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1 MAIN RESULTS

Whether a given smoothmanifold admits a complete Riemannianmetric of positive scalar curva-
ture is a long-standing problem in Riemannian geometry. For closed (that is, compact andwithout
boundary) simply-connected manifolds of dimension at least 5, this question has been answered
by Gromov–Lawson [11] and Stolz [31]. For non-simply-connected manifolds, however, the prob-
lem is still open in many cases (see, for example, the surveys [33, 34] by Walsh). Under symmetry
assumptions, Lawson and Yau [22] showed that any closed smooth manifold 𝑀 with a smooth
(effective) action of a connected, compact, non-abelian Lie group 𝐺 supports an invariant Rie-
mannian metric of positive scalar curvature. Further existence results for manifolds with circle
actions have been obtained byHanke [19] andWiemeler [35]. Note that the orbit space of a smooth
effective circle action on an 𝑛-manifold, 𝑛 ⩾ 1, has dimension 𝑛 − 1. Thus, one generally thinks of
manifolds with circle actions as having high-dimensional orbit spaces. In this note, we consider
the opposite situation, namely, manifolds with compact Lie group actions whose orbit space is
zero- or one-dimensional, and characterize such manifolds admitting positive scalar curvature.
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Recall that a smooth manifold is a cohomogeneity one manifold if it admits an effective, smooth
action of a compact Lie group 𝐺 and the orbit space𝑀∕𝐺 of this action is one dimensional. These
manifolds were first studied by Mostert in [25] (see also [10, 24, 27]) and play an important role
in differential geometry (see, for example, [16–18, 20]). When 𝑀 is closed, 𝑀∕𝐺 is homeomor-
phic to 𝑆1 or [−1, 1]. Let 𝑇𝑘 denote the 𝑘-dimensional torus, 𝐾 the Klein bottle, and let 𝐴 be the
manifold (𝑀𝑏 × 𝑆1) ∪𝜕 (𝑆

1 × 𝑀𝑏), where 𝑀𝑏 denotes the Möbius band. It follows from [27] (or
from Theorem A below) that 𝐾 × 𝑆1, 𝐴, and 𝑇3 are the only closed smooth 3-manifolds admit-
ting a flat Riemannian metric with an effective isometric 𝑇2 action of cohomogeneity one. We
get the following characterization of closed cohomogeneity one manifolds with positive scalar
curvature.

Theorem A. Let𝑀 be a closed, connected, cohomogeneity one manifold of dimension 𝑛 ⩾ 2. Then
the following statements are equivalent.

(1) 𝑀 admits a Riemannian metric of positive scalar curvature.
(2) 𝑀 admits a 𝐺-invariant Riemannian metric of positive scalar curvature.
(3) 𝑀 is neither diffeomorphic to a torus nor to a product of a torus with one of 𝐾 or 𝐴.
(4) The universal cover of𝑀 is not diffeomorphic to Euclidean space.
(5) 𝑀 admits no flat Riemannian metric.

In the case of non-compact cohomogeneity one manifolds the situation is slightly different.
Note that we still require the group 𝐺 to be compact and assume that𝑀 has no boundary. Here,
𝑀∕𝐺 is homeomorphic to ℝ or [0,∞) and we obtain the following result, where𝑀𝑏o denotes the
open Möbius band and the symbol ‘≈’ denotes diffeomorphism between manifolds. Recall that a
manifold is open if it is non-compact and has no boundary.

Theorem B. Let𝑀 be an open, connected, cohomogeneity one manifold of dimension 𝑛 ⩾ 2. Then
the following statements are equivalent.

(1) 𝑀 admits a complete Riemannian metric of positive scalar curvature.
(2) 𝑀 admits a complete 𝐺-invariant Riemannian metric of positive scalar curvature.
(3) 𝑀 is neither diffeomorphic to 𝑇𝑛−1 × ℝ nor to 𝑇𝑛−2 × 𝑀𝑏

o.

Furthermore, if𝑀∕𝐺 ≈ ℝ, then the following statements are equivalent to the previous ones.

(4) The universal cover of𝑀 is not diffeomorphic to Euclidean space.
(5) 𝑀 has no complete flat Riemannian metric.

If 𝐺 is connected, then the two possibilities in statement (3) of Theorems A and B correspond
to the two cases 𝑀∕𝐺 ≈ 𝑆1 or [−1, 1], in the compact case, and 𝑀∕𝐺 ≈ ℝ or [0,∞), in the non-
compact case. Furthermore, the proofs of Theorems A and B show that𝑀 admits a flat Rieman-
nian metric if and only if 𝐺 is abelian, the isotropy subgroups of the principal orbits are trivial,
and the isotropy subgroups of the non-principal orbits are isomorphic to ℤ2.
In order to add statements (4) and (5) of Theorem B, it is necessary to restrict to the case

