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A B S T R A C T 

Tracking the formation and evolution of dark matter haloes is a critical aspect of any analysis of cosmological N -body simulations. 
In particular, the mass assembly of a halo and its progenitors, encapsulated in the form of its merger tree, serves as a fundamental 
input for constructing semi-analytic models of galaxy formation and, more generally, for building mock catalogues that emulate 
galaxy surv e ys. We present an algorithm for constructing halo mer ger trees from ABACUSSUMMIT , the lar gest suite of cosmological 
N -body simulations performed to date consisting of nearly 60 trillion particles, and which has been designed to meet the 
Cosmological Simulation Requirements of the Dark Energy Spectroscopic Instrument (DESI) surv e y. Our method tracks the 
cores of haloes to determine associations between objects across multiple time slices, yielding lists of halo progenitors and 

descendants for the several tens of billions of haloes identified across the entire suite. We present an application of these merger 
trees as a means to enhance the fidelity of ABACUSSUMMIT halo catalogues by flagging and ‘merging’ haloes deemed to exhibit 
non-monotonic past merger histories. We show that this cleaning technique identifies portions of the halo population that have 
been deblended due to choices made by the halo finder, but which could have feasibly been part of larger aggregate systems. 
We demonstrate that by cleaning halo catalogues in this post-processing step, we remo v e potentially unphysical features in the 
default halo catalogues, leaving behind a more robust halo population that can be used to create highly accurate mock galaxy 

realizations from ABACUSSUMMIT . 

Key words: methods: numerical – cosmology: theory – large-scale structure of the Universe. 

1

I
t  

o
i
–
t
a
i  

g

h
f
p
(
r
f  

s
p
r
s  

�

S  

w
w  

m  

E  

f  

c  

r  

h  

&  

2  

a  

t  

w
K  

2  

L

f
t  

t

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/512/1/837/6541858 by U
niversity of D

urham
 user on 27 M

ay 2022
 I N T RO D U C T I O N  

n our present paradigm of structure formation, galaxies are thought 
o form within potential wells of dark matter that have collapsed out
f density fluctuations in the primordial Universe due to gravitational 
nstability. These potential wells – so-called ‘haloes’ of dark matter 
are self-gravitating, virialized structures that have decoupled from 

he background expansion of the Universe. As gas shock heats 
nd, subsequently, cools and condenses within dark matter haloes, 
t sparks star formation that leads to the eventual formation of
alaxies. 

Modelling the hierarchical formation and evolution of dark matter 
aloes is therefore a fundamental component of any theoretical 
ramework of galaxy formation. A well-known, early approach to this 
roblem was presented in the analytic model of Press & Schechter 
 1974 ), who, assuming initial fluctuations seeded by a Gaussian 
andom field, derived a methodology for computing the multiplicity 
unction of dark matter haloes as a function of mass and redshift. De-
pite the relative simplicity of the model, the number density of haloes 
redicted by the Press–Schechter approach has been shown to be in 
easonable agreement with early numerical experiments of cosmic 
tructure formation (e.g. Efstathiou et al. 1988 ; Lacey & Cole 1994 ).
 E-mail: so wnak.bose@cfa.harv ard.edu 
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A refinement of this model, often dubbed the ‘extended’ Press–
chechter (EPS) theory, was later introduced by Bond et al. ( 1991 ),
ho described a framework for computing the distribution of haloes 
ith mass M at some redshift z by following trajectories of individual
ass elements through the linear o v erdensity field. In particular,
PS enables the calculation of the quantity f ( M 1 , z 1 | M 2 , z 2 ), or the

raction of mass from haloes with mass M 2 at redshift z 2 that are
ontained in pro g enitor haloes of mass M 1 identified at an earlier
edshift z 1 . The EPS method therefore enables the computation of
alo formation and merger rates o v er multiple epochs (e.g. Lacey
 Cole 1993 ; Somerville & Kolatt 1999 ; Parkinson, Cole & Helly

008 ) – in other words, the formation and evolution of progenitor
nd descendant haloes, the ensemble of which defines a halo merger
ree . Once constructed, the merger tree acts as the backbone upon
hich semi-analytic models of galaxy formation may be built (e.g. 
auffmann, White & Guiderdoni 1993 ; Cole et al. 2000 ; Croton et al.
006 ; Somerville et al. 2008 ; Benson 2012 ; Henriques et al. 2015 ;
agos et al. 2018 ). 
While analytic methods like EPS are instructive, modelling the 

ormation and evolution of cosmic structures self-consistently in 
heir large-scale environment is the order of the day if we wish
o compare theoretical models to the observed Universe. Over 
he last several decades, cosmological N -body simulations have 
ecome near indispensable tools for augmenting our understanding 
f structure formation. In terms of the computational volume of 
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heir calculations, simulations that model the dark matter only are
urrently the industry standard (e.g. Springel et al. 2005 ; Klypin,
rujillo-Gomez & Primack 2011 ; Heitmann et al. 2015 ; Potter, Stadel
 Teyssier 2017 ; Elahi et al. 2018 ; Garrison et al. 2018 ; Baugh

t al. 2019 ; Ishiyama et al. 2020 ). Halo catalogues and merger trees
xtracted from these simulations may then be augmented with models
f the galaxy-halo connection to build mock catalogues that can then
e compared to galaxy surv e ys (see Wechsler & Tinker 2018 , for a
e vie w). Although hydrodynamical simulations of galaxy formation
re continuously improving in both their scale and their sophistication
see Vogelsberger et al. 2020 , for a re vie w), at present they fall short
f the demands of modern galaxy surv e ys in terms of box size and
he number of simulations available. 

The identification of dark matter haloes in N -body simulations
s by no means a ‘solved’ problem. At some level, any halo finder
as to ultimately resort to making a series of choices when defining
he existence and extent of haloes. For example, the first choice
omes in deciding whether halo particle memberships are to be
etermined in configuration space, as in the ‘friends-of-friends’
Davis et al. 1985 ) or spherical o v erdensity-based methods (e.g.
ress & Schechter 1974 ; Klypin & Holtzman 1997 ), in phase space
e.g. Behroozi, Wechsler & Wu 2013a ), or o v erall characterizations
f the cosmic density field (e.g. Neyrinck, Gnedin & Hamilton 2005 ;
 alck, Ne yrinck & Szalay 2012 ). A subsequent step may (or may
ot) involve determining which subsets of ‘halo’ particles are in
act gravitationally bound (e.g. Springel et al. 2001 ; Knollmann &
nebe 2009 ). Each choice can lead to slightly different populations
f haloes realized from the same particle field (see Knebe et al. 2011 ,
or an e xhaustiv e study of the effects of halo finders on the properties
f the final catalogue). 
Given these uncertainties, halo merger trees may then also be

sed as useful diagnostic tools for assessing the fidelity of the halo
opulation itself. The dynamical history of these objects introduces
urther complications as they may ‘split’, fly-by one another, merge
artially, or simply flicker abo v e and below the mass threshold for
ecording a halo. Each of these processes can significantly alter
he mass associated with the halo o v er time. This is particularly
ignificant for applications that use the properties of haloes to build
ock galaxy catalogues. A prominent example is that of the Halo
ccupation Distribution (HOD; e.g. Peacock & Smith 2000 ; Benson

t al. 2000 ; Berlind & Weinberg 2002 ; Zheng et al. 2005 ), in which
he probability that a halo contains a certain population of galaxies is
ependent on properties like its mass or maximum circular velocity.
he dynamical histories of haloes may be stochastic enough to make

heir final mass very different from the mass they would have had
hen a galaxy in the real Universe would have formed in them,

n which case a model like the HOD may result in a biased mock
alaxy population. In this regard, a working definition of a ‘well-
efined halo’ may simply be a persistent entity – i.e. that which can
e cleanly associated from one time-step of the simulation to the
e xt. By trav ersing the merger trees of individual haloes, one can
hen flag and remo v e objects that fail to pass this persistence test in
ost-processing. 
There are now several approaches in the literature for con-

tructing merger trees from cosmological simulations, differing in
heir complexity and the information content that acts as input for
uilding these trees. While some algorithms attempt to establish
ssociations between haloes across time-steps based simply on
heir mass/position/velocity in the box (Onions et al. 2012 ), other

ethods aim at connecting haloes (or subhaloes) that maximize a
erit function based on o v erlapping particle sets across two time

lices (Klimentowski et al. 2010 ; Elahi et al. 2018 ). Particle-based
NRAS 512, 837–854 (2022) 
orrelator methods are the more established fla v our in recent times,
eeing as they display greater stability in the properties of their
erger trees (see, e.g. Srisawat et al. 2013 ). Some algorithms assign

reater weight in the merit function to those particles that are more
ightly bound (based on e.g. their binding energy as in Springel et al.
005 ; Jiang et al. 2014 ). Finally, there are also those algorithms that,
n addition to using particles to associate haloes, also make use of
he past history of individual objects (such as their bulk motion, or
ndeed their particle membership) to construct the final merger tree
e.g. Behroozi et al. 2013b ; Han et al. 2018 ). 

As modern galaxy surv e ys like the Dark Energy Spectroscopic
nstrument (DESI; Levi et al. 2013 ), Euclid (Laureijs et al. 2011 ),
he Nancy Grace Roman Space Telescope (Spergel et al. 2015 ), and

he Vera Rubin Observatory’s Le gac y Surv e y of Space and Time
LSST; Ivezi ́c et al. 2019 ) continue to ramp up the statistical power
f observational data, there is an increasingly pressing demand on
heoretical models to keep up to pace. The computational challenge
ies in the fact that the rele v ant numerical simulations not only require
he several Gpc 3 in volume to emulate these surveys, but they need
o simultaneously resolve the mass scales of interest. For example,
he largest galaxy sample in DESI will target emission-line galaxies
ELGs) in the redshift range between z ∼ 0.6 and 1.6. Resolving the
ost haloes of ELGs (typically of the order of 10 11 M � h 

−1 in halo
ass, Gonzalez-Perez et al. 2018 ; Hadzhiyska et al. 2021 ) with at

east a modest number of particles within Gpc-sized boxes requires
ens of billions of resolution elements. In this paper, we will describe
ur methodology for constructing and applying halo merger trees
rom the ABACUSSUMMIT simulations (Maksimova et al. 2021 ), which
ave been designed to meet exactly these specifications. 
The layout of this paper is as follows. In Section 2 , we describe

he details of the ABACUSSUMMIT suite, and the algorithms used to
dentify haloes and construct merger trees from them. In Section 3 , we
resent tests of the robustness of some typical merger tree statistics
gainst the cadence of simulation outputs used to construct them.
ection 4 presents our main results, and displays some of the primary
pplications of the merger trees, including the methodology we use to
clean’ halo catalogues by coalescing haloes that have been oversplit
y the halo finder, or undergone any number of the dynamical
rocesses described abo v e. We then demonstrate the power of this
leaning technique by applying ‘cleaned’ ABACUSSUMMIT haloes to
 realistic application of constructing mock galaxy catalogues to
bserved galaxy clustering data. Finally, a summary of our main
ndings is presented in Section 5 . 

