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Neutron stars are extreme astrophysical objects whose interi-
ors may contain exotic new forms of matter. The structure 
and size of neutron stars are linked to the thickness of the 

neutron skin in atomic nuclei via the neutron-matter equation of 
state1–3. The nucleus 208Pb is an attractive target for exploring this 
link in both experimental4,5 and theoretical2,6,7 studies owing to the 
large excess of neutrons and its simple structure. Mean-field cal-
culations predict a wide range for Rskin(208Pb) because the isovector 
parts of nuclear energy density functionals are not well constrained 
by binding energies and charge radii2,7–9. Additional constraints may 
be obtained10 by including the electric dipole polarizability of 208Pb, 
though this comes with a model dependence11 which is difficult to 
quantify. In general, the estimation of systematic theoretical uncer-
tainties is a challenge for mean-field theory.

In contrast, precise ab initio computations, which provide a path 
to comprehensive uncertainty estimation, have been accomplished 
for the neutron-matter equation of state12–14 and the neutron skin in 
the medium-mass nucleus 48Ca (ref. 15). However, up to now, treat-
ing 208Pb within the same framework was out of reach. Owing to 
breakthrough developments in quantum many-body methods, such 
computations are now becoming feasible for heavy nuclei16–19. The  
ab initio computation of 208Pb we report herein represents a signifi-
cant step in mass number from the previously computed tin iso-
topes16,17 (Fig. 1). The complementary statistical analysis in this work 
is enabled by emulators (for mass number A ≤ 16) which mimic the 
outputs of many-body solvers but are orders of magnitude faster.

In this paper, we develop a unified ab initio framework to link 
the physics of nucleon–nucleon scattering and few-nucleon systems 

to properties of medium- and heavy-mass nuclei up to 208Pb,  
and ultimately to the nuclear-matter equation of state near satura-
tion density.

Linking models to reality
Our approach to constructing nuclear interactions is based on chi-
ral effective field theory (EFT)20–22. In this theory, the long-range 
part of the strong nuclear force is known and stems from pion 
exchanges, while the unknown short-range contributions are repre-
sented as contact interactions; we also include the Δ isobar degree 
of freedom23. At next-to-next-to leading order in Weinberg’s power 
counting, the four pion–nucleon low-energy constants (LECs) are 
tightly fixed from pion–nucleon scattering data24. The 13 additional 
LECs in the nuclear potential must be constrained from data.

We use history matching25,26 to explore the modelling capabili-
ties of ab initio methods by identifying a non-implausible region 
in the vast parameter space of LECs, for which the model output 
yields acceptable agreement with selected low-energy experimen-
tal data (denoted herein as history-matching observables). The 
key to efficiently analyse this high-dimensional parameter space 
is the use of emulators based on eigenvector continuation27–29 that 
accurately mimic the outputs of the ab initio methods but at sev-
eral orders of magnitude lower computational cost. We consider 
the following history-matching observables: nucleon–nucleon 
scattering phase shifts up to an energy of 200 MeV; the energy, 
radius and quadrupole moment of 2H; and the energies and radii 
of 3H, 4He and 16O. We perform five waves of this global param-
eter search (Extended Data Figs. 1 and 2), sequentially ruling out 
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implausible LECs that yield model predictions too far from exper-
imental data. For this purpose, we use an implausibility measure 
(Methods) that links our model predictions and experimental 
observations as

z = M(θ) + εexp + εem + εmethod + εmodel, (1)

relating the experimental observations z to emulated ab initio pre-
dictions M(θ) via the random variables εexp, εem, εmethod and εmodel 
that represent experimental uncertainties, the emulator precision, 
method approximation errors and the model discrepancy due to the 
EFT truncation at next-to-next-to leading order, respectively. The 
parameter vector θ corresponds to the 17 LECs at this order. The 
method error represents, for example, model space truncations and 
other approximations in the employed ab initio many-body solv-
ers. The model discrepancy εmodel can be specified probabilistically 
since we assume to operate with an order-by-order improvable EFT 
description of the nuclear interaction (see Methods for details).

The final result of the five history-matching waves is a set of 34 
non-implausible samples in the 17-dimensional parameter space 
of the LECs. We then perform ab initio calculations for nuclear 
observables in 48Ca and 208Pb, as well as for properties of infinite 
nuclear matter.

Ab initio computations of 208Pb
We employ the coupled-cluster (CC)12,30,31, in-medium similarity 
renormalization group (IMSRG)32 and many-body perturbation 
theory (MBPT) methods to approximately solve the Schrödinger 
equation and obtain the ground-state energy and nucleon densities 
of 48Ca and 208Pb. We analyse the model space convergence and use 
the differences between the CC, IMSRG and MBPT results to esti-
mate the method approximation errors (Methods and Extended 
Data Figs. 3 and 4). The computational cost of these methods 
scales (only) polynomially with increasing numbers of nucleons 
and single-particle orbitals. The main challenge in computing 
208Pb is the vast number of matrix elements of the three-nucleon 
(3N) force which must be handled. We overcome this limita-
tion by using a recently introduced storage scheme in which we 
only store linear combinations of matrix elements directly enter-
ing the normal-ordered two-body approximation19 (see Methods  
for details).

Our ab initio predictions for finite nuclei are summarized in 
Fig. 2. The statistical approach that leads to these results is com-
posed of three stages. First, history matching identified a set of 
34 non-implausible interaction parameterizations. Second, model 
calibration is performed by weighting these parameterizations—
serving as prior samples—using a likelihood measure according to 
the principles of sampling/importance resampling33. This yields 34 
weighted samples from the LEC posterior probability density func-
tion (Extended Data Fig. 5). Specifically, we assume independent 
EFT and many-body method errors and construct a normally dis-
tributed data likelihood encompassing the ground-state energy per 
nucleon E/A and the point-proton radius Rp for 48Ca, and the energy 
E2+ of its first excited 2+ state. Our final predictions are therefore 
conditional on this calibration data.