𝑀∕𝐺 ≈ ℝ. For example, consider ℝ𝑛 with the standard action of O(𝑛) as a cohomogeneity one
manifold with orbit space [0,∞). The standard Euclidean metric is flat and invariant under this
action. The torpedo metric, however (see, for example, [32] or [7]) is an O(𝑛)-invariant metric
of uniformly positive scalar curvature for 𝑛 ⩾ 3. If 𝑀∕𝐺 ≈ ℝ and 𝑀 has a complete 𝐺-invariant
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metric of positive scalar curvature, then𝑀 has in fact a metric of uniformly positive scalar curva-
ture, that is, the scalar curvature is bounded from below by a positive constant. In the case that
𝑀∕𝐺 ≈ [0,∞), this does not hold in general (see Remark 4.2).
Theorems A and B also give a classification of flat cohomogeneity onemanifolds if the quotient

𝑀∕𝐺 is not [0,∞). We refer to [23] for similar results on flat cohomogeneity one manifolds.
By further increasing the symmetry, we arrive at the notion of homogeneous spaces. Recall that

a smooth manifold is a homogeneous space if it admits an effective, smooth, transitive action of a
Lie group 𝐺, that is, if there is an effective smooth Lie group action with only one orbit (equiva-
lently, with zero-dimensional orbit space). When 𝐺 is compact, the following theorem character-
izes compact homogeneous spaces of positive scalar curvature.

Theorem C. Let 𝑀 be a homogeneous space of dimension 𝑛 ⩾ 2 and assume that 𝐺 is compact.
Then the following statements are equivalent.

(1) 𝑀 admits a Riemannian metric of positive scalar curvature.
(2) 𝑀 admits a 𝐺-invariant Riemannian metric of positive scalar curvature.
(3) The connected components of𝑀 are not diffeomorphic to a torus.
(4) The universal cover of each connected component of𝑀 is not diffeomorphic to Euclidean space.
(5) 𝑀 admits no flat Riemannian metric.

Note that the statements in Theorem C are exactly the same as in Theorem A, except for item
(3), where the homogeneous and cohomogeneity one situations differ. If the group𝐺 is connected,
then the proof of Theorem C shows that 𝑀 admits a flat Riemannian metric if and only if 𝐺 is
abelian and the isotropy subgroup is trivial.
The equivalence between items (2) and (4) in Theorem C has already been shown by Bérard-

Bergery in [2] and does not require the assumption that 𝐺 is compact. We also refer to [21] for a
different proof of this equivalence in the case of connected Lie groups. The equivalence of items (3)
and (5) is a special case of a theoremofWolf [37, Theorem I.2.7.1], who classified flat homogeneous
spaces. We will prove Theorem C without resorting to these results.
Recall that the Bonnet–Myers theorem implies that the fundamental group of a closed Rieman-

nian manifold with positive Ricci curvature must be finite. This condition on the fundamental
group is necessary and sufficient for the existence of an invariant Riemannian metric of posi-
tive Ricci curvature both on homogeneous spaces for compact Lie groups and closed cohomo-
geneity one manifolds. Indeed, a homogeneous space for a compact Lie group has an invariant
Riemannian metric of positive Ricci curvature if and only if its fundamental group is finite (see
[26, Proposition 3.4]). Grove and Ziller showed in [18] that the same equivalence holds for closed
cohomogeneity one manifolds.
Homogeneous spaces with an invariant metric of positive sectional curvature, where the Lie

group 𝐺 must necessarily be compact, have been classified (see, for example, [36] and references
therein). In the cohomogeneity one case, the possiblemanifolds thatmay carry invariant Rieman-
nian metrics with positive sectional curvature have been classified in the simply-connected case
(see [16]). These classifications, however, differ fundamentally from each other and there is no
direct analogy as observed in the case of positive scalar or Ricci curvature.
Our note is organized as follows. In Section 2, we prove a result on invariant metrics with non-

negative sectional curvature which simplifies the proofs of the main theorems. In Section 3, we
prove Theorem C. We then prove Theorems A and B in Section 4.
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2 PRELIMINARY OBSERVATIONS

Let𝑀 be a closed, smooth manifold and let 𝐺 be a compact Lie group acting smoothly and effec-
tively on 𝑀. We refer the reader to [28, 29] for general background on Riemannian geometry.
For basic results on compact Lie groups and actions on Riemannian manifolds, including homo-
geneous spaces and cohomogeneity one manifolds, we refer the reader to [1]. We will use the
following deformation result to obtain metrics with positive scalar curvature.

Lemma 2.1. Suppose that𝑀 admits a 𝐺-invariant metric g with non-negative scalar curvature. If
g is not Ricci-flat, then𝑀 admits a 𝐺-invariant metric of positive scalar curvature.

Proof. One uses the Ricci flow to deform g . As𝑀 is compact, we have existence and uniqueness
of the Ricci flow and it is well known that the deformed metrics are still 𝐺-invariant since the
Ricci flow preserves isometries. The statement now follows directly from [4, Proposition 2.18].
Alternatively, the lemma also follows from the deformation techniques of Ehrlich [8], which do
not use the Ricci flow. □

Let us first consider metrics with non-negative sectional curvature. The following proposition
follows from well-known results in Riemannian geometry.

