Manea (2012) show how an efficient matching can be achieved using a system of
punishments and rewards. In a study of the formation of partnerships in social networks, Bloch et
al. (2019) show that efficient matchings are achieved in a favor exchange game in which players need
favors at random times and approach neighbors randomly to ask for them.
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hiring season, when several senior positions become vacant, which vacancies are filled
with which coaches depend on the order in which colleges make offers. Another source
of uncertainty is the practice that colleges fire a coach whenever they wish to make an
offer to another coach, without knowing whether the offer will be accepted or not.

To model decentralized senior-level matching where uncertainty over outcomes is
accounted for, we study a sequential game that starts with an initial matching and
proceeds with a random sequence of job offers.3 The game begins with a lottery over
sequences of firms. Each firm in the sequence is given the opportunity to offer its
unique position to a worker. A worker who receives an offer compares it with the offer
that she may be holding, and rejects one and keeps the other. We assume that no
firm proposes to the same worker more than once and that no worker rejects the offer
she is holding unless she receives a new one. Uncertainty over sequences of offers is
translated to uncertainty over outcomes, therefore the outcome of the game is a lottery
over matchings. Our decentralized procedure reduces to the firm-proposing Deferred
Acceptance (DA) algorithm (Gale and Shapley, 1962) when each firm’s position is
initially vacant, in other words, the market in question is at the entry-level.4 In such an
instance, uncertainty over sequences of firms does not have any influence on outcomes,
i.e., any sequence of firms leads to the same matching.

We show that the equilibrium outcome is a lottery over matchings such that, unless
degenerate, workers (firms) do not agree on what is the worst (best) element in the
support (Theorem 3). Thus, either each sequence of offers leads to the same matching in
equilibrium or workers act to avoid a matching that they unanimously find undesirable.
Based on the lessons learnt from two-sided matching at the entry-level, at a first glance
firms seem to have a favored position in the game as proposers. Indeed, if each agent
acts according to her/its true preference ordering and if each firm’s position is initially
vacant, then any execution of the procedure leads to the firm-optimal stable matching
which firms (workers) unanimously find the best (worst) among all stable matchings.

The advantage of being proposers is not straightforward in our context. First, when
strategic considerations are taken into account, our result shows that a matching that
favors firms arises only if it is the unique realisation of the equilibrium outcome or
else workers can always act to eliminate such a possibility. A similar result is also
present in centralized entry-level professional markets. Consider a central agent who,
upon receiving rank-order lists of preferences from market participants, applies the
firm-optimal stable mechanism5 to produce an outcome. When confronted with such
a clearinghouse, workers can always eliminate their worst achievable partner by misre-
porting their preferences (Theorems 4.6 and 4.7, Roth and Sotomayor, 1990). Second,
due to the existence of an initial matching situation, welfare of firms and of workers

3Theoretical studies of decentralized matching include Becker (1973), Blum et al. (1997), Can-
tala (2004), Diamantoudi et al. (2015), Haeringer and Wooders (2004), Niederle and Yariv (2009),
Pais (2008), and Roth and Vande Vate (1991). Among the empirical/experimental studies of decen-
tralized matching are Choo and Siow (2006), Echenique and Yariv (2009), and Menzel (2015).

4Our formulation indeed corresponds to the McVitie and Wilson (1970) version of the DA algorithm
where at each step at most one firm makes an offer. However, for this special case a version that
corresponds to the DA algorithm of Gale and Shapley (1962) can be formulated.

5This is the mechanism defined by the firm-proposing Deferred Acceptance algorithm.
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does not monotonically decrease and increase respectively during the execution of the
decentralized procedure, preventing a stable outcome occurring even when both sides
act based on their true preference orderings.

There are two studies that are closely related to our paper. In a sightly different
formulation of the game by Pais (2008), each firm keeps its initial partner until it
makes a successful offer or until its initial partner receives and accepts an offer and
vacates the position. In our formulation a firm fires its initial partner when it chooses
to make an offer regardless of the outcome of the offer. The main result in Pais (2008)
establishes that in an equilibrium where each firm acts according to its true preference
ordering, any realized matching is stable at the true preferences. The same result holds
for a similar decentralized game formulated by Blum et al. (1997) to study the vacancy
chain problem. Starting from a quasi-stable matching (i.e., no blocking pair involves
a matched firm), offers can only be made by a random sequence of firms with vacant
positions. In decentralized matching, actions may be history dependent and therefore
an agent’s actions may not comply with a fixed preference ordering. Our first result
is the counterpart of theirs in a more restricted but natural setting where workers are
myopic and offers are not history dependent, that is, the strategy set of each agent is
the class of preference orderings (Theorem 2). A myopic worker bases her decisions on
a predetermined preference list and always accepts the offer that is ranked higher on a
preference list.

Our second result is established for the general setup where the strategy space is not
restricted to preference profiles. Different from the two papers, we study the structure
of possible realizations of any equilibrium outcome and show that in equilibrium either
any sequence of offers leads to the same matching or workers can always act to avoid
the one that they unanimously find undesirable; unlike in centralized markets, it is
achieved without the intervention of a mediator.

The organization of the paper is as follows. In section 2, we introduce the model.
In section 3, we describe the decentralized game and define the equilibrium notions. In
section 4, we address the strategic questions and present our results. In section 5, we
conclude. We defer all proofs to the appendix.

2 The Model

Let F = {f1, ..., fn} and W = {w1, ..., wm} denote finite sets of firms and workers
respectively. Let V ≡ F ∪W. Let v ∈ V denote a generic agent, f a generic firm, and
w a generic worker. For the rest of the paper, “it” refers to a firm and “she” refers to
a worker. Each v ∈ V has a linear order Pv over the agents on the other side and
remaining unmatched.6 Let Pv denote the set of such preferences for v. Let P ≡ (Pv)v∈V
denote a preference profile. Let P ≡

∏
v∈V
Pv denote the set of all preference profiles. Let

P−v denote profile PV \{v}. Let Rv denote the at-least-as-desirable-as relation associated
with Pv. For each v, v′, v′′ ∈ V v′ Rv v

′′ means that either v′ = v′′ or v′ Pv v
′′. We write

v′ is Pv-preferred than v′′ if v′ Pv v
′′. A problem is a preference profile P .

6In other words, Pv is transitive, antisymmetric (strict) and total.
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A matching is a function µ : V −→ V that satisfies the following: for each f ∈ F
and each w ∈ W, (i) µ(f) 6= f implies that µ(f) ∈ W ; (ii) µ(w) 6= w implies that
µ(w) ∈ F ; and (iii) µ(f) = w if and only if µ(w) = f . Let M denote the set of all
matchings. We write that v is unmatched at µ if µ(v) = v. We sometimes express an
agent’s partner at µ by ‘µ-partner’. Let µ, µ′ ∈ M be given. We write µ RF µ′ when
each firm finds its µ-partner at least as desirable as its µ′-partner. We similarly define
µ RW µ′. Let V ′ ⊆ V. Let µ(V ′) ≡

⋃
v∈V ′

µ(v). Let v, v′ ∈ V. Agent v′ is acceptable

to v at P if v prefers v′ to being unmatched, i.e., v′ Pv v. We sometimes write v′ is
Pv-acceptable to denote v′ Pv v. Let A(Pv) denote the set of acceptable partners at
Pv. Let Ã(Pv) ≡ A(Pv) ∪ {v}. Let T (Pv) denote the top choice of v at Pv. For each
f ∈ F and each v ∈ W ∪ {f}, let U(v, Pf ) denote the set of partners that f finds at
least as desirable as v at Pf . Formally, U(v, Pf ) ≡ {v′ ∈ W ∪ {f} : v′ Rf v}. For each
w ∈ W and each v ∈ F ∪ {w}, U(v, Pw) is defined similarly.

Matching µ is individually-rational at P if each agent finds her partner at µ
at least as desirable as remaining unmatched, i.e., for each v ∈ V , µ(v) Rv v. A pair
(f, w) blocks µ at P if f and w are not matched at µ and would prefer to be matched
to each other, i.e., w Pf µ(f) and f Pw µ(w). A matching is stable at P if it is
individually-rational and not blocked by any pair (f, w) at P. Let IR(P ) denote the set
of individually-rational matchings at P. Let S(P ) denote the set of stable matchings
at P. A firm f is achievable for worker w if there is a stable matching at P that
matches them. For any matching problem, there is a firm-optimal stable matching
µF which all firms find at least as desirable as any other stable matching and likewise
a worker-optimal stable matching µW . We will use the following facts about stable
matchings of a problem P.