We have tested the sensitivity of final results to the likelihood 
definition by repeating the calibration with a non-diagonal covari-
ance matrix or a Student t distribution with heavier tails, finding 
small (~1%) differences in the predicted credible regions. The EFT 
truncation errors are quantified by studying ab initio predictions at 
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Fig. 1 | Trend of realistic ab initio computations for the nuclear A-body 
problem. The bars highlight the years of the first realistic computations 
of doubly magic nuclei. The height of each bar corresponds to the mass 
number A divided by the logarithm of the total compute power RTOP500 (in 
flops s−1) of the pertinent TOP500 list45. This ratio would be approximately 
constant if progress were solely due to exponentially increasing computing 
power. However, algorithms which instead scale polynomially in A have 
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Fig. 2 | Ab initio posterior predictive distributions for light to heavy nuclei. 
Model checking is indicated by green (blue) distributions, corresponding to 
observables used for history-matching (likelihood calibration), while pure 
predictions are shown as pink distributions. The nuclear observables shown 
are the quadrupole moment Q, point-proton radii Rp, ground-state energies 
E (or energy per nucleon E/A), 2+ excitation energy E2+ and electric dipole 
polarizabilities αD. See Extended Data Table 1 for the numerical specification 
of the experimental data (z), errors (σi), medians (white circle) and 68% 
credibility regions (thick bar). The prediction for Rskin(208Pb) in the bottom 
panel is shown on an absolute scale and compared with experimental 
results using electroweak5 (purple), hadronic34,35 (red), electromagnetic4 
(green) and gravitational wave36 (blue) probes (from top to bottom; see 
Extended Data Fig. 7b for details).
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different orders in the power counting for 48Ca and infinite nuclear 
matter. We validate our ab initio model and error assignments by 
computing the posterior predictive distributions, including all rel-
evant sources of uncertainty, for both the replicated calibration data 
(blue) and the history-matching observables (green) (Fig. 2). The 
percentage ratios σtot/z of the (theory-dominated) total uncertainty 
to the experimental value are given in the right margin.

Finally, having built confidence in our ab initio model and 
underlying assumptions, we predict Rskin(208Pb), E/A and Rp for 
208Pb, αD for 48Ca and 208Pb as well as nuclear matter properties, by 
employing importance resampling33. The corresponding posterior 
predictive distributions for 48Ca and 208Pb observables are shown 
in Fig. 2 (lower panels, pink). Our prediction Rskin(208Pb) = 0.14–
0.20 fm exhibits a mild tension with the value extracted from the 
recent parity-violating electron scattering experiment PREX5 but 
is consistent with the skin thickness extracted from elastic proton 
scattering34, antiprotonic atoms35 and coherent pion photoproduc-
tion4 as well as constraints from gravitational waves from merging 
neutron stars36.

We also compute the weak form factor Fw(Q2) at momentum 
transfer QPREX = 0.3978(16) fm−1, which is more directly related to 
the parity-violating asymmetry measured in the PREX experiment. 
We observe a strong correlation with the more precisely measured 
electric charge form factor Fch(Q2) (Fig. 3b). While we have not 
quantified the EFT and method errors for these observables, we find 
a small variance among the 34 non-implausible predictions for the 
difference Fw(Q2) − Fch(Q2) for both 48Ca and 208Pb (Fig. 3c).

Ab initio computations of infinite nuclear matter
We also make predictions for nuclear-matter properties by employ-
ing the CC method on a momentum space lattice37 with a Bayesian 
machine-learning error model to quantify the uncertainties from the 
EFT truncation14 and the CC method (see Methods and Extended 
Data Fig. 6 for details). The observables we compute are the satura-
tion density ρ0, the energy per nucleon of symmetric nuclear mat-
ter E0/A, its compressibility K, the symmetry energy S (that is, the 
difference between the energy per nucleon of neutron matter and 
symmetric nuclear matter), and its slope L. The posterior predic-
tive distributions for these observables are shown in Fig. 3a. These 
distributions include samples from the relevant method and model 
error terms. Overall, we reveal relevant correlations among observ-
ables, previously indicated in mean-field models, and find good 
agreement with empirical bounds38. The last row shows the result-
ing correlations with Rskin(208Pb) in our ab initio framework. In par-
ticular, we find essentially the same correlation between Rskin(208Pb) 
and L as observed in mean-field models (Extended Data Fig. 7b).

Discussion
The predicted range of the 208Pb neutron skin thickness (Extended 
Data Table 2) is consistent with several extractions4,39,40, each of which 
involves some model dependence, and in mild tension (approxi-
mately 1.5σ) with the recent PREX result5. Ab initio computations 
yield a thin skin and a narrow range because the isovector phys-
ics is constrained by scattering data8,13,41. A thin skin was also pre-
dicted in 48Ca (ref. 15). We find that both Rskin(208Pb) = 0.14–0.20 fm  
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and the slope parameter L = 37–66 MeV are strongly correlated with 
scattering in the 1S0 partial wave for laboratory energies around 
50 MeV (the strongest two-neutron channel allowed by the Pauli 
principle, with the energy naively corresponding to the Fermi 
energy of neutron matter at 0.8ρ0) (Extended Data Fig. 7a). It is 
possible, analogous to findings in mean-field theory1,42, to increase 
L beyond the range predicted in this work by tuning a contact in 
the 1S0 partial wave and simultaneously readjusting the three-body 
contact to maintain realistic nuclear saturation. However, this large 
slope L and increased Rskin come at the cost of degraded 1S0 scat-
tering phase shifts, well beyond the corrections expected from 
higher-order terms (Extended Data Fig. 8). The large range of L 
and Rskin obtained in mean-field theory is a consequence of scat-
tering data not being incorporated. It will be important to confront 
our predictions with more precise experimental measurements43,44. 
If the tension between scattering data and neutron skins persists, 
it will represent a serious challenge to our ab initio description of 
nuclear physics.