Proposition 2.2. Let𝑀 be a closed, connected smooth manifold. Suppose that a compact Lie group
𝐺 acts smoothly on𝑀 and that𝑀 has a 𝐺-invariant Riemannian metric of non-negative sectional
curvature. Then the following statements are equivalent.

(1) 𝑀 admits a metric of positive scalar curvature.
(2) 𝑀 admits a 𝐺-invariant metric of positive scalar curvature.
(3) 𝑀 admits no flat metric.
(4) The universal cover of𝑀 is not diffeomorphic to Euclidean space.
(5) 𝑀 is not finitely covered by a torus.

Proof. Suppose that𝑀 is finitely covered by a torus. Then the universal cover of𝑀 is diffeomorphic
toℝ𝑛 and𝑀 is flat byCheeger andGromoll’s Splitting Theorem [6]. Hence, by thework ofGromov
and Lawson on enlargeable manifolds [12, Theorem A and Corollary A], the manifold 𝑀 does
not admit a metric of positive scalar curvature. This trivially implies that 𝑀 does not admit a
𝐺-invariant metric of positive scalar curvature.
To conclude the proof, we prove that item (5) implies item (2). Assume that 𝑀 has no 𝐺-

invariant metric of positive scalar curvature. Lemma 2.1 implies that 𝑀 is Ricci-flat and hence
flat, as the sectional curvature is non-negative. It then follows from the Bieberbach theorems that
𝑀 is finitely covered by a torus (see, for example, [5, Theorem II.5.3]). □

Parts of Proposition 2.2 still hold if we weaken the assumptions on the curvature.

Proposition 2.3. Let𝑀 be a closed, connected smooth manifold. Suppose that a compact Lie group
𝐺 acts smoothly on𝑀 and that𝑀 has a 𝐺-invariant Riemannian metric of non-negative Ricci cur-
vature. Then statements (3), (4) and (5) of Proposition 2.2 are equivalent and each one of statements
(1) and (2) implies statements (3), (4) and (5).
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The proof goes along the same lines as that of Proposition 2.2, except that we cannot conclude
that 𝑀 is flat if it has no (𝐺-invariant) metric of positive scalar curvature. Indeed, the converse
does not hold in general. Consider the K3 surface: it is Ricci-flat and admits no flat metric because
it is compact and simply connected. However, it does not admit a Riemannian metric of positive
scalar curvature because it is spin with non-vanishing �̂�-genus.

Remark 2.4. We will apply Proposition 2.2 to homogeneous spaces in order to prove Theorem C.
More generally, we can also consider biquotients 𝐺∕∕𝐻. These are quotients of a compact Lie
group 𝐺 by the action of a closed subgroup 𝐻 of 𝐺 × 𝐺 that acts on 𝐺 via (ℎ1, ℎ2) ⋅ g = ℎ1gℎ

−1
2
.

Biquotients always admit metrics of non-negative sectional curvature that are invariant under the
canonical action of Norm𝐺×𝐺(𝐻)∕𝐻 (see, for example, [30, Section 2]) and admit invariant met-
rics of positive Ricci curvature if and only if their fundamental group is finite (see [30, Theorem
A]). Hence Proposition 2.2 directly applies to this class of spaces. To obtain an analog of Theo-
rem C for biquotients, one would need to show that every flat biquotient is diffeomorphic to a
torus; however, the topological classification of flat biquotients is, to the best of our knowledge,
still open in full generality.

3 PROOF OF THEOREM C

Let 𝐺 be a compact Lie group and let𝑀 be a homogeneous space for 𝐺. Then𝑀 is diffeomorphic
to 𝐺∕𝐻, where 𝐻 ⊆ 𝐺 is the isotropy group of some given point 𝑝 ∈ 𝑀. We fix an Ad𝐺-invariant
inner product 𝑄 on the Lie algebra 𝔤 of 𝐺, which induces a bi-invariant Riemannian metric on 𝐺.
The Ad𝐺-invariance of 𝑄 implies that

𝑄([𝑋, 𝑌], 𝑍) = 𝑄(𝑋, [𝑌, 𝑍]) (3.1)

for all 𝑋,𝑌, 𝑍 ∈ 𝔤. Let 𝔭 = 𝔥⟂ be the orthogonal complement of the Lie algebra 𝔥 of 𝐻. We can
identify 𝔭 with 𝑇𝑝𝑀 and the isotropy action of 𝐻 on 𝑇𝑝𝑀 via the differential corresponds to the
action on 𝔭 via Ad𝐻 . Thus, we can restrict𝑄 to 𝔭 , which induces a𝐺-invariant Riemannianmetric
g on𝑀 such that the projection 𝐺 → 𝐺∕𝐻 is a Riemannian submersion. Hence, for orthonormal
vectors 𝑋,𝑌 ∈ 𝔭, we have

sec𝑀(𝑋, 𝑌) ⩾ sec𝐺(𝑋, 𝑌) =
1

4
|[𝑋, 𝑌]|2. (3.2)