 M E T H O D O L O G Y  

n this section, we describe ABACUSSUMMIT , an extremely large
et of numerical simulations that are designed to match DESI’s
osmological simulation requirements (Section 2.1 ), and COMPASO

Hadzhiyska et al. 2022 ), the on-the-fly halo-finding algorithm that
as been specially designed for this project (Section 2.2 ). We
hen discuss the design philosophy underpinning our merger tree
lgorithm (Section 2.3 ), before discussing the methodology itself
n detail (Section 2.4 ). Finally, we conclude by discussing some
f the optimizations that have been implemented to speed-up the
onstruction of merger trees in ABACUSSUMMIT (Section 2.5 ). 

.1 The ABACUSSUMMIT simulation suite 

BACUSSUMMIT is a suite of very large, high-accuracy cosmological
imulations of structure formation that have been designed to
atch – and exceed – the Cosmological Simulation Requirements of
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he DESI surv e y. In total, we hav e performed simulations totalling
lmost 60 trillion particles spanning 97 cosmological models, centred 
round the Planck Collaboration VI ( 2020 ) parameters, which acts 
s our fiducial cosmological model. A subset of these runs also 
odel the evolution of structure in the presence of massive neutrinos. 

ndividual simulations within the ABACUSSUMMIT suite are labelled 
ccording to their cosmology, phase (which are set while generating 
he corresponding initial conditions), box size, and number of 
esolution elements. For further details, we refer the reader to the 
ain ABACUSSUMMIT release paper by Maksimova et al. ( 2021 ) and

he accompanying online documentation. 1 The different numerical 
etups adopted in each one of the ABACUSSUMMIT simulations are 
roadly classified as follows: 

(i) Base : a 2 Gpc h 

−1 box with 6912 3 particles; 
(ii) Highbase : a 1 Gpc h 

−1 box with 3456 3 particles; 
(iii) High : a 1 Gpc h 

−1 box with 6300 3 particles; 
(iv) Huge : a 7.5 Gpc h 

−1 box with 8640 3 particles; 
(v) Hugebase : a 2 Gpc h 

−1 box with 2304 3 particles; and 
(vi) Fixedbase : 1.185 Gpc h 

−1 box with 4096 3 particles with 
xed amplitude initial conditions. 

ote that Base , Highbase , and Fixedbase all have the same
ass resolution (around 2 × 10 9 M � h 

−1 per particle). On the other
and, High has six times better mass resolution, while both Huge
nd Hugebase have 27 times worse mass resolution. For the 
ajority of this paper, we will only consider the Highbase and 
igh simulations. In both instances, we will present results from 

imulations run at the base cosmology ( c000 in our notation) and
he same initial phase ( ph100 in our notation). Collectively, we 
efer to these simulations as c000 ph100 throughout the remainder 
f this paper. The only exception to this is our investigation in
ection 4.7 , where we make use of one Base simulation at c000
osmology, but with phase ph000 . A comprehensive tabulation 
f all simulation variants is listed in the online documentation for
BACUSSUMMIT . 2 

All simulations were performed at the Summit supercomputer at 
he Oak Ridge Leadership Computing Facility, using the ABACUS 

ode (Garrison et al. 2021 , see also Garrison, Eisenstein & Pinto
019 ). ABACUS is a high-performance, high-accuracy cosmological 
 -body code that has been optimized for GPU architectures and for

arge-volume, moderately clustered simulations. By harnessing the 
ower of GPUs, ABACUS is able to clock o v er 30 million particle
pdates per second on commodity dual-Xeon, dual-GPU computers 
nd nearly 70 million particle updates per second on each node of the
ummit supercomputer. Importantly, the speedup achieved does not 
ompromise on accuracy: ABACUS reports a median force accuracy 
elow 10 −5 . In-depth descriptions of the near- and far-field force 
omputations, optimization routines, and code tests are presented in 
arrison et al. ( 2021 ). 

.2 Halo finding with COMPASO 

o identify haloes in the ABACUSSUMMIT simulations, we have 
e veloped a ne w, on-the-fly halo finder, COMPASO , which is a
ybrid friends-of-friends/spherical o v erdensity-based halo finder. 
he algorithm is described in detail in Hadzhiyska et al. ( 2022 );
ere, we provide a short summary of its basic operation: 
 ht tps://abacussummit .readt hedocs.io/en/lat est/index.ht ml . 
 ht tps://abacussummit .readt hedocs.io/en/lat est/cosmologies.ht ml . 

c
p
a
t  

f  
(i) For each particle in the simulation, we compute its ‘local 
ensity’, � , using a weighting kernel defined as 

 ( r; b) = 1 − r 2 /b 2 , 

here b is set to be equal to 0.4 times the mean interparticle spacing,
 mean . � here is defined in units of the cosmic mean density. 

(ii) We then mark particles as being eligible to be in groups if they
atisfy the condition � > 60. These particles are then segmented
nto what we call ‘L0 haloes’ using a standard friends-of-friends
lgorithm with linking length l FoF = 0.25 l mean . 

(iii) Next, within each L0 halo, we define ‘L1 haloes’ using 
ompetitive Assignment to Spherical Overdensities ( COMPASO ). The 
article with the largest � is selected to be the first halo nucleus.
e then search outward to find the innermost radius within which

he enclosed density drops below the L1 threshold density, � L1 .
articles interior to this radius, R L1 , are tentatively assigned to

he L1 group defined by the first nucleus. The set of particles
hat are interior to 80 per cent of R L1 are marked as ‘ineligible’
o be future halo nuclei; the remaining particles may yet be
ligible. 

(iv) The remaining ‘eligible’ particles are then searched to find 
he particle with the next highest � that is also a density maximum.
his condition is met when a particle is denser that all other particles
eligible or not – that are within a radius of 0.4 l mean . If the condition

s met, we spawn a new nucleus and once again search outwards for
ts L1 radius, R L1 , using all L0 particles. 

(v) A particle is assigned to the newly created group if it was
reviously unassigned or if its enclosed density with respect to the
ew group is at least twice that of its enclosed density with respect
o the group it is currently assigned to. In practice, these enclosed
ensities are estimated by scaling from R L1 assuming an inverse 
quare density profile. 

(vi) We continue searching for new nucleation centres until we 
each the minimum density threshold, defined as the central density 
f a singular isothermal sphere with 35 particles within a radius
nclosing 200 times the average background density of the universe. 

(vii) Finally, within each L1 halo, we repeat steps (iii)–(v) to 
dentify ‘L2 haloes’; the centre of mass of the largest L2 halo is
sed to define the centre relative to which all L1 halo statistics are
utputted. 

s part of the ABACUSSUMMIT data products, we output properties 
f all L1 haloes containing at least 35 particles. Conversely, we
nly store masses for the five largest L2 haloes within each L1
alo. Haloes are arranged across 34 separate files (or ‘superslabs’)
hat themselves are comprized of sets of 50 individual slabs which
he computational domain in ABACUS is split into (see Garrison 
t al. 2021 , for further details). Hadzhiyska et al. ( 2022 ) present
 number of comparisons of the halo populations identified by 
OMPASO with those of haloes identified using the ROCKSTAR 

alo finder (Behroozi et al. 2013a ) run on the same particle
ets. 

Note that other configuration space-based halo finders perform 

n additional ‘unbinding’ step that is used to discard high-velocity 
articles from the set assigned to a given halo. In the case of
OMPASO , we have opted to forego such a step: both due to
onstraints this places on the runtime efficiency of the ABACUS 

ode, and also because energy-based unbinding algorithms have 
roblems inherently associated with the method. Instead, we apply 
 ‘cleaning’ procedure in post-processing (described in Section 4.2 ) 
hat is very ef fecti ve at identifying and filtering haloes with a large
raction of unbound particles. Section 3.3 in Hadzhiyska et al. ( 2022 )
MNRAS 512, 837–854 (2022) 
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resents a series of detailed tests that compares the outcome of our
leaning method with a halo catalogue produced using COMPASO and
nbinding. 

.3 Design philosophy of ABACUS merger trees 

efore describing the algorithm in detail, we begin by framing the
ajor concepts and philosophies of our approach to merger trees. 
The ABACUSSUMMIT suite is designed to support mock galaxy

atalogues based on catalogues and properties of haloes, with rather
imited attention to subhaloes. We seek to provide merger trees
o support computation of halo properties such as mass-quantile
ormation times, to detect major merger events, and to track associa-
ions of progenitors and descendents across long stretches of cosmic
ime. In principle, one could seek to modulate the properties of
entral galaxies or quench the growth of infalling satellites based on
uch associations, such as is done in semi-analytic galaxy formation
odels. Ho we ver, the focus on haloes rather than subhaloes does

imit the ability to attempt to model individual satellite galaxies in
ore physical detail. 
Because of this focus on halo scales and associations o v er longer

ime, we build the ABACUSSUMMIT merger trees from a moderately
ense set of epochs. We use 33, with a separation in redshift of �z

 0.05 at z ≤ 0.5, by �z = 0.075 for 0.5 < z < 1.7, and somewhat
oarser spacing at higher redshift. This corresponds to a typical time
nterval of � t = � ln a / H ( a ) ≈ (0.04 to −0.05)/ H ( a ), where a is the
osmological scalefactor and 1/ H ( a ) is the Hubble time. The choice
f 33 is lower than the 60–200 that is commonly adopted in other
imulation suites (e.g. Srisawat et al. 2013 ; Wang et al. 2016 ), but for
alo applications we find it to be sufficient (as will be tested in Sec-
ion 3 ). We stress that the typical halo crossing time (diameter divided
y circular velocity) at the L1 radius, given its associated enclosed
 v erdensity, is roughly t cross ≈ 0.2/ H ( a ). Hence, ABACUSSUMMIT

rovide four to five output epochs per halo crossing time, giving
n intuitive reason as to why our merger-tree results are adequately
onverged against cadence. We caution that associating importance to
alo events on time-scales shorter than a crossing time is probably not
hysically moti v ated, e.g. the intrahalo medium cannot equilibrate
aster than the sound crossing time. Higher cadences are moti v ated
y the desire to track subhalo mergers, which utilize a higher density
hreshold and hence smaller dynamical time. Of course, limiting the
umber of output epochs is also important to economize on the data
olume of the simulations, which was 2 PB even for this adopted
et. 

Our methodology of building merger trees is based on match
article membership, utilizing the fact that ABACUSSUMMIT did track
nd output unique particle identification numbers. This allows for a
irect association, without the need to use dynamical predictions of
alo orbits. This methodology is common to several algorithms in the
iterature and has been shown to result in merger trees with greater
tability (see, e.g. Srisawat et al. 2013 , for details). In this sense,
he algorithm presented in Section 2.4 is readily generalizable to
ny halo catalogues that record the IDs and densities of the particle
ets defining haloes and is not limited to use in conjunction with
OMPASO . 
One application of the association of haloes between epochs is

o detect inconsistencies between single-epoch halo catalogues, in
articular in regard to the delicate and inexact problem of deblending
f nearby density peaks. Different halo finders will produce different
esults on such situations, and there is no perfect answer. As described
n Section 4.2 , we use the merger trees to investigate such issues in
ompaso, resulting in a data product of cleaned halo catalogues at
NRAS 512, 837–854 (2022) 
 series of epochs. We recommend that these cleaned catalogues
re an impro v ed starting point for the construction of mock galaxy
atalogues such as from the HOD model. 

