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Abstract

In this paper, we first study the connection between mass-conserving SPDEs on a bounded domain and
backward doubly stochastic differential equations, which is a new extension of nonlinear Feynman-Kac
formula to mass-conserving SPDEs. Then the infinite horizon mass-conserving SPDEs and their stationary
solutions are considered without monotonic conditions, while the Poincare inequality plays an important
role. Finally, the existence and the stationarity to solutions of non-Lipschitz mass-conserving stochastic
Allen-Cahn equations are obtained.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper, we study a mass-conserving stochastic partial differential equations (SPDEs) on
the domain D:
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dv(t,x) = [YAv(t,x) + f(t,x,v(t,x)) = [, f(t. & v(t,&))p(dE)]dt
—g(t,x)dB; te€(0,T], xeD

v(0,x)=h(x) xeD

2(,x)=0 te(0,T], xe€dD.

(1.1

Here D is an open connected bounded subset with C? boundary, with normal derivative pointing
towards the interior of D, D is the closure of D, p is the invariant probability measure of Brow-
nian motion in D reflected on its boundary 3D (see (2.2)), p(dD) =0, and {B; : t € R} is a Q-
Wiener process with values in a separable Hilbert space U on a probability space (25, .72, p8).

Denote by {ei};ff the countable basis of U. Then Q € L(U) is a symmetric nonnegative
o0
trace class operator such that Qe; = A;e; and +Z Aj < 400. The coefficients 4 : Q2 x D — R;
i=1
f 10, T] x DxR— R and v — f(,-,v) is a locally Lipschitz continuous function;
g:[0,T1 x D — L%,O (R) is a Lipschitz continuous Hilbert-Schmidt operator and satisfies
ng(t,x),o(dx) =0 for any t € [0, T']. Here Uy = Q%(U) C U is a separable Hilbert space
with the norm < u, v >y,=< 0~ 2 u, Q_% v >y and the complete orthonormal base {+/A;e; }Lof
and ﬁ%/o (R) is the space of all Hilbert-Schmidt operators from Up to R with the Hilbert-Schmidt
norm. It is easy to see that under the above setup the solution of SPDE (1.1), if exists, satisfies a
mass-conservative condition, i.e., f p v, x)p(dx) = f p 1 (x)p(dx) remains as a constant.

Mass-conservation phenomenon occurs often in reality. For example, in physics the concen-
tration of one type of metal in an alloy where the dynamics is constrained to have constant total
magnetization or mass, the evolution of the rescaled concentration could be a mass-conservation
dynamics. As indicated in Antonopoulou, Bates, Blomker and Karali [1], as the average concen-
tration is close to being a pure state, a phase separation begins by nucleation. In the case of the
mass being close to zero, when the two components are roughly equal, as with the Cahn-Hilliard
equation, the total mass of each component of the mixture is also conserved but separation from
a nearly homogeneous state occurs during spinodal decomposition. Mass-conservation of incom-
pressive flow is another example as described by Navier-Stokes equations.

However, there are only very few mathematical works concerning with mass-conservation
phenomena of stochastic Allen-Cahn equation. Recently, deterministic mass-conserving Allen-
Cahn equations in global dynamics of boundary droplets was studied in Bates and Jin [5]. For the
more complicated case under random forcing, stochastic mass-conserving Allen-Cahn equations
were discussed in Antonopoulou, Bates, Blomker and Karali [1] and the metastable dynamics of a
discretized version of mass-conserving stochastic Allen-Cahn equations was studied in Berglund
and Dutercq [6]. As far as we know, this is a first result for the existence of stationary solutions
and invariant measures of stochastic mass-conserving Allen-Cahn equations.

In this paper, we concern with the solvability of a kind of mass-conserving SPDEs with lo-
cally Lipschitz coefficients such as mass-conserving stochastic Allen-Cahn equation. We connect
mass-conserving SPDEs with backward doubly stochastic differential equations (BDSDEs). The
connection is an extension of nonlinear Feynman-Kac formula explored in Peng [17] to the
SPDEs case. An extension was initialed by Pardoux and Peng [15] for parabolic SPDEs with
Lipschitz coefficients. Then the connection for SPDE with non-smooth or even non-Lipschitz
coefficients was further studied in Bally and Matoussi [4], Buckdahn and Ma [9], Zhang and
Zhao [18-20], to name but a few. The nonlinear Feynman-Kac formula is first extended to repre-
sent viscosity solution of PDE with Neumann condition in Pardoux and Zhang [16] and then to
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stochastic viscosity solution of SPDEs in Boufoussi, Casteren and Mrhardy [7]. But there is an
essential difficulty to represent weak solution of PDE or SPDE with Neumann condition due to
the lack of regularities of stochastic flows. To overcome this, we use the invariant measure of the
reflected Brownian motion on a bounded domain.

Moreover, fD f(t, &, v(t, é))p(dé) in the drift term of SPDE (1.1) can also be regarded as a
mean-filed integral with respect to the spacial variables. There are existing results e.g. Buckdahn,
Li and Peng [8] to study the correspondence between mean-field BSDE and PDE, in which the
mean-field term is the mean over random samples given by the integration with respect to the
probability measure. As far as we know, there do not exist results for BSDEs or BDSDEs with a
space variable mean term, which gives the mass-conservation along almost every sample path.

To study the stationary solution of the mass-conserving SPDE, we first investigate the cor-
responding infinite horizon mass-conserving BDSDE with Lipschitz coefficient. We take the
advantage of the Poincare inequality to control the first variable of BDSDE by the second vari-
able. This method also works for non-Lipschitz weakly dissipative mass-conserving stochastic
Allen-Cahn equations, where f(t,x, v(t,x)) = —vP(t,x) + v(t,x) in (1.1), with p > 1 being
an odd integer. In this way, we remove the assumption of monotonic condition required in all the
earlier work of infinite horizon BSDEs/BDSDEs. As far as we know, this is the first time that
Poincare inequality is applied in the study of BSDE/BDSDE which allows to deal with weakly
dissipative generator. The stationary solution gives the equilibrium of the stochastic systems in
terms of SPDEs or BDSDEs which represents the large time limit and infinite horizon mass-
conserving dynamics in the pathwise sense. This is of interests to real world physical situations.
Needless to say, as the law of stationary solution is an invariant measure which is an equilibrium
of the stochastic systems in the statistical sense. So we automatically obtain the existence of the
invariant measure. It is worth mentioning here that our result is stronger than the existence of in-
variant measure result as merely the latter does not imply the result of this paper on the existence
of a pathwise stationary path.

The rest of this paper is organized as follows. In Section 2, the existence and uniqueness of
finite horizon mass-conserving SPDEs with Lipschitz coefficients and their corresponding BDS-
DEs are proved. The infinite horizon mass-conserving SPDEs and BDSDEs are then considered
in Section 3. In Section 4, the stationary solutions of mass-conserving SPDEs are constructed.
Finally, mass-conserving stochastic Allen-Cahn equation is studied in Section 5, where the lo-
cally Lipschitz coefficient is approximated by a sequence of Lipschitz coefficients and the crucial
analysis of passing limit is carried out.

2. Finite horizon BDSDEs and SPDEs

Let (22,.%#, P) be a complete probability space, {El :t € R} and {W, : t € R} be mutu-
ally independent a Q-Wiener process valued on U and a standard Brownian motion on R? on
(2, #, P). Since we will construct a metric dynamical system to study the stationarity of mass-
conserving SPDEs and BDSDEs, so both Brownian motions B and W used in this paper are
defined on the time interval (—oo, +00). See Arnold [2] for more details about the Brownian
motion on the negative horizon as an independent copy of a Brownian motion on the positive
horizon. Two parameter filtration of probability space with two sided Wiener precess was stud-
ied in [2]. We outline here for completeness. Let 6 be the shift of Brownian motions as defined
in (4.10) later and then (2, %, P, {6, : t € R}) is a metric dynamical system. For n = BorWw,
let #7~ and """ be two sub-o-algebras (representing “past” and “future”, respectively) both
containing all P-null sets of .% such that
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07 .F" c #" forallt <0 and 6, L.Z"" c . Z"" forallt > 0.
Define
T s = =0, 7, F oo =g Lot F =F g NF s fort<s.
Itis easy to see that 6, 1% = .7 . Setnow

FrT = tTvﬁOt for0<r<T and % = ﬁtioovyo"z fort > 0.

We first study the following backward SPDE

du(t,x) = —[30ut,x) + f(t.x,u(t,x)) — [ f(t. £, u(t, £))p(dE))dt
+g(t,x)d*B, t€[0,T), xeD

w(T,x)=hx) xeD

dut,x)=0 te[0,T) xe€dD.

@2.1)

Here D is an open connected bounded subset in R4, which is defined as D = {¢p >0}, 0D =
{¢ =0}, and normal |V¢ (x)| = 1 when x € 9D for a function ¢ € C}%(Rd), D is the closure of
D,h:QxD—R, f:[0,T]xDxR— Randg:[0,T] XB—)[:%]O(R) are measurable.
The stochastic integral with d By is a backward stochastic integral which is a particular case
of Itd-Skorohod integral. See Nualart and Pardoux [14] for more details. If we take Brownian
motion ét = By/_; — By, where B is as in equation (1.1), then backward and forward stochastic
integrals are connected in the following way ([18]): for any stochastic process G with values in
E%]O (R) such that G(s) is .#s-measurable for all s € [¢, T] and locally square integrable,

T T'—t

/G(s)dﬂ%S:— / G(T' — s5)dBy.

t T'—T
Define (Xé’x, K St’x) to be the solution of the following stochastic differential equations for any
givent >0 and x € RY:

{ng—erW Wi+ [P Vo (XEN)dKES, s >1, 02

t, .
fz X' caD) dK}*, K!"¥isincreasing.

Here {W; : € R} is a Brownian motion on R? on a probability space (V,.Z%, P¥), and by
EY we denote the expectation with respect to P" . For the existence of invariant measure p for
X"* in D we refer the reader to [12].