In particular, (𝑀, g) has non-negative sectional curvature.
By Proposition 2.2, we only have to show that statement (3) of Theorem C implies one of the

other statements as all connected components of 𝑀 are diffeomorphic. Now suppose that 𝑀
admits no metric of positive scalar curvature. Then the metric g is flat, as it is constant and of
non-negative sectional curvature, so [𝔭, 𝔭] = 0, by inequality (3.2). Hence, by (3.1),

𝑄([𝔭, 𝔥], 𝔭) = 𝑄(𝔥, [𝔭, 𝔭]) = 0.

Furthermore, again by (3.1), we have

𝑄([𝔭, 𝔥], 𝔥) = 𝑄(𝔭, [𝔥, 𝔥]) = 0,

as [𝔥, 𝔥] ⊆ 𝔥, so [𝔭, 𝔥] = 0. This shows that 𝔭 ⊆ 𝑍(𝔤).
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As 𝐺 is compact, we can decompose

𝔤 = [𝔤, 𝔤] ⊕ 𝑍(𝔤).

This decomposition is orthogonal with respect to any Ad𝐺-invariant inner product, so [𝔤, 𝔤] =

𝑍(𝔤)⟂ ⊆ 𝔥. Hence𝐻 contains the unique connected closed Lie subgroup 𝑆 with Lie algebra [𝔤, 𝔤].
Let𝑀𝑜 be a connected component of𝑀. Then𝑀𝑜 is a homogeneous space and is diffeomorphic
to 𝐺𝑜∕(𝐺𝑜 ∩ 𝐻), where 𝐺𝑜 denotes the identity component of 𝐺. The subgroup 𝑆 is normal and
closed in 𝐺𝑜, hence we can replace 𝐺𝑜 and 𝐺𝑜 ∩ 𝐻 by their quotient by 𝑆. Thus, 𝐺𝑜 is abelian and
𝐺𝑜 ∩ 𝐻 is a normal subgroup. As a consequence, the quotient 𝐺𝑜∕(𝐺𝑜 ∩ 𝐻) is a compact abelian
Lie group, that is, a torus. Hence statement (3) implies statement (1). This concludes the proof of
Theorem C.

Remark 3.1. One could replace the last part of the proof of Theorem C by the following shorter,
but less elementary argumentation: Suppose𝑀 has no metric of positive scalar curvature. Then
by [22] the identity component 𝐺𝑜 is abelian, hence the connected components of𝑀, which are
diffeomorphic to 𝐺𝑜∕(𝐺𝑜 ∩ 𝐻), are diffeomorphic to a torus.

4 PROOFS OF THEOREMS A AND B

Let𝑀 be a connected cohomogeneity one manifold. By the structure results for cohomogeneity
one manifolds (see, for example, [10, Theorem A and Corollary C] or [14, Section 3]), we have one
of the following cases.

(C1) 𝑀∕𝐺 ≈ 𝑆1 and 𝑀 → 𝑀∕𝐺 is a fiber bundle where the fiber is a homogeneous space 𝐺∕𝐻
with𝐻 ⊆ 𝐺 the principal isotropy of the action.

(C2) 𝑀∕𝐺 ≈ [−1, 1] and𝑀 can be written as the union of two tubular neighborhoods 𝐷(𝐺∕𝐾±)

of the non-principal orbits𝐺∕𝐾± with isotropy group𝐾±. These non-principal orbits project
down to the endpoints ±1 ⊂ [−1, 1]. By the slice theorem, each one of 𝐷(𝐺∕𝐾±) is equiv-
ariantly diffeomorphic to a disk bundle 𝐺 ×𝐾±

𝐷±, where 𝐷± is a disk normal to the orbit
𝐺∕𝐾±. The principal orbits are homogeneous spaces 𝐺∕𝐻 and we have 𝐻 ⊆ 𝐾± ⊆ 𝐺. The
quotients 𝐾±∕𝐻 are diffeomorphic to spheres.

(N1) 𝑀∕𝐺 ≈ ℝ and𝑀 is the product of ℝ and a homogeneous space 𝐺∕𝐻.
(N2) 𝑀∕𝐺 ≈ [0,∞) and, by the slice theorem, 𝑀 is equivariantly diffeomorphic to a disk bun-

dle 𝐺 ×𝐾 𝐷, where 𝐷 is a disc normal to the non-principal orbit 𝐺∕𝐾 over 0 ∈ [0,∞). The
principal orbits, which correspond to points in (0,∞), are homogeneous spaces 𝐺∕𝐻 and
we have 𝐻 ⊆ 𝐾 ⊆ 𝐺. The quotient 𝐾∕𝐻 is diffeomorphic to a sphere.