Our work demonstrates that ab initio approaches using nuclear 
forces from chiral EFT can consistently describe data from nucleon–
nucleon scattering, few-body systems and heavy nuclei within 
the estimated theoretical uncertainties. Information contained in 
nucleon–nucleon scattering significantly constrains the properties 
of neutron matter. This same information constrains neutron skins, 
which provide a non-trivial empirical check on the reliability of  
ab initio predictions for the neutron-matter equation of state. 
Moving forward, it will be important to extend these calculations to 
higher orders in the EFT, both to further validate the error model 
and to improve precision, and to push the cut-off to higher values to 
confirm regulator independence. The framework presented herein 
will enable predictions with quantified uncertainties across the 
nuclear chart, advancing towards the goal of a single unified frame-
work for describing low-energy nuclear physics.
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Methods
Hamiltonian and model space. The many-body approaches used in this work, viz. 
CC, IMSRG, and many-body perturbation theory (MBPT), start from the intrinsic 
Hamiltonian

H = Tkin − TCoM + VNN + V3N, (2)

where Tkin is the kinetic energy, TCoM is the kinetic energy of the centre of 
mass, VNN is the nucleon–nucleon interaction and V3N is the 3N interaction. 
To facilitate the convergence of heavy nuclei, the interactions employed 
in this work used a non-local regulator with a cut-off Λ = 394 MeV c−1. 
Specifically, the VNN regulator is f(p) = exp (p2/Λ2)

n and the V3N regulator is 
f(p, q) = exp [−(p2 + 3q2/4)/Λ2]

n with n = 4. Results should be independent 
of this choice, up to higher-order corrections, provided renormalization group 
invariance of the EFT. However, increasing the momentum scale of the cut-off 
leads to harder interactions, considerably increasing the required computational 
effort. We represent the 34 non-implausible interactions that resulted from 
the history-matching analysis in the Hartree–Fock basis in a model space of 
up to 15 major harmonic oscillator shells (e = 2n + l ≤ emax = 14, where 
n and l denote the radial and orbital angular momentum quantum numbers, 
respectively) with oscillator frequency ℏω = 10 MeV. Due to storage limitations, 
the 3N force had an additional energy cut given by e1 + e2 + e3 ≤ E3 max = 28. 
After obtaining the Hartree–Fock basis for each of the 34 non-implausible 
interactions, we capture 3N force effects via the normal-ordered two-body 
approximation before proceeding with the CC, IMSRG and MBPT 
calculations46,47. The convergence behaviour in emax and E3max is illustrated 
in Extended Data Fig. 3, where we use an interaction with a high likelihood 
that generates a large correlation energy. Thus, its convergence behaviour 
represents the worst case among the 34 non-implausible interactions. The model 
space converged results are investigated with E3max → 3emax and emax → ∞ 
extrapolations. The functions Egs ≈ c0e−[(E3max−c1)/c2]2 + Egs(E3max = ∞) and 
Egs ≈ d0e−d1LIR + Egs(emax = ∞) with LIR =

√

2(emax + 7/2)b (where b is the 
harmonic oscillator length and the ci and di are the fitting parameters) are used 
as the asymptotic forms for E3max (ref. 19) and emax 48,49), respectively. Through 
the extrapolations, the ground-state energies computed with emax = 14 and 
E3max = 28 are shifted by −75 ± 60 MeV. Likewise, the extrapolations of proton 
and neutron radii with the functional form given in refs. 19,48,49 yield a small 
(+0.005 ± 0.010 fm) shift of the neutron skin thickness.

IMSRG calculations. The IMSRG calculations32,50 were performed at the 
IMSRG(2) level, using the Magnus formulation51. Operators for the point-proton 
and point-neutron radii, form factors and the electric dipole operator were 
consistently transformed. The dipole polarizablility αD was computed using the 
equations-of-motion (EOM) method truncated at the two-particle-two-hole 
level (that is, the EOM-IMSRG(2,2) approximation52) and the Lanczos continued 
fraction method53. We compute the weak and charge form factors using the 
parameterization presented in ref. 54, though the form given in ref. 55 yields nearly 
identical results.

MBPT calculations. MBPT theory calculations for 208Pb were performed in the 
Hartree–Fock basis to third order for the energies and to second order for radii.

CC calculations. The CC calculations of 208Pb were truncated at the 
singles-and-doubles excitation level, known as the CCSD approximation12,30,31. 
We estimated the contribution from triples excitations to the ground-state energy 
of 208Pb as 10% of the CCSD correlation energy (which is a reliable estimate for 
closed-shell systems31).

Extended Data Fig. 4 compares the different many-body approaches used 
in this work (that is CC, IMSRG and MBPT) and allows us to estimate the 
uncertainties related to our many-body approach in computing the ground-state 
observables for 208Pb. The point proton and neutron radii are computed as 
ground-state expectation values (see, for example, ref. 15 for details). For 48Ca, 
we used a Hartree–Fock basis consisting of 15 major oscillator shells with an 
oscillator spacing of ℏω = 16 MeV, while for 3N forces we used E3max = 16, which 
is sufficiently large to obtain converged results in this mass region. Here, we 
computed the ground-state energy using the Λ-CCSD(T) approximation56, which 
include perturbative triples corrections. The 2+ excited state in 48Ca was computed 
using the EOM CCSD approach57, and we estimated a −1 MeV shift from triples 
excitations based on EOM-CCSD(T) calculations of 48Ca and 78Ni using similar 
interactions58.