We will consider the infinite horizon SPDEs and BSDEs and their solutions give the equilib-
rium of corresponding SPDEs. They are stationary paths and random fixed points which can be
regarded as the solutions of the initial /terminal value problems for forward/backward SPDEs
(1.1)/(2.1), where the initial/terminal values are in the stationary paths at a different realization.
See e.g. (4.10) and (5.20) for details. Thus we study SPDE (1.1) and SPDE (2.1) with & being a

4
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random variable. Here 4 is assumed to be measurable with respect to the filtration generated by
driven Brownian motions. The exact measurability will be made in Condition (H.1) later.

Under our assumption on ¢ following equation (2.1) at the beginning of this section, it is well-
known that SDE (2.2) has a unique continuous and adapted solution (Xé’x, K™Y with values in
D for s € [t, +00) (Lions and Sznitman [13]).

Denote by L%(D; R) the space of measurable functions [ : ‘D —> R such that f p! 2(x) p(dx) <
+00. Define the inner product by

(1, b) = / hbpEx), 1, b e L2(D;R),
D

then L%(D; R) is a Hilbert space. Similarly, we denote by L];(D; R), k > 2, the weighted LK
1
13

space with the norm ||l||L/;7(D) = (fD |l(x)|k,o(dx)>

Definition 2.1. ([18]) Let S be a separable Banach space with norm || - |g and Borel o-field .
and g > 2, K > 0. We denote by M4 ~X ([t, 4+00); S) the set of Z([t, +00)) ®.F /.# measurable
random processes {¢ (s)}s>; with values in S satisfying

(1) ¥(s): Q2 —> S is.%; measurable for s > 1,
(i) E[fe X5y (s)Lds] < +o0.

Also we denote by S7~K([¢, +00); S) the set of Z([t, +0)) ® .# /.7 measurable random pro-
cesses {1/ (s)}s>; with values in S satisfying

(1) ¥ (s): Q2 —> S is .%; measurable for s > and v (-, w) is continuous a.s.;
(i) Elsupss, e X5y ()] < +oo.

If we replace time interval [7, +00) by [¢, T'] in the above definition, we denote the spaces by
Mq'o([t, T1;S) and Sq*o([t, T1; S), respectively. Note that here e~ K5 does not play any role as T
is finite, so we can always take K = 0. When we consider the probability space (Qé , F B , pb )
and natural filtration {ﬁté :t € R}, we denote the above spaces by Mé'(-; -) and Sé' (+; -), respec-
tively.

Definition 2.2. A process u is called a weak solution of SPDE (2.1) if (u, Vu) € Mlzé’o([O, Tl;
L%(D; R)) x Mg’o([O, T, L%(D; R9)) and for an arbitrary ¢ € C*°(D; R),

T
1
fu(t,x)w(X)P(dx)—fh(x)w(x)/)(dx)—5//VM(S,X)V<P(X),0(dx)dS
t D

D D
T
- / / Lf (5.0 (s, 2)) — / £ (5.6 u(s. £)) p(dE)lp () p(dx)ds
t D D

5
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T
- / / g(s,x)px)pdx)d"B; P —as. (2.3)
t D

The BDSDE associated with SPDE (2.1) is

T

YoE = h(Xh) + / LF(r, XET, ¥1%) — / £ &, Y75 pd)ldr
K D

T T
_/ g(r, X;)d" By — / Zptaw,, 0st=s<T. @4

N N

Definition 2.3. A pair of processes (Y, Z") € $*O([r,T); L2(D;R)) x M*°([z, T);
L?)(D; R_d)) is called a solution of BDSDE (2.4) if (Yst‘x, Zé’x) satisfies (2.4) forall t <s <T
a.a.x €D as.

Assume the following conditions:

(H.1). The function £ is ﬁzﬁﬂo X %7 measurable and E[fD |h(x)|>p(dx)] < +o0.

(H.2). The functions f(-,-,0) and g(-, -) satisfy ]OT [p(f(s.x, 00>+ lIg(s, 0)*) p(dx)ds <
+00.
(H.3). There exists a constant L > 0 such that for any s € [0, +00), x € D, yi, » €R,

[f(s,x,y1) — f(s,x,y2)| < Lly1 — y2l.
(H.4). For any given s € [0, +00), g(s, -) € C*(D; E%]O(IR)) and fD g(s,x)p(dx)=0.

Remark 2.4. We start from SPDE (2.1) to have

T
/u(t,x)p(dx)=/h(x)p(dx)—l—//[%Au(s,x)+f(s,x,u(s,x))
D D t D
T
- [ 16t p@enpinds - [ [ g.0d B
D Dt

T
=fh(x)p(dx)+/[%Au(s,x)p(dx)ds.
t D

D

That is to say

d 1
E/u(r,x)p(dx)=—/§Au(t,x),o(dx)=0,
D

D

6
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by Stoke’s theorem. So there exists a .7, 5 measurable random variable ¢(w) on (Q8, . Z 8, PB)

T,400
such that for all € [0, T] and w € €2,

/u(t,x)p(dx) = /h(x)p(dx) =c(w). 2.5)

D D

Hence, in view of the invariant measure, the solution of finite horizon BDSDE (2.4) also satisfies

EW[/ Y!¥ p(dx)] = c(w) foralls>1. 2.6)

D

Theorem 2.5. Under Conditions (H.1)-(H.4), BDSDE (2.4) has a unique solution (Y, Z'"").

Proof. We define a sequence of BDSDEs,

T
i =h(XE) + / Lf (o X5 v el — / Fr 8. Y5 p(ds)dr
s D

T T
—fg(r, X'*)d" B, —/Zﬁ’x’”dW,, 0<t<s<T, neN, 2.7
s )
and (Y0, Z%0) = (0,0).

For a given Y/l ¢ §20([¢, T7; L%(D; R)), from Conditions (H.2) and (H.3), we know
that

T
El f / L fr, XU, ety / £ &, Y51 p(d) 2p(dx)dr] < +o.
t D D

So by applying the result in [18], there exists (Y'*", Z'*") € §20([z, T]; L2(D; R)) x
M20([z, TT; L%(D; R4)) for (2.7). We need to prove that the sequence of (Y'*" Z"*") is a

Cauchy sequence in this space. For this, we apply Itd’s formula to eK” |y 5" — y/*1=112 o
have

T T
er|Yrt,x,n _ Yrt,x,nfl |2 + K/eKr|Yrt,x,n _ Yrt,x,nfl |2dr +/6Kr|Zf,’x’n _ Zi,x,nfl |2dr
s N
T
— 2/eKF(Y;,x,n _ Y;,)C,l’lfl)[f(r’ X;,x’ Yrt,x,nfl) _ f(r, )(;,‘.,)C7 Yrt,x,an)]dr
N

T

-2 / A G / Lf (& Y50 — f (&, Y52 p(dg)dr
D

N

7
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T
_2/ eKr(Yrt,x,n _ Yrt,x,n—l)(zlt‘,x,n _ Zi,x,n—l)dWr
K
T
< ZL/eKr|Y;,x,n _ Yrt,x,n71||Yrt,x,n71 _ le,x,n72|dr

N

T
+2L/eKr|Yrt,x,n _ Yrt,x,n—l|/ |Yrr,§,n—1 _ Yrr,é,n—2|p(d€_-)dr
s D
T

K X, ,x,n—1 X, ,x,n—1
_2/e r(Yrtxn_Y;fxn )(Z;“xn_zf’xn )dWr

N

T T
1
< 4L2/eKr|Yrt,x,n _ Yrt,x,nfl|2dr + Z/‘el(rlyif,x,nfl _ Y;,x,n72|2dr

K s

T ! T
+4L2[6Kr|Y:,x,n _le,x,n—1|2dr+Z/eKr/|Y:,§,n—l _Y;’,S,n—2|2p(d%-)dr

s N D

T

K \X, ,x,n—1 X, ,x,n—1
_2/e r(Yrtxn_Y:xn )(Zﬁxn_zixn )dWr

s

Taking integration in D, by stochastic Fubini theorem we have

T
fekswrz,x,n _ er,x,n—1|2p(dx) + K//ekr|yrt,x,n _ er,x,n—1|2p(dx)dr
D s D
T
+//e’<’|zﬁ~xv" — 7285125 (dx)dr
s D

T T
1
< SLZ//CKV|Y:’x’n _ Y}f,x,n—llzp(dx)dr + E /‘/eKr|Yrt,x,n—l _ Yrt,x,n—2|2p(dx)dr
s D s D

T
—2//e’<’(y;’x’" — ytenshyzten _ ztxn=ly b (dx)ydw,. (2.8)
s D

Next taking expectations leads to
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T
E[f eKSIYrt,x,n _ Yrt,x,l’l—1|2p(dx)] + (K _ SLZ)E[//.GKV|Y;,X,n _ Y:,x,n—l |2,0(dx)dr]
D s D

T
+E[ffeK’|Z£’x’" — Z5n =125 (dx)dr)
s D

T
1
< EE[//e""|1/;’x’"*1 — Y2125 (dx)dr).
s D
Setting K = 8L2 + 1, it follows that

T
E[//eKr(|Y;,X,n _ Y;,)C,n—l|2 + |Z£,x,n _ Zﬁ,x,n—1|2)p(dx)dr]
s D

T
1
< EEv[‘/A/e[(r(|Yrt,)c,nf] _ Yrt,x,n72|2 + |Z£,x,nfl _ Zi,x,n72|2)p(dx)dr]. (29)
s D

From the contraction principle, we know that the mapping (2.7) has a pair of fixed point
(Y?, Z") which is the limit of the Cauchy sequence {(Y"*'*",Zf"’")}jg in M>K((t,T7;
L%(D; R)) x M>K([t,T1: L%(D; R%)). We now prove that Y’ is also the limit of Y*" in
S2K (s, T7; L%(D;R)) as n — 4o0. For this, we only need to prove that {Yt"’"}:ji’ is a
Cauchy sequence in S>X ([r, T]; Lf, (D; R)). Noticing (2.8) again, by B-D-G inequality, Cauchy-
Schwarz inequality and Young’s inequality we have