Proposition 1. [Theorem 2.22, Roth and Sotomayor, 1990] Let P be a matching prob-
lem. The set of unmatched agents is the same across stable matchings at P .

Proposition 2. [Lemma 2.20, Roth and Sotomayor, 1990] Let P be a matching problem
and µ, µ′ ∈ S(P ). Each firm finds its µ-partner at least as desirable as its µ′-partner if
and only if each worker finds her µ′-partner at least as desirable as her µ-partner. That
is, µ RF µ

′ if and only if µ′ RW µ.

An immediate consequence of Proposition 2 is that the firm-optimal (worker-optimal)
stable matching is the worker-pessimal (firm-pessimal) stable matching, that is, it as-
signs each worker (firm) her (its) least preferred achievable partner.

3 The Decentralized Game

3.1 Description of the Game

The decentralized game is defined by a problem P and an initial matching µI ∈ IR(P )
which is known to all agents.

The game begins with nature choosing a sequence of firms at random according to
which firms make offers. The first firm in the sequence is given the opportunity to make
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an offer. If unmatched at µI , then the firm has two options, namely (i) making an offer
to a worker or (ii) passing its turn and remaining unmatched. If matched at µI , then
the firm has three options, namely (i) firing its initial partner and making no offer, (ii)
firing its initial partner and making an offer to another worker or (iii) passing its turn
and keeping its initial partner.

If the firm passes its turn, whether be it initially matched or unmatched, the initial
matching remains unchanged. If the firm fires its initial partner and makes no offer,
a new matching in which the firm and its initial partner are unmatched is formed. If
the firm fires its initial partner and makes an offer to another worker, the worker who
receives the offer decides whether to accept or reject it. If she accepts, then a new
matching is formed in which the worker and the offering firm are matched and their
previous partners, if any, are left unmatched. If she rejects, a new matching in which
the firm and its initial partner are unmatched is formed.

The game continues by allowing the next firm in the sequence to make an offer.
Whenever a firm is given the opportunity to make an offer, its available options depend
on whether it is currently matched or not. If unmatched, the firm may (i) make an
offer to a worker to whom it has not proposed before or (ii) pass its turn and remain
unmatched. Otherwise, it may (i) fire the worker it holds and make no offer, (ii) fire
the worker it holds and make an offer to a worker different from the worker it holds
and from workers to whom it has proposed before7 or (iii) pass its turn and keep the
worker it holds. Once a worker receives an offer, she may accept it and reject, if any,
the firm she holds or reject the offer and keep, if any, the firm she holds.

The game continues until no firm wishes to make an offer or fire the worker it holds.
The game ends when each firm sequentially passes its turn, at which point each worker
is matched to the firm she holds. The fact that each firm is allowed to propose to
the same worker only once ensures that the game ends after a finite number of offers.
However, this restriction is introduced primarily for simplicity, and relaxing it would
not change the results as long as a firm proposes to the same worker for a finite number
of times.

During the course of the game, no worker is allowed to make an offer to any firm
and a matched worker is allowed to reject the firm she holds only when she receives and
accepts an alternative offer. Throughout the game, each agent is informed of events that
have direct effects on her/it. Specifically, each firm learns only if its offer is accepted
or rejected and if its position is made vacant whereas each worker learns only if she
receives an offer from a firm. Thus, each information set of a firm is identified by the
identity of its initial partner, whether its initial partner has resigned its position and
of the ordered list of offers it has made together with the rejections it received. Each
information set of a worker is identified by the identity of her initial partner, whether
her initial partner has fired her and of the ordered list of offers she received together
with her responses.

We now describe the random elements in the game. The game begins with a lottery
over sequences of firms. We consider infinite sequences in which each firm appears

7This does not exclude the case that a firm may choose to propose to its initial partner whom it
has fired earlier in the game.
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infinitely many times. The sample space over which lotteries are considered is denoted
by O and a sample point is denoted by o. Although there are uncountably many such
sequences, many of these sequences are equivalent for all possible profile of strategies.
Therefore, the set of resulting equivalence classes is finite.8 Additionally, we assume
that each such sequence has a positive probability of occurring. Since each firm is
allowed to propose to the same worker only once and firing of a worker is possible only
when a firm is matched to the worker, the fact that each firm appears in a sequence
infinitely many times guarantees that at some point in the game each firm passes its
turn. Thus, the game ends in finite time.9

We say that ‘a worker is still holding her initial partner’ at some point in the game
if she is currently matched to and has not yet been fired by her initial partner. Thus,
she has not accepted any of the offers that she has received so far. Also, her initial
partner has not made any offer yet.

3.2 The Strategy Space

Actions of a worker (firm) may depend on the history of offers received (made) and
therefore may not be compatible with a preference ordering. Nevertheless, a natural
class of strategies is the set of ‘preference strategies’ (Blum et al., 1997). A preference
strategy is one which dictates the action of an agent at each of her/its information sets
to be consistent with a rank order list of preferences.

A worker who uses a preference strategy rejects the offer of a firm if the firm is
unacceptable according to the preference list or else compares the offer she receives
with the firm she holds based on the preference list, keeps the most preferred firm and
rejects the other.

A firm who uses a preference strategy chooses an action depending on whether it
is currently matched or not. An unmatched firm makes an offer to the most preferred
acceptable worker (if any) in the preference list to whom it has not proposed before. If
a matched firm currently holds the most preferred acceptable worker in the preference
list to whom it has not proposed before, then the firm passes its turn. Otherwise, it
fires the worker it holds and makes an offer to the most preferred acceptable worker (if
any) in the preference list to whom it has not proposed before.

Remark 1. When using a preference strategy, once a firm makes an offer to a worker
and the worker accepts this offer in the game, the firm does not make any further offers
unless the worker it holds accepts an offer from another firm.

We consider a class of preference strategies called ‘truncations’. Let v ∈ V, and
Pv ∈ Pv contain k (≥ 0) acceptable partners. A truncation strategy Qv is a list
containing k′ ≤ k acceptable partners of v such that the first k′ elements of Qv are the
first k′ elements of Pv, in the same order. Let Tr(Pv) denote the set of all strategies
that are truncations of Pv.

8We thank a referee for pointing this out.
9The assumption that each firm appears infinitely many times in a sequence is stronger than what

is needed. It suffices to assume sufficiently long finite sequences so that the decentralized procedure
terminates.
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Remark 2. If a worker is matched to a firm that is unacceptable according to her
truncation strategy in an outcome of the game then she is matched to her initial partner.
Furthermore, she has not accepted any offer from any firm and her initial partner has
not proposed to any worker during the execution of the game.

Study of senior-level labor markets, precisely having an initial matching situation,
constrains consideration of more complex strategies and restricts analysis to the use of
preference strategies in equilibrium. Example 1 below shows that the game may result
in different matchings for different sequences of firms. The driving force behind this is
the observation that w2 rejects an offer in favor of her initial partner f1 that she may
otherwise accept had she not held her initial partner. In one sequence, the worker has
already been fired by her initial partner f1 when she receives the offer and consequently
accepts it, while in the other, she still holds her initial partner f1 when she receives the
offer and consequently rejects it. However, right after the decision to reject the offer and
to keep the initial partner f1, w2 is fired by f1 to propose to another worker. Although
her rejection of the offer benefits w2 ultimately in the latter order in Example 1, it could
well have harmed her by leaving her unmatched in the end. When using a preference
strategy, the reason behind the rejection of an otherwise accepted offer is clearly known
and detected. On the other hand, the rejection of this kind cannot be tracked when a
general strategy is used because a worker may reject or accept an offer as she wishes.

The use of truncations is not an essential element of our findings. Our main results
would remain intact if preference strategies are not truncations of the true preference
lists but the rank order of the acceptable elements preserves the order of the true
preferences. To keep matters simple, we consider truncations in equilibrium rather
than this kind of preference strategies. Unless otherwise stated, results are established
for broader strategy sets encompassing strategies that may not be consistent with any
preference orderings. Thus, while agents use preference strategies in equilibrium, in
particular truncations, deviations are general strategies which may not be identified by
a preference ordering.

For each agent v ∈ V , sv is a strategy of agent v and Sv is the set of all strategies.
A strategy profile s = (s1, s2, ..., sn) is a list of strategies. The set of all strategy profiles
is denoted by S ≡

∏
v∈V

Sv. A preference strategy of agent v is denoted by a preference

ordering Qv. A sequence of firms o and a strategy profile s define a play of the game
(o, s).

3.3 Equilibrium Notions

We demonstrate via an example that with the same initial matching and the strategy
profile, the game may result in different matchings for different sequences of firms.

Example 1. Let the true preference profile P be as follows. Initial matching µI =
{(f1, w2)} is shown in parenthesis.