For the history-matching analysis, we used an emulator for the 16O 
ground-state energy and charge radius that was constructed using the recently 
developed sub-space projected (SP) CC method29. For higher precision in the 
emulator, we went beyond the SP-CCSD approximation used in ref. 29 and 
included leading-order triples excitations via the CCSDT-3 method59. The 
CCSDT-3 ground-state training vectors for 16O were obtained starting from the 
Hartree–Fock basis of the recently developed chiral interaction ΔNNLOGO(394) 
of ref. 60 in a model space consisting of 11 major harmonic oscillator shells with 
oscillator frequency ℏω = 16 MeV and E3max = 14. The emulator used in the 

history matching was constructed by selecting 68 different training points in the 
17-dimensional space of LECs using a space-filling Latin hypercube design with a 
10% variation around the ΔNNLOGO(394) LECs. At each training point, we then 
performed a CCSDT-3 calculation to obtain the training vectors, for which we 
then construct the sub-space projected norm and Hamiltonian matrices. Once the 
SP-CCSDT-3 matrices are constructed, we may obtain the ground-state energy and 
charge radii for any target values of the LECs by diagonalizing a 68 × 68 generalized 
eigenvalue problem (see ref. 29 for more details). We checked the accuracy of 
the emulator by cross-validation against full-space CCSDT-3 calculations as 
demonstrated in Extended Data Fig. 4a and found a relative error that was smaller 
than 0.2%.

The nuclear-matter equation of state and saturation properties are computed 
with the CCD(T) approximation which includes doubles excitations and 
perturbative triples corrections. The 3N forces are considered beyond the 
normal-ordered two-body approximation by including the residual 3N force 
contribution in the triples. The calculations are performed on a cubic lattice 
in momentum space with periodic boundary conditions. The model space is 
constructed with (2nmax + 1)3 momentum points, and we use nmax = 4(3) for 
pure neutron matter (symmetric nuclear matter) and obtain converged results. We 
perform calculations for systems of 66 neutrons (132 nucleons) for pure neutron 
matter (symmetric nuclear matter) since results obtained with those particle 
numbers exhibit small finite-size effects37.

Iterative history matching. In this work, we use an iterative approach known as 
history matching25,26 in which the model, solved at different fidelities, is confronted 
with experimental data z using equation (1). Obviously, we do not know the exact 
values of the errors in equation (1), hence we represent them as random variables 
and specify reasonable forms for their statistical distributions, in alignment with 
the Bayesian paradigm.

For many-body systems, we employ quantified method and (A = 16) emulator 
errors, as discussed above and summarized in Extended Data Table 1. For A ≤ 4 
nuclei, we use the no-core shell model in Jacobi coordinates61 and eigenvector 
continuation emulators28. The associated method and emulator errors are very 
small. Probabilistic attributes of the model discrepancy terms are assigned based 
on the expected EFT convergence pattern62,63. For the history-matching observables 
considered here, we use point estimates of model errors from ref. 64.

The aim of history matching is to estimate the set Q(z) of parameterizations 
θ for which the evaluation of a model M(θ) yields an acceptable (or at least not 
implausible) match to a set of observations z. History matching has been employed 
in various studies involving complex computer models65–68 ranging, for example, 
from the effects of climate modelling69,70 to systems biology71.

We introduce the individual implausibility measure

I2i (θ) =
|Mi(θ) − zi|2

Var (Mi(θ) − zi)
, (3)

which is a function over the input parameter space and quantifies the (mis-)
match between our (emulated) model output Mi(θ) and the observation zi for 
an observable in the target set Z. We mainly employ a maximum implausibility 
measure as the restricting quantity. Specifically, we consider a particular value for θ 
as implausible if

IM(θ) ≡ max
zi∈Z

Ii(θ) > cI, (4)

with cI ≡ 3.0, appealing to Pukelheim’s three-sigma rule72. In accordance with the 
assumptions leading to equation (1), the variance in the denominator of equation 
(3) is a sum of independent squared errors. Generalizations of these assumptions 
are straightforward if additional information on error covariances or possible 
inaccuracies in our error model would become available.

An important strength of the history matching is that we can proceed 
iteratively, excluding regions of input space by imposing cut-offs on implausibility 
measures that can include additional observables zi and corresponding model 
outputs Mi with possibly refined emulators as the parameter volume is reduced. 
The history-matching process is designed to be independent of the order in which 
observables are included, as is discussed in ref. 67. This is an important feature 
because it allows for efficient choices regarding such orderings. The iterative 
history matching proceeds in waves according to a straightforward strategy that 
can be summarized as follows:

	1.	 At wave j: Evaluate a set of model runs over the current non-implausible (NI) 
volume Qj using a space-filling design of sample values for the parameter 
inputs θ. Choose a rejection strategy based on implausibility measures for a 
set Zj of informative observables.

	2.	 Construct or refine emulators for the model predictions across Qj.
	3.	 The implausibility measures are then calculated over Qj using the emula-

tors, and implausibility cut-offs are imposed. This defines a new, smaller 
non-implausible volume Qj+1 which should satisfy Qj+1 ⊂ Qj.

	4.	 Unless (a) computational resources are exhausted or (b) all considered points 
in the parameter space are deemed implausible, we may include additional 
informative observables in the considered set Zj+1, and return to step 1.
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	5.	 If step 4(a) is true, we generate a number of acceptable runs from the final 
non-implausible volume Qfinal, sampled according to scientific need.