E[ sup /eKS|Y,”x’” — Y P p(d)]

t<s<T

T T
< CE[//eK’|Y,”"’” — Y2 pdx)dr] + CE[//eK’|Yr"x'”_l — Y22 p(dx)dr)
s D s D

T 2
+CE / f eKr (vt — Yz = 2 pda) | dr]
s D

T T
< CE[ eKr|Yt,x,n _ Yf,x,n71|2p(dx)dr] + CE[ eK}"Yl,x,)’l*l _ Yt‘x’"72|2p(dx)dr]
r r r r
D s D

N

T
+CEl / [ / eKr[YIE _ i En 2 () f eKr|ZETN _ Z8En= 12 (4 ]dr]
s D D

9
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T T
< CE[//eK’|Yf’x’” — Y2 pdx)dr] + CE[//eK’|Yf"""_1 — Y212 p(dx)dr)
s D s D
T
+1E[ sup fe’“m"x’" - Yr”x’"*1|2p(dx)]+CE[//eK’|Z£""" — 712 p(dx)dr).
2 t<s<T D

Here and in the rest of this paper, C is a constant whose values depend on given parameters and
may change from line by line. Hence

E[ Sup \/CKS|Y:’X”1 _ Y;,x,n—l|2p(dx)]

t<s<T

T T
< é{E[\//‘eKr|Y;,X,n _ Yrt,x,n—l |2,0(dx)dr] + E[//eKr|Yrt,x,n—1 _ Yrt,x,l’l—2|2p(dx)dr]
s D s D

T
+E[//eKr|Z£’x’” — Zt 2 p(dx)drl), (2.10)
s D

where C is a constant depending only on ||, K and the fixed constant in the B-D-G inequality.
Thus for any m, n € N, without loss of any generality assuming m > n, by (2.9) and (2.10) we
have

E[ sup /eKS|Y,”"”” — Y2 p(dx)]

t<s<T

m
< ). |ELsw / eKs |y — Y P ()]

i=n+1 t=s<T

m T
<>y (C{E[//eK’|Yr”x’l—Yr”x”*l|2p(dx)dr]

i=n+1 s D

T
+E[//e"’|y,”x”'—1 — YR 2 p(dx)dr]
s D

T
1
+E[f/eK’|Z£'x'i —z;’“'—l|2p(dx)dr]})2
s D

T
m
3. - - i i
< D0 SCEL[ [eRnqunit Sy g 2 2y
i=n+1 s D

10
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)l 2 —CE[f/eKr(w”1|2+|Z””|2>p<dx>dr]+o
i= n—H

as m,n — +00. So {(Y", Z1M)} X converges to (Y, Z') in S>K([t, T1; L%(D;R)) x
M>K(r, T, L%(D; R?)). Due to the equivalence of the norms in S>X([z, T']; L%(D; R)) x
M>K([1, T); L2(D; RY)) and in S*O([z, T]; L2(D; R)) x M*°([r, T]; L3(D; RY)), the con-
vergence still holds in the latter space. Then taking the strong limit on both sides of (2.7) in
L%(Q2 x D; R), we see that (Y!', Z"") is a solution to BDSDE (2.4).

The uniqueness of solution can be proved by It6’s formula, and we leave it to the reader. <

Remark 2.6. On the interval [0, t], BDSDE (2.4) has a form below

t t

_Y +/[f(r X, x)—ff(r,x,Y,")p(dx)]dr—/g(r,x)dTér—/Zder. (2.11)
D

N N

Note that Ytt’x satisfies Condition (H.1). By Theorem 2.5 we can obtain (Y., Z) € SZ’O([O, t];
L%2(D;R)) x M*°([0,]; L3(D; R?)) as the unique solution of BDSDE (2.11). To unify the
notation, we define (Y, Z{'*) = (Y, Z¥) when s € [0,7). Thus (Y", Z") € §%0([0, T;
LZ(D:R)) x M*°([0, T]; L2(D:; R%),

Theorem 2.7. Assume Conditions (H.1)—(H.4) and let (Y!>, Z"") be the solution of BDSDE (2.4).
Then u(t,x) = Y;}"* is the unique weak solution of SPDE (2.1). Moreover, u(s, Xy*) = Y{"* and
Vu(s, XY =27y fora.a. s €[t,T], a.a. x € D, a.s.

Proof. We first consider the affine SPDE (2.1) when f (¢, x, y) is independent of y. Then SPDE
(2.1) becomes to a linear equation:

du(t,x) = —[YAu(t,x) + F(t,x)ldt + g(t,x)d"B;, t€[0,T), xeD,
u(T,x)=h(x), xeD, (2.12)
dut,x)=0, te[0,T), x€dD,

where

F(t.x) = f(t.x) / £t 8)p(dE).

By Theorem 5.4 in [11], the mild solution of SPDE (2.12) exists and can be represented by

T—t T—t
u(t,x)=S(T —t)h(x) + / S(T —t—s)F(s,x)ds + / S(T —t—s)g(s,x)dBs, (2.13)
0 0

where S(¢), 0 <t < T, is the semigroup generated by %A and the stochastic integral is forward
It6’s integral. On the other hand, from Theorem 2.10 and Remark 2.11 in [10] we know that

11
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a unique classical solution of the linear PDE when g(#, x) = 0 in (2.12) exists, i.e. the first two
terms in (2.13) are C1-2([0, T'] x D). For the solution of SPDE (2.12), since the stochastic integral

in (2.13) is additive, by Theorem 5.15 in [11], it has the same regularity with respect to x as the
PDE.

Then takingt <s=f<t) <t <---<t, =T, by Itd’s formula, we have

m—1
t, t,
> . X5 — utivn, X;7)]
i=0
m—1

m—1
= lut, X;) — u(s, t,+])]+2[u(h, an) = utivn, X1

i=0
tit1 tiy1 i1
_Z / Au(t,,X”‘)dr—/Vu(t,',Xﬁ’x)dWr— / Vu(t;, X05) Ve (X )dKEY)
i= ti ti ti
fit+1 lit+1 fit1

+Z / —Au(r, X,+1)dr+/F(r Xt,H)dr—/g(r X, )dBy).

ti 14
Note that the Neumann condition implies
it lit1

3
/ Vu(t;, X!*)Vo(XL¥)dK ! = / ﬁ(n,xﬁ”‘)d&”:o.

1 t
Hence, by a similar argument as in [15], taking m — 400 we have

T T T
u(s, X0 = u(T, X;x)—l—/F(r, Xj’x)dr—/g(r, Xﬁ’x)dlg’,—/Vu(r, XEYdW,.

N N N

By the uniqueness of solution of above linear BDSDE, it follows that

u(s, Xb*)y =y and Vu(s, X'*)=ZL* foraa.se[t,T], aa. x €D, as.

Moreover, the continuity of u(s, x) with respect to (s, x), together with the continuity of xh*
with respect to s, leads to u(s, Xy =y}  foralls €[r,T],a.a.x € D, as.

For the semi-linear case that f(z, x, y) depending on y, define a sequence of SPDEs with
u® =0, and u"(z, x) defined iteratively by SPDE (2.1), but with f(t,x,u(,x)) replaced by
f(t,x,u™'(t,x)). By the correspondence in the linear case, we have u”(s, X;'*) = Y;™*" for
all s € [t,T], a.a. x € D, a.s. and Vu" (s, X)) = ZL*" for a.a. s € [1, T], a.a. x € D, a.s. Fur-
thermore, due to the uniqueness of solution of BDSDE (2.4), Y™ =, SS’X;J and ZL¥ = Zj’x€
Define u(s, x) £ Y3, then

u(s, X0¥) =y X" =yt (2.14)

12
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By using the invariant measure p of X?",

T
lim E[//|u"(s,x)—u(s,x)|2p(dx)ds]
0 D

n—-+00

T
= lim E[//|u"(s,X?’x)—u(s,Xg’x)|2p(dx)ds]
0 D

T
= lim E[/f|¥?’x’"—X?’x|2p(dx)ds]:O. (2.15)
D

n—-+00
0

On the other hand, by using the invariant measure p again, for m,n — 400,

T
lim E[/f<|u’"(s,x)—u"(s,x)|2+|Vum(s,x)—Vu"(s,x)|2)p(dx)ds]
0

n——+00
D

T
= lim E[//<|um(s,X§)’x)—u”(s,Xg'x)|2+|Vum(s,Xg’x)—Vu”(s,X?’x)lz)p(dx)ds]
0

n——+00
D

n——+00

T
= lim E[// (|Y§’X»m —yOnn2 4 z0xm _ Z?’x’”|2>p(dx)dS] =0.
0 D

That is to say {u”}j{:l oo is a Cauchy sequence in L%(0,T; Wg’z(D; R)) and we denote its limit
by @i. Noticing (2.15), we know that u” converges strongly to u in L%(0, T’; L%(D; R)), which
implies u(s, x) = u(s,x) fora.a. s € [0,T], a.a. x € D, as. If we regard u as an indistinguish-
able version of &1, u € L2(0, T; W[}’z(D; R)) and u” converges to u in L%, T; W[}’z(D; R)).
Actually, u is a weak solution of SPDE (2.1). For this, first note that for an arbitrary ¢ €
C>([0, T] x D; R),

T
/u”“(t,x)w(x)p(dX)—/h(x)w(X)p(dX)— %//Vu”“(s,x)w(x)p(dX)ds
D D t D

T

_ f / LF (s, 4" (5. )) — / F(s.£.u" (5. £))p(dE)]p(0) p(dx)ds
t D D

T
—//g(s,x)go(x)p(dx)dTéS P —as. (2.16)
t D

13
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We need to verify that each term in (2.16) converges to the corresponding term in (2.3) in the
space L'(2; R) as n — 400 due to the strong convergence of u” to u in L>(0, T’; W[}’z(D; R)).
We only show the convergence of two terms and the convergence of other terms can be similarly
deduced. Firstly,

lim E[| f (W2, x) = u(t, ) () p 0]
D
< limCE[/ @, X0 — u(e, X)) p(dx)]

—limCE[ / Yy 2p(dx))
n
D

< thE[ sup f [yt Y02 (dx)] = 0.
0<t<T

Secondly,

T
lim E[] [ f ( / f(s,é,u”(s,é))p(d%‘)—f(s,E,u(s,%‘))p(dS))so(x)p(dx)dslz]

t D

T
flilgnCE[f/‘/( E,u"(s,é))—f(s,E,MS,S)))/O(dS)

t

2
p(dx)ds]

o

<11mCE[//|f s, x,u"(s,x)) —f(s,x,u(s,x))|2,0(dx)ds]
t D

T

<lim CE[/ / lu (s, x) — u(s, x)|*p(dx)ds] = 0
t D

In this way we proved that u(z, x) defined by Y[’x is the weak solution of SPDE (2.1). Moreover,
due to (2.14), u(s, X"y =Y/* fora.a. s € [t,T], a.a. x € D, a.s. As for Vu(s, Xv*) = Z0* for
aa.selt,T], a.a. x € D, a.s., we see from

hm E[//|Vu(s X%y — Z1% 2 p(dx)ds]

T
< lim 2E[//|Vu(s,X§”‘)—Vu"(s,X?’x)lzp(dx)ds]
n—>+00
0 D

14
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n—-+00

T
+ lim 2E[//|Vu”(s,X?”‘)—Z?ﬂzp(dx)ds]
0 D

T
< hI—ir—l CE[/[|VM(S,X)—VM"(S,X)|2,O(dX)dS]
n—+00
0 D

n——+00

T
+ lim 2E[//|Z§’x’”—Zﬁ'x|2p(dx)ds]:0.
0 D

For the uniqueness of SPDE (2.1), the proof is similar to Theorem 3.1 in [4]. ©

Proposition 2.8. Assume Conditions (H.1)—(H.4). The solution of SPDE (2.1) has an a.s. contin-
uous version.