Pf1 : w1, (w2), Pw1 : f2, f1, w1

Pf2 : w2, w1, Pw2 : (f1), f3, f2.

Pf3 : w2, f3,
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Suppose that agents play the game according to the preference profile P. Consider
an order where f3, f1 and f2 make offers sequentially. The game starts with f3’s offer
to w2. Worker w2 rejects f3 in favor of her initial partner f1. Next, firm f1 fires w2 and
proposes to w1 who is currently unmatched and hence accepts f1. Then, f2 proposes
to w2 who accepts it. In the subsequent moves, each firm passes its turn and thus the
game terminates with the matching µ̂ = {(f1, w1), (f2, w2)}.

Now, consider an order where f2, f1 and f3 make offers sequentially and each moves
twice before the next firm in the sequence does. Firm f2 proposes to w2. Worker w2

rejects f2 as she is initially matched to a firm she prefers. Then, f2 proposes to w1

who accepts it. Next, f1 fires w2 and proposes to w1 who rejects it as she is currently
matched to the most preferred firm in her preference list. Then f1 proposes to w2 who
accepts it. When f3 proposes to w2, she rejects f3 as she prefers the firm she currently
holds to f3. In the subsequent moves, each firm passes its turn and the game ends with
the unique stable matching µ = {(f1, w2), (f2, w1)}. ♦

Let P ∈ P , µI ∈ IR(P ) and s ∈ S be given. The probability distribution over the
sequences of firms is translated into a probability distribution over the set of match-
ings. Let a probability distribution over O be given. Let GµI [s] denote the probability
distribution overM induced by the game when agents act according to s. Since the ini-
tial matching is fixed throughout the paper, we suppress it and denote the probability
distribution over M by G[s]. For each f ∈ F and each v ∈ W ∪ {f}, let Gf [s] denote
the probability distribution over W ∪ {f} induced by G[s] and let Gf [s](U(v, Pf )) de-
note the probability that in the game, f is assigned a partner at least as desirable as v
according to Pf . For each w ∈ W and each v ∈ F ∪ {w}, the probability distributions
Gw[s] and Gw[s](U(v, Pw)) are similarly defined.

To study strategic issues, we now define what constitutes a best strategy for an
agent. Let f ∈ F. What follows can be similarly defined for a representative worker.
Let s ≡ (sf , s−f ) be a strategy profile. Let s′f be an alternative strategy for f. We say
that sf is a better strategy than s′f , given s−f , if for each utility function compatible with
f ’s true preferences, it yields a higher expected utility. The following is an equivalent
statement in terms of stochastic dominance.

Strategy sf stochastically Pf -dominates s′f , given s−f , if for each v ∈ W ∪{f},
Gf [sf , s−f ](U(v, Pf )) ≥ Gf [s

′
f , s−f ](U(v, Pf )).

Strategy profile s is an sd-Nash equilibrium if for each v ∈ V, sv stochastically
Pv-dominates each alternative strategy s′v given s−v.

10

In words, strategy profile s is an sd-Nash equilibrium if no agent v ∈ V, given the
strategies of all other agents s−v, is able to increase the probability of receiving any
partner v′ and agents ranked higher than v′ at Pv by using a strategy other than sv.
There always exists an sd-Nash equilibrium of the game (Pais, 2008). The following
refinement of sd-Nash equilibrium takes into account the dynamic nature of the game.

Strategy profile s is a subgame perfect sd-Nash equilibrium of the game if it
is an sd-Nash equilibrium in each subgame of the game.

There is no proper subgame of the game (Pais, 2008). Therefore, the two equilibrium

10This name is taken from Thomson (2011). The concept was introduced by d’Aspremont and
Peleg (1988). It is referred to as ordinal Nash equilibrium in the literature.
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concepts coincide.
Strategy profile Q ∈ P is an sd-Nash equilibrium in truncations if Q is an

sd-Nash equilibrium and for each v ∈ V, Qv is a truncation strategy.

4 Equilibrium Analysis

In this section, we present equilibrium results. Pais (2008) studies a slightly different
version of the game that we consider. She allows a firm to keep its initial partner until
it makes a successful offer or its position has been vacated by its initial partner. On the
other hand, we require a firm to fire its initial partner when it chooses to make an offer
to a worker (different from its initial partner). Our formulation is consistent with the
functioning of senior-level professional markets where the hiring process starts with the
announcement of a vacant position. A college’s football coach hiring procedure starts
with an announcement that the current head coach has been fired, resigned to start a
head coach job elsewhere or decided to retire. Similarly, the search for a corporate CEO
starts after the existing CEO dies, retires or is fired (Thomas and Van Horn, 2016).

She studies sd-Nash equilibria where each firm adopts a preference strategy and
acts according to its true preference ordering. She proves that any realized equilib-
rium outcome is stable at the true preferences. Her result remains valid under our
formulation.

Theorem 1. [Pais,2008] Let P ∈ P, µI ∈ IR(P ) and s ≡ (PF , sW ) be an sd-Nash
equilibrium of the game. Then, suppG[s] ⊆ S(P ).

Our first result is the counterpart of Theorem 1 when workers are myopic and
offers are not history dependent, therefore, the strategy space of each agent consists
only of preference strategies. A myopic worker always accepts a higher ranked offer
on a preference list and never rejects an offer on the presumption that a better offer
may arrive in the future. We study sd-Nash equilibria in truncations and show that
any realized equilibrium outcome is stable at the true preferences of workers and the
strategies according to which firms act.

Theorem 2. Let P ∈ P and µI ∈ IR(P ). Let S = P and Q ∈ P be an sd-Nash
equilibrium of the game in truncations. Then, suppG[Q] ⊆ S(QF , PW ).

As the true preference list is itself a truncation strategy, a direct implication is
Corollary 1: any realized outcome of an equilibrium where each firm acts according to
its true preference ordering, is stable at the true preferences.

Corollary 1. Let P ∈ P and µI ∈ IR(P ). Let S = P and Q ≡ (PF , QW ) ∈ P be an
sd-Nash equilibrium of the game in truncations. Then, suppG[Q] ⊆ S(P ).

Since the strategy set of each agent comprises of preference orderings, our result
is also applicable to centralized institutions with an initial matching situation. Each
market participant submits a preference list to a centralized authority which then ran-
domly selects a sequence of firms and applies our decentralized procedure to produce
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an outcome.11 As deterministic procedures inherently favor some agents over others,
randomness can be introduced in centralized matching to achieve procedural fairness.
This is felt most strongly in two-sided matching where the polarization of interests of
agents on different sides is reflected in the structure of the set of stable matchings.

Theorem 2 has direct implications for centralized matching where professionals at all
career stages not just entry-level are interested in new positions. One example of such
centralized institutions is the placement of Conservative Rabbis which is controlled by
a central authority. Upon receiving the list of vacancies circulated periodically, rabbis
of all career levels who are interested in a new position submit their preferences over
congregations with a vacant position to the placement committee. The committee
recommends each congregation seeking a rabbi a list of three candidates from among
those who have shown interest. Following interviews, each congregation seeking a rabbi
may recruit one or ask the committee to recommend another list. The process continues
until a rabbi is appointed (Granovetter, 1995).

The two results inform us of the stability of all possible realizations of the equilib-
rium outcome under certain restrictions. However, neither makes any statement about
the structure of the possible realizations of the equilibrium outcome. Our next result
addresses this question. Theorem 3 states that in an sd-Nash equilibrium in truncations
either the support is a singleton so that each sequence of offers leads to the same match-
ing or there is no matching in the support that all workers unanimously find worse than
each other matching in the support. In other words, unless it is the unique realization of
the outcome, workers coordinate their actions without the help of a mediator to avoid
a matching that they unanimously find undesirable. The following example illustrates
the essence of our result.

Example 2. Let the true preference profile P be as follows. The initial matching
µI = {(f1, w2)} is shown in parenthesis.

Pf1 : w1, (w2), Pw1 : f2, f1,

Pf2 : w2, w1, Pw2 : (f1), f2.