Grove and Ziller [17] showed that𝑀 admits a 𝐺-invariant metric of non-negative sectional cur-
vature in some cases and conjectured that this holds in general. This is not the case, however,
as shown in [15]. Hence, we cannot derive Theorem A from Proposition 2.2. Instead we will use
the fact that𝑀 always admits a 𝐺-invariant Riemannian metric of non-negative Ricci curvature.
Such metrics were constructed by Grove and Ziller in [18]. We will now go through each one of
the cases (C1)–(N2) above. We begin with the following observation.

Lemma 4.1. In cases (C1) and (N1), the manifold𝑀 admits a 𝐺-invariant metric of positive scalar
curvature if and only if the fiber 𝐺∕𝐻 does.
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Proof. We fix an Ad𝐺-invariant inner product𝑄 on 𝔤 and set 𝔭 = 𝔥⟂ as in the proof of Theorem C.
In case (C1), the bundle𝑀 → 𝑆1 can be considered as the mapping torus of a 𝐺-equivariant dif-
feomorphism 𝐺∕𝐻 → 𝐺∕𝐻 induced by right multiplication 𝑅𝑎−1 on 𝐺 by an element 𝑎 ∈ 𝑁(𝐻)

in the normalizer of𝐻 (see, for example, [3, Corollary I.4.3]). The inducedmap on the Lie algebra
is Ad𝑎 which fixes 𝔭 as 𝑄 is Ad𝐺-invariant. Hence 𝑅𝑎−1 induces an isometry on 𝐺∕𝐻 with respect
to the metric induced by 𝑄. As a consequence, any Ad𝐺-invariant inner product on 𝔤 extends to
all of𝑀 in both cases by taking the product with the flat metric on 𝑆1 or ℝ. In particular𝑀 has
a metric of non-negative sectional curvature and this metric is flat if and only if its restriction to
𝐺∕𝐻 is flat. This corresponds precisely to the cases where𝑀 and 𝐺∕𝐻 have no metric of positive
scalar curvature by [12, Corollary A] and [12, Corollary B2]. □

Proof of Theorem A in case (C1). Suppose that 𝑀 has no 𝐺-invariant metric of positive scalar
curvature. Then the fiber 𝐺∕𝐻 has no metric of positive scalar curvature by Lemma 4.1. Hence
the connected components of 𝐺∕𝐻 are diffeomorphic to a torus by Theorem C. By restricting
the action to the identity component 𝐺𝑜, we obtain that 𝑀 is a principal 𝑇𝑛−1-bundle over 𝑆1.
Such bundles are necessarily given by the product 𝑇𝑛−1 × 𝑆1 = 𝑇𝑛 as 𝑆1 has no higher homotopy
groups and 𝑇𝑛−1 is connected. Hence we have shown that each one of statements (3) and (4)
imply statement (2). To finish the proof, we proceed as follows. Clearly, statement (2) implies
statement (1). Now, by Proposition 2.3, each one of statements (1) and (2) implies statements (4)
and (5). Again, by Proposition 2.3, statements (4) and (5) are equivalent, and each one of them
implies that𝑀 is not finitely covered by a torus, which clearly implies statement (3). This shows
the equivalence of statements (1)–(5). □

Proof of TheoremB in case (N1). Suppose that𝑀 has no𝐺-invariant Riemannianmetric of positive
scalar curvature. Then, as in case (C1), the connected components of the fiber𝐺∕𝐻 are diffeomor-
phic to a torus and𝑀 is diffeomorphic to 𝑇𝑛−1 × ℝ. Manifolds of this form admit a complete flat
Riemannian metric, but have no complete Riemannian metric of positive scalar curvature by [12,
Corollary B2]. This shows that statements (1), (2) and (3) are equivalent and that they are implied
by statement (5).
If𝑀 admits a 𝐺-invariant metric of positive scalar curvature, then so does 𝐺∕𝐻 by Lemma 4.1

and, by Theorem C, the universal cover of 𝑀 is not diffeomorphic to ℝ𝑛. Hence statement (2)
implies statement (4). Also statement (4) implies statement (5), as all manifolds with a complete
Riemannian metric of non-positive sectional curvature are covered by Euclidean space. □

Proof of Theorem B in case (N2). Assume that 𝑀∕𝐺 is diffeomorphic to [0,∞), that is, 𝑀 can
be written as a disc bundle 𝐺 ×𝐾 𝐷 over the non-principal orbit 𝐺∕𝐾. Recall that the principal
orbits of the action are diffeomorphic to 𝐺∕𝐻 and the non-principal orbit of the action, which
projects down to 0 ∈ [0,∞), has isotropy 𝐾 with 𝐻 ⊂ 𝐾 ⊂ 𝐺. We equip 𝑀 with the 𝐺-invariant
Riemannian metric g of non-negative Ricci curvature constructed in [18]. This metric is given
by

g = 𝑑𝑡2 + 𝑓20𝑄|𝔭0 + 𝑓21𝑄|𝔭1 + 𝑓22𝑄|𝔭2 + 𝑄|𝔪. (4.1)