Proof. Noting that the solution of SPDE (2.1) exists in L*(0, T; WJ'Z(D;]R)), we regard
SPDE (2.1) as a linear SPDE with Neumann condition by setting F(r,x) = f (¢, x,u(t,x)) —
fD f(ta Ev M(t9 s))p(ds) Since

T
E[//|F(r,x)|2p(dx)dr]
0 D
T
=E[f/|f(r,x,u<r,x))—/f(r,s,u(r,@)p(ds)ﬂp(dx)dz]
0 D D

T T
<2k / / 17 (6 x (e, ) Po(dx)dr] +2E] / / | / £ (1.6, u(t, ©) p(e) 2 p(dx)dr]
0 D 0O D D

T T
52E[//|f(t,x,u(t,x))|2p(dx)dt]+2E[//|f(t,x,u(t,x))|2p(dx)dt]
0 0 D

D

T
< 8E[/ / (1 (1. u(t ) = £t x. O + | £(t.x.02) p(dx)di]
0 D

T
< 8E[//(C2|u(t,x)|2 +1£(t,x,0)*) p(dx)dt] < +00,
0 D

by a similar argument as (2.13) again, we know that u(#, x) has an a.s. continuous version. ¢

15
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Remark 2.9. Since the solution of SPDE (2.1) has an a.s. continuous version by Proposition 2.8,
following the result of Theorem 2.7 we further have u(s, Xy*) = Y¢™* for all s € [1, T], a.a.
x € D,a.s.

3. Infinite horizon BDSDEs

For a given K > 0, we consider the infinite horizon BDSDE with f and g being independent
of the time variable:

+00 +oo
onir = [ e rrog v - [ revpaor+ [ ke yar
s D s
—+00 “+00
— / e Krg(x!*)d"B, — / e Krzt>aw,, (3.1

N N

together with the condition (2.6) satisfied by Y.

Definition 3.1. A pair of processes (Y'',Z"") e S>~ KM\ M?>~K ([0, +o0); L%(D; R)) x
M>K ([0, +00); L2(D; R?)) is called a solution of BDSDE (3.1) if (¥;**, Z{™) satisfies (2.6)
and (3.1) forall s >0 a.a. x € D as.

In fact, in the next section, we will show that for the infinite horizon BDSDE (3.1), any
stationary solution with mass conservation condition (2.6) must imply c(w) in condition (2.6)
being a constant for almost all w € Q2. As this section is devoted to finding the solution of BDSDE
(3.1) with mass conservation condition, in the rest part of this section, we assume c¢(w) = ¢ being
a constant a.s.

We need some more conditions for infinite horizon BDSDE.

(H.5). Denote by M the reciprocal of the first eigenvalue of A on D, 16 M 2L < 1.
(H.6). The functions f(-,0) and g(-) satisfy [}, (| f(x,0)]> + |g(x)[|*)p(dx) < +o0.

Lemma 3.2. Let u be the solution of SPDE (2.1) and (Y, Z) be the solution of corresponding
BDSDE (2.4). Then

E[| [, u(s, x)p(dx)|*]
M2

. (3.2)

1
E[/|Z§’X|2p<dx)1zWE[/szp(dx)]—
D D

Proof. By the Poincare inequality, it follows that

’ /IM(S,X)Izp(dX)— /I/u(s,é)p(dé)lzp(dX)
D D D

< /|u(s,x>—/u(s@)p(dé)@p(dx)
D D

16
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M / Vuls. 0)2p(dx).
D

Hence

f lu(s, x)*p(dx) < 2M? f |Vu(s, x)|*p(dx) + 2| / u(s, x)p(dx)|.
D D D

Noticing that o is an invariant measure for X’ in D, we have

E[l [pu(s, x)p(dx)|]

M?2

El f Vuls, X052 p(dx)] = ﬁE[ / (s, X052 p ()] —
D D

which implies (3.2). ¢

Theorem 3.3. Under Conditions (H.3)—(H.6), for a given sufficiently small K > 0 and a given
constant ¢, BDSDE (3.1) has a unique solution (Y', Z'"") satisfying

EW[f Y p(dx)] =c. (3.3)
D

Proof. For each n € N, we define a sequence of BDSDEs by setting #(x) =c and T = n in
BDSDE (2.4):

n n

n
v = [Lrogr e - [ revrenpaer - [gods, - [ zenaw,
s D s s
3.4)
Equivalently,

n

e Byt =eT e+ f VO AR R / FE YIS pdE)ldr
D

N

n n n
+/Ke_K’Y,"x’"dr —/e_Krg(Xﬁ’x)dTér —/e_K’Zﬁ’x’”dW,. (3.5)

N N N

It is easy to verify that BDSDE (3.4) satisfies conditions of Theorem 2.5. Hence, for each
n, by Theorem 2.5 and Remark 2.6 there exists (Y>", Z5") e S2=K ([0, n]; L%(D; R)) x
M*~K([0,n]; L2(D: R?)) as the unique solution of BDSDE (3.4). Let (Y™, Z&™") 5oy =
(c.0). Then (YY", ZM") e S2KM\M27K([0,400); L2(D;R)) x M>7K([0, +o0);
L%Z(D;RY)).

17
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We will prove (Y°", ZE*™), n =1, 2, - - -, is a Cauchy sequence. For this, let (Y, ZL*™)
and (Y{", ZL%™) be the solutions of Eq. (3.4) with the terminal time m and n, respectively.
Without losing any generality, assume that m > n, and define for s > ¢,

vi,x,mn __ yt,x,m t,x,n ~Zt,.x,m,n __ —t,x,m t,x,n
Y! =yhem _yhen o gbxmn _ ztxm _ gtan

Fm s, x) = FOXGE VPR = FXE YR,

Consider two cases:
. ot,x,m,n t,x,m
(i) Whenn <s<m,Y; =Y — ¢ and we have for any m € N,

AYI" = [ F(XE Y — [ FE Y™ p(dE)lds + g (Xy)dT By + Z " a W
YA mr — 0 fors €[n,m), a.a. x €D, as.
Applying It6’s formula to e~ X7 |y, """ |2
have

for a.a. x € D and taking integration over D, we

m m

/e*“n'f;’%m’"ﬁp(dx)— K//e*m?;»xvms”ﬁp(dx)dr+//e*’<’|z;>x’m|2p(dx)dr
s D s D

m
=2 f / e Krybrmnp(xpx yhomy — / fEYIE™) p(dE)]p(dx)dr
D D

m

e X lg(XIMIPp(dx)dr —2 / / e KTy g (XM p(dx)d' By
s D

e—Kr Y:’x’m’nZ£’x’mp(dx)dWr
l m
Kz Rpndr+ 1 [ [0 v padr
s D
m
e KT £ (e, I P p(dx)dr + f / e K g(XL) 12 p(dx)dr
s D s D
m m
—2//e_Krl?r”x’m’”g(Xﬁ’x)p(dx)d_{'I}r —2//e_K’I?r”x’m’”Zﬁ’x”",o(dx)dWr
s D D

N

m

m
g2L/fe*KWY;’XM»"Fp(dx)dr+4L/fe*’(qy;’x’mﬁp(dx)dr
D s D

18
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+ %/ / e’K’If(Xi’x,oan(dx)dﬁ%/ / e KT £ (x, 0P p(dx)dr
s D s D

m

m
+ / f e K g (X1 )P p(dx)dr — 2 f / e KrIE M g (X p(dx)d' By
s D D

s

m
—2//e’KrYr”x’m*”Zﬁ’x”",o(dx)dWr. (3.6)
s D

Taking expectation, we have

m
E[/ e*“u?;’x’m’"ﬁp(dx)] - (2K +8L)E[//e*Kr|Yr”x’m|2p(dx)dr]
D s D

m

m
-2 / e K e?1dr + E[ / / e K| ztxm 2 p(dx)dr] (3.7)
s D

s

m
< B[ / Ko F0vm P p ()] — (K +2L)E[ f / e KN 75mn 2 o (dxydr]
s D
m m
—4LE[//e*“w;’xv’"ﬁp(dx)dr]+E[//e*Kr|z;’x”"|2p(dx)dr]
s D s D

4 m m
< TEI / / KT £ (X1, 0) 2 p(dx)dr] + EI / f KT g (X0 P p(dx)dr].
s D s D

In the following, we apply Lemma 3.2 to u™ as the solution of SPDE (2.1) with the terminal
time m and the terminal value c. Applying this estimate to (3.7), we have

m
_ 1
B[ e R po + (75— QK +SL)EL[ [ minm Ppandn
D s D

m
1 1 4
<20+ m)(e—’“ —e Kmye? TE f f e KT F(X5T, 002 p(dx)dr]
s D

+E / / e Kr g (X0 P o (dx)drl.
s D

Noticing ﬁ — (2K +8L) >0, as m,n — +00, we have
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m
Bl [ e g fpaor+ e[ [ Po@ndn (38)
D n D
<C(e X4k f |f (x, 00 p(dx) + K" / lg (11> p(dx)) — 0.
D D