.4 Merger tree algorithm 

e now describe in detail the algorithm employed for constructing
alo merger trees in ABACUSSUMMIT . Note that a ‘halo’ in this context
efers to L1 haloes as defined in Section 2.2 . 

To be able to accurately match haloes across output times, we
ake use of subsampled particles that are output alongside the halo

atalogues themselves. In ABACUSSUMMIT , the subsampled particle
ist is split into 3 and 7 per cent (yielding a total of 10 per cent) sets,
hich, respectively, are referred to as subsamples ‘A’ and ‘B’. These

ubsamples are selected based on a hash of their (unique) particle ID
umber, and are consistent across redshifts. Each particle is assigned
 64-bit integer, PID , which stores both the ID number as well as
ts kernel density. The ID is simply the ( i , j , k ) index location of the
article in the initial grid; these numbers are stored as the lower three
6-bit integers in PID . The kernel density is stored as the square
oot of the density (in units of the cosmic density) in bits 1..12 of the
pper 16-bit integer in PID . The sets of particles associated with L1
aloes are stored contiguously in the subsampled PID files; for the
urpose of merger tree construction, we only consider those particles
hat are marked as being part of a halo (i.e. excluding subsampled
articles in the ‘field’). 
With the list of L1 haloes and their corresponding particles at

and, the merger tree construction, in reverse time order , proceeds
s follows: 

(i) Start with the first L1 halo, halo now , identified at
napshot i , and retrieve its centre (defined by the centre of
ass of its largest L2 halo) and its 10 per cent particle

ubsample. 
(ii) Identify the list of all haloes in the two preceding snapshots,
-1 and i-2 , that could have plausibly been associated with
alo now . A plausible association is defined as a halo that is

ocated at most at a distance of r max from the centre of halo now .
hroughout, we assume r max = 4 Mpc h 

−1 . 
(iii) From the list of plausible associations, we identify candidate

ssociations as those objects that share a non-zero fraction of
heir unique particle IDs with halo now . The fraction of particles
onated by these candidate associations to halo now is labelled
s f donate . We also record the fraction of subsampled particles in
alo now , weighted by kernel density , that is donated to it by its
andidate associations in snapshots i-1 and i-2 . We denote these
alues by f match . 

(iv) We then mark a candidate association as a Progenitor if
 donate ≥ f thresh . The remaining candidate associations are discarded.

e assume f thresh = 0.5 throughout. 
(v) We identify the MainProgenitor as the halo associ-

tion at snapshot i-1 that contributes the largest f match . We
urther record MainProgenitorPrec (‘preceding’), which is
he MainProgenitor identified in snapshot i-2 . While we
eep track of the full Progenitor list from snapshot i-
 , we only track the value of MainProgenitorPrec from
napshot i-2 . 

(vi) Repeat steps (i)–(v) for the remaining haloes at snapshot i . 
(vii) Repeat steps (i)–(vi) for all subsequent triples of output times

n a given simulation. 

 cartoon illustration of this halo association procedure across any
wo ABACUSSUMMIT snapshots is shown in Fig. 1 . F or an y giv en
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Figure 1. A schematic illustration of the merger tree algorithm. We identify associations between haloes across multiple time slices by tracking subsamples of 
halo particles that have been tagged. A candidate association is flagged when a halo in snapshot i-1 donates some fraction of its subsampled particles, f donate , 
to a halo in snapshot i ; these are marked by the dotted lines. The candidate is then marked as a Progenitor if f donate ≥ f thresh ; throughout the ABACUSSUMMIT 

suite, we assume f thresh = 0.5. The quantity f match is defined as the fraction of subsampled particles in a halo in snapshot i that was found in a candidate 
association in snapshot i-1 . The association with the largest f match is marked as the MainProgenitor . Note that associations may be identified across slabs 
(labelled by File number in this illustration), although typically by never more than one superslab on either side. 
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alo, the joint list of its Progenitors and MainProgenitors 
cross all output times defines its merger tree. To conveniently 
inpoint a halo in the simulation, we define a unique halo identifier,
aloIndex , defined as 

aloIndex = 1 e12 ∗ FullStepNumber 
+ 1 e9 ∗ SuperslabNumber 
+ IndexInSuperslabFile , 

here FullStepNumber is the number of the time-step at which 
he halo catalogue has been output, and IndexInSuperslab- 
ile is the array index of the halo in the corresponding halo
atalogue file. The Progenitor and MainProgenitor lists for 
 given halo are then simply collections of HaloIndex values 
ppended o v er multiple output times. 

As described in the methodology abo v e, haloes identified at any
iven output time are matched across two preceding snapshots 
imultaneously. The primary advantage of this is that it allows us
o keep track of fly-bys between pairs of haloes that might occur
etween one output time and the ne xt. F or e xample, consider the
ase of two haloes that were previously separate objects at snapshot
-2 , ‘merge’ momentarily at snapshot i-1 , and then again split
way at snapshot i . In this instance, for at least one halo in this pair,

ainProgenitor ( MainProgenitor ( halo at snapshot i ) ) 

�= MainProgenitorPrec ( halo at snapshot i ) 

n other words, tracking MainProgenitorPrec allows us to 
switch’ to the correct branch of the merger tree on the occasions
here a transient fly-by occurs. 
One subtlety that arises in our method pertains to step (ii) in the

lgorithm, where the list of plausible halo associations is narrowed 
own by first filtering out haloes that are located more than a
istance r max at the preceding output time. Since haloes are split
cross multiple files in superslabs (see Section 2.2 ), it may be the
ase (particularly for haloes located close to the boundary of a
uperslab file) that several plausible halo associations may found 
n other superslabs, although typically by never more than one 
uperslab on either side (in the Base simulations, each superslab 
as a width of around 60 Mpc h 

−1 ). For example, a halo located
n superslab file 1 at snapshot i may have candidate association
aloes (and, therefore, progenitors) located in superslab files 0, 1, 
r 2 at snapshot i-1 (see Fig. 1 ). For this reason, at any given
tep of our merger tree algorithm, we are required to simultaneously
old in memory halo and PID catalogues for nine superslabs at
n y giv en time: three per snapshot, and three snapshots in total
 i , i-1 , i-2 ). 

Finally, in some rare circumstances, we identify associations 
here one halo is marked as the MainProgenitor of another, 
ut does not also appear in the Progenitor list of this halo. While
his may at first seem logically inconsistent, such a situation can
ccur when one halo o v erwhelmingly contributes the largest f match ,
ut does not actually donate the majority of its particles to the same
alo (i.e. f donate < f thresh ). This happens in the case of ‘splits’: When a
ow-mass ‘halo’ that once belonged to a larger aggregate unit breaks
ff at a later time, either due to the object’s orbital trajectory, which
jects it from its parent halo, or due to a deblending decision made
y COMPASO . In this sense, a split may be physical (in the former
ase) or numerical (in the latter). In the outputs produced by the
erger tree calculation, these incidences are marked with a boolean 
ag, IsPotentialSplit , which is set to 1 when the condition
bo v e is met. Note that these cases are infrequent: occurring in
2 per cent of 150-particle haloes, and in 0 . 001 per cent of 15 000-

article haloes (see section 3.4 and table 2 of Hadzhiyska et al.
022 ). 
MNRAS 512, 837–854 (2022) 
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Figure 2. Median mass accretion histories of haloes identified at z = 0.1 
in the HIGHCADENCE simulation from merger trees built using the fiducial 
spacing of output times used in ABACUSSUMMIT (stars, 33 outputs), and 
with approximately two and six times denser outputs (circles and diamonds, 
respectiv ely). The gre y horizontal dotted line marks the 50-particle limit, 
which corresponds to the smallest haloes for which merger tree associations 
are tracked. In each case, we follow haloes along the MainProgenitor 
branch of their merger tree. We find excellent agreement in the accretion 
histories irrespective of the density of outputs used to build the merger tree. 
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.5 Code optimization routines 

ur code for building halo merger trees from ABACUSSUMMIT has
een developed to be used as a post-processing tool, and is written
n PYTHON (although some of the packages it uses are PYTHON

rappers around C code). The task of determining halo associations
or hundreds of millions of haloes across multiple output times for
ach simulation in the ABACUSSUMMIT suite is demanding: For this
eason, we employ a few optimization routines that dramatically
mpro v ed the performance of our code: 

(i) Step (ii) of the algorithm, which first performs a neighbour
earch around the halo of interest to narro w do wn the list of all
lausible halo associations from the previous output time signif-
cantly reduces the number of objects whose particle list have
o be cross-matched. The neighbour search is performed using a
ulti-threaded tree search, for which we use the SCIPY package’s
KDTree implementation (Virtanen et al. 2020 ). 
(ii) Steps (iii)–(v), which are performed on a per-halo basis, is

ccelerated by a factor of ∼15 using the Numba just-in-time compiler
Lam, Pitrou & Seibert 2015 ), which translates PYTHON functions to
ptimized machine code at runtime. 
(iii) The loop o v er all haloes in a single step is a classic example

f an ‘embarrassingly parallel’ problem, whose speed scales linearly
ith the number of CPU processes employed for the task. We

ddress this using the joblib library, 3 which uses PYTHON ’s
ultiprocessing functionality to achieve such a speedup. On
hea, 4 we use 16 cores for processing ABACUSSUMMIT merger trees,
hich yields another 16 times speedup. 

inally, we note that that merger trees are not constructed for every
ingle halo in the ABACUSSUMMIT suite, but only for those in which
article tracking can be carried out reliably. We determine this to be
he case when a halo contains at least 50 particles in total, with at least
ve subsampled particles available for tracking. The 50-particle limit
orresponds to a lower limit of 1 . 05 × 10 11 M � h 

−1 in halo mass at
he Base mass resolution. 

 C A D E N C E  O F  O U T P U T S  F O R  BU ILDING  

E R G E R  TREES  

n this section, we present statistics of merger trees constructed from
ur algorithm for different cadences in the number of snapshots
sed to build halo trees. The aim of this section is to explore the
nfluence of our choice of 33 intervals (cf. Section 2.3 ) for typical
BACUSSUMMIT simulations. 
To this end, we have run a dedicated simulation set that we refer

o as HIGHCADENCE . This simulation has a box size of 296 Mpc h 

−1 

ith 1024 3 particles, resulting in an ef fecti ve mass resolution that
s identical to ABACUSSUMMIT Base resolution. We output 186
napshots separated in cosmological scale factor by � ln a ≈ 0.007,
orresponding to roughly six times the density of outputs of a typical
BACUSSUMMIT simulation. To perform our tests, we subsequently
uild trees using all 186 (highest cadence), 64 (approximately three
imes coarser, medium cadence), and 33 outputs (approximately six
imes coarser, Summit-like cadence). 