Here, 𝑡 parametrizes a horizontal lift of the orbit space [0,∞),𝑄 is an Ad𝐺-invariant inner product
on 𝔤, and 𝔤 is the 𝑄-orthogonal sum 𝔥 ⊕ 𝔭⊕𝔪 such that 𝔥 ⊕ 𝔭 = 𝔨, where 𝔥 and 𝔨 are the Lie
algebras of𝐻 and 𝐾, respectively. The vector spaces 𝔭𝑖 are orthogonal subspaces of 𝔤 that span 𝔭.
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The 𝑓𝑖 are smooth, odd, non-negative real-valued functions depending on 0 ⩽ 𝑡 < ∞with positive
derivative at 𝑡 = 0.
The metric g has non-negative Ricci curvature, so it has positive scalar curvature if it has pos-

itive Ricci curvature in at least one direction at every point. The Ricci curvatures of g were com-
puted in [18, Proposition 2.10] and, by [18, Proposition 3.2], they are non-negative if 𝑓2

𝑖
⩽ 2 and

the following functions are non-negative:

ric𝑡 = −

2∑
𝑖=0

𝑑𝑖
𝐹′′
𝑖

𝐹𝑖
,

ric0 =

(
𝑑1

𝐹4
1

+
𝑑2

𝐹4
2

)
𝐹2
0 −

(
𝑑1

𝐹′
1

𝐹1
+ 𝑑2

𝐹′
2

𝐹2

)
𝐹′
0

𝐹0
−
𝐹′′
0

𝐹0
,

ric1 =

𝑑0
𝐹2
0

𝐹2
1

+ (𝑑1 − 1)

(
4 − 3

𝐹2
0

𝐹2
1

− 𝐹′
1
2

)
𝐹2
1

+ 𝑑2
𝐹2
1

𝐹4
2

−

(
𝑑0

𝐹′
0

𝐹0
+ 𝑑2

𝐹′
2

𝐹2

)
𝐹′
1

𝐹1
−
𝐹′′
1

𝐹1
,

ric2 =

𝑑0(3 − 2
𝐹2
0

𝐹2
2

) + 𝑑1(3 − 2
𝐹2
1

𝐹2
2

) + (𝑑2 − 1)(1 − 𝐹′
2
2
)

𝐹2
2

−

(
𝑑0

𝐹′
0

𝐹0
+ 𝑑1

𝐹′
1

𝐹1

)
𝐹′
2

𝐹2
−
𝐹′′
2

𝐹2
.

Here, 𝑑𝑖 = dim(𝔭𝑖), 𝐹0 = 𝑎𝑏𝑐𝑓0, 𝐹1 = 𝑏𝑐𝑓1, and 𝐹2 = 𝑐𝑓2, with 𝑎, 𝑏, 𝑐 given constants satisfying
𝑎, 𝑏, 𝑐 ⩾ 0 and 𝑎, 𝑏 < 1, and which vanish only if the corresponding subspace 𝔭𝑖 is trivial.
In [18], the functions 𝐹𝑖 are chosen in the following way (see [18, Lemma 3.3]). Set 𝐹2(𝑡) =

𝑐 sin(𝑐−1𝑡) on [0,
𝜋

2
𝑐] and let 0 < 𝑡0 < 𝑡1 <

𝜋

2
𝑐 such that 𝐹2(𝑡0) = 𝑎𝑏𝑐 and 𝐹2(𝑡1) = 𝑏𝑐. Now set

𝐹1 = 𝐹2 on [0, 𝑡1],𝐹1 = 𝑏𝑐 on [𝑡1,
𝜋

2
𝑐],𝐹0 = 𝐹2 on [0, 𝑡0], and𝐹0 = 𝑐 on [𝑡0,

𝜋

2
𝑐]. Then the functions

are extended constantly on [𝜋
2
𝑐,∞), that is, one lets 𝐹𝑖(𝑡) = 𝐹𝑖(

𝜋

2
𝑐) for 𝑡 ∈ [𝜋

2
𝑐,∞). Then ric𝑡 ⩾ 0.