Then, (3.7) together with (3.8) leads to that as m, n — 400,

m m
E[//e*K’|}_’r”x’m’"|2p(dx)dr]+E[//e*Kr|Z£’x’m’”|2p(dx)dr] (3.9)
n D n D

m m m
52E[//e*Kr|Y,l’x"”|2p(dx)dr]+2/e*K’c2dr+E[//e*Kr|Z£’x”"|2p(dx)dr]
n D n D

n

< CeKn 4 gk / £, )2 p(dx) + Ce K™ / g () IPp(dx) —> 0.
D D

Using the B-D-G inequality to deal with (3.6) on the interval [n, m], by (3.8) and (3.9), as n,
m — +00 we have

E[ sup /e*“u?;»x‘ms"ﬁp(dx)]

n<s<m
D

< Ce Kny ceKn / |f(x,0)*p(dx) + Ce™ K" f lg(x) 120 (dx)
D D
m
+CE[//e_K’|Yf’x’m|2p(dx)dr]
n D

m m
—i—CE[//e_K’|Zﬁ’x’m|2p(dx)dr]+CE[//e_K’|Yf”"m’"|2p(dx)dr]
n D n D

— 0. (3.10)

(i) When 0 <s <n <m,

n n

Yst,x,m,n — er,x,m —c+ f[f_t,m,n(r’ x) _ / f_-r,m,n (I‘, ";‘),o(dé)]dr _ / Z;,x,m,ndWr-
D

N N

vi,x,mn
Yr’ s, |

Applying 1t6’s formula to e~ X"| ? for aa. x € R and using Lipschitz condition and

Young inequality, we have
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n
/est“'/St,x,m,n'Zp(dx)_K//efkr|y'vrt,x,m,n|2p(dx)dxdr
D s D

n
+/fﬁ_Kr|Z£’x’m’n|2p(dX)dr
s D

n
:/e_K"|Y’§’x’m _C|2p(dx)+2f/e—KrYrt,x,m,n[f_-t,m,n(r’x)
s D

D

n
_/f’vm*"(r,é)p(dé)]p(dx)dr —2//e—K’Y;’x’m*"Zﬁ’x’m’"p(dx)dw,.
D s D

n
52fe*K"|Y,§’x’m|2p(dx)+2e*’<"|c|2+3L//e*K’W;’x’m’"ﬁp(dx)dr
D s D

n n
+L//e_K'|Y:’x’m’”|2p(dx)dr —2[/e_K’Y[’x'm'”ﬂ’x’m’”p(dx)dW,. (3.11)
s D s D

Note

_ _ X 2 _
E[ [ e KT 7rvmn 2 p(dx)] = E[ [ e K 7rXtmn "p (dx)] = B / e KN ZEvmn 2 p (dn)).
D D D

Taking expectation, we have
m
E[ / e~ Ko 7w 2 p(dx)] — (K +4L)E[ / / e Krjyremn 2 p(dxydr]
D s D

m
+E[[/e_Kr|Z;’x’m’"|2p(dx)dr]
s D

< 2E[/ e_K"|Yé’x’m|2p(dX)] +2e Kne2,
D

For s > 0, define
@™ (s, x) 2 u" (s, x) —u (s, x) = YU — Y
Obviously, u™" satisfies the following random PDE:

21
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du™"(t,x) = —[%Aﬁ’"’” (t,x)+ (f(x, u™(t, x)) — f(x, u(t, x)))
—Jo (F(6.um@.©) = £(6.w" 1. ) p@E)Ndr, 1€10,T), xeD,

W™ (n,x) =u"(n,x)—c, xe€D,
=0, re[0,n), x€dD.

This PDE is also mass-conservative and for all € [0, n] and w € 2,

/ @ (1, %) p(dx) = f (" (n, x) = c)p(dx) = 0.

D D

This is due to that 4™ (n, x) satisfies SPDE (2.1) with the terminal time m and the terminal value
c,li.e. fD u™(n, x)p(dx) = c. Applying Lemma 3.2 to 2", we have

E[ f |ZLxmn 2 (dx)] = E[ / V™" (s, X'*) > p(dx)] = E[ f [Via"™" (s, x) > p(dx)]
D D
> B[ 16 0P plan) = 2M2E[/ @ (s, X p ()]
D
- vix,m,n 2
S EL[ T p o
D

Inserting above estimate into (3.12), we have

E[/ e Ko o (dx)] 4 (=5 — (K +4L) E[// e KT 7o o (dx)dr]

2M2

< E[[ e Knytom o (dx)] 4 2 K12,
As n, m — 400, using (3.10) we have

n
E[//e_Kr|I7r”x”"’”|2p(dx)dr] <CE[ sup /e_K‘Y|Y;’X’m|2p(dx)]+Ce_K"c2 —0.

n<s<m
D

(3.13)
Then, as m, n — +o00 it follows from (3.10), (3.12) and (3.13) that

n
E[ / / e Kr\zixmn? b (dx)dr]

< CE[ sup /e*“w;%mﬁp(dx)]+Ce*’<”c2

n<s<m
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n
_ > 2
+CE[/ / e Kryylemn o (dx)dr] — 0. (3.14)
0 D

Also by the B-D-G inequality, (3.10)—(3.11) and (3.13)—(3.14), as n, m — 400, we have

E[ sup / e K P1Ema 2 o (d))

0<s<n

< CE[ sup /e*KS|YS”x’m|2p(dx)]+Ce*K”c2

n<s<m

D

n n
+CE[//e*’(’ﬁ,”x’mﬂﬁp(dx)dr]+CE[//e*’“|Z;vX*m*"|2p(dx)dr]—>0.
0 D 0 D

Therefore taking a combination of cases (i) and (ii), as n, m — 400, we have

s>0

+o00
E[sup/e*KSu?;’x’m’"Fp(dx)]+E[/ /e*KWY;’X»’"»"Pp(dx)dr]
0 D

+o0
+E[/ /e_K’|Zﬁ’X’m’"|2p(dx)dr] — 0.
0 D

That is to say (Y{", Z{™") is a Cauchy sequence in the space S>>~ X (M M>~X([0, +o0);
L%2(D;R)) x M*~X([0, +00); L2 (D; R?)). Take (Y™, Zg'™) as the limit of (Yg™™", Zg™") and
we will show that (Ys"x, Zé’x) is the solution of BDSDE (3.1). For this, we take the strong limit
on both sides of (3.5) in L2(Q x D; R), then the claim that (Y*", Z!*") is a solution to BDSDE
(3.1) follows. We only take for example the convergence of the terms involving f. Firstly,

n 400
lim E[/|/e_K’f(X£'X,Yr”"'”)dr— / e X F(XP Y dr P p(dx)]
n—+o00

D s s

~ n—+o00

n
< lim CE[//e_K’|Yf’X’”—Yrt’x|2p(dx)dr]
s D

(o]

+
+ lim CE[//e_K’(l+|Y,""|2+If(x,O)Iz)p(dx)dr]zo.
D

n—-+00
n

For the other term, similarly
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“+o00

lim [ / | / oK / FE YN p(dE)dr — / oK / FE YT pdE)drp(dn)]
D s D D

n——+00
K

n—-+00

n
< lim CE[//e_Kr|Yr”’”—Y,r’x|2p(dx)dr]
s D

+o00
+ lim CE[ /e—K’(1+|Y,“‘|2+|f(x,0)|2)p(dx)dr]=o.
n—+400
n D

After verifying the convergence of each term, the existence of solution to BDSDE (3.1) is proved.
For the uniqueness of solution, let (Y;*, Z*) and (Y{, Z1) be two solutions of BDSDE
(3.1). Define

VY=Y v ZE =20 - 28 (s, x) = XS, PR — f(XEE YY), s> 0.

Then for s > 0 and a.a. x € R, (Y™, Z¥) and (Y!*, Z1) satisfy

+00 +o00 +00
e Ksylr = f e—’“[f’(r,x)—ff’(r,g)p(ds)]dwr f Ke Xry!*ar — f e Krztxaw,.
) D s s

For an arbitrary interval [0, T,

T

T
R / L7 (rx) — / ", 6)p(d€)ldr — / Zy*dWw,.,
K D

s

- N AT, X5" T,X5 . - =
where Y7* = Y;* — yp* =¥,"7 — Y. "7 satisfies Condition (H.1) and f'(s,x) =

A N t,x t,x
FOXET P05y — f(xEY vEYy = £xBE 75Ty — (x5, v %) can be regarded as a given

function. Moreover,

lim e XTyp* =o0. (3.15)
T—+o00

Similar to (3.12), applying Itd’s formula to e X7 |y, |2 for a.a. x € RY, we have

T
E[/e_Ks|)_’;’X|2p(dx)]—(K+4L)E[//e_Kr|1?r”x|2p(dx)dr]
D s D

T
+E[f/e*Kr|25’X|2p(dx)dr] < E[fe*”u?;xfp(dx)]. (3.16)
s D D
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On the other hand, by Theorem 2.5, we know that u(s, x) £ y5* is a weak solution to the
following mass-conservative random PDE:

dii(t, x) = —[L At x) + (f(x, it ) — f(x, u(t,x)))
— I (£(6.26.9) = £(6.utt,©) ) pE)Ndr, 1€]0,T), xeD,

(T, x)=Y.", xeD,
dut,x)=0, te[0,T), xe€dD.

So, forall t € [0, T] and w € €2, in view of the invariant measure and (2.6),

/ﬁ(t,x)p(dx):/)_’f’x,o(dx):EW/fj’xp(dx):O.