When the sequence of firms is o : f1, f2, .., the game produces the firm-optimal
stable matching µF = {(f1, w1), (f2, w2)}. On the other hand, when the sequence of
firms is o′ : f2, f2, f1, f1, ..., the game produces the worker-optimal stable matching µW =
{(f1, w2), (f2, w1)}. We show that P is not an sd-Nash equilibrium. If w2 deviates and
acts according to Qw2 : f1, w2, the game produces µW for each sequence of firms. Thus,
µW is obtained with probability 1. Unlike the case with strategy Pw2 , Qw2 dictates w2

to reject f2 for each sequence of offers. Afterwards, f2 proposes to w1 who rejects f1 in
favor of f2 for each sequence of offers. Firm f1 then proposes to w1 who accepts it. By
rejecting f2, w2 triggers w1’s rejection of f1 and ultimately receives an offer from her
most preferred firm f1. Indeed, (Qw2 , P−w2) is an sd-Nash equilibrium in truncations.
Precisely, each of the workers receives her most preferred firm under her true preferences
and thus, has no interest in deviation. Worker w2 never accepts f2’s offer therefore, for

11The formal description of the amended version of the DA algorithm based on our decentralized
procedure can be found in the working paper version.
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each sequence of firms w1 ends up receiving an offer from f2 hindering any chance of f1
hiring w1. ♦

We now present our main result.

Theorem 3. Let P ∈ P, µI ∈ IR(P ) and Q ∈ P be an sd-Nash equilibrium in
truncations. Then, either |suppG[Q]| = 1 or there is no matching µ ∈ suppG[Q] such
that for each µ′ ∈ suppG[Q]\{µ}, µ′ RW µ.

Suppose firms act based on their true preferences in equilibrium, QF = PF . Since
Q is an equilibrium when the strategy set of each agent is unrestricted, it remains
to be an equilibrium when the strategy set of each agent consists only of preference
orderings. Then by Theorem 2, each realization of the outcome is stable at the true
preferences. Theorem 3 implies that whenever there is more than one stable matching
in the support and one is considered worker-pessimal, at least one worker can deviate
so as to eliminate the undesirable matching for all. This is reminiscent of a result well-
known for centralized professional markets at the entry level where market organizers
use the firm-optimal stable mechanism to match market participants. Whenever there
is more than one stable outcome at the matching problem, at least one worker can prof-
itably misrepresent her preferences and obtain her most preferred achievable partner,
in particular, she can eliminate the worst achievable partner.

A consequence of Theorems 2 and 3 and Proposition 2 is that in equilibrium either
the support is a singleton or no outcome in the support is firm-optimal.

We finally address the existence question. The following example shows that with
no restrictions on the initial matching an sd-Nash equilibrium in truncations may not
exist.

Example 3. Let the true preference profile P be as follows. The initial matching
µI = {(f1, w2), (f2, w3)} is shown in parenthesis.

Pf1 : w1, (w2), f1, Pw1 : f1, w1,

Pf2 : w2, (w3), f2, Pw2 : (f1), f2,

Pw3 : (f2), w3.

Let Q be an sd-Nash equilibrium in truncations. We first show that f1 never pro-
poses to w2 at any play of the game. Suppose there is a play of the game at which f1
proposes to w2. Since a firm proposes to acceptable workers only, by Qf1 ∈ Tr(Pf1),
f1 must have proposed to w1 who must have rejected the offer. By Qw1 ∈ Tr(Pw1) and
A(Pw1) = {f1}, all firms must be listed unacceptable at Qw1 . Since w1 is initially un-
matched, w1 remains unmatched at any play of the game. Then Qw1 cannot be part of
an sd-Nash equilibrium as f1 is the most preferred firm at her true preference ordering
and rejected at some play of the game. Therefore, f1 never proposes to w2 at any play
of the game. We next show that Qf2 = Pf2 .

Case 1: A(Qw2) = ∅ or A(Qw2) = {f1}. Firm f2 is rejected by w2 at any play of the
game for any truncation strategy which dictates f2 to propose to w2. First, A(Qw3) 6= ∅.
Otherwise, f2 can be matched to its initial partner w3 at a play of the game only if f2
passes its turn and keeps its initial partner in its first move in the game. However, no
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truncation strategy for f2 lists w3 the highest ranked worker. Hence, f2 is unmatched at
any play of the game if it uses a truncation strategy. Let Q′f2 be a deviation which lists
w3 the highest ranked worker. Firm f2 passes its turn and remains matched to w3 at
any play of the game, contradicting our assumption that Q is an sd-Nash equilibrium.
Thus, A(Qw3) = A(Pw3) = {f2}. Firm f2 is matched to w3 if Qf2 = Pf2 and remains
unmatched if it uses other truncation strategies at any play of the game.

Case 2: Qw2 = Pw2 . Consider any sequence of firms in which f2 has its first move before
f1. Firm f2 is rejected by w2 in favor of f1 for any truncation strategy which dictates f2
to propose to w2. We come up with a contradiction as in Case 1 if A(Qw3) = ∅. Then
let A(Qw3) = {f2}. Firm f2 is matched to w3 at any play of the game if Qf2 = Pf2 and
remains unmatched if it uses other truncation strategies. Now consider any sequence
in which f1 has its first move before f2. For any truncation strategy of f1, f1 fires w2

before f2 has its first move in the game. Also, we have shown that f1 never proposes to
w2 at any play of the game. Therefore, f2 is matched to w2 at any play of the game if
Qf2 = Pf2 . Thus, f2 is never matched to a less preferred partner when it uses Pf2 than
any other truncation strategies but there is at least one sequence of firms in which f2
is matched to a preferred worker when it uses Pf2 than any other truncation strategies.

We now show that given Qf2 = Pf2 , no truncation strategy for w2 can be part of
an sd-Nash equilibrium. As shown before, w2 is never matched to f1 at any play of the
game. If A(Qw2) = ∅ or A(Qw2) = {f1}, then w2 is unmatched at any play of the game.
If Qw2 = Pw2 , then consider any sequence in which f2 has its first move before f1. Firm
f2 is rejected by w2 in favor of f1. Therefore, w2 is unmatched at such a play of the
game if she acts according to Q. Let Q′f2 be a deviation such that A(Q′w2

) = {f2}.
Worker w2 is matched to f2 at any play of the game, contradicting the assumption that
Q is an sd-Nash equilibrium.♦

We now identify admissible initial matchings for which an sd-Nash equilibrium in
truncations exists.

An initial matching µI is admissible if, µI /∈ S(P ) implies that µI ∈ IR(P ) and
there is µ ∈ S(P ) such that
(a.1) for each f ∈ F with w ≡ µI(f), if µ(f) Pf w then µ(w) Pw f.
(a.2) for each F ′ ⊆ F and each W ′ ⊆ W such that µI and µ map F ′ onto W ′ and each
f ′ ∈ F ′, if for each f ∈ F ′\{f ′}, µI(f) = T (Pf ), then µ(f ′) Rf ′ µ

I(f ′).

Admissibility requires an unstable initial matching to be individually-rational and
necessitates the existence of a stable matching µ that satisfies conditions (a.1) and (a.2).
Condition (a.1) says that if a firm f finds its initial partner w worse than its µ-partner
then w also finds her initial partner f worse than her µ-partner. In other words, if
f improves from its initial situation, then its initial partner does too. Condition (a.2)
considers a group of firms F ′ mapped onto a group of workers W ′ by initial matching µI

and stable matching µ. If each firm in F ′ is initially matched to its most favorite worker
and if no worker in W ′ receives a better offer than its initial partner then each firm
and worker in the group would end up being matched to her/its initial partner. This
would prevent stable matching µ being achieved as an equilibrium outcome. Therefore,
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condition (a.2) requires that if each firm but one is initially matched to its most favorite
worker, the last one prefers its µ-partner to its initial partner. Let MA(P ) be the set
of admissible initial matchings. Notice that a stable initial matching is vacuously ad-
missible. Hence, MA(P ) 6= ∅.

Our final result states that as long as the game starts with an admissible initial
matching, an sd-Nash equilibrium in truncations exists.

Proposition 3. Let P be a matching problem and µI ∈ MA(P ). There is an sd-Nash
equilibrium in truncations.

5 Conclusion

We study a decentralized matching game in which starting from an initial matching
firms sequentially offer their unique job positions to workers. We find that the realized
equilibrium outcome is stable at the true preferences of workers and the strategies
according to which firms act. This provides theoretical support for the success of senior-
level professional markets when agents base their decisions on predetermined lists of
preferences. We then show that in equilibrium either the realized outcome is unique or
no realized outcome is worker-pessimal among all possible realizations. Hence, we re-
establish a well-known fact for centralized entry-level labor markets that in equilibrium
workers can act to eliminate a stable outcome that they all find undesirable with the
exception that this is now achieved without the intervention of a mediator.