The ab initio model for the observables we consider includes at most 17 
parameters: 4 subleading pion–nucleon couplings, 11 nucleon–nucleon contact 
couplings and two short-ranged 3N couplings. To identify a set of non-implausible 
parameter samples, we performed iterative history matching in four waves using 
observables and implausibility measures, as summarized in Extended Data Fig. 
1b. For each wave, we employ a sufficiently dense Latin hypercube set of several 
million candidate parameter samples. For the model evaluations, we utilized fast 
computations of neutron–proton scattering phase shifts and efficient emulators 
for the few- and many-body history-matching observables. See Extended Data 
Table 1 and Extended Data Fig. 2 for the list of history-matching observables and 
information on the errors that enter the implausibility measure in equation (3). 
The input volume for wave 1 incorporates the naturalness expectation for LECs, 
but still includes large ranges for the relevant parameters as indicated by the panel 
ranges in Extended Data Fig. 1a. In all four waves, the input volume for c1,2,3,4 is a 
four-dimensional hypercube mapped onto the multivariate Gaussian probability 
density function (PDF) resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. In wave 1 and wave 2, we sampled all relevant parameter 
directions for the set of included two-nucleon observables. In wave 3, the 3H and 
4He observables were added such that the 3N force parameters cD and cE can also be 
constrained. Since these observables are known to be rather insensitive to the four 
model parameters acting solely in P waves, we ignored this subset of the inputs 
and compensated by slightly enlarging the corresponding method errors. This 
is a well-known emulation procedure called inactive parameter identification25. 
For wave 4, we considered all 17 model parameters and added the ground-state 
energy and radius of 16O to the set Z4 and emulated the model outputs for 
5 × 108 parameter samples. By including oxygen data, we explore the modelling 
capabilities of our ab initio approach. Extended Data Fig. 1a summarizes the 
sequential non-implausible volume reduction, wave-by-wave, and indicates the set 
of 4,337 non-implausible samples after the fourth wave. Note that the use of history 
matching would, in principle, allow a detailed study of the information content of 
various observables in heavy-mass nuclei. Such an analysis, however, requires an 
extensive set of reliable emulators and lies beyond the scope of the present work. 
The volume reduction is determined by the maximum implausibility cut-off in 
equation (4) with additional confirmation from the optical depths (which indicate 
the density of non-implausible samples; see equations (25) and (26) in ref. 71). 
The non-implausible samples summarize the parameter region of interest and 
can directly provide insight regarding the interdependences between parameters 
induced by the match to observed data. This region is also where we would 
expect the posterior distribution to reside, and we note that our history-matching 
procedure has allowed us to reduce its size by more than seven orders of magnitude 
compared with the prior volume (Extended Data Fig. 1b).

As a final step, we confront the set of non-implausible samples from 
wave 4 with neutron–proton scattering phase shifts such that our final set of 
non-implausible samples has been matched with all history-matching observables. 
For this final implausibility check, we employ a slightly less strict cut-off and allow 
the first, second and third maxima of Ii(θ) (for zi ∈ Zfinal) to be 5.0, 4.0 and 3.0, 
respectively, accommodating the more extreme maxima we may anticipate when 
considering a significantly larger number of observables. The end result is a set of 
34 non-implausible samples that we use for predicting 48Ca and 208Pb observables, 
as well as the equation of state of both symmetric nuclear matter and pure neutron 
matter.

Posterior predictive distributions. The 34 non-implausible samples from the final 
history-matching wave are used to compute energies, radii of proton and neutron 
distributions and electric dipole polarizabilities (αD) for 48Ca and 208Pb. They are 
also used to compute the electric and weak charge form factors for the same nuclei 
at a relevant momentum transfer, and the energy per particle of infinite nuclear 
matter at various densities to extract key properties of the nuclear equation of state 
(see below). These results are shown in Fig. 3(blue circles).

To make quantitative predictions, with a statistical interpretation, for 
Rskin(208Pb) and other observables, we use the same 34 parameter sets to extract 
representative samples from the posterior PDF p(θ|Dcal). Bulk properties (energies 
and charge radii) of 48Ca together with the structure-sensitive 2+ excited-state 
energy of 48Ca are used to define the calibration data set Dcal. The IMSRG and 
CC convergence studies make it possible to quantify the method errors. These are 
summarized in Extended Data Table 1. The EFT truncation errors are quantified 
by adopting the EFT convergence model74,75 for observable y

y = yref





k
∑

i=0
ciQi

+

∞

∑

i=k+1
ciQi



 , (5)

with observable coefficients ci that are expected to be of natural size, and the 
expansion parameter Q = 0.42 following our Bayesian error model for nuclear 
matter at the relevant density (see below). The first sum in the parenthesis is the 
model prediction yk(θ) of observable y at truncation order k in the chiral expansion. 
The second sum than represents the model error because it includes the terms 

that are not explicitly included. We can quantify the magnitude of these terms by 
learning about the distribution for ci, which we assume to be described by a single 
normal distribution per observable type with zero mean and a variance parameter 
c̄2. We employ the nuclear-matter error analysis for the energy per particle of 
symmetric nuclear matter (described below) to provide the model error for E/A in 
48Ca and 208Pb. For radii and electric dipole polarizabilities, we employ the next-to 
leading order and next-to-next-to leading order interactions of ref. 60 and compute 
these observables at both orders for various Ca, Ni and Sn isotopes. The reference 
values yref are set to r0 A1/3 for radii (with r0 = 1.2 fm) and to the experimental 
value for αD. From these data, we extract c̄2 and perform the geometric sum of the 
second term in equation (5). The resulting standard deviations for model errors are 
summarized in Extended Data Table 1.

At this stage, we can approximately extract samples from the parameter 
posterior p(θ|Dcal) by employing the established method of sampling/importance 
resampling33,76. We assume a uniform prior probability for the non-implausible 
samples, and we introduce a normally distributed likelihood L(Dcal|θ), assuming 
independent experimental, method and model errors. The prior for c1,2,3,4 is the 
multivariate Gaussian resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. Defining importance weights

qi = L(Dcal|θi)/
n

∑

j=1
L(Dcal|θj), (6)

we draw samples θ* from the discrete distribution {θ1, …, θn} with probability 
mass qi on θi. These samples are then approximately distributed according to the 
parameter posterior that we are seeking33,76.