D D D

Applying Lemma 3.2 to i, we have
_ 1 _
E[/ 120 P p(dx)] ﬁE[/ 75 2 p ()
M
D D
Putting above inequality into (3.16), we have
| T
E[/ e K1 71517 p ()] + (5372 — K +4L))E[//e*K'|Y;»X|2p(dx)dr]
D s D
< L[ KT pdon (3.17)
D

Taking K’ > K such that K’ satisfies the condition to K as well, we can see that (3.17) remains
true with K replaced by K. In particular,

B[ & 417 Ppan) < £ [ XTI Ppl
R4 R4

Therefore, we have that

Y [ KNP 2ol ydx]. (.18
R4 R4

Since Y5, ¥ € S2 K \M>~K ([0, +00); L} (D; R)),
sup E| f e X177 17 p(dx)] < Elsup / e KT QY1 +21Y7" P)p(dx)] < +oo.

>0 >0
R4 R4
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Therefore, taking the limit as 7 — 400 in (3.18), we have
B[ 17 Poani =0.

The uniqueness follows. ¢

Remark 3.4.If f and g in (3.1) depend on the time variable, we can also prove the existence
and uniqueness theorem of SPDE (3.1) by replacing (H.6) with the following condition:

(H.6)*. There exists K > 0 such that ;"> [, e=55(| f (s, x,0)]> + [lg(s, ) [®) p(dx)ds < +00
and 4M?*(K +4L) < 1.

4. Stationary solutions of SPDEs

In this section we consider the stationary solution of the following SPDE with time variable
independent coefficients f and g

dv(t,x) = [ 200 2) + £ (x, v(.0) = [, £ (£, 0. 6)pdE)]dr
+g(x)dB; te€(0,+00), x€D

Bu(t,x)=0 te(0,400), x€dD

fD v(t,x)p(dx)=c for a given constant c.

“.1

For this, we need to study the initial value problem of SPDE (1.1) where f and g are time variable
independent. Denote (CD(t)h) (x) = v(t, x, h). We utilize the connection between BDSDEs and
SPDE:s. In this connection, corresponding to a BDSDE, the SPDE should be of backward type
equation (2.1) with backward It stochastic integral of B which is the time reversal process of
Brownian motion B. Thus, as in Section 2, the noise of the corresponding BDSDE should be the
time reversal B. In particular, Bt By, — By for afixed 7" >0 and —oo <t < T'. In fact,
the choice of T’ can be arbitrary. It is obvious that B, is a Brownian motion with Bo =0.

We first construct a measurable metric dynamical system through defining a measurable and
probability preserving shift operator. Let 6, = 6; 06;,t >0, where 6;, 6, : @ —> 2 are measur-
able mappings on (2, .%, P) defined by

s+t T Bt ) é _ és
d(w)o=("5 ") a()o=(ulw)

Then for any s, 1 > 0, (). P= Q,P (ii). 6?0 = I, where [ is the identity transformation on £2;
(iii). b 0 0, = GAH Also for an arbitrary .% measurable ¢ and ¢ > 0, set

0r 0§ (@) = (6 ().
For any r > 0, applying 6, to SDE (2.2),
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t+r

A tx __ Strog o A t,x 0 1,X ;o s :
0,0 K 1 ,on;f,eaD}d(ef oK,”,), 6roK''isincreasing.

Oy 0 Xo* = x4+ Wypr — Wipr + [ V0@, 0 X172 ,)d(0, 0 KLY, s>1,
— Jt+r {6,

Compare the above equation with the following equation:

{x;ij’x =x+ Wypr — Wip, + ffj,’ V(X YdKT, s>,

K;i:x = ts++rr I{Xr+r,x€3D}dK,i+r’x, K!™¥ is increasing.
u

By the uniqueness of the solution and a perfection procedure (cf. Arnold [2]), we have
6y 0 X! = 6, o X = Xﬁi; forallr,s,t >0 a.s.

Firstly, we consider the stationary solution of a time independent version of BDSDE (3.1)
with EW[ [, Y p(dx)] = c(0), s > 1. So EV[ [}, 6, Y p(dx)] = c(d,w) for r > 0. Then if we
look for a stationary solution satisfying 6, Y, =Y Stirr’x, we need to impose ¢(6,0) = c(w). But

6. as a measure preserving dynamical system on (25, .8, PB) is ergodic, thus ¢ has to be a
constant.

Theorem 4.1. Under Conditions (H.3)—(H.6), let (Y, Zﬁ‘x) be the solution of BDSDE (3.1)
satisfying EW[fD Yst’x,o(dx)] =c, s >t >0, where c is a given mass-constant. Then (Y'", Z"")
satisfies for any t > 0,

b0l =Yl G0z =277 fors>t, r>0, as.
In particular, for any t > 0,
0, o Y/ = Y,’irr" forr >0, a.s. 4.2)

Proof. First note that BDSDE (3.1) is equivalent to the following equation

KTy =0 as.

V=Yt [T Y = [ FE Y e )ldr = [ g(Xpd B, — [zt dw,
limT%+oo €

R 4.3)
For r > 0, applying 6, on B,, we have

A

6y 0 By = ér ° (éT’—u - ET’) = éT’—u+r - éT’+r
(Br'—yir — Br') — (Bpryy — BY) =By, — B_,.

Sofor 0 <s <T < T’ and {h(u, -)},>0 being a #,-measurable and locally square integrable
stochastic process, we have the relationship between the forward integral and backward Itd inte-
gral (cf. [18])

T T —s

/h(u,.)d*BF— / W(T' —u,)dB, as.

s T'-T
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and for arbitrary 7 > 0,0 <s < T,

T T+r
o/h(u, yd B, = / 0, oh(u—r,)d B,. (4.4)
K s+r
Therefore for a.e. x € RY,
T T+r
o/h(u,x)dTlg’u = / 6, 0 h(u— r,x)dTE’u.
s s+r

Since g(X"") is locally square integrable, by (4.3) and (4.4), for a.e. x € R?

T T+r T+r
6, o / gX'")d'B, =6, 0 f g(X* )d™B, = / (X dT B, 4.5)

s s+r s+r

Now applying the operator 6, on both sides of (4.3), by (4.5) we know that 6, o Y{** satisfies
EY[[,0 o Y p(dx)] = c and the following equation

Or oY =0, 0 Yi + [T F(XIT, 8, 0 Vi) — [y F(5.6, 0 Yol ) p(d8)du
ST;’ (X’*”“)d By~ 11760 Zf,f,qu (4.6)
lim7_ 400 e_K(T+’)(§r oY) =0 a. s

On the other hand, from the assumption in Theorem 4.1 it follows that EW [ D fﬂ “pdx)]=c
and

Y;i:x_ }i};x+/;T+r[f(Xt+rx t+rx)_/‘Df($ Y“ E)p(dé)]du

Sitr (Xt+r x)dTBu _ fsitr L—&-r xqu (47)
lim7_ 1o0€ K(T+’)Y'+r =0 as.

Let Y!" =6, o Yo, 7l =6, 0 Z!~!". By the uniqueness of the solution of BDSDE (3.1) with
the given ¢ in the space >~ X N M?>=K([0, +00): L%(D; R)) x M>~K([0, +00); L%(D; R%)),
it follows from comparing (4.6) with (4.7) that for any ¢ > 0, in the space L%(D; R) x
L%(D;RY),

0¥ =Y =Y, 6,02 =ZIT = ZI1" foralls > 1 as.

Then by the perfection procedure ([2], [3]), we can prove above identities are true for all s > 7,
but fixed ¢ > 0 a.s. In particular, for any 7 > 0, in the space L%(D; R) x L%(D; ]Rd),

b oY =Y as. (4.8)
The proof is finished. ¢
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If we regard Y,t" as a function of ¢, (4.2) gives a “crude” stationary property of Y;". By
Theorem 2.7 and Proposition 2.8, Y,t" is the unique weak solution of SPDE (2.1) which has a.s.
continuous version. Hence it comes without a surprise that

Theorem 4.2. Under Conditions (H.3)—(H.6), let (Y*, Z5™) be the solution of a time indepen-

dent version of BDSDE (3.1) with the given mass-constant c¢. Then Ytl" satisfies the “perfect”
stationary property with respect to 0, i.e.

b, 0¥, =Y/} forallz >0, r >0, as. (4.9)

Consider the equivalent BDSDE (A4.3) and its solution Y?" on [z, T]. We choose B as the
time reversal of B from time T, i.e. By = By_; — Bt for s > 0. Note that the random variable

YTT 7S ﬂf oo Mmeasurable which is independent of ZY. Changing variable in SPDE (4.1),
we can deduce from the Correspondence Theorem 2.7 that v(¢t,:) =u(T —¢,-) = Yf:lt" is a

. . . .. T,X0"
weak solution of SPDE (4.1) on [0, T] if YTT’X satisfies Condition (H.1). Note Y;* =Y, "7 | so

Condition (H.1) is satisfied.
On the probability space (€2, .%#, P), we define 6; : @ —> Q, t € R, as the shift operator of
Brownian motion B:

0 o By = Bsyr — By,

then 6 satisfies the usual conditions: (i). P = P o 6;; (ii). 6y = I; (iii). 65 o 6; = 654,. Noticing
that B is chosen as the time reversal of B at time T and B, W are independent, we can define ] s
served as the shift operator of B and W, to be é, £ (9,)’1 o é,, t > 0. Actually B is a two-sided
Brownian motion, so (9,)’1 = 0_; is well defined (see [2]) and it is easy to see that é[ £ (Qt)’l,
t € R, is a shift operator of B. We can prove a claim that v(t, -) = YTT__t’ *" does not depend on the
choice of T using a similar proof as in [18], [19]. This can be obtained from (4.9) and the fact
that (97—, B)(s) = B,_s — B;.
Now since v(r, ) =u(T —1,-) =Y, " as., by (4.9),

O 0(t, ) =0_,u(T —1,,0) =0_,0,u(T —t —r,, &) =u(T —t —r,-, &) =v(t +7,-, ),

forall r >0 and T >t + r a.s. In particular, let Y (-, ) = v(0, -, w) = YTT"(L?)), then the above
formula implies:

0;Y(,w)=Y(-, 6w) =v(t, -, w)=v(t,-, 0, v0,-,w)=v(t,,0,Y(,w)) forallt >0 a.s.
(4.10)

It turns out that v(z, -, w) = Y (-, Ow) = Y;__tt"(c?)) is a stationary solution of SPDE (4.1) with
respect to 8. Therefore we obtain

o . . T—l,‘
Theorem 4.3. Under Conditions (H.3)~(H.6), for arbitrary T and t € [0, T], let v(t, ) £ Yroo,

where (Y'', Z'") is the solution of BDSDE (3.1) with I§’S = Br_s— Br foralls > 0. Then v(t, -)
is a “perfect” stationary solution of SPDE (4.1) independent of the choice of T.
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Remark 4.4. Similar to Theorem 6.8 in [20], it is not difficult to see that in the proof of Theo-
rem 3.3, there is no need to take & = c. In fact we can consider BDSDE (3.1) with an arbitrary &
satisfying Condition (H.1) and |}, h(x)p(dx) = c.