One can now verify that the functions ric𝑖 are uniformly positive and that this still holds after
smoothing these functions if the second derivatives are made sufficiently large around the non-
differentiable points. By [18, Proposition 3.2], the metric g obtained in this way has non-negative
Ricci curvature.
For 𝑡 > 𝜋

2
𝑐, the metric g is a product metric and is flat if the principal orbit 𝐺∕𝐻 corre-

sponding to 𝑡 is flat. Thus, to ensure that the scalar curvature is positive, we will modify the
functions 𝐹𝑖 so that, first, the Ricci curvature of g is non-negative and, additionally, the sec-
ond derivative of the 𝐹𝑖 is strictly negative for 𝑡 > 0 and their third derivative is negative at
𝑡 = 0. To achieve this, we proceed in a similar way as in the preceding paragraph. Fix a small
𝜀 ∈ (0, 𝑡0), set 𝐹2(𝑡) = 𝑐 sin(𝑐−1𝑡) on [0,

𝜋

2
𝑐 − 𝜀] and extend 𝐹2 on [

𝜋

2
𝑐 − 𝜀,∞) by the function

𝑡 ↦ 𝑐 − 1

𝑡+𝜆
, where 𝜆 ∈ ℝ is chosen so that 𝐹2 is continuous. Then set 𝐹1 = 𝐹2 on [0, 𝑡1 − 𝜀] and

𝐹0 = 𝐹2 on [0, 𝑡0 − 𝜀] and extend these functions as above so that they converge to 𝑏𝑐 and 𝑎𝑏𝑐,
respectively, as 𝑡 → ∞. In a similar fashion as in the case of non-negative Ricci curvature [18,
Lemma 3.3], one can now verify that the functions ric𝑖 are uniformly positive for 𝜀 sufficiently
small. By smoothing the functions 𝐹𝑖 , again as in [18, Lemma 3.3], one obtains smooth functions
𝑓𝑖 with strictly negative second derivative and such that the Ricci curvature of the metric g is
non-negative.
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By [18, Proposition 2.10], the Ricci curvatures of g for 𝑇 = 𝜕

𝜕𝑡
and 𝐴 ∈ 𝔪 are given by

Ric(𝑇) = ric𝑡, (4.2)

Ric(𝐴) =
∑
𝑘

(‖[𝐴, 𝑒𝑘]𝔥‖2 + 1

4
‖[𝐴, 𝑒𝑘]𝔪‖2 + 2∑

𝑖=0

(
1 −

1

2
𝑓2
𝑖

)‖[𝐴, 𝑒𝑘]𝔭𝑖‖2
)
. (4.3)

Here (𝑒𝑘) denotes an orthonormal basis of𝔪. Hence, g has positive scalar curvature if 𝔭 is non-
trivial or if there are two vectors 𝐴, 𝐵 ∈ 𝔪 such that [𝐴, 𝐵] ≠ 0.
Now suppose that 𝑀 has no 𝐺-invariant metric of positive scalar curvature. Then 𝔭 is trivial

and [𝔪,𝔪] = 0. By an argument similar to the argument in the proof of Theorem C, it follows
that𝔪 ⊆ 𝑍(𝔤). Hence, we have

[𝔤, 𝔤] = 𝑍(𝔤)⟂ ⊆ 𝔪⟂ = 𝔨 = 𝔥. (4.4)

We consider the action of the identity component 𝐺𝑜 on𝑀. This action has again cohomogeneity
one, but the orbit spaces 𝑀∕𝐺 and 𝑀∕𝐺𝑜 are not necessarily identical. More precisely, we have
𝑀∕𝐺𝑜 ≈ ℝ or [0,∞). In the first case, we can argue exactly as in case (N1).
Suppose now that 𝑀∕𝐺𝑜 ≈ 𝑀∕𝐺 ≈ [0,∞), so we can replace 𝐺, 𝐾 and 𝐻 by 𝐺𝑜, 𝐺𝑜 ∩ 𝐾 and

𝐺𝑜 ∩ 𝐻. By (4.4), the unique connected Lie subgroup 𝑆 with Lie algebra [𝔤, 𝔤] is contained in 𝐻.
Hence, by taking the quotient by 𝑆, we can assume that 𝐺 is abelian. Hence, the subgroup 𝐻,
which fixes every point in𝑀, is normal in 𝐺. Thus, by taking the quotient by 𝐻, we can assume
that 𝐻 is trivial. The Lie algebras 𝔥 and 𝔨 are identical, so 𝐾∕𝐻 is zero-dimensional. As 𝐾∕𝐻 is
diffeomorphic to a sphere, it follows that 𝐾 is isomorphic to ℤ2. The group 𝐺 is abelian, hence it
is a torus 𝑇𝑛−1 = 𝑆1 ×⋯ × 𝑆1 ⊆ ℂ ×⋯ × ℂ, where we choose this identification so that𝐾 ≅ ℤ2 is
generated by (−1, 1, … , 1) ∈ 𝑇𝑛−1. Since the normal tangent space to the orbit is one-dimensional,
and hence diffeomorphic to ℝ, it follows that

𝑀 ≈ 𝐺 ×𝐾 ℝ

≈ 𝑇𝑛−2 × (𝑆1 ×ℤ2
ℝ)

≈ 𝑇𝑛−2 × 𝑀𝑏
o
.