Although we are operating with a finite number of n = 34 representative 
samples from the parameter PDF, it is reassuring that about half of them are within 
a factor of two from the most probable one in terms of the importance weight 
(Extended Data Fig. 5). Consequently, our final predictions will not be dominated 
by a very small number of interactions. In addition, as we do not anticipate the 
parameter PDF to be of a particularly complex shape, based on the results of the 
history match, consideration of the various error structures in the analysis and 
on the posterior predictive distributions (PPDs) shown in Fig. 3, and as we are 
mainly interested in examining such lower one- or two-dimensional PPDs, this 
sample size was deemed sufficient and the corresponding sampling error assumed 
subdominant. We use these samples to draw corresponding samples from

PPDparametric = {yk(θ) : θ ∼ p(θ|Dcal)}. (7)

This PPD is the set of all model predictions computed over likely values of the 
parameters, that is, drawing from the posterior PDF for θ. The full PPD is then 
defined, in analogy with equation (7), as the set evaluation of y which is the sum

y = yk + ϵmethod + ϵmodel, (8)

where we assume method and model errors to be independent of the parameters. 
In practice, we produce 104 samples from this full PPD for y by resampling the 
34 samples of the model PPD in equation (7) according to their importance 
weights, and adding samples from the error terms in equation (8). We perform 
model checking by comparing this final PPD with the data used in the iterative 
history-matching step, and in the likelihood calibration. In addition, we find that 
our predictions for the measured electric dipole polarizabilities of 48Ca and 208Pb as 
well as bulk properties of 208Pb serve as a validation of the reliability of our analysis 
and assigned errors (Fig. 2 and Extended Data Table 1).

In addition, we explored the sensitivity of our results to modifications of the 
likelihood definition. Specifically, we used a Student t distribution (ν = 5) to see 
the effects of allowing heavier tails, and we introduced an error covariance matrix 
to study the effect of possible correlations (with ρ ≈ 0.7) between the errors in 
the binding energy and radius of 48Ca. In the end, the differences in the extracted 
credibility regions was ~1%, and we therefore present only results obtained with 
the uncorrelated, multivariate normal distribution.

Our final predictions for Rskin(208Pb), Rskin(48Ca) and nuclear-matter properties 
are presented in Fig. 3 and Extended Data Table 2. For these observables, we use 
the Bayesian machine learning error model described below to assign relevant 
correlations between equation-of-state observables. For the model errors in 
Rskin(208Pb) and L, we use a correlation coefficient of ρ = 0.9 as motivated by the 
strong correlation between the observables computed with the 34 non-implausible 
samples. Note that S, L and K are computed at the specific saturation density of the 
corresponding non-implausible interaction.

Bayesian machine learning error model. Similar to equation (1), the predicted 
nuclear matter observables can be written as

y = yk(ρ) + εk(ρ) + εmethod(ρ), (9)

where yk(ρ) is the CC prediction using our EFT model truncated at order k, εk(ρ) 
is the EFT truncation (model) error and εmethod(ρ) is the CC method error. In this 
work, we apply a Bayesian machine learning error model14 to quantify the density 
dependence of both the method and truncation errors. The error model is based 
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on multi-task Gaussian processes that learn both the size and the correlations of 
the target errors from given prior information. Following a physically motivated 
Gaussian process (GP) model14, the EFT truncation errors εk at given density ρ are 
distributed as

εk(ρ) | c̄2, l, Q ∼ GP[0, c̄2Rεk (ρ, ρ′;l)], (10)

with

Rεk (ρ, ρ′;l) = yref(ρ)yref(ρ′

)
[Q(ρ)Q(ρ′)]k+1

1 − Q(ρ)Q(ρ′)
r(ρ, ρ′;l). (11)

Here, k = 3 for the ΔNNLO(394) EFT model used in this work, while c̄2, l 
and Q are hyperparameters corresponding to the variance, the correlation length 
and the expansion parameter. Finally, we choose the reference scale yref to be the 
EFT leading-order prediction. The mean of the Gaussian process is set to be zero 
since the order-by-order truncation error can be either positive or negative and 
the correlation function r(ρ, ρ′;l) in equation (11) is the Gaussian radial basis 
function.

We employ Bayesian inference to optimize the Gaussian process 
hyperparameters using order-by-order predictions of the equation of state for both 
pure neutron matter and symmetric nuclear matter with the Δ-full interactions 
from ref. 64. In this work, we find c̄PNM = 1.00 and lPNM = 0.92 fm−1 for pure neutron 
matter and c̄SNM = 1.55 and lSNM = 0.48 fm−1 for symmetric nuclear matter.

The above Gaussian processes only describe the correlated structure of 
truncation errors for one type of nucleonic matter. In addition, the correlation 
between pure neutron matter and symmetric nuclear matter is crucial for 
correctly assigning errors to observables that involve both E/N and E/A (such as 
the symmetry energy S). For this purpose, we use a multitask Gaussian process 
that simultaneously describes the truncation errors of pure neutron matter and 
symmetric nuclear matter according to

[

εk,PNM

εk,SNM

]

∼ GP
([ 0

0

]

,
[

K11 K12

K21 K22

])

, (12)

where K11 and K22 are the covariance matrices generated from the kernel function 
c̄2Rεk (ρ, ρ′;l) for pure neutron matter and symmetric nuclear matter, respectively, 
while K12 (K21) is the cross-covariance as in ref. 77.

Regarding the CC method error, different sources of uncertainty should be 
considered. The truncation error of the cluster operator (εcc) and the finite-size 
effect (εfs) are the main ones, and the total method error is then εmethod = εcc + εfs. 
Following the Bayesian error model, we have the following general expression for 
the method error:

εme(ρ) | c̄2me, lme,∼ GP[0, c̄2meRme(ρ, ρ′;lme)], (13)

with

Rme(ρ, ρ′;lme) = yme,ref(ρ)yme,ref(ρ′

)r(ρ, ρ′;lme). (14)