Remark 4.5. Define u(I') = P{w: v(0,w) € T} for T € %’(L%(D)), where v(s,-) is the
value of SPDE (4.1) at time s. Note v(s, w) = 6; o v(0, w) and 6 is measure preserving, so
u@) = Plw: v(0,6,w) e '} = Plw: v(s,w) € I'}. Since v(s, ) = CD(s)(v(O, -)), it follows
from Markov property and some standard argument that f 12(D) p(s,n, Du(dn) = n(). Here
pGs,n, I =Plw: &(s)nel}, e %(L%(D)), is the transition probability of the homogeneous
Markov process ®(s)n with initial position 7. That is to say that y is an invariant measure with
respect to the Markov process.

5. Mass-conserving stochastic Allen-Cahn equations

In this section, for an odd integer p > 0, we aim to solve the following infinite horizon SPDE:

dv(t,x) = [%Av(t, x)—vP(t, x)+v(t, x) + fD (vp(t, x) —v(t, x))p(dx)]dt
—g(x)dB;, xe€D,

do(t,x)=0, xe€dD,

fD v(t,x)p(dx)=c for a given constant c.

5.1

This is a mass-conserving stochastic Allen-Cahn equation.
For this specific equation, Condition (H.6) is automatically broken. We assume the following
Condition (H.6)' to replace Condition (H.6):

(H.6). The reciprocal of the first eigenvalue of A on D satisfies 10M? < 1.

Remark 5.1. In Condition (H.6)’, the condition on the reciprocal M of the first eigenvalue of
Laplacian operator is in fact a requirement of the domain D. We can instead consider %azA,
SDE (2.2) is accordingly changed to the following form

Xyt =x+oW,—oWi+ [[Ve(Xp K™, s =1,
K= [{Xﬁ”‘eaD}dKﬁyx’ K'* isincreasing.

In this case, the requirement in (H.6)' is relieved to 10M? < o2 which is a relationship of &
and D, rather that a sole requirement of the domain. All the arguments in this section still work.
More generally we can consider second order differential operator. Without losing generality, we
present our results for SPDE (5.1) with Laplacian operator only.

To begin with, a sequence of BDSDEs with Lipschitz coefficients is constructed as follows.
For each n € N, define

n

N Wysn +y = fa(3) +,

o) ==T5 () — pnP~(y -

30



Q. Zhang and H. Zhao Journal of Differential Equations 331 (2022) 1-49

where IT,,(y) = ™0y and f,(y) = =115 (») = pn? = (y = ) L{jy=n)- Obviously, for any

Iyl
yeR,

fn(y)—>—y”, fu(y) — —yP +vy, asn— +oo.

For each n, and any y1, y2 € R, fn satisfies the monotonic condition:

1 =) (fn 1) = fa(h2)) 0, (5.2)

and f;, satisfies the Lipschitz condition:

| (1) = £ 2)] < (prP 1+ Dyt — yal. (5.3)

We then study the BDSDE with coefficient f, and integral conserving || Y L5 o (dx) = ¢ for
s>t

+00 +00

oy = [ ek - [ porineasiar+ [ ke Kovar
D

N N

+0o0 +oo
- / e Krg(x!")d' B, — / e Krztxngw,, (5.4)
S N

Please note that even for fixed n, when n is reasonably large, Condition (H.6) is not satisfied.
First let’s see the following approximating finite horizon BDSDE with [, ¥{*"" p(dx) = c:

m
Yst,x,n,m :C+/[fn(Yrt,x,n,m) _ / fn(Yrrﬂfyn,m)p(ds)]dV
s D

m +00
- / g(X'")d'B, — / ZLxnm g, (5.5)
N s

Notice that the coefficients f,, g satisfy Conditions (H.1)-(H.4). Hence by Theorems 2.5 and
2.7, we have the following proposition.

Proposition 5.2. Under Conditions (H.6)', BDSDE (5.5) has a unique solution (yLrmm ghxnmy
€ §*0(t,m]; Ly(D; R)) x M>O([t, m]; L3 (D; R). And (1, x) = Y™™ is the unique
weak solution of the following SPDE:

dujy (t,0) = =[5 8 (1, 2) + fuu) (t.20)) = [ fa () 0. 6) p(dE))dt
+g(x)d'B, t€[0,m), xeD

) 10 (5.6)
uy(m,x)=c xebD
Mi(t,x)=0 t€[0,m) xeaD.
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Moreover, up (s, X;’x) = Y;‘x‘"’m and Vuy, pn (s, X;’x) = Zé’x’"’mfor aa selt,T),aa x €D,

a.s.

We first prove the solvability of BDSDE (5.4). Note that for the finite horizon problem, what
we developed in Section 2 works for the approximating system. However, the results and even the
proof we developed in Section 3 don’t work for the approximating system here as the Lipschitz
condition in (5.2) does not have a uniform bound. Thus we need to develop some new rools to
tackle the solution of BDSDE (5.4). This is achieved with help of the monotonicity of fy and the
mass-conservation property.

Proposition 5.3. Under Conditions (H.6)', BDSDE (5.4) has a unique solution (Y:™", Z1*") e
§2-K N M=K [z, +00); L%(D; R)) x M%~K([z, +00): L%(D; R9)), where K > 0 is a given
sufficiently small constant.

Proof. We use the solution of BDSDE (5.5) to approximate the desired solution. Let (Y{ "™
Zy*"™)yom = (c,0). Then (Y5-mm Z0-mm) e §2KO\M>7K([1, +00); L3 (D:R)) x
M>~K([1, 400); L2(D; RY)).

We will prove (Y™™ zZ*™™) m =1,2,---, is a Cauchy sequence. For this, let
(ylomt zbxmly and (yhomm zLemmy pe the solutions of BDSDE (5.5) with the terminal
time [ and m, respectively. Without losing any generality, assume that / > m, and define for
s>t,

vt.x.nlm _ ytxnl _ ytx.nm Zt,x,nlm _ ~tx.nl _ —tx,nm
Ys - Ys Ys Zs - Zs Zs

3 bl

Frt™s,x) = fu(VPE00) = fu(rfomm),

Consider two cases:
(i) Whenm < s <, Yf’x’"’l’m = Yf’x’"’l — ¢ and we have for any m € N,

{ dYFm T = [ (0 = [ o0 pd))ds + g (X5 By + 25 d W,

Yl”x’”’l‘m =0, forse[m,l), a.a.x €D, as.
Applying Ito’s formula to e~ K7 |y%"" 2
the monotonicity of f,, we have

for a.a. x € D and taking integration over D, by

1
_ 2 = 2
/e—KS|Yst,x,n,l,m| ,O(dx)—K/fe_Kr|Y:’x’"’l’m| o(dx)dr
D s D

)
+/fe_K’|Z£’X’”’l|2p(dx)dr
D

N

l
=2 [ [erriprnimgpenty - [ g rennosio@nds
D D

N
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1 1
—1—//e_K’||g(X£’x)||2p(dx)dr—Zf/e_Kr)_’,t’x’"’l’mg(Xﬁ’x)p(dx)d'rér

s D

1
_2//efKr?}f,x,n,[,mZ;,x,n,lp(dx)dWr
D

N

I
— 2//e—K}’Y:,X,Il,l,m[fn(yr{,x,n,l) _ f;l(c)]p(dx)dr
D

N

I I
—1—2//efKr)_’,t’x’"‘l’mﬁz(c)p(dx)dr+2//efKr)_’rt‘x'"’l’mYrt‘x‘”’lp(dx)dr

s D

1

2 [ e[ yntpun - [ epwon [ nursnhpasar
D D

D
1
o

s

e K g (X212 p(dx)dr

O —

l
_2//efKrYrt,x,n,l,mg(Xi,x)p(dx)dTér _2//efKrYrt,x,n,l,mZ;,x,n,lp(dx)dwr
D s D

N

1
52//e r|yhmlm 2 ,o(dx)dr—i—// —Krjytxnl)2 ,o(dx)dr—i—// e K7 e2P p(dx)dr
s D

N

1

)
+ [ [errnearnoanar -2 [t [ et ptan
s D D

N

co(dx)] / Fuo(FFE) o (dE)dr

ol

N

1
—2//e*K’?;’x’"”’mg(xﬁ’)‘)p(dx)d*B, —2//e*K’?;’x’"”’mz;’x’"’lp(dx)dw,. (5.7)
D

Taking conditional expectations E" and E® in turn, by the mass-conservation property (3.3) we
have

1
_ 5
B[ e R imnim o) = 2k + DEL[ [yt paar)
D s D
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[ [
—Z(K+2)fe_K’c2dr+E[//e_Kr|Z£’x’"’l|2p(dx)dr] (5.8)
K s D
1
<E[ f e Ksprantm? o)) — (K +2)E / / e Krprantm? o dxydr]
D s D