We begin by computing perhaps the simplest diagnostic tool for
ssessing halo merger trees that is their mass accretion histories,
.e. quantifying the mass growth of a halo as a function of redshift.
he most common way of expressing this information is to traverse
NRAS 512, 837–854 (2022) 
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o  

W  

b  

t  
he main progenitor branch of individual halo merger trees, and to
arametrize the accretion history as simply the mass evolution of the
ain progenitor. 
Fig. 2 shows the median mass accretion histories associated

ith haloes in bins of mass centred at log 
[
M 0 / M � h 

−1 
] =

 11 . 5 , 12 . 5 , 13 . 5 , 14 . 5 ] , each with a width of ±0.2 dex. Here, M 0 

s the mass at z = 0.1. The results for trees with 186, 64, and
3 outputs, respectively, are represented by diamonds, circles, and
tars. It is clear from this figure that mass accretion histories are
eco v ered equally well irrespective of the temporal density of the
rees, with the agreement at z � 1.5 in particular being excellent.
t higher redshift, there is a noticeable deviation in the agreement
etween the Summit-like accretion histories and the highest cadence
rees, particularly in the most massive bin, where we average over
nly 128 haloes. The lower cadence merger trees tend to slightly
nderestimate the mass of the main progenitor at high redshift, which
ould potentially be due to the algorithm choosing a different main
rogenitor branch when there are two similar mass progenitors from
hich to choose. This can happen when a halo’s MainProgenitor

n the previous time-step is identified as a singular entity in fine-
rained trees (which looks o v er shorter time intervals), but may be
plit between two objects when looking back o v er the longer time
nterval in the coarser trees. However, the effect is small: In the most

assive bin, the typical agreement (across all redshifts) in the mass
f the MainProgenitor is of the order of ∼4 per cent between
he highest cadence and the Summit-like cadence trees. In lower

ass bins, the agreement impro v es to within 1 per cent. 
Fig. 3 shows a summary statistic that can be used to quantify

he accretion histories of haloes, the so-called redshift of formation,
 form 

, as a function of halo mass. This parameter can be used to
ugment mass-only HOD models to e.g. incorporate the dependence
f galaxy occupation and/or properties on halo age (e.g. Hearin &
 atson 2013 ). W e measure z form 

by traversing the main progenitor
ranch of the merger tree and identifying the formation redshift as
he epoch at which the halo achieves 50 per cent of its final-day mass.
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Figure 3. The redshift of formation, z form 

, of haloes in the HIGHCADENCE 

simulation for objects identified at z = 0.1. The epoch of formation is defined 
as the redshift at which the halo attains 50 per cent of its final mass. The circles 
mark the median z form 

, while the error bars indicate the 16th–84th percentile 
of this distribution. Both the median and the scatter in the measurement of 
formation time are near identical irrespective of whether 186 outputs or 33 
outputs are used to construct the merger tree. 
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the HIGHCADENCE simulation. The so-called ‘conditional mass function’ is 
nearly identically irrespective of how many outputs are used to build the 
merger tree. The dashed green curve represents the conditional mass function 
predicted by the algorithm of Parkinson et al. ( 2008 ), which is based on a 
modified version of EPS theory. 
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The mass dependence of halo formation time is shown in black, 
lue, and red, respectively, for the high, medium, and Summit-like 
adence merger trees. The symbols represent the median value of 
 form 

, while the error bars span the 16th −84th percentile of the
istribution. As expected, there is a negative correlation between 
 form 

and halo mass, indicating that low-mass haloes are older than 
igh-mass haloes, which is the standard expectation from hierarchical 
tructure formation. There is excellent agreement between all three 
ersions of the merger tree calculation, both in the median and 
n the scatter. Encouragingly, the consistency between the three 
alculations is preserved all the way down to the 50-particle limit. 
his test demonstrates that for estimating the formation epoch of 
aloes, which is a common use case for merger trees generally, the
ummit-like output cadence of 33 snapshots is sufficient. 
Finally, we investigate how the density of outputs used to construct 

 merger tree affects the identification of progenitors beyond the 
rimary branch. Fig. 4 shows the conditional mass function, which 
epresents the fraction of mass contained in progenitor haloes of mass
 1 at z = 1.1 that merge into haloes of mass 10 13 M � h 

−1 by z =
.1. We construct this quantity by stepping through every time slice 
n the merger tree, and recording the progenitors (and progenitors 
f progenitors) whose final descendant points to a 10 13 M � h 

−1 halo
t z = 0.1 (of which there are 5912 examples in the HIGHCADENCE

ox). 
The measurements from the high, medium, and Summit-like 

adence merger trees, respectively, are represented by the black, 
lue, and red histograms. We find that the conditional mass function 
s reproduced near identically in all three cases, demonstrating the 
act the complete progenitor histories of haloes are reco v ered ev en
sing the coarser spacing of snapshots used to build merger trees
n ABACUSSUMMIT . The three versions of the trees agree down to
rogenitor mass ratios of M 1 / M 0 = 10 −2 , corresponding to haloes of
ass 10 11 M � h 

−1 at z = 1.1, which contribute to ≈ 10 per cent of the
nal mass of the descendant halo. The dashed green line shows the
onditional mass function predicted by the Monte Carlo algorithm 

f Parkinson et al. ( 2008 ), which is based on an extension of EPS,
alibrated to reproduce the results of the Millennium simulation 
Springel et al. 2005 ). Reassuringly, we find very good agreement
etween the conditional mass function predicted by this model, to 
hat extracted from the merger tree algorithm presented in this work.

The results in this section demonstrate that the snapshot spacing we 
ave chosen for constructing trees in ABACUSSUMMIT is sufficient for 
alo-level merger tree statistics, particularly for the kinds of metrics 
hat would typically be used in building mock galaxy catalogues. In
he subsequent section, we apply our algorithm to the ABACUSSUMMIT 

uite, and present some initial applications of the resulting data 
roducts. 

 APPLI CATI ONS  O F  T H E  M E R G E R  TREE  

n the following subsections, we present some initial applications 
f the halo merger trees constructed from ABACUSSUMMIT using 
he algorithm that has been described in Section 2.4 . While merger
ree associations have been constructed for all simulations in the 
BACUSSUMMIT suite, here we report results from the Highbase 
nd High simulations only (both at the c000 ph100 cosmology). 

.1 Halo mass accretion histories 

n Fig. 5 , we present the median mass accretion histories of haloes
dentified at z = 0.5 in the c000 ph100 Highbase (solid lines
nd shaded regions) and High (symbols with error bars) simulations. 
ecall that the latter has six times better mass resolution in the same 1
pc h 

−1 box. The symbols/lines represent the median accretion his- 
ory while the error bars/shaded regions encompass the 16th and 84th
ercentiles of the scatter around the mean. Different colours represent 
ccretion histories from different halo mass ranges, where we have set 
he bin centres to be at log 

[
M 0 / M � h 

−1 
] = [ 11 . 5 , 12 . 5 , 13 . 5 , 14 . 5 ] , 

ach with a width of ±0.2 dex. In Highbase , this yields 11 574 539,
251 068, 96 822, and 1501 haloes, respectively. 
We notice immediately that the two simulations show excellent 

greement in the regions where they overlap, despite the factor of 6
ifference in mass resolution. This provides a simple, yet reassuring, 
MNRAS 512, 837–854 (2022) 
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M

Figure 5. Median mass accretion histories of haloes identified at z = 

0.5 in the c000 ph100 cosmology at the Highbase (solid lines) and 
High (symbols) resolution, where the latter has six times better mass 
resolution then the former. The mass bins are centred at log 

[
M 0 / M � h −1 

] = 

[ 11 . 5 , 12 . 5 , 13 . 5 , 14 . 5 ] , each with a bin width of ±0.2 dex. The shaded 
bands (error bars) encompass the 16th and 84th percentiles of the scatter 
in the accretion histories for Highbase ( High ). The dashed curves show 

predictions for the accretion histories using the semi-analytic model described 
in Correa et al. ( 2015 ). The grey horizontal dotted line marks the 50-particle 
limit in Highbase , which corresponds to the smallest haloes for which 
merger tree associations are tracked. 
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Table 1. A summary of the effects of the cleaning procedure described in 
Section 4.2 for three choices of κ = 1.2, 2.0, and 20.0. 

log 
[
M halo / M � h −1 

]
f merged f inc 

κ 1.2 2.0 20.0 1.2 2.0 20.0 

11.5 ± 0.1 0.10 0.05 0.02 5 e -3 4 e -3 4 e -5 
12.5 ± 0.1 0.06 0.02 6 e -3 0.34 0.16 0.04 
13.5 ± 0.1 0.03 0.01 8 e -5 0.97 0.89 0.81 
14.5 ± 0.1 0.01 0.00 0.00 1.00 1.00 1.00 

Notes. f merged denotes the fraction of haloes within a specific mass bin (as listed 
in the first column) that are deleted as separate entities in the halo catalogue 
and merged on to a larger object. f inc denotes the fraction of haloes in each 
mass bin whose mass is increased (relative to the default halo catalogue) after 
they are merged with the cleaned haloes. The numbers listed here are taken 
from the c000 ph100 Highbase simulation at z = 0.5. 
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est of numerical convergence in two of our ABACUSSUMMIT simula-
ions, at least from the perspective of this diagnostic for halo merger
rees. This is seen most clearly in the lowest mass bin, where we see
 sharp break in the accretion histories extracted from Highbase
elow the 50-particle limit, which is indicated using the horizontal
ashed line in gre y. Be yond this limit, we see a smooth transition
nto the regime that is now resolved in the High simulation. 

For comparison with expected trends, Fig. 5 also shows predictions
or the mass accretion history of haloes using the semi-analytic
odel developed by Correa et al. ( 2015 ), which is itself inspired

y the extended Press–Schechter (EPS) formalism. In general, there
s good agreement between this model and our measurements from
he simulations, although there are slight differences in the most

assive mass bin. This is perhaps unexpected, as the model by
orrea et al. ( 2015 ) has been calibrated against a different set of
umerical simulations. Furthermore, the comparison in the largest
ass bin may be compromised by the relatively small number of

bjects that fall under this mass range (624). 