6 Appendix A

Proof of Theorem 2: Let Q be an sd-Nash equilibrium in truncations. Assume by
contradiction that there is µ ∈ suppG[Q] such that µ /∈ S(QF , PW ). We first show that
µ ∈ IR(QF , PW ). Since no firm ever makes an offer to a worker who is unacceptable
at Q, then for each f ∈ F , µ(f) ∈ Ã(Qf ). Suppose that there is a worker w such
that µ(w) /∈ Ã(Pw). Then w Pw µ(w). By µI ∈ IR(P ), we have µ(w) 6= µI(w). Let
Q̄w ∈ Tr(Pw) be such that A(Q̄w) = ∅.12 By using Q̄w, w may end up unmatched
or matched to her initial partner µI(w) but she is never matched to a firm that is
unacceptable at Pw. Thus, Qw does not stochastically Pw-dominate Q̄w. Hence, Q is
not an sd-Nash equilibrium.

We have proved that µ ∈ IR(QF , PW ). Thus, there is a blocking pair for µ at
(QF , PW ), i.e., there is a pair (f, w) such that w Qf µ(f) and f Pw µ(w). Then f must
have proposed to and been rejected by w at each play of the game that leads to µ.

Case 1: µI(w) = f. We first show that f /∈ A(Qw). Assume by contradiction that
f ∈ A(Qw). Then w must have received and accepted an offer from a Qw-preferred
firm, say f ′, than f at each play of the game that leads to µ. Then either w rejects
all further offers and is matched to f ′ or she receives a better offer and is matched to

12By the definition of a truncation strategy, the offer of an unacceptable firm is always rejected.
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a Qw-preferred firm than f ′. In either case, µ(w) Qw f . As Qw ∈ Tr(Pw), f ∈ A(Qw)
implies that µ(w) Pw f , contradicting our assumption. Thus f /∈ A(Qw). This, together
with f Pw µ(w) implies that µ(w) = w and A(Qw) ( U(f, Pw).

Let Q̄w ∈ Pw be an alternative strategy which has the same ordering as Qw except
that f is the least preferred acceptable firm at Q̄w. Formally, A(Q̄w) = A(Qw) ∪ {f},
for each f ′ ∈ A(Q̄w)\{f}, f ′ Q̄w f, and for each v, v′ ∈ (F ∪ {w})\{f}, v Q̄w v

′ if and
only if v Qw v′. By construction, A(Q̄w) ⊆ U(f, Pw). Let Q̄ ≡ (Q̄w, Q−w). We show
that the probability that w achieves a partner in U(f, Pw) is larger at Q̄ than at Q. For
each play of the game that leads to µ when agents act according to Q, f must have
proposed to and been rejected by w. If w deviates and acts according to Q̄w, either she
is matched to f or she receives a better offer and is matched to a Q̄w-preferred firm
than f. Since f ∈ A(Q̄w) and A(Q̄w) ⊆ U(f, Pw), in either case w achieves a partner
in U(f, Pw), but she remains unmatched if she acts according to Qw. Now consider any
play of the game that does not lead to µ when agents act according to Q. Suppose w
deviates and acts according to Q̄w. If f proposes to w, as before w achieves a partner
in U(f, Pw). Otherwise, w achieves the same partner as when she acts according to Qw.
This completes the proof that the probability that w achieves a partner in U(f, Pw) is
larger at Q̄ than at Q. Hence, Q is not an sd-Nash equilibrium.

Case 2: µI(w) 6= f. By Remark 2, either f /∈ A(Qw) or w must have still been holding
her initial partner when she rejected f . Let Q̄w ∈ Pw be an alternative strategy which
has the same ordering as Qw except that f is the top choice firm at Q̄w. Formally,
T (Q̄w) = f and for each v, v′ ∈ (F ∪ {w})\{f}, v Q̄w v′ if and only if v Qw v′. Let
Q̄ ≡ (Q̄w, Q−w). We show that the probability that w achieves a partner in U(f, Pw)
is larger at Q̄ than at Q. For each play of the game that leads to µ when agents act
according to Q, f must have proposed to and been rejected by w. If w deviates and
acts according to Q̄w, she is matched to f , but she achieves a partner less preferred
than f if she acts according to Qw. Now consider any play of the game that does not
lead to µ when agents act according to Q. Suppose w deviates and acts according to
Q̄w. If f proposes to w, w is matched to f . Otherwise, w achieves the same partner
as when she acts according to Qw. This follows from the fact that w is not initially
matched to f and therefore will never reject any offer that would be accepted had she
acted according to Qw. This completes the proof that the probability that w achieves a
partner in U(f, Pw) is larger at Q̄ than at Q. Hence, Q is not an sd-Nash equilibrium.

�
Proof of Theorem 3: Let P be a matching problem, µI ∈ IR(P ) be an initial match-
ing and Q ∈ P be an sd-Nash equilibrium in truncations. Since Q is an equilibrium
when there is no restriction on the strategy set of any agent, it continues to be an
equilibrium when the strategy set consists only of preference orderings. By Theorem 2,

suppG[Q] ⊆ S(QF , PW ). (1)

Assume by contradiction that |suppG[Q]| 6= 1 and there is µ ∈ suppG[Q] such that

for eachµ′ ∈ suppG[Q]\{µ} and eachw ∈ W, µ′(w) Rw µ(w). (2)
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Let µ′ ∈ suppG[Q]\{µ}. Let (o,Q) and (o′, Q) be two plays of the game that lead to
matchings µ and µ′ respectively. By (1) and Proposition 2,

for each f ∈ F, eitherµ(f) = µ′(f) orµ(f) Qf µ
′(f). (3)

Step 1: We argue that no worker’s truncation strategy ranks her µ-partner higher than
her µ′-partner. Assume by contradiction that there is w ∈ W such that µ(w) 6= µ′(w)
and µ(w) Qw µ′(w). By µ, µ′ ∈ S(QF , PW ) and Proposition 1, µ′(w), µ(w) ∈ F. By
Remark 2, no worker accepts the offer of a firm unacceptable at her truncation strategy.
As Qw ∈ Tr(Pw), (2) implies that µ′(w) = µI(w) and µ(w) = w, contradicting µ(w) ∈
F . Thus,

for eachw ∈ W, eitherµ(w) = µ′(w) orµ′(w) Qw µ(w). (4)

Before we move onto Step 2, we partition F and W . Let F µ ≡ {f ∈ F : µ(f) Qf

µ′(f)} be the set of firms whose truncation strategy ranks their µ-partner higher than
their µ′-partner. Let F µ=µ′ ≡ {f ∈ F : µ(f) = µ′(f)} be the set of firms whose partners
at µ and µ′ are the same. We similarly define W µ′ and W µ=µ′ . By (3), F µ and F µ=µ′

form a partition of F and by (4), W µ′ and W µ=µ′ form a partition of W. Since µ and
µ′ are one-to-one and F µ and W µ′ are finite, µ and µ′ map F µ onto W µ′ . Since F µ and
F µ=µ′ form a partition of F, each firm must have proposed to its µ-partner in o′. By
Step 1, each w ∈ W with µ(w) 6= µ′(w) must have rejected her µ-partner in o′.

Step 2: We show that there is a worker who must be still holding her initial partner
when she rejects her µ-partner in o′. Assume by contradiction that no such worker
exists. Let w′ be the first worker who rejects her µ-partner in o′. By our assumption,
w′ rejects her µ-partner in favor of a firm f ′ 6= µI(w′) in o′. Then f ′ Qw′ µ(w′) and f ′

must have proposed to w′ in o′ who must have accepted it. By Remark 2, f ′ ∈ A(Qw′).
By Qw′ ∈ Tr(Pw′), f ′ Pw′ µ(w′). By µ ∈ S(QF , PW ), µ(f ′) Qf ′ w

′. Then f ′ must have
proposed to and been rejected by µ(f ′) before f ′ proposes to w′. This is a contradiction
to the assumption that w′ is the first worker who rejects her µ-partner in o′.

Step 3: We now provide a procedure that takes o′ as an input and produces a new
sequence of firms such that no firm is rejected by its µ-partner who is still holding her
initial partner. Until we propose a profitable deviation, we fix the strategy profile at Q.
Procedure: Let o0 ≡ o′.
Step t ≥ 1: Pick the first firm in ot−1 which is rejected by its µ-partner who is still
holding her initial partner. Denote it by f t. Let kt denote the position of ot−1 in which
f t proposes to its µ-partner. Let f I,t ≡ µI(µ(f t)).

If µ(f I,t) = f I,t, let k̄t denote the first position of ot−1 in which f I,t passes its turn
and remains unmatched. Otherwise, let k̄t denote the position of ot−1 in which f I,t

proposes to its µ-partner.
Let kt1 ≡ kt, f t1 ≡ f t and i ≡ 1.

1. Check if each of the following conditions is satisfied.
(c.1) µI(f ti ) ∈ W . Let wti ≡ µI(f ti ).
(c.2) µ(wti) ∈ F .
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(c.3) µ(wti) proposes to wti between positions kti and k̄t of ot−1.
(c.4) f ti Qwt

i
µ(wti).