1 l
—etf [e rypniPoanan + e[ ek zpionar
s D s D

1

I
< / e Krerar + Ef / / e K |g(XL) 2 p(dx)dr].
s D

N

On the other hand, consider the solution u,, of SPDE (5.6), to which the solution
(Yt,x,n,m Zt,x,n,m

s , Zg ) of BDSDE (5.5) corresponds. Applying Lemma 3.2 to u,, ;, we have

1
_ 5
E[ f e Kt p ()] - 2(K + JEl / / e Kr 1y P p(ddr]
D s D

1 l
1
—Kr 2 —Kr t,x,n,l2
—2(K+2)/e c dr+E[//e WW,X" | p(dx)dr]
K s D

1

1
S/C_KrCZPdr—|—E[/[e_Kr||g(X;’x)||2p(dx)dr].
s D

N

Hence
1 5 l
= 2 2
E[ / T o] + (55 — 2K + ) EI f [ e Ky p(dydr]
D s D

- 2(K +2)

l
1 )
s @ —e A e =T D / / e KT g (X)) p(dx)dr].
s D

Noticing # —2(K + %) >0, as[,m — +o0o we have
I
e[ et ot e[ [P panan 59
D m D

<C(e ™"+ e*Km/ lg(o)11*p(dx)) — 0.
D
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Then, (5.8) together with (5.9) leads to, as [, m — 400,

1 l
E[[/e*’“|17;>X>”J’m|2p(dx)dr]+E[//e*’”|Z;vx‘"’l””|2p(dx)dr] (5.10)
m D m D

l

I I
52E[//e_Kr|Yr”"’”’[|2p(dx)dr]+2/e_K’czdr+E[//e_K’|Zﬁ’x’"’l|2p(dx)dr]
m D

m m D

< C(e7Km 4 e7Km / I I2p(dx)) — 0.
D

Using the B-D-G inequality to deal with (5.7) on the interval [m,[], by (5.9) and (5.10), as m,
| — +00 we have

E[ sup / e K pom b2 p(dx)]

m<s<lI

1
< CeKm 4 cekm / lg(0I20(dx) + CE / / e Kr|Zt5 2 p )
D m D

1
+CE[//e_K’|1?,l’x’”’l’m|2p(dx)dr]—>O. (5.11)
m D

(ii)) Whent <s <m,

m

m
?St,x,n,l,m — Y’Z‘x,n,l —c + /[ft,m,n(r’ )C) _ / fr,m,n(r’ g)p(ds)]dr _ / Zﬁ,x,n,[,der.
s D

N

. 2
Apply 1t0’s formula to e K7 |7/ for a.a. x € RY, then

"
/ e K prrntm Py - K / / e Kt Py g ydxdr
D s D

"
+ [ [eknizpninoandr

s D

Z‘/efkm|Yril,x,n,l _C|2p(dx)_,’_2//efKrY}f,x,n,l,m[ﬂ,l,m(r’x)

D

m
D K
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m
- / Frlm(r, 6)p(d€)]p(dx)dr —2 / / e~ Krptandmztanlmy oy,
D s D

m

:/efKIn|Y’il,x,n,[ —C|2,0(dx) +2//e*KVY_';,x,n,[,nl(ﬁl(yrf,x,n,l) _ ];,,(Yrt’x’"’m))p(dx)dr
D s D

m

™) f e K7 / Y15l o (dx) — f YIS ()] / T, €)p(dE)dr
D D

K D

m m
+2//e—Kr|)_/;‘,x,n,l,m|2p(dx)dr _ 2//e—KrY:,XJl,l,mZi,x,n,l,mlo(dx)dwr
s D s D

m
52/e*’<m|y,’,,%”’l|2p(dx)+2e*’<mc2+2//e*K’|Y;’x’"»’>m|2p(dx)dr
s D

D
m
-2 / e M / Y/ p(dx) — / Y5 b (dx)] f St €)p(dE)dr
K D D D
m
—2//e_K’I?rt’x’”’l’mZﬁ’x’"’l’m,o(dx)dWr. (5.12)
s D

Taking conditional expectations E" and E® in turn, by the mass-conservation property (3.3) we
have

m
E[/ e~ K premlm® ()] — (K+2)E[//e’K’|Yr”x’"’l‘m|2p(dx)dxdr]
D s D

m
+E[[/e_Kr|Z£’x’"’l””|2p(dx)dr]
s D

< 2E[f e_Km|Y,2’x’"’l|2p(dx)] +2e Kme2, (5.13)
D

For s > 0, define
—-l,m A ] m _ vs,x,n,l s, xX,n,m
" (s, x) = u, (s, x) —uy, (s,x) =Y -Y; .
Obviously, u™" satisfies the following random PDE:
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ity (t,3) = —[3 8" (1,) + (ol (0.0) = fulu ¢.0) )
I (/a(h0.) = fu(0,6) ) p@)1dt, 1 €[0,m), x €D,

ih™ (m, x)=ul(m,x)—c, xeD,

3“" (t,x)=0, te[0,m), xedD.

This PDE is also mass-conservative and for all r € [0, m] and w € €2,

/ @ (1, x)p(dx) = f (ul,(m. x) — ) p(dx).

D D

Moreover, un (m, x) satisfies SPDE (2.1) with the terminal time / and the terminal value c¢. Hence

/ui(m,x),o(dx) =c.

D

Consequently,

/ﬁﬁ;m(t,x)p(dx) =0

D

Applying Lemma 3.2 to ﬁﬁ,’m, we have
E[ / Vi, (s, x)[*p(dx)] = E[ / Vit (s, Xi*) P p(dx)] = E[ / |Z " 2 p(dx)
> 2M2E[/ liiy™ (5, ) > p(dx)] = 2MZE[/ |ty (s, Xi)? p(dx)]
_ —E[/ |)7[,x,n,l,m|2 (d.x)]
202 s PREXIL-
D
Applying above estimate to (5.13), we have
1 m
B[ e R o+ Gy = K = 2EL[ [ N7 par)

< E[/ e_Km|Y,Z’x’"’l’m|2p(dx)] +2e Kme2,

Asl, m — 400, using (5.11) we have
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E[// Kryprenlmi? o (dxydr] < CEL sup /e*KﬂY;’x’"”fp(dx)]+Ce*’<mc2 — 0.

m<s<I

(5.14)

Then, as [, m — +o0 it follows from (5.11), (5.13) and (5.14) that

m
B[ [ e nizemnintpanar

< CE[ sup /e*KS|Y;’x’”’l|2p(dx)]+Ce*chz

m<s<I
m

+CE[ffe_Kr|Yr”x'”’l’m|2p(dx)dr]—>0. (5.15)
0 D

Also by the B-D-G inequality, (5.11)—(5.12) and (5.14)—(5.15), as [, m — +o00, we have

E[ sup /e_KS|I7S”x’”’I’m|2p(dx)]

0<s<m

< CE[ sup /e_K‘Y|Y5’x’"’l|2p(dx)]+Ce_ch2

m<s<l|
m m
+CE[//e_Kr|l7r”x’"’l’m|2p(dx)dr]+CE[//e_Kr|Z£’x’"’l’m|2p(dx)dr] — 0.

Therefore taking a combination of cases (i) and (ii), as [, m — +00, we have

+00
E[Sup/e*KS|FSI,x,n,l,WL|2p(dx)]+E[/ /e*Kr|Y’f,x,n,l,m'2p(dx)dr]

s>0

+00

+E[/ /e*’”|Z;’x’"”’m|2p(dx)dr] —0.

txnm txnm t,x,n txn

That is to say (¥’ ) is a Cauchy sequence. Take (Y’ ) as the limit
of (YIH™m™, zb5mMy in the space S22~ KM\ M>~K ([0, +-00); L%(D,R)) X M2 K (0, +00);
LZ(D:;R%)) and we will show that (Yg™*", Z¢™") is the solution of BDSDE (5.4). For this, we
take the strong limit on both sides of (5.5) in L?(Q x D;R), then the claim that (Y-, Z")
is a solution to BDSDE (5.4) follows. We only take for example the convergence of the terms
involving f. Firstly,
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lim E/ / e K7 f(ylrmmy gy — / KT £ (YR dr ) p(dx)]

m—+00
K

< lim 2B f | / e fu @I dr — / e fu (Y dr P p(d)]
m—+00
D K K

+o0
+ tim 281 [1 [ X p i ndr?p@n)

m—+00

< lim CE[//e*KqY;vX»mm—Y,”x’"|2p(dx)dr]

n——+00

+o0
#tim CEL [ [ ey oanar =

m D

For the other term,

lim E/ / ‘K’/fn Yf“'")p(dé)dr—/ /fn (Y5 p(dE)dr)? p(dx)]

m——+00
s

m

< lim 2E[/ / ~Kr / Fu(FFER) (A dr — / ~Kr / Fu(FFEM) p(dE)dr|Pp(d)]

m—+00
s

lim 2E[ f / / [ (YLE™) p(dE)dr|?p(dx)]

m—>oo

< lim CE[//e_Kr|Yr”x’"’m —Yrr’x’”|2p(dx)dr]

m——+00

hm CE[// —kr Y”"l p(dx)dr]=
m-) o0

After verifying the convergence of each term, the existence of solution to BDSDE (5.4) is proved.
For the uniqueness of solution, let (Y{"™*", Zi*") and (Y2™", ZL*™) be two solutions of
BDSDE (5.4). Define
?St,x,n — Y;’xﬂ _ Yst,x,n’ Z;,x,n — Zé,x,n _ Zé,x,n’
Fa(s,x) = (T = fu(XY0"), 520,

Then for s > 0 and a.a. x € RY, (Y/°", ZL%") and (Y!", ZI5") satisfy
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“+o00

efopr = [ e fien - [ frospaar
D

N

+o0 +00
+ / Ke Krytxngy — / e Krztxnaw,.
N N

For an arbitrary interval [0, T'],

T

T
tn f LF (r ) — f fr o &)p(de)ldr - f Zy AW,
K D

N

vi, x,n __
Ys -

AT XLX xhx

- . , X0 . . -
where Y21 = Y2 — vt =y, 0T " Y, o7 " satisfies Condition (H.1) and f!(r, x) =

A A 1,x t,x
Fo (P51 — fo (YN = £,PE5Tmy — £,(r8 %) can be regarded as a given function.
Moreover,

lim e_KTY}’X’n =0.
T—+400

— ol xX,n
Kr|Yr, 5

Similar to (3.12), applying It&’s formula to e |2 for a.a. x € R, we have

T
B[ e i Poanl - ket [ [« 70 pnan)
D s D

T
+E[//e_K’|Z;’x’”|2p(dx)dr]
s D
< L[ T Ppl (5.16)
D

On the other hand, by Theorem 2.7, we know that it