.2 Cleaning COMPASO catalogues 

s we have discussed in the Introduction and at the end of Section 2.4 ,
here is often ambiguity when it comes to reliably tracking the halo
opulation in a cosmological simulation. A wide variety of processes
ncluding fly-bys, partial mergers, splits, or simply limited numerical
esolution can undermine the robustness of halo properties output at
n y giv en time. Much like in the construction of the trees themselves,
here are a variety of ways in which these fractures in the merger tree
ay be addressed. Examples include algorithms that try to ‘patch’

rees across gaps in a halo’s history by inserting additional haloes into
he catalogue that guarantee smoother mass evolution (e.g. Tweed
t al. 2009 ; Knebe et al. 2010 ; Behroozi et al. 2013b ; Jiang et al.
014 ). Halo splits (into multiple descendants) may well be treated
NRAS 512, 837–854 (2022) 
s physically allowed scenarios, such as when two haloes that are
n reality distinct dynamically b ut ha ve at some point been treated
s a single object by the halo finder. Characterizing the split objects
ppropriately requires careful consideration of their energy and phase
pace properties; recent works that describe the treatment of these
plits include those by Han et al. ( 2018 ) and Roper, Thomas &
risawat ( 2020 ). 
In ABACUSSUMMIT , another instance when pathologies in the halo

atalogue may arise is when the COMPASO algorithm has been o v erly
ggressive in deblending single haloes into two or more components.
his may happen due to the strict spherical o v erdensity criterion

n COMPASO that draws hard edges in the ellpisoidal halo particle
istribution, or indeed COMPASO ’s eligibility condition that is adept
t finding new halo nucleation points on the outskirts of haloes
see Hadzhiyska et al. 2022 , for details). A general effect of these
rocesses is to detach particles from haloes, leading to a reduction in
heir mass relative to the time when a potential galaxy hosted by this
alo may have formed. A model like the HOD, which determines the
alaxy occupancy of haloes based on their mass at an y giv en time
ay therefore incorrectly predict the galaxy content of such objects.
To o v ercome these issues in ABACUSSUMMIT , we take a conser-

 ati ve approach and simply ‘clean’ the COMPASO halo catalogues
f objects that may have been compromised by the processes listed
bo v e. One way to do this is to simply flag a halo that at some epoch
asses through (or flys-by) another, sharing some of its particles
n the process, before re-emerging as two separate objects at some
ater time. We then ‘merge’ the particles of the two haloes into a
ingular entity and, for all subsequent output times, assume that
his agglomerated object remains as a persistent entity (unless it
tself undergoes a future fly-by/splashback event). In general, this
ethod of cleaning halo catalogues in post-processing remo v es
1 –5 per cent of objects (see Table 1 ), predominantly composed

f a population of low-mass haloes floating around the boundaries
f more massive haloes, and appends their particle lists to these
eighbours. Note that the same technique will also result in re-
erging o v erly deblended haloes. 
The task of identifying and re-merging the offending haloes is

implified with the help of halo merger trees. In detail, our cleaning
rocedure proceeds as follows: 

(i) For a halo identified at redshift z i , record its COMPASO mass,
 halo ( z i ). 
(ii) Traverse its merger tree along the MainProgenitor

ranch, and identify the epoch, z max , at which it achieves its maximum
ass, M halo ( z max ). 
(iii) If the ratio M halo ( z max ) / M halo ( z i ) > κ , flag this halo for

leaning. 
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Figure 6. A schematic diagram showing the effect of cleaning as described in Section 4.2 . At some early epoch, z = z i − 2 , objects marked as Halo A (blue) 
and Halo B (pink) are identified as two distinct haloes. They subsequently interact and share particles such that they are then labelled as belonging to the same 
aggregate halo. At some later time, z f , particles that once belonged to Halo B (or perhaps a subset of particles from B and some from A) may break off from 

this aggregate body, and be identified as some separate set C (green). In some halo catalogues, the green particles may be identified as a separate halo in its own 
right. In our ‘cleaning’ approach, we continue to treat the green and blue particles as one object. 
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(iv) At redshift z max , find the most massive halo whose HaloIn-
ex is equal to the MainProgenitor of the flagged halo at this

ime. Once this entity has been found, add the mass of the flagged
alo to the mass of its massive neighbour. 
(v) The aggregated halo now remains merged for all subsequent 

utputs. The flagged halo is eliminated from the halo catalogue at 
ach of the subsequent outputs. The particle list of the aggregate 
alo is the union of the particles of the original massive halo and all
aloes that have been merged with it. 

e display an illustration of the effect of cleaning in Fig. 6 . Here,
e start with having two sets of particles labelled as distinct haloes
 (blue) and B (pink) at some early epoch, z i − 2 . As these objects

ome together and interact, at some point, they will share enough 
articles that the halo finder will label them as belonging to the
ame aggregate halo (between z i − 1 and z i ). As the erstwhile Halo B
merges out of this aggregate at z f , it may now be composed of some
ombination of particles from A and B: we label these in green.
ifferent halo catalogues will treat the green particles differently, 

ypically identifying it as some new Halo C, whose mass and other
roperties will be the outcome of the complex interaction between 
alo A and Halo B. In the cleaning procedure we have described

n this section, the particles in the green and blue sets continue to
e treated as a single, aggregate halo (i.e. all the way from z i − 1 
o z f . In other words, the particle list in green is appended to the
article list in blue. A concrete example of this procedure applied
o the c000 ph100 Highbase simulation is shown in Fig. 7 ,
here in the different colours we highlight some of the haloes that

re ‘merged’ on to some nearby massive neighbour following the 
leaning strategy. 

In very rare instances ( ∼0 . 1 per cent of the time), a halo may be
agged for cleaning but no distinct host halo is identified in step (iv)
f the procedure outlined abo v e. This is typically the case for two
nitially separate objects that just come into contact for the first time,
here COMPASO assigns more than half the particles associated with 

he smaller halo to its more massive neighbour. The larger halo will
ot be marked as the MainProgenitor of the smaller one, but
ay appear in the complete list of Progenitors . We then merge

he smaller object with this halo. If no match is found even in the
rogenitors list, we then simply merge the flagged halo with the
earest object that contains at least as many particles as the difference
n the particle number between the peak and present-day mass of the
agged halo. 
The method outlined in this subsection identifies objects whose 

resent-day mass may be under-counted due to fly-bys, splits, partial 
erging, etc. This algorithm preferentially flags (and remo v es) low-
ass objects, and append their particle lists to heavier, neighbouring 

aloes that they were once attached to. Note that for objects with
MNRAS 512, 837–854 (2022) 
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Figure 7. A visual depiction of the cleaning procedure outlined in Sec- 
tion 4.2 . The background panel shows a (40 Mpc h −1 ) 3 region where the most 
massive halo ( M halo = 10 15 M � h −1 ) is represented in black. The remaining 
haloes are displayed in grey where, for clarity, we only show haloes more 
massive than 10 11 M � h −1 . In each case, we only display the 10 per cent 
subsampled particles associated with each halo. The inset panel zooms into 
region of size 6 × 6 × 40 (Mpc h −1 ) 3 , in which we have now highlighted 
the haloes (six in total, represented by the different colours) that are flagged 
by our cleaning algorithm and merged with the 10 15 M � h −1 halo. While 
most of the merged objects are of relatively low mass ( ∼10 11 M � h −1 ), 
the halo represented by the blue points is a rather massive object, with 
M halo = 1 . 02 × 10 14 M � h −1 . This is a clear example where the COMPASO 

algorithm has deblended two haloes based on the density criteria described 
in Section 2.2 . The net effect of merging these haloes with the neighbouring 
cluster is to increase the mass of the central host by roughly 10 per cent. 
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Figure 8. A comparison of the halo mass functions extracted from the 
Highbase c000 ph100 simulation at z = 0.5. Halo finding has been 
performed using both ROCKSTAR (black) and COMPASO (red). The ‘cleaned’ 
versions of the COMPASO catalogues obtained after assuming cleaning 
parameters, κ = 1.2, 2.0, and 20.0 are sho wn, respecti vely in bro wn, blue, and 
green (see Section 4.2 for details of the cleaning procedure). The standard 
COMPASO mass function deviates from ROCKSTAR for haloes more massive 
than ∼10 13 M � h −1 , being suppressed relative to it by 50 per cent at 
M halo ≈ 10 15 M � h −1 . The ‘cleaned’ catalogues bring the COMPASO mass 
functions into better agreement with ROCKSTAR : κ = 2.0, which is our 
fiducial choice, reduces the discrepancy to 25 per cent; there is no discernible 
difference in the κ = 1.2 case. For κ = 20.0, which is the least aggressive 
cleaning choice, there is only a marginal difference relative to the default 
COMPASO catalogue. 
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well-behaved’, smooth merger histories, M halo ( z i ) = M halo ( z max ), so
hey will not be flagged by this procedure. Our method has a single
ree parameter, κ , for which our recommended choice is κ = 2.0.
ased on our tests, ho we ver, we find that the properties of the cleaned
alo catalogues do not change significantly for small variations
n κ . In the following subsections, we present comparisons of the
tatistics of the halo population in the cleaned and default COMPASO

atalogues. 

.3 Halo mass functions 

ig. 8 compares the halo mass function (measured at z = 0.5) for
he c000 ph100 Highbase simulation for the default (red) and
leaned ( κ = 1.2: brown; κ = 2.0: blue; κ = 20.0: green) versions
f the COMPASO catalogues. In black, we also show the halo mass
unction measured by the ROCKSTAR halo finder (Behroozi et al.
013a ) run on the same simulation. The most significant difference
n the way in which ROCKSTAR operates is that is a phase-space
alo finder, utilizing both the positions and velocities of dark matter
articles to identify haloes. This provides a very useful, independent
ethod to compare the predictions of COMPASO and its variations in

he form of the cleaned catalogues. 
Considering just ROCKSTAR and the default COMPASO (in red) first,

e find that there are noticeable differences on both extremities of the
alo mass function. In particular, COMPASO shows an ∼10 per cent
xcess in the abundance of 10 11 M � h 

−1 haloes. On the other hand,
NRAS 512, 837–854 (2022) 
t the high-mass end, COMPASO shows an ∼50 per cent deficiency in
he abundance of 10 15 M � h 

−1 haloes. While some of this difference
tems inevitably from the different methods used to define haloes in
OCKSTAR and COMPASO , the full extent of the discrepancy cannot
e attributed to differences in halo finding. 
The green curve shows the modification to the COMPASO halo mass

unction after applying the cleaning strategy described in Section 4.2
ssuming κ = 20.0. This is the most conserv ati ve of three parameter
ariations we examine in this paper, flagging only those haloes for
leaning that were once part of haloes with mass ≥20 × their mass at z
 0.5. The net result is a very small change with respect to the default

OMPASO case, only marginally shifting the mass function to higher
asses on scales greater than ∼10 14 M � h 

−1 . The κ = 2.0 version
in blue) shows a much more dramatic change, particularly in the
egime of low-mass groups and clusters, reducing the discrepancy
elative to ROCKSTAR to the 25 per cent level. Finally, we see no
oticeable change in transitioning from κ = 2.0 to 1.2 (in brown),
here the two curves overlap almost exactly. 
In Table 1 , we contrast the fraction of haloes (as a function of
ass) that are affected by the cleaning method for each choice of κ ,

ither because they are remo v ed from the COMPASO catalogue and
erged, or because their reported mass has been augmented by the

ddition of merged neighbouring haloes. We see that, as expected,
ow-mass haloes are the ones that are more likely to be flagged for
emoval, while a larger fraction of the more massive haloes end
p with increased masses after being merged with several smaller
aloes. Furthermore, we see that the κ = 1.2 and 2.0 cases yield very
imilar results, consistent with what we see in Fig. 8 ; on the other
and, the choice of κ = 20.0 tends to be far less ef fecti v e at remo ving
ntermediate-mass haloes. 
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Figure 9. A comparison of the length of the main progenitor branch of haloes extracted from the Highbase c000 ph100 simulation at z = 0.1. The length 
of the main progenitor branch is defined as the number of snapshots through which the MainProgenitor of an y giv en halo can be tracked back in time. 
Results for the standard COMPASO halo catalogue are shown in black, while ‘cleaned’ COMPASO haloes are shown in green. The four panels show the results from 

four different mass bins selected according to the number of particles in the halo, N p , at z = 0.1. f haloes denies the fraction of haloes in each mass bin that can be 
tracked for the corresponding number of snapshots. The dashed vertical line marks the total number of snapshots that have been used to create the merger tree 
(excluding the final output). The standout feature is that in the cleaned version, there is a sharp decrease in the number of haloes that can only be tracked for 
zero or one snapshots. These correspond predominantly to the population of filtered haloes (i.e. those that have been flagged for cleaning). It is also clear that 
haloes resolved with more particles are easier to track back in time. 
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.4 Length of the main progenitor branch 

n the merger tree comparison project presented in Srisawat et al. 
 2013 ), a particularly useful metric for comparing different algo- 
ithms turns out to be a measure of the length of the main progenitor
ranch of haloes – essentially, the number of snapshots into the past 
hat one is able to reliably track a halo’s main progenitor. 