Thus, we have shown that statement (3) implies statement (2).
The manifold 𝑇𝑛−2 × 𝑀𝑏

o admits no complete metric of positive scalar curvature, since, by
[12, Corollary B2], the manifold 𝑇𝑛−1 × ℝ, which double-covers 𝑇𝑛−2 × 𝑀𝑏

o, admits no complete
metric of positive scalar curvature. This concludes the proof of Theorem B in case (N2). □

Remark 4.2. Note that in case (N2) the manifold 𝑀 does not necessarily admit a Riemannian
metric of uniformly positive scalar curvature if it admits one with positive scalar curvature.
Indeed, consider the standard action of 𝑆1 = SO(2) on ℝ2. Then the action of 𝑇𝑘−1 × 𝑆1 = 𝑇𝑘 on
𝑀 = 𝑇𝑘−1 × ℝ2 has cohomogeneity one and admits a complete 𝐺-invariant Riemannian metric
of positive scalar curvature. Nevertheless,𝑀 has no complete metric of uniformly positive scalar
curvature (see [13, Section 1]).
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Proof of Theorem A in case (C2). Finally, assume that𝑀∕𝐺 is diffeomorphic to [−1, 1], that is,𝑀
can be written as (𝐺 ×𝐾−

𝐷−) ∪ (𝐺 ×𝐾+
𝐷+). The metric g of non-negative Ricci curvature con-

structed in [18] is obtained by gluing two metrics of the form (4.1) on the two halves 𝐺 ×𝐾±
𝐷±,

where the functions 𝑓𝑖 are constructed as described in the proof of Theorem A in case (N2) such
that they are constant near the gluing area.
Suppose that 𝑀 admits no 𝐺-invariant metric of positive scalar curvature. By Proposition 2.1

the metric g is Ricci-flat. In this case, the formulas (4.2) and (4.3) show that 𝔭± = 0 and 𝔥⟂ =

𝔪± ⊆ 𝑍(𝔤). Wemay now conclude the proof as in case (N2).We consider the action of the identity
component𝐺𝑜 on𝑀. If𝑀∕𝐺𝑜 ≈ 𝑆1, that is,𝑀 is a fiber bundle over𝑀∕𝐺𝑜 with fiber𝐺𝑜∕(𝐺𝑜 ∩ 𝐻),
then we can argue as in case (N2). If 𝑀∕𝐺𝑜 ≈ 𝑀∕𝐺 ≈ [−1, 1], then we again replace 𝐺, 𝐾± and
𝐻 by 𝐺𝑜, 𝐺𝑜 ∩ 𝐾± and 𝐺𝑜 ∩ 𝐻, respectively, and, as in case (N2), we can assume that 𝐺 is abelian,
𝐻 is trivial, and 𝐾± ≅ ℤ2. We again write 𝐺 = 𝑇𝑛−1 = 𝑆1 ×⋯ × 𝑆1 so that 𝐾+ is generated by
(−1, 1, … , 1) and 𝐾− is generated by (−1, 1, … , 1) or (1, −1, 1, … , 1), depending on whether 𝐾+ =

𝐾− or not. In the first case, where 𝐾+ = 𝐾−, we have

𝑀 ≈ (𝐺 ×𝐾+
𝐷1) ∪𝜕 (𝐺 ×𝐾−

𝐷1)

≈ (𝑀𝑏 × 𝑇𝑛−2) ∪𝜕 (𝑀𝑏 × 𝑇𝑛−2)

≈ 𝐾 × 𝑇𝑛−2.

In the second case, where 𝐾+ ≠ 𝐾− and hence 𝑛 ⩾ 3, we have

𝑀 ≈ (𝐺 ×𝐾+
𝐷1) ∪𝜕 (𝐺 ×𝐾−

𝐷1)

≈ (𝑀𝑏 × 𝑆1 × 𝑇𝑛−3) ∪𝜕 (𝑆
1 × 𝑀𝑏 × 𝑇𝑛−3)

≈ 𝐴 × 𝑇𝑛−3.

Thus, we have shown that statement (3) implies statement (2) and thus (1). The rest of the proof
now follows from Proposition 2.3 as in the proof of case (C1) in Theorem A. □

Remark 4.3. In the proof of case (C2) of Theorem A, one could alternatively use [22] to show that
𝐺𝑜 is abelian. Furthermore, to conclude that 𝑀 is diffeomorphic to 𝐾 × 𝑇𝑛−2 or 𝐴 × 𝑇𝑛−3, one
could also argue as follows: A closed, smooth 𝑛-manifold, 𝑛 ⩾ 3, with an effective action of 𝑇𝑛−1

is equivariantly diffeomorphic to a product 𝑇𝑛−3 × 𝑁3, where 𝑁3 is a closed, smooth 3-manifold
with an effective 𝑇2 action (see, for example, [9, Corollary B]). The possible 𝑁3 are listed in [27,
p. 221]. In our case, the hypothesis that𝑀 does not admit a metric with positive scalar curvature
implies that 𝑁3 must be diffeomorphic to one of 𝑇3, 𝐾 × 𝑆1, or 𝐴, and the only possibilities that
yield an interval orbit space are 𝐾 × 𝑆1 or 𝐴.
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