Here, the subscript ‘me’ stands for either the cluster operator truncation ‘cc’ or the 
finite-size effect ‘fs’ method error. For the cluster operator truncation errors εcc, the 
reference scale yme,ref is taken to be the CCD(T) correlation energy. The Gaussian 
processes are then optimized with data from different interactions by assuming that 
the energy difference between CCD and CCD(T) can be used as an approximation 
of the cluster operator truncation error. The correlation lengths learned from the 
training data are lme,PNM = 0.81 fm−1 for pure neutron matter and lme,SNM = 0.34 fm−1 
for symmetric nuclear matter. Based on the convergence study, we take ±10% of the 
correlation energy as the 95% credible interval, which gives c̄me = 0.05 for εcc. For 
the finite-size effect εfs, the reference scale is taken to be the CCD(T) ground-state 
energy. Then, following ref. 37, we use ±0.5% (±4%) of the ground-state energy 
of the pure neutron matter (the symmetric nuclear matter) as a conservative 
estimation of the finite-size effect (95% credible interval) when using periodic 
boundary conditions with 66 neutrons (132 nucleons) around the saturation point. 
This leads to c̄me,PNM = 0.0025 and c̄me,SNM = 0.02 for εfs. The finite-size effects of 
different densities are clearly correlated, while there are insufficient data to learn its 
correlation structure. Here, we simply used 0.81 fm−1 (0.34 fm−1) as the correlation 
length for pure neutron matter (symmetric nuclear matter) and assume zero 
correlation between pure neutron matter and symmetric nuclear matter.

Once the model and method errors are determined, it is straightforward to 
sample these errors from the corresponding covariance matrix and produce the 
equation-of-state predictions using equation (9) for any given interaction. This 
sampling procedure is crucial for generating the posterior predictive distribution 
of nuclear-matter observables shown in Fig. 3a. The CCD(T) calculations for the 
nuclear-matter equation of state and the corresponding 2σ credible interval for the 
method and model errors are illustrated in Extended Data Fig. 6. The sampling 
procedure is made explicit with three randomly sampled equation-of-state 
predictions. Note that, even though the sampled errors for one given density 
appear to be random, the multi-task Gaussian processes will guarantee that the 

sampled equations of state of nuclear matter are smooth and properly correlated 
with each other.

Data availability
Source data for Figs. 1, 2 and 3a–c are provided with this paper. Furthermore, 
the parameters of the 34 non-implausible interactions that is the final result of 
Extended Data Fig. 1 plus the mean vector and covariance matrix of a multivariate 
normal distribution that approximates the full posterior predictive distribution 
shown in Fig. 3a are also provided. The data that support the other figures of this 
study are available from the corresponding author upon reasonable request. Source 
data are provided with this paper.