Fig. 9 shows the results of measuring the length of the main pro-
enitor branch for the default (black) and cleaned (green) COMPASO 

atalogues. To perform the cleaning, we have assumed our fiducial 
alue of κ = 2.0. The two curves largely o v erlap, suggesting that
leaning does not change this measure significantly, which is to be 
xpected since the objects that are affected by cleaning comprise 
 small fraction of the full population of haloes (see Table 1 ). The
ost prominent difference is the sharp reduction haloes that can 

nly be tracked for zero or one snapshots in the cleaned catalogue.
his is dominated by objects in the default COMPASO catalogue that 
ave been flagged and identified for merging by the algorithm in 
ection 4.2 . This fraction is larger in the lower mass bins ( N p ≥
00), as expected. 
From Fig. 9 , we also note that haloes that are better resolved
re more easily tracked through multiple output times, with the 
ast majority of haloes ( � 70 per cent ) with N p ≥ 1000 being
racked across the entire length of the merger tree (denoted by
he dashed vertical line). Finally, we find that in the lowest mass
in considered (50 ≤ N p ≤ 100), it becomes increasingly dif- 
cult to track haloes through several snapshots. The reason for 

his is that reliably associating haloes across snapshots becomes 
nstable when only a few particles are available for matching. It
s also limited by the choice we make in the construction of the
erger tree in which we require that a halo contain at least five

ubsampled particles in order to be considered for tracking. An 
ncreasing fraction of haloes fail this test as we proceed to earlier
napshots. 

An interesting way to further assess the fidelity of the merger
rees for cleaned versus uncleaned haloes would be through vi- 
ual characterization, such as the dendogram diagnostic proposed 
y Poulton et al. ( 2018 ). We leave such an exercise for future
tudy. 
MNRAS 512, 837–854 (2022) 
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Figure 10. The two-point clustering of haloes at z = 0.5 measured using ROCKSTAR (black), COMPASO (red), and the ‘cleaned’ COMPASO (with κ = 1.2, blue; κ
= 2.0, green; κ = 20.0, magenta) catalogues for the Highbase c000 ph100 simulation. Haloes are split into five distinct mass bins: log 

[
M halo / M � h −1 

] = 

11 . 5 ± 0 . 1 (first bin); log 
[
M halo / M � h −1 

] = 12 . 0 ± 0 . 1 (second bin); log 
[
M halo / M � h −1 

] = 12 . 5 ± 0 . 1 (third bin); log 
[
M halo / M � h −1 

] = 13 . 5 ± 0 . 1 (fourth 
bin); and log 

[
M halo / M � h −1 

] = 14 . 5 ± 0 . 3 (fifth bin). Individual panels show the auto- and cross-correlation functions of haloes identified between pairs of 
mass bins. The unprocessed COMPASO catalogue shows a strong excess of low-mass haloes in the outskirts of galaxy clusters, which manifests as a sharp peak 
in the cross-correlation function on scales ∼1 Mpc h −1 , well in excess of what is measured for ROCKSTAR haloes. Cleaning the halo catalogue using the strategy 
described in Section 4.2 brings COMPASO into much closer agreement with ROCKSTAR , although there are residual differences in the highest mass bins. We also 
find that, as in the case of the halo mass function (Fig. 8 ), the difference between the κ = 1.2 and 2.0 catalogues is almost negligible. The κ = 20.0 case, which 
results in the least aggressive cleaning, shows marked differences and yields results that are more comparable to the default COMPASO haloes. 
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.5 2-point clustering: the auto- and cr oss-corr elation functions
f haloes 

n the previous subsections, we have seen that applying our COMPASO

atalogue cleaning procedure has the effect of flagging low-mass ob-
ects ( log 

[
M halo / M � h 

−1 � 14 . 5 
]
) on to larger, neighbouring haloes.

his suggests that a large number of ‘offending’ haloes (i.e. those
hat are flagged and merged by our cleaning algorithm) corresponds
o low-mass haloes that exist in the peripheries of more massive
aloes. This assertion can be tested by examining the clustering of
aloes, measured using the two-point correlation function. 
We calculate the correlation function, ξ ( r ), using the Peebles

 1980 ) estimator: 

( r) = 

〈 D D ( r) 〉 
〈 R R ( r) 〉 − 1 , 

here 〈 DD ( r ) 〉 and 〈 RR ( r ) 〉 , respectively, are the normalized data–
ata and random–random pair counts of objects separated by a
NRAS 512, 837–854 (2022) 
istance r . To examine the clustering as a function of mass, we
plit the halo population into five mass bins: log 

[
M halo / M � h 

−1 
] =

1 . 5 ± 0 . 1, 12.0 ± 0.1, 12.5 ± 0.1, 13.5 ± 0.1, and 14.5 ± 0.3. In
ractice, we compute ξ ( r ) using the CORRFUNC package (Sinha &
arrison 2020 ). 
Fig. 10 shows the bin-by-bin auto-correlation (diagonal pan-

ls) and cross-correlation (off-diagonal panels) functions of haloes
dentified by ROCKSTAR (black), COMPASO (red), as well as the
leaned COMPASO catalogue obtained using our recommended choice
f κ = 2.0 (green), as well as κ = 1.2 (blue) and 20.0 (ma-
enta). The clustering is measured at z = 0.5 in the Highbase
000 ph100 simulation. In each case, we have taken care to
nsure that the clustering is computed at the same halo abun-
ance ; this guarantees that any systematic differences measured
n ξ ( r ) are as a result of physical differences in the three halo
atalogues, rather than being due to a different number of ob-
ects being included based on the mass definition used in each
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Figure 11. The mean peculiar radial velocity, < V rad > , of haloes in the mass 
range log 

[
M halo / M � h −1 

] = [ 11 . 0 , 13 . 0 ] , relative to a sample of low-mass 
cluster haloes in the mass range log 

[
M halo / M � h −1 

] = [ 14 . 0 , 14 . 5 ] . The 
curves in black and green, respectively, show results from the COMPASO and 
cleaned COMPASO catalogues, where we assume κ = 2.0. The dashed red 
curve shows the radial profile for only those haloes that have been flagged 
and remo v ed due to cleaning (i.e. merged into a larger halo) according to the 
procedure described in Section 4.2 . The upper x -axis denotes the radial range 
in units of r 95 from the cluster centre, where r 95 is the radius encompassing 
95 per cent of the mass of the halo. The cleaning tends to remo v e haloes 
with more positive radial velocities in and around the outskirts of clusters 
(1–3 Mpc h −1 ), with a sizeable population with 〈 v rad 〉 > 0. This is likely 
representative of population of haloes that have exited their host clusters 
following at least one orbital passage. 
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Upon comparing the clustering in the default COMPASO catalogue 
ith ROCKSTAR , we immediately notice significant differences. It 

s clear that COMPASO has a greater tendency to find low-mass
ark matter haloes and identify them as independent objects in 
heir own right. This manifests first as a larger amplitude in the
uto-correlation function of log 

[
M halo / M � h 

−1 
] = 11 . 5 and more 

rominently as the sharp spike in the cross-correlations of low-mass 
aloes with heavier objects. In particular, the spike appears around 
he transition region between the one- and two-halo terms in the 
ross-correlation functions ( r ≈ 1–3 Mpc h 

−1 ), which corresponds 
oughly to the typical virial radii of the most massive clusters in
ur sample. ROCKSTAR , on the other hand, does not show such
 pronounced feature in the same regime. In other words, the 
OMPASO method finds an excess of low-mass dark matter structures 
oating around the boundaries of massive haloes; ROCKSTAR seem- 

ngly does not deblend these sets into populations of independent 
bjects. 
Fig. 10 also shows that much of the discrepancy between 

OCKSTAR and COMPASO disappears after the cleaning procedure is 
pplied to the COMPASO haloes. By merging haloes that our method 
agged for cleaning with heavier neighbours, we eradicate the vast 
ajority of the population of haloes that were originally found at the

oundaries of massive clusters. This results in a dramatic suppression 
n the prominent spike that previously punctuated the measurement 
f ξ ( r ) for COMPASO haloes. That said, the auto-correlation functions
f haloes heavier than log 

[
M halo / M � h 

−1 
] ≥ 12 . 5 remain largely 

naffected by cleaning, and they show appreciable differences with 
espect to ROCKSTAR on scales smaller than r � 2 Mpc h 

−1 . We
ote, ho we ver, that matching ROCKSTAR exactly is not our intention
nor, indeed, is it necessary – as some differences between the two 

atalogues will inevitably persist due to the different philosophies 
sed for identifying dark matter haloes. 
We also find that, consistent with our observations of the halo 
ass function in Fig. 8 , κ = 1.2 and 2.0 yield identical results

n all panels. Both choices lead to an ∼15 per cent reduction in 
he auto-correlation of log 

[
M halo / M � h 

−1 
] ≤ 12 . 0 haloes. The κ = 

0.0 case results in a more modest change (5 –10 per cent in the
uto-correlation function). The biggest contrast to the lower κ (i.e. 
ore aggressive) cleaning choices is seen in the cross-correlations 

etween massive haloes. This is seen most prominently in bins (3,4)
nd (4,5) of Fig. 10 , where we see that the κ = 20.0 choice has no
eal cleaning effect relative to the default COMPASO halo catalogue. 