(c.5) f ti fires wti to propose to its µ-partner in position kti of ot−1.
If each of the five conditions is satisfied, let kti+1 denote the position of ot−1 in which

µ(wi
t) proposes to wti , f

t
i+1 ≡ µ(wti) and i ≡ i+ 1, go to 1.

2. Otherwise, construct ot as follows and go to step t+ 1.
For l = 1, ..., i, delete f tl between positions ktl and k̄t of ot−1 and insert f tl in position
k̄t + l of ot−1.

The procedure ends when no firm is rejected by its µ-partner who is still holding
her initial partner.13

When constructing a new sequence ot, the procedure defers the offer of f t1 to its
µ-partner in position kt1 of ot−1 to a new position (position k̄t + 1 of ot−1) where its
µ-partner no longer holds her initial partner. If f t1 has fired its initial partner wt1 to
propose to its µ-partner in position kt1 of ot−1, the deferral of its offer to its µ-partner
may lead wt1 to be still holding f t1 after position kt1 of the new sequence. While the
procedure is taking a corrective action to avoid the rejection of f t1 by its µ-partner
who is still holding her initial partner, the deferral of f t1’s offer may itself produce a
rejection of this kind that would otherwise not be present. Precisely, if wt1 receives an
offer from her µ-partner between positions kt1 and k̄t1 of ot−1 (condition c.3) and she
prefers her initial partner f t1 to her µ-partner (condition c.4), the deferral of f t1’s offer to
its µ-partner and therefore the deferral of its firing of wt1 will lead wt1 to reject the offer
of her µ-partner as she will still be holding her initial partner f t1. However, this offer
would indeed have been accepted had the offer of f t1 to its µ-partner not been deferred.
To prevent this happening, the procedure also defers the offer that wt1 receives from its
µ-partner. The procedure iterates this process until no further rejections of this kind
occur.

An assumption in our description of the game is that a firm fires its initial partner
(if any) when it chooses to make an offer to a worker. If a firm fires its initial partner
to make an offer to its µ-partner then its top choice in its preference strategy should
be its µ-partner. The following remark points out this observation.

Remark 3. Condition c.5 implies that f ti makes its first offer in position kti of ot−1.
Hence, T (Qf ti

) = µ(f ti ).

The procedure is well-defined. We defer the proof to the Appendix B. For each
step t of the procedure, let µt denote the outcome of the game in ot. Let µ0 ≡ µ′. Let
ot |k denote the finite sequence consisting of k elements which coincides with ot for the
first k elements. Let th be the final step of the procedure. The final sequence that the
procedure returns is oth and the outcome of the game in oth is µth . Since each sequence
has a positive probability of occurring, for each t with th ≥ t ≥ 0, µt ∈ suppG[Q].
By (3),

for each f ∈ F, eitherµ(f) = µt(f) orµ(f) Qf µ
t(f). (5)

Step 4: We show that the procedure returns a final sequence oth in which no firm is
rejected by its µ-partner. Assume by contradiction that there is a firm which is rejected

13An illustration of the procedure is available in the Appendix B of the working paper version.
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by its µ-partner in oth . Let f be the first such firm in oth . Let w ≡ µ(f). Suppose f
is rejected by w in favor of f ′. Hence, f ′ Qw f = µ(w). Since oth is the final sequence
returned by the procedure, no worker is holding her initial partner when she rejects her
µ-partner in oth . Therefore, f ′ 6= µI(w). Also, f ′ must have proposed to w in oth who
must have accepted it. By Remark 2, f ′ ∈ A(Qw). By Qw ∈ Tr(Pw), f ′ Pw µ(w). By
µ ∈ S(QF , PW ), µ(f ′) Qf ′ w. This implies that f ′ has proposed to and been rejected
by its µ-partner prior to its offer to w in oth , contradicting the assumption that f is the
first firm in oth which is rejected by its µ-partner.

By (5) and Step 4, µth = µ. Thus we obtained an order oth from o′ where no firm is
rejected by its µ-partner.

Step 5: We now create a new order õ from oth by changing the position that f 1 in
Step 1 of the procedure proposes to its µ-partner in oth . Let w1 ≡ µ(f 1). By the def-
inition of the procedure, w1 rejects f 1 in position k1 of o′ while she is still holding
her initial partner. The procedure takes o′ as an input and produces oth where f 1’s
offer to its µ-partner w1 is not rejected. Let õ be a sequence whose elements are the
same as those in oth but that differs from oth in that the position in which f 1 proposes
to its µ-partner w1 in oth is deleted and inserted in position k1 of oth . Since for each
th ≥ t ≥ 1, o0 |k1−1= ot |k1−1, we have õ |k1= o0 |k1 . Then, w1 must be still holding
her initial partner when she receives f 1’s offer in position k1 of õ. Therefore f 1 must
have been rejected by w1 in õ. Let µ̃ denote the outcome of the game in õ. Hence,
µ(f 1) = w1 Qf1 µ̃(f 1). By µ̃ ∈ S(QF , PW ), µ̃(w1) Pw1 f 1 = µ(w1). As µ(w1) ∈ F, by

µ, µ̃ ∈ S(QF , PW ) and Proposition 1, µ̃(w1) ∈ F. Let f̃ ≡ µ̃(w1).

Step 6: We complete the proof by identifying a profitable deviation. Consider an
alternative strategy sw1 such that w1 acts according to Qw1 at each of her information
sets except for the information set that leads to the acceptance of f 1’s offer in (oth , Q).
Let s ≡ (sw1 , Q−w1). When using sw1 , w1 rejects f 1’s offer in position k1 of oth and acts
according to Qw1 in each other information set. Since for each t ≥ 1, o0 |k1−1= ot |k1−1,
f 1 has no decision nodes between position k1 of oth and the position in which it proposes
to w1 in oth . Thus, by the construction of õ, the same outcome is obtained in (õ, Q) and
in (oth , (sw1 , Q−w1)). When nature chooses the sequence oth , w1 achieves f̃ if she acts
according to sw1 and she achieves f 1 if she acts according to Qw1 and f̃ Pw1 f 1. We next
argue that for any other sequence where w1 achieves a partner f ∈ U(Pw1 , f̃) in (o,Q)
she cannot achieve a less preferred partner than f in (o, s). This will complete the proof
as the probability of being assigned to a firm at least as desirable as f̃ is larger when she
uses sw1 , contradicting the assumption that Q is an sd-Nash equilibrium in truncations.

Let o ∈ O be such that w1 achieves a partner f ∈ U(Pw1 , f̃) in (o,Q). Notice that
f 6= f 1. If the information set where w1 accepts f 1 in (oth , Q) is not reached in (o, s)
then sw1 dictates the same actions as Qw1 and w1 is matched to f in (o, s) too. Suppose
then that the information set where w1 accepts f 1 in (oth , Q) is reached in (o, s). In this
information set, Qw1 dictates w1 to accept f 1 in (o,Q) and sw1 dictates w1 to reject f 1 in
(o, s). Let k be the position of o in which w1 accepts f 1 in (o,Q) and rejects f 1 in (o, s).
Notice that Qw1 and sw1 dictate the same actions until position k of o. Since w1 achieves
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a partner f ∈ U(Pw1 , f̃) in (o,Q) and f̃ Qw1 f 1, she must have received and accepted
the offer of f after position k of o. Since µI(w1) Qw1 f 1 and w1 accepts f 1 in position k
of o at Q, she must not be still holding her initial partner in position k of o at Q nor is
she at s. We show that w1 cannot be matched to a less preferred partner than f in (o, s).

Assume by contradiction that w1 is matched to a less preferred firm than f in (o, s).
1) f is rejected by w1 in (o, s). Since Qw1 and sw1 dictate the same actions until po-
sition k of o and f 6= f 1, w1 must have received f ’s offer after position k in (o, s).
Then w1 must not be still holding her initial partner when she rejects f in (o, s). Also,
sw1 dictates w1 to act according to Qw1 after position k of o. Then f must have been
rejected in favor of a Qw1-preferred firm. By Qw1 ∈ Tr(Pw1), and f ∈ A(Qw1), w1 must
be matched to a Pw1-preferred firm than f in (o, s), contradicting our assumption. 2) f
does not propose to w1 in (o, s). Then there must be a position of o where f is rejected
by a worker w at Q but held at s. Let k0 be the first position of o where a firm, say f0,
is rejected by a worker at Q but held at s. Let w0 denote the worker who rejects f0 in
position k0 at Q. If f0 is rejected by w0 while she is still holding her initial partner then
µI(w0) makes its first offer after position k0 of o. Then f0 must have also been rejected
by w0 in position k0 at s, contradicting the definition of f0. Then f0 must have been
rejected in favor of a firm f ′ at Q whose offer w0 receives in position k0 of o. Since w0

does not receive the offer in position k0 at s, there must be a position prior to k0 such
that f ′ is rejected by a worker at Q but held at s, contradicting the definition of k0. �

For the last result, we consider a subset of truncation strategies. Let µ ∈ M and
P ∈ P . Let v ∈ V be such that µ(v) 6= v. We say Qv is a truncation strategy
at µ(v) if Qv is a truncation strategy that has the same ordering as Pv up to the
element µ(v) and ranks all other elements unacceptable. For v ∈ V such that µ(v) = v
any truncation strategy is a truncation strategy at µ(v). Let Tr(Pv, µ(v)) denote the
truncation of Pv at µ(v).

The following two lemmata will be used in the proof of Proposition 3. Let P ∈ P
and µ ∈ S(P ). The first one states that if an agent v prefers v′ to her/its µ-partner and
if each of v and v′ adopts a truncation strategy at their respective µ-partners, then v
must not be listed acceptable at v′’s strategy.

Lemma 1. Let P ∈ P , µI ∈ M and µ ∈ S(P ). Let v, v′ ∈ V be such that v′ Pv µ(v).
If Qv′ ∈ Tr(Pv′ , µ(v′)), then v /∈ A(Qv′).

Proof. By µ ∈ S(P ), µ(v′) Pv′ v. By Qv′ ∈ Tr(Pv′ , µ(v′)), v /∈ A(Qv′).

Now, let µ ∈ S(P ) satisfy conditions (a.1) and (a.2) in the definition of an admissible
initial matching. If each agent v ∈ V except one firm adopts a truncation strategy at
µ(v), then the firm cannot receive a better partner than its µ-partner at any play of
the game.

Lemma 2. Let f ′ ∈ F. Let µI ∈ IR(P ) and µ ∈ S(P ) satisfy conditions (a.1) and
(a.2). Let Q ∈ P be such that for each v ∈ V \{f ′}, Qv ∈ Tr(Pv, µ(v)). For each
µ′ ∈ suppG[Q], µ(f ′) Rf ′ µ

′(f ′).
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Proof. Assume by contradiction that there is µ′ ∈ suppG[Q] such that µ′(f ′) Pf ′ µ(f ′).
Let F0 ≡ {f ∈ F : µ′(f) Pf µ(f)}. Notice that f ′ ∈ F0. By µ ∈ S(P ),

for each f ∈ F0, µ
′(f) ∈ W. (6)

Each of the following numbered paragraphs begins with a statement and follows
with its proof.
(p.1) For each f ∈ F0, µ

′(f) = µI(f). Let f ∈ F0. By (6), µ′(f) ∈ W. Let w ≡ µ′(f).
Then, w Pf µ(f). By Lemma 1, f /∈ A(Qw). By Remark 2, µ′(w) = µI(w) = f .

(p.2) For each f ∈ F0\{f ′}, µI(f) = T (Pf ). Let f ∈ F0\{f ′} and w ≡ µI(f). By (p.1),
f /∈ A(Qw). By Remark 2, w never accepts f ’s offer at any play of the game. Then
µ′(f) = w is possible only if w = µI(f) = T (Pf ) and hence, f passes its turn and keeps
w in its first move in the game.

Let W0 ≡ {w ∈ W : µ(w) ∈ F0}.

(p.3) µ(W0) ⊆ F0. This follows from the definition of W0.

(p.4) µI(F0) ⊆ W0. Let f0 ∈ F0. By the definition of F0 and (p.1), µ′(f0) = µI(f0) Pf0 µ(f0).
Let w ≡ µ′(f0). By µ ∈ S(P ), µ(w) Pw f0 = µI(w). By µI ∈ IR(P ), µ(w) ∈ F . Let
f ≡ µ(w). By Qw ∈ Tr(Pw, µ(w)), µ(w) = f Qw f0 = µ′(w) = µI(w). Then f must
have made no offer to w at any play of the game that leads to µ′. Thus µ′(f) Qf w.
We show that f ∈ F0. If f = f ′, then the result is immediate. Assume that f 6= f ′. By
Qf ∈ Tr(Pf , µ(f)), µ′(f) Pf w = µ(f). Hence, µ(w) = f ∈ F0 and µI(f0) = w ∈ W0.
As f0 is arbitrary, µI(F0) ⊆ W0.

We complete the proof of lemma. As µ and µI are one-to-one, by (p.3) and (p.4), µ
and µ′ map F0 onto W0. By (p.2) for each f ∈ F0\{f ′}, µI(f) = T (Pf ). But µI(f ′) =
µ′(f ′) Pf ′ µ(f ′), contradicting (a.2).

Proof of Proposition 3: Let µI ∈ S(P ). Let Q ∈ P be such that for each v ∈ V,
Qv ∈ Tr(Pv, µI(v)). We show that Q is an sd-Nash equilibrium. Let v, v′ ∈ V be such
that v′ Pv µ

I(v). By Lemma 1, v /∈ A(Qv′). If v ∈ F, by Remark 2, v′ never accepts
v’s offer at any play of the game. If v ∈ W , by Remark 1, v′ never proposes to v at
any play of the game. Thus each play of the game with profile Q leads to µI . This also
shows that no agent v can unilaterally deviate and obtain a partner v′ that satisfies
v′ Pv µ

I(v). Therefore, Q ∈ P is an sd-Nash equilibrium in truncations.
Now, let µI /∈ S(P ). Then µI ∈ IR(P ) and there is µ ∈ S(P ) that satisfies (a.1)

and (a.2). Let Q ∈ P be such that for each v ∈ V, Qv ∈ Tr(Pv, µ(v)). We show that Q
is an sd-Nash equilibrium. Lemma 2 is proved for an arbitrary firm f ′ and for a general
strategy Qf ′ . A direct implication is that for each f ∈ F, µ(f) Rf µ′(f).

Step 1: We argue that suppG[Q] = {µ}. Assume by contradiction that there is
µ′ ∈ suppG[Q] such that µ′ 6= µ. Then there is f ∈ F such that µ′(f) 6= µ(f). By
Lemma 1, µ(f) Pf µ′(f). Since f never proposes to a worker unacceptable at Qf ,
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by Qf ∈ Tr(Pf , µ(f)), µ(f) Qf µ′(f) = f and µ(f) ∈ W. Let w ≡ µ(f). Then f
must have proposed to and been rejected by w at any play of the game that leads
to µ′. By Qw ∈ Tr(Pw, µ(w)), any f ′ ∈ F that satisfies f ′ Qw f = µ(w) must also
satisfy f ′ Pw f = µ(w). By Lemma 1, w /∈ A(Qf ′). Thus, any f ′ ∈ F that satisfies
f ′ Qw f never proposes to w at any play of the game. Therefore, w must have been
holding her initial partner when she has rejected f . Thus, µI(w) Qw f = µ(w). By
Qw ∈ Tr(Pw, µ(w)), µI(w) Pw f = µ(w). Let f0 ≡ µI(w). By µ ∈ S(P ), µ(f0) Pf0 w,
contradicting condition (a.1).

Step 2: We now show that Q is an sd-Nash equilibrium. By Lemma 2, no firm can do
better than being assigned to its µ-partner at any play of the game. Now, let w ∈ W
and Q′w ∈ Pw be an alternative strategy. Let µ′ ∈ suppG[Q′w, Q−w]. We show that
µ(w) Rw µ

′(w). Assume by contradiction that µ′(w) Pw µ(w). By µ ∈ S(P ), µ′(w) ∈ F.
Let f ≡ µ′(w). Thus, f Pw µ(w). Then, by Lemma 1, w /∈ A(Qf ). Thus f has never
proposed to w at any play of the game, contradicting f = µ′(w). �

7 Appendix B

Lemma 3. The procedure in the proof of Theorem 3 is well-defined.

Proof. The proof will proceed in steps.
Step 1: We show that k̄t exists. Notice that for each step t of the procedure µt−1 ∈
suppG[Q]. Let f ∈ F. If µ(f) = f, then by Theorem 2, µt−1, µ ∈ S(QF , PW ) and by
Proposition 1, µ(f) = µt−1(f) = f. Since the game ends when each firm sequentially
passes its turn, there is a position of ot−1 where f passes its turn and remains un-
matched. If µ(f) 6= f, then by (5), either µ(f) = µt(f) or µ(f) Qf µ

t(f). Thus f must
have proposed to its µ-partner in ot−1. Thus k̄t exists.