Code availability
The code used to perform the IMSRG calculations is available at https://github.
com/ragnarstroberg/imsrg. Enquiries about other codes used in this work should 
be adressed to the corresponding author.
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Extended Data Fig. 1 | History-matching waves. a, The initial parameter domain used at the start of history-matching wave 1 is represented by the axes 
limits for all panels. This domain is iteratively reduced and the input volumes of waves 2, 3, and 4 are indicated by green/dash-dotted, blue/dashed, 
black/solid rectangles. The logarithm of the optical depths log10ρ (indicating the density of non-implausible samples in the final wave) are shown in 
red with darker regions corresponding to a denser distribution of non-implausible samples. b, Four waves of history matching were used in this work 
plus a fifth one to refine the final set of non-implausible samples. The neutron-proton scattering targets correspond to phase shifts at six energies 
(Tlab = 1, 5, 25, 50, 100, 200 MeV) per partial wave: 1S0, 3S1, 1P1, 3P0, 3P1, 3P2. The A = 2 observables are E(2H), Rp(2H), Q(2H), while A = 3, 4 are E(3H), E(4He), 
Rp(4He). Finally, A = 16 targets are E(16O), Rp(16O). The number of active input parameters is indicated in the fourth column. The number of inputs sets 
being explored, and the fraction of non-implausible samples that survive the imposed implausibility cutoff(s) are shown in the fifth and sixth columns, 
respectively. Finally, the proportion of the parameter space deemed non implausible is listed in the last column. Note that no additional reduction of the 
non-implausible domain is achieved in the fourth and final waves, in which 16O observables are included, but that parameter correlations are enhanced.
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Extended Data Fig. 2 | Neutron-proton scattering phase shifts. 34 interaction samples survive the final implausibility cutoff with respect to 
neutron-proton phase shifts δ in S and P waves up to 200 MeV. The red circles are from the Granada phase shift analysis78, while the 2σ error bars are 
dominated by the estimated EFT truncation errors64.
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Extended Data Fig. 3 | Convergence of energy and radius observables of 208Pb with the emax and E3max truncations. a, Ground state energy as a function 
of E3max. The dashed lines indicate a Gaussian fit. b, Ground state energy (extrapolated in E3max as a function of emax. The smaller error bar on the adopted 
value indicate the error due to model space extrapolation, and the larger error bar also includes the method uncertainty. c, Neutron skin as a function of 
E3max. d, Neutron radius as a function of oscillator basis frequency ℏω for a series of emax cuts.
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Extended Data Fig. 4 | Precision of sub-space coupled-cluster emulator and many-body solvers. a, Cross-validation of the SP-CCSDT-3 emulator 
for the ground-state energy of 16O. Results from full computations using CCSDT-3 are compared with emulator predictions for 50 samples from the 
17 dimensional space of LECs. The standard deviation for the residuals ΔESPCC-CC is 0.19 MeV. b,c,d, Differences between IMSRG and CC results versus 
differences between MBPT and CC results for the ground-state energy per nucleon ΔE/A (panel b), the point-proton radius ΔRp (panel c), and the 
neutron-skin ΔRskin (panel d) of 208Pb using the 34 non-implausible interactions obtained from history matching (see text for more details). The CC results 
for the ground-state energy include approximate triples corrections.
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Extended Data Fig. 5 | Importance weights. Histogram of importance weights for the 34 non-implausible interaction samples. These are obtained from 
likelihood calibration as defined in Eq. (6).
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Extended Data Fig. 6 | Bayesian machine learning error model. The equation of state of pure neutron matter (top) and symmetric nuclear matter 
(bottom) calculated with CCD(T) (black squares) are shown along with the corresponding method error (blue shade) and EFT truncation error (green 
shade) for one representative interaction. Errors are correlated as a function of density ρ and the dashed orange, green and purple curves illustrate 
predictions with randomly sampled method and model errors drawn from the respective multitask Gaussian processes. Correlations extend between 
pure neutron matter (E/N) and symmetric nuclear matter (E/A) energies per particle which is represented here by curves in the same colour. Note that 
the method error is very small in neutron matter due to the small finite-size effect and the small differences between CCD and CCD(T) results (the Pauli 
principle prevents short-ranged three-neutron correlations).
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Extended Data Fig. 7 | Correlation of Rskin( 208Pb) with scattering data and L. a Correlation of computed Rskin( 208Pb) with the proton-neutron 1S0 phase 
shift δ(1S0) at a laboratory energy of 50 MeV, shown in blue. The error bars represent method and model (EFT) uncertainties. The green band indicates 
the experimental phase shift78, while the purple line (band) indicate the mean result (one-sigma error) of the PREX experiment5. The dashed line indicates 
the linear trend of the ab initio points with r2 the coefficient of determination. b Correlation of neutron skin Rskin( 208Pb) vs slope of the symmetry energy 
L. Relativistic and non-relativistic mean-field calculations are indicated with open symbols79, while ab initio results using the 34 non-implausible samples 
are indicated with filled circles. Experimental extractions of Rskin( 208Pb) shown in the figure are from PREX5, MAMI4, RCNP34, p̄35, and GW1708173636. All 
of these results involve modeling input as the neutron skin thickness cannot be measured directly. The quoted experimental error bars include statistical 
and some systematical uncertainties except for Ref. 35 that is statistical only and the GW170817 constraint which is a 90% upper bound from relativistic 
mean-field modeling of the tidal polarizability extracted in Ref. 36.
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Extended Data Fig. 8 | Parameter sensitivities in ab initio models and Skyrme parametrizations. a, Tuning the C1S0 LEC in our ab initio model to adjust the 
symmetry energy slope parameter L while compensating with the three-nucleon contact cE to maintain the saturation density ρ0 and energy per nucleon 
E0/A of symmetric nuclear matter. The green pentagons correspond to results with one of the 34 interaction samples while the black squares indicate the 
results after tuning the C1S0 and cE of that interaction. The right column shows the scattering phase shift δ in the 1S0 channel at 50 MeV, the ground-state 
energies in 3H and 16O and the point-proton radius Rp in 16O. The red diamonds and the dashed lines indicate the experimental values of target observables 
and the red bands indicate the corresponding cI = 3 non-implausible regions, see Eq. (4), Extended Data Table 1 and Extended Data Figure 2. b, Illustration 
of the freedom in Skyrme parametrizations to adjust L while preserving ρ0 and E0/A. The parameters x0, t0, x3, t3 correspond to the functional form given in 
e.g.80. The black circles correspond to different parameter sets, while the red line indicates the result of starting with the SKX interaction and modifying 
the x0, x3 parameters while maintaining the binding energy per nucleon E/A of 208Pb. The right column also shows the 208Pb point-proton and point-neutron 
radii (Rp and Rn, respectively) and neutron skin thickness Rskin for different parametrisations. The gray bands indicate a linear fit to the black points with r2 
the coefficient of determination. Skyrme parameter sets included are SKX, SKXCSB9, SKI, SKII81, SKIII-VI82, SKa, SKb83, SKI2, SKI584, SKT4, SKT685, SKP86, 
SGI, SGII87, MSKA88, SKO89, SKM*90.
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Extended Data Table 1 | Error assignments, PPD model checking and validation. Experimental target values and error assignments for observables used 
in the fourth wave of the iterative history matching (history-matching observables), for the Gaussian likelihood calibration of the final non-implausible 
samples (calibration observables), and for model validation with predicted 208Pb observables and electric dipole polarizabilities (validation observables). 
Energies E (in MeV) with experimental targets from Refs. 91,92, point-proton radii Rp (in fm) with experimental targets translated from measured charge 
radii93 (see Ref. 94 for more details). For the deuteron quadrupole moment Q (in e2fm2) we use the theoretical result obtained from the high-precision 
meson-exchange nucleon-nucleon model CD-Bonn95 as a target with a 4% error bar. Electric dipole polarizability αD (in fm3) with experimental targets 
from Refs. 96,97. Theoretical model (method) errors are estimated from the EFT (many-body) convergence pattern as discussed in the text. These theory 
errors have zero mean except for the excitation energy E2+(48Ca) with μmethod = − 1 MeV from estimated triples and E/A(208Pb) with μmethod = − 0.36 MeV/A 
from emax model-space extrapolation. Emulator errors are estimated from cross validation. All errors are represented by the estimated standard deviation 
of the corresponding random vartiable: σexp = Var[εexp]1/2, σmodel = Var[εmodel]

1/2, etc. Most of the experimental errors are negligible compared to the 
theoretical ones and therefore given as σexp = 0. We assume that all theory errors are parametrization independent. The final model predictions from the 
PPD described in the text (and shown in Fig. 2) are summarized by the medians and the marginal 68% credibility regions in the last column.
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Extended Data Table 2 | Predictions for the nuclear equation of state at saturation density and for neutron skins. Medians and 68%, 90% credible 
regions (CR) for the final PPD including samples from the error models (see also Fig. 3 and text for details). The saturation density, ρ0, is in (fm−3), the 
neutron skin thickness, Rskin( 208Pb) and Rskin( 48Ca), in (fm), while the saturation energy per particle (E0/A), the symmetry energy (S), its slope (L), and 
incompressibility (K) at saturation density are all in (MeV). Empirical regions shown in Fig. 3 are E0/A = − 16.0 ± 0.5, ρ0 = 0.16 ± 0.01, S = 31 ± 1, L = 50 ± 10 
and K = 240 ± 20 from Refs. 38,98,99.
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