.6 Radial infall velocity profiles 

hus far, we have seen that the population of haloes that is prefer-
ntially remo v ed by our cleaning method corresponds to those that
re typically located at the boundaries of massive clusters. Their 
resence manifests as a sharp bump in the cross-correlation function 
n the scale of 1–3 Mpc h 

−1 , which is comparable to the typical virial
adius of low-mass clusters. Next, we examine the dynamics of the 
cleaned’ objects as measured by their infall velocities in the vicinity 
f the neighbouring clusters. 
Fig. 11 shows the mean (peculiar) radial velocity profile of a tracer

opulation of haloes, measured relative to clusters in the mass range 
og 

[
M halo / M � h 

−1 
] = [ 14 . 0 , 14 . 5 ] . For the tracer population, we 

elect haloes in the mass range log 
[
M halo / M � h 

−1 
] = [ 11 . 0 , 13 . 0 ] . 

he profiles are shown for the default COMPASO (black) and cleaned 
OMPASO (with κ = 2.0, green) catalogues, both measured at z = 

.5 in the Highbase c000 ph100 simulation. The peculiar radial 
elocity, 〈 v rad 〉 , is measured as a function of distance from the cluster
entre. The upper axis denotes this distance in units of r 95 , which is
he radius that encompasses 95 per cent of the mass of the cluster
easured from its L2 centre of mass. 
First, we see that the radial velocity profiles measured in both

he default and cleaned COMPASO cases show similar o v erall trends.
s haloes get increasingly close to the cluster centre from r ∼
0 Mpc h 

−1 to about r ∼ 3 Mpc h 

−1 , 〈 v rad 〉 becomes increasingly
e gativ e, signifying the fact that these objects are infalling into the
luster. As these objects reach the vicinity of the virial radius of the
luster (comparable to the value of r 95 ), there is a sharp upturn in
he profile, signifying that the velocities of the tracer haloes begin to
irialize within the cluster. The system then reaches equilibrium in 
he innermost portion of the halo, where 〈 v rad 〉 = 0. 

The behaviour of the COMPASO haloes before and after cleaning are
dentical on scales larger than about 3 Mpc h 

−1 . Within this radius,
o we ver, there is a systematic deviation in the profile, with the haloes
n the cleaned catalogue showing a more ne gativ e infall velocity on
verage than in the default COMPASO case. Notably, this change is
een in and around the virial radius of the cluster haloes, which is
ndeed the scale where the cross-correlation function of haloes in 
ach catalogue differed the most. 

We can understand the origin of this shift by considering the mean
adial infall velocity profile of those objects that have been flagged by
ur cleaning procedure and remo v ed from the COMPASO catalogue;
n Fig. 11 , this is shown as the dashed red curve. The profile for
he filtered objects is shifted systematically to more positive values 
f 〈 v rad 〉 . It is especially noticeable that 〈 v rad 〉 > 0 in the regime
etween 0.8 and 2 r 95 , which is indicative of a population of haloes
hose radial motions point away from the cluster centre. These are

ikely examples of ‘splashback’ haloes – those that were once part 
f a larger object, but have since exited following at least one orbital
MNRAS 512, 837–854 (2022) 
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assage within their former hosts. The cleaning method we have
pplied guarantees that the past merger tree of the filtered objects
nce shared a main progenitor with their neighbouring massive halo,
hich adds further confidence to our notion that the red curve in
ig. 11 receives a large contribution from these splashback objects.
y removing the contribution of these objects from the mean radial

nfall velocity profiles, we more easily isolate the population of
bjects in the boundaries of massive clusters that are actually infalling
t present. This also has a small effect in changing the location of the
pturn in the velocity profile, shifting from ≈3 Mpc h 

−1 to around 2
pc h 

−1 between the default and cleaned COMPASO catalogues. 

.7 From cleaned haloes to mock galaxy catalogues 

s a final test of the value of our cleaning method, we apply a set
f ‘cleaned’ ABACUSSUMMIT simulations in a real use-case scenario:
uilding mock galaxy catalogues to match the number density and
edshift-space clustering of an observed galaxy sample. 

Specifically, we utilize galaxies from the CMASS sample of the
aryon Oscillation Spectroscopic Surv e y (BOSS; Bolton et al. 2012 ;
awson et al. 2013 ) Data Release 12, part of the Sloan Digital
k y Surv e y (SDSS) III programme (Eisenstein et al. 2011 ). In
articular, we focus on galaxies in the redshift range 0.46 < z < 0.6,
ielding a sample of approximately 600 000 galaxies (predominantly
uminous Red Galaxies) at an average number density of n gal =

3.01 ± 0.3) × 10 −4 h 3 Mpc −3 . The redshift-space clustering of
he sample is determined by the anisotropic two-point correlation
unction, ξ

(
r p , π

)
. r p and π, respectively, are the transverse and

ine-of-sight galaxy separation in comoving units. We utilize the full-
hape anisotropic clustering instead of the projected clustering as it
rovides stronger constraints on the HOD (Yuan et al. 2021 ). We
etermine the anisotropic two-point correlation function ξ

(
r p , π

)
sing the Landy & Szalay ( 1993 ) estimator: 

(
r p , π

) = 

D D − 2 D R + R R 

RR 

, 

here DD , DR , and RR are the data–data, data–random, and random–
andom pair counts in bins of 

(
r p , π

)
. For the present analysis,

e choose eight logarithmically spaced bins between 0.169 and 30
pc h 

−1 in the transverse direction, and six linearly spaced bins
etween 0 and 30 Mpc h 

−1 bins along the line-of-sight direction. 
To produce the galaxy mock, we make use of the ABACUSSUMMIT

ase c000 ph000 simulation, which provides an eight times
arger volume than the Highbase box we have considered until
ow. The mass resolution ( ∼2 × 10 9 M � h 

−1 per particle) is more
han sufficient for the CMASS galaxies, which typically live in
aloes of > 10 12 M � h 

−1 . We populate COMPASO dark matter haloes
ith galaxies using the ABACUSHOD 

5 code (Yuan et al. 2022 ), which
etermines the galaxy–halo connection using sophisticated particle-
ased HOD models. Specifically, the HOD we use for this analysis is
ased on the Zheng & Weinberg ( 2007 ) model where, respectively,
he mean central and satellite occupations in haloes with mass M h 

re defined as 

〈 N cen ( M h ) 〉 = 

1 

2 
erf 

[
log ( M cut /M h ) √ 

2 σ

]
, (1) 

nd 

〈 N sat ( M h ) 〉 = 

(
M h − κ0 M cut 

M 1 

)α

〈 N cen ( M h ) 〉 . (2) 
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 ht tps://abacusut ils.readthedocs.io/en/latest /hod.html . 

n  

n  

p

ere, M cut , σ , κ0 , M 1 , and α are model parameters determined
hrough fitting. M cut is the minimum mass of haloes that host a
entral galaxy, and σ is the width of the transition from non-zero to
ero central occupancy. Furthermore, M 1 is the characteristic mass of
aloes that host satellites, while κ0 M cut represents the minimum halo
ass for hosting at least one satellite. α is the power-law slope of the

atellite occupation. Galaxy positions in ABACUSHOD are assigned
uch that the central galaxy is located at the host halo centre, while
atellites are placed on halo particles. Note that a more common
otation for κ0 is simply κ; we have chosen the former to avoid
onfusion with the cleaning factor, κ , we have adopted until now. 

Because of redshift-space distortions, the line-of-sight velocities
f the galaxies are translated into biases in the measurements of
alaxy positions. It is thus important to have a model of the galaxy
elocities, particularly their line-of-sight component. In this analysis,
e allow for velocity bias effects, which introduces flexibilities in

he velocities of the central and satellite galaxies (Guo et al. 2015 ).
pecifically, the central galaxy velocity along the line of sight is
iven by 

 cent, z = v L2 , z + αc δv ( σLOS ) , (3) 

here v L2, z denotes the line-of-sight component of the L2 centre-
f-mass velocity, δv ( σ LOS ) denotes the Gaussian scatter, and αc is
he central velocity bias parameter, which modulates the amplitude
f the central velocity bias effect. By definition, αc is non-ne gativ e,
nd αc = 0 corresponds to no central velocity bias, in which case the
entral galaxy simply assumes the centre-of-mass velocity of the L2
ubhalo. The satellite velocity is given by 

 sat, z = v L2 , z + αs ( v p , z − v L2 , z ) , (4) 

here v p, z denotes the line-of-sight component of particle velocity,
nd αs is the satellite velocity bias parameter. αs = 1 corresponds to
o satellite velocity bias, in which case the satellite simply assumes
he velocity of the particle. In summary, our HOD model consists
f sev en parameters: fiv e in the baseline HOD model ( M cut , M 1 , σ ,
, κ0 ), and two velocity bias parameters ( αc , αs ). ABACUSHOD is
lso capable of implementing multi-tracer occupation, and presents
dditional important extensions to the baseline HOD model including
ssembly bias and satellite profile flexibility (see Yuan, Eisenstein &
arrison 2018 , for details). We do not incorporate these extensions

n this work. A full analysis enabling all rele v ant extensions will be
escribed in Yuan et al. ( 2022 ). 
In order to determine the best-fitting values of the free parameters

n equations ( 1 ) and ( 2 ), we perform a joint fit of the CMASS
R12 galaxy number density, n gal , and the redshift-space two-point

orrelation function, ξ
(
r p , π

)
. The quality of the fit is determined

sing a χ2 statistic, defined as 
2 = χ2 

ξ + χ2 
n gal 

, 

here 
2 
ξ = ( ξmock − ξ data ) 

T C 

−1 ( ξmock − ξ data ) , 

nd 

2 
n g 

= 

{ (
n mock −n data 

σn 

)2 
( n mock < n data ) 

0 ( n mock ≥ n data ) . 

Here, C is the jackknife covariance on ξ , and σ n is the jackknife
ncertainty on the galaxy number density. f ic is an incompleteness
actor that uniformly downsamples our mocks to match the desired
umber density. We sample the posterior space with the DYNESTY

ested sampling code (Speagle 2020 ). Full details of this fitting
rocedure are described in section 4.1 of Yuan et al. ( 2021 ). 

https://abacusutils.readthedocs.io/en/latest/hod.html
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Table 2. A summary of the best-fitting HOD parameters 
(first se ven ro ws) deri ved from mocks built on the uncleaned 
(left-hand column) and cleaned (right-hand column) ver- 
sions of the Base c000 ph000 simulation, assuming κ = 

2.0. 

COMPASO COMPASO (cleaned, κ = 2.0) 

M cut 12 .887 12 .857 
M 1 14 .387 14 .055 
log σ − 2 .651 − 1 .807 
α 0 .813 1 .189 
κ0 0 .335 0 .343 
αc 0 .226 0 .227 
αs 1 .217 0 .913 

log Z −76 −62 
log L −57 −43 

Notes . The last two ro ws, respecti vely, list the Bayesian 
evidence, log Z , and log-likelihood, log L , of the best- 
fitting mocks. The corresponding values suggest a significant 
preference for the cleaned catalogue o v er the uncleaned 
version. 
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Table 2 demonstrates the significant impro v ement in the fit to(
r p , π

)
due to cleaning. Specifically, the two columns summarize 

he best-fitting HODs obtained using mocks constructed from the 
efault (uncleaned) COMPASO halo catalogues (left-hand column) 
nd from the ‘cleaned’ version of this catalogue assuming κ = 2.0 
right-hand column). The bottom two rows compare the the log- 
ikelihood, log L , and Bayesian evidence, log Z , resulting from each 
f the cleaned and uncleaned catalogues. The Bayesian evidence, 
hich describes the consistency between the model and the data, 

or the uncleaned mock catalogue is log Z = −76, compared to 
og Z = −62 for the cleaned version. In other words, the BOSS
edshift-space clustering exhibits a roughly 14 e -fold preference for 
he cleaned mocks o v er the uncleaned ones. Similarly, we see a 14
 -fold impro v ement to the best-fitting likelihood. 