Step 2: We show that for each step t of the procedure no firm is rejected by its µ-partner
prior to position kt of ot−1. Let t be a step of the procedure. Assume by contradiction
that there is a firm which is rejected by its µ-partner prior to position kt of ot−1. Let
f be the first such firm in ot−1. Let w ≡ µ(f). Suppose f is rejected by w in favor of
f ′. Hence, f ′ Qw f = µ(w). By the definition of the procedure no worker is holding her
initial partner when she rejects her µ-partner prior to position kt of ot−1. Therefore,
f ′ 6= µI(w). Also, f ′ must have proposed to w in ot−1 who must have accepted it. By
Remark 2, f ′ ∈ A(Qw). By Qw ∈ Tr(Pw), f ′ Pw µ(w). By µ ∈ S(QF , PW ), µ(f ′) Qf ′

w. This implies that f ′ has proposed to and been rejected by its µ-partner prior to its
offer to w, contradicting the assumption that f is the first firm in ot−1 which is rejected
by its µ-partner prior to position kt of ot−1.

Step 3: We show that step t ends in finite time. First we argue that kt < k̄t. Assume
by contradiction that kt > k̄t. If µ(f I,t) = f I,t, then f I,t passes its turn and remains
unmatched in position k̄t. Otherwise, f I,t proposes to its µ-partner in position k̄t. By
step 2, f I,t is not rejected by its µ-partner in position k̄t. In either case, µ(f t) is not
holding her initial partner f I,t in position kt when she rejects f t, contradicting the
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definition of the procedure. Thus, kt < k̄t. Since for each i, kti < kti+1 and k̄t is fixed,
step t ends in finite time.

Step 4: We show that the procedure ends in finitely many steps. We show that for any
two steps t1 and t2, t1 6= t2 of the procedure, f t1 6= f t2 . Since F is finite, this completes
the step and the proof. The procedure returns a sequence in which no firm is rejected
by its µ-partner who is still holding her initial partner.

Let t1 and t2, t1 < t2 be two steps of the procedure. We first show that in ot1 , f I,t1

has at least one decision node before f t1 proposes to its µ-partner. Firm f I,t1 has a
decision node in position k̄t1 of ot1−1. By part (2) of step t1, the position in which f t1

proposes to its µ-partner in ot1−1 is moved to position k̄t1 + 1 of ot1−1. Furthermore,
all decision nodes of f t1 between kt1 and k̄t1 are deleted. Thus, f I,t1 has at least one
decision node before f t1 proposes to its µ-partner in ot1 . We now show that f I,t1 has at
least one decision node before f t1 proposes to its µ-partner in ot2−1. This will complete
the proof because the µ-partner of f t1 will have been fired by f I,t1 before she will receive
f t1 ’s offer in ot2−1. Thus, f t1 6= f t2 .

Assume by induction that in ot1+1, ..., ot2−2, f I,t1 has at least one decision node
before f t1 proposes to its µ-partner. We show that f I,t1 also has at least one decision
node before f t1 proposes to its µ-partner in ot2−1.

Assume by contradiction that f I,t1 has no decision nodes before f t1 proposes to its
µ-partner in ot2−1. Let k̃ be the position of ot2−2 in which f t1 proposes to its µ-partner.
By the induction assumption f I,t1 has at least one decision node prior to position k̃
of ot2−2 but has no decision nodes before f t1 proposes to its µ-partner in ot2−1. This
implies that f I,t1 proposes to its µ-partner prior to position k̃ of ot2−2 and for some i,
say r, in step t2 − 1, we have f t2−1r = f I,t1 . Hence kt2−1 < k̃. Since decision nodes of
f I,t1 before it proposes to its µ-partner in ot2−2 are not deleted in the procedure and
yet f I,t1 has no decision nodes before f t1 proposes to its µ-partner in ot2−1, then f I,t1

makes its first offer to its µ-partner in ot2−2. Hence, we have Fact 1 below.
Fact 1: T (QfI,t1 ) = µ(f I,t1).

For notational ease we suppress the superscript t2−1 on firms and workers involved in
part (1) of step t2−1. We replace f t2−11 , , ..., f t2−1r , wt2−11 , ..., wt2−1r by f1, ..., fr, w1, ..., wr
respectively.

Case 1: k̄t2−1 = k̃. By the definition of the procedure, the initial partner of w0 ≡ µ(f1)
proposes to its µ-partner in position k̃ of ot2−2. Therefore, µ(f1) = µI(f t1) = w0. Also
we have Fact 2 below.
Fact 2: f1 is rejected by its µ-partner w0 who is still holding her initial partner f t1 in
position kt2−1 of ot2−2.

By Fact 2, µI(w0) = f t1 Qw0 f1 = µ(w0). By Remark 2, w0 never accepts the offer
of an unacceptable firm at Qw0 . Then, f1 ∈ A(Qw0). Since Qw0 ∈ Tr(Pw0), f

t1 Pw0 f1 =
µ(w0). By µ ∈ S(QF , PW ), µ(f t1) Qf t1 w0 = µI(f t1). We show that T (Qf t1 ) = µ(f t1).
Suppose not. Then there is w ∈ W\{w0} such that w Qf t1 µ(f t1). Since for each
t ≥ t1, we have ot1−1 |kt1−1= ot |kt1−1 and since f t1 proposes to its µ-partner in position
kt1 of ot1−1, f t1 fires its initial partner w0 and proposes to w prior to position kt2−1

of ot2−2, contradicting Fact 2. Thus, T (Qf t1 ) = µ(f t1). Also, by Remark 3, for each
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i ∈ {1, 2, ..., r}, T (Qfi) = µ(fi).
Qf1 Qf2 . . . Qfr Qf t1 Qw0 Qw1 . . . Qwr−1 Qwr

µ→ w0 w1 wr−1 wr
...

...
...

...
...

...
...

... f t1 f1 fr−1 fr ← µI

µI → w1 w2 wr w0
...

...
...

...
...

...
...

... f1 f2 fr f t1 ← µ
...

...
...

...

Let Ŵ ≡
⋃r
i=0wi and F̂ ≡

⋃r
i=1 fi ∪ {f t1}. Consider the sequence o which leads to

the matching µ. From the above profile of strategies we deduce that µ and µI map F̂
onto Ŵ . Thus, for each f ∈ F̂ , {µ(f), µI(f)} ⊆ Ŵ . Each f ∈ F̂ makes its first offer to
and is rejected by its µ-partner who is still holding her initial partner. Therefore, no
f ∈ F̂ can be matched to its µ-partner when the sequence is o. This is a contradiction.
Case 2: k̄t2−1 < k̃. As fr = f I,t1 , the node in which f I,t1 proposes to its µ-partner in
ot2−2 is deleted and inserted in position k̄t2−1 + r of ot2−2. Notice that kt1 < kt2−1 <
k̄t2−1 < k̃ and that ot2−2 |kt1−1= ot1 |kt1−1 . Since f t1 has no decision nodes between
positions kt1 and k̃ of ot2−2, then f I,t1 has at least one decision node before f t1 proposes
to its µ-partner in ot2−1. This is a contradiction.
Case 3: k̃ < k̄t2−1. Notice that fr = f I,t1 and µ(f t1) = µI(f I,t1). Thus µ(f t1) =
µI(f I,t1) = wr (Conditions c.1 and c.2). The position of ot2−2 in which f I,t1 proposes to
its µ-partner is denoted by kt2−1r . By the induction assumption and Fact 1, kt2−1r < k̃.
Thus, kt2−1r < k̃ < k̄t2−1. Hence f t1 proposes to its µ-partner wr between positions kt2−1r

and k̄t2−1 of ot2−2 (Condition c.3). By the definition of the procedure, wr rejects her µ-
partner f t1 and keeps her initial partner f I,t1 in ot1−1. Thus f I,t1 = fr Qwr µ(wr) = f t1

(Condition c.4). By Fact 1, f I,t1 fires its initial partner wr to propose to its µ-partner
in position kt2−1r of ot2−2 (Condition c.5). Hence fr+1 = f t1 .

By the construction of the procedure, the moves of f I,t1 and of f t1 in positions
kt2−1r and k̃ of ot2−2 respectively are deleted and inserted in positions k̄t2−1 + r and
k̄t2−1 + r + 1 of ot2−2 respectively. Also, decision nodes of f I,t1 between positions kt2−1r

and k̄t2−1 of ot2−2 and of f t1 between positions k̃ and k̄t2−1 of ot2−2 are deleted. Thus
f I,t1 has at least one decision node before f t1 proposes to its µ-partner in ot2−1. This is
a contradiction.
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