The full marginalized posterior distributions of our seven- 
arameter HOD mocks fit to ξ

(
r p , π

)
are shown in Fig. 12 , in which

he parameter constraints for the uncleaned catalogue are shown 
n black, while for the cleaned catalogue these are in green. The
aximum likelihood values of the HOD parameters are listed in 

he first seven rows of Table 2 . Unsurprisingly, the switch from
ncleaned to cleaned COMPASO haloes results in a shift in the best-
tting HOD parameters, particularly M 1 , α, and αs . The decrease 

n M 1 and the increase in α suggest a larger satellite population in
he cleaned mock, consistent with the fact that the halo cleaning 
e-merges smaller haloes on the fringe of larger haloes, converting 
entrals in these fringe haloes to satellites in the re-merged halo. 
he decrease in the satellite velocity bias parameter, αs , pulls it
ack into agreement with no satellite velocity bias ( αs = 1). This
s consistent with prior velocity bias fits by e.g. Guo et al. ( 2015 ).
udging from the marginalized posterior contours, it is also worth 
oting that the cleaning also generally yields better-constrained 
OD parameter posteriors and the removal of several parameter 
egeneracies. This suggests that the cleaned haloes are indeed more 
onsistent with the data, and thus results in a preferred forward 
odel. Finally, Fig. 13 shows the residual on the best-fitting redshift-

pace two-point correlation function, ξ
(
r p , π

)
obtained using mocks 

onstructed from the uncleaned halo catalogues (left-hand panel) 
nd from the cleaned catalogue (right-hand panel). In particular, 
here is a noticeable reduction in the residual on scales r p ∼ 3–10

pc h 

−1 , where the uncleaned COMPASO mocks predict an excess in
lustering relative to the data. The removal of low-mass, high velocity 
aloes at the boundaries of groups and clusters (see Fig. 11 ) in the
leaned version results in an improved fit. The shift from uncleaned 
o cleaned haloes also results in an appreciable impro v ement in the
esiduals on sub-Mpc projected separations. While it is difficult to 
onduct ‘ χ by eye’, the right-hand panel sums up to significantly
ower χ2 compared to the left-hand panel (see log L comparison 
n Table 2 ). 

 C O N C L U S I O N S  

racking the formation and growth of dark matter haloes is a critical
tep in the analysis of cosmological simulations of structure forma- 
ion. In this paper, we have introduced an algorithm for constructing
igh-fidelity halo merger trees from ABACUSSUMMIT (Maksimova 
t al. 2021 ), an extremely large suite of cosmological simulations
hat has been designed to meet the Cosmological Simulation Require- 

ents of the DESI surv e y. The flagship ABACUSSUMMIT data set con-
ists of 139 simulations of size 2 Gpc h 

−1 , each resolved with 6912 3 

articles, yielding an ef fecti ve particle mass of 2 × 10 9 M � h 

−1 ,
aking it an ideal data set for theoretical applications in the mass

cale rele v ant to emission-line galaxies (ELGs), a primary target
or DESI. Combined with the several smaller and larger boxes that
e have also simulated as part of this project, ABACUSSUMMIT totals
early 60 trillion particles, with simulations spanning a wide range of
osmological parameter variations, with the majority also including 
he effect of massive neutrinos on structure growth. 

To identify haloes in ABACUSSUMMIT , we use the Competitive 
ssignment to Spherical Overdensities , or COMPASO , algorithm 

Hadzhiyska et al. 2022 ), which is a highly efficient, on-the-fly halo
nder that has been purpose-built for ABACUSSUMMIT . COMPASO 

dentifies haloes from a given particle set by first applying a density-
ounded friends-of-friends linking algorithm to identify groups, 
ollowed by a hierarchical sequence of particle assignment steps that 
ompetitively link together particles that satisfy certain criteria based 
n pre-defined density thresholds. A brief outline of how COMPASO 

perates is provided in Section 2.2 . 
Like several other merger tree algorithms that have been published 

n the literature (e.g. Behroozi et al. 2013b ; Jiang et al. 2014 ; Poole
t al. 2017 ; Han et al. 2018 ; Elahi et al. 2019 ; Rangel et al. 2020 ),
n our method, which is described in detail in Section 2.4 , the ability
o build associations between sets of haloes relies on the ability to
ccurately track the particle content of these entities across multiple 
napshots. In performing these matches, particular preference is 
iven to particles with the highest kernel densities (as computed by
OMPASO ). This tends to trace material in the cores of haloes, which
as been shown to be more reliable choice for the construction of
erger trees (e.g. Srisawat et al. 2013 ). A potential halo association

ccurs when some fraction of these particles o v erlaps between any
wo haloes across two adjacent output times. Once these associations 
re established, we define halo progenitors as only those objects at
ome snapshot i-1 that contribute a sizeable fraction of matched 
articles (i.e. exceeding a threshold fraction) to a recipient halo at
napshot i . A visualization of our algorithm is shown in Fig. 1 .
n Section 3 , we perform a series of tests to show that our algo-
ithm is robust to the density of snapshots used to construct halo
erger trees, particularly when measuring the kinds of statistics 

hat are commonly used in the construction of mock catalogues 
Figs 2–4 ). 

The most direct application of a merger tree is to compute the mass
ccretion histories of dark matter haloes. Given the mass resolution 
nd volume of the ABACUSSUMMIT simulations presented in this 
MNRAS 512, 837–854 (2022) 
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M

Figure 12. The 1D and 2D marginalized posterior constraints on our seven-parameter HOD fits to the BOSS CMASS DR12 redshift-space two-point correlation 
function, ξ

(
r p , π

)
. The distributions for the uncleaned and cleaned halo catalogues, respectively, are represented by the black and green contours. The three 

levels correspond to 1 σ ,2 σ , and 3 σ level constraints. The posterior medians on each of these parameters are listed in the first seven rows of Table 2 . 
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aper, we are able to accurately track the assembly history of objects
anging from the ELG-mass hosts to rich clusters of galaxies (Fig. 5 ).

e also find good convergence between pairs of simulations that have
een run using the same initial phases, but that vary in resolution by
 factor of 6. 

We then describe a procedure that uses merger trees to ‘clean’
he default COMPASO halo catalogues of objects whose masses are
eemed to be unreliable due to physical and/or numerical effects
uring their past evolution. In particular, haloes identified at the
resent time may have undergone fly-bys, been ‘split’ off larger
aloes by the COMPASO algorithm, or simply passed through the inte-
iors of more massive objects. Each of these processes can hamper the
ccuracy with which the particle content (and, therefore, the present-
NRAS 512, 837–854 (2022) 
ay properties) of the halo are tracked, which can consequently
ias models of the galaxy–halo connection that are applied to our
efault halo outputs. In ABACUS , we take on a conserv ati ve approach
nd identify all such ‘problematic’ objects and eliminate these as
ndependent haloes using the procedure described in Section 4.2 .
n short, this method flags those objects whose maximum mass
measured along the main progenitor branch) exceeds its present-
ay mass by some factor, κ . After identifying the more massive,
eighbouring halo they were once part of, the objects are ‘merged’
n to this host and the newly aggregated system is treated as a single
ntity at all subsequent output times (see Figs 6 and 7 ). 

The net effect of this cleaning method is to predominantly flag
ow-mass haloes that have especially truncated merger trees (Fig. 9 ),

art/stac555_f12.eps
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Figure 13. The best-fitting two-point correlation function fits to ξ
(
r p , π

)
using the uncleaned (left-hand panel) and cleaned (right-hand panel) versions of the 

Base c000 ph000 simulation. The colour maps show the residual on the best-fitting mocks with respect to the data. The errors, σ ξ , are computed using the 
diagonal elements of the inverse covariance matrix (see the main text). The mocks constructed using the cleaned COMPASO catalogues yield a better fit to the 
clustering, particularly in the lower left and lower right quadrants. 
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nd those that are found preferentially near the boundaries of cluster-
ass haloes. Their removal results in a suppression in the two-point 

ross-correlation on scales of 1–3 Mpc h 

−1 (Fig. 10 ), and we find
hat the response of this effect is largely insensitive to small changes
n κ . On examining the detailed dynamics of the ‘cleaned’ haloes, 
e find that our method preferentially remo v es a large population
f objects with net positive radial velocities directed away from the 
entres of clusters (Fig. 11 ). 

As a final test, we apply our cleaned catalogues in a real use-case
pplication of building HOD mocks to fit the BOSS CMASS DR12 
edshift-space two-point correlation function, ξ

(
r p , π

)
. To this end, 

e use the ABACUSHOD code (Yuan et al. 2022 ) that allows for
ev eral generalized e xtensions to the baseline halo-mass-only HOD 

odel. We find that shifting from uncleaned to cleaned catalogues 
esults in a enhanced satellite population in the latter, consistent with 
he idea low-mass haloes that was originally identified as individual 
ntities are now merged with larger neighbours and become part of
heir satellite population (Fig. 12 ). We also find that the resulting
t to ξ

(
r p , π

)
is much impro v ed in the cleaned version than in the

ncleaned version, with Bayesian evidence and log-likelihood that 
uggest a 14 e -fold preference for the former o v er the latter (Table 2
nd Fig. 13 ). 

While in this paper we have presented results from only three 
ets of ABACUSSUMMIT simulations, our merger tree construc- 
ion has been applied across the entire suite. This comprises 
n e xtensiv e repertoire of information pertaining to the redshift
volution of halo properties spanning a generous range in cos- 
ology variations. This makes the ABACUSSUMMIT suite a po- 

entially invaluable resource for constructing and testing models 
f the galaxy–halo connection, covariance estimation, and emu- 
ator building in anticipation of next-generation galaxy redshift 
urv e ys. 
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ATA  AVAILABILITY  

he ABACUSSUMMIT simulations have been placed into the public
omain, subject to the academic citations described at https://ab
cussummit .readt hedocs.io/en/lat est/citation.html . A user interface
or reading and analysing ABACUSSUMMIT data, as well as the
BACUSHOD module, are available as part of the ABACUSUTILS
ackage ( ht tps://abacusut ils.readthedocs.io/en/latest /). 
Data access is available through OLCF’s Constellation portal. The

nitial data release includes cleaned halo catalogues for six ABA-
USSUMMIT simulations. The persistent DOI describing these data

s 10.13139/OLCF/1811689. Cleaned halo catalogues and particle
ubsamples for all other ABACUSSUMMIT boxes are available through
he DOI 10.13139/OLCF/1828535. Instructions for accessing the
ata are given at ht tps://abacussummit .readt hedocs.io/en/lat est/data
access.html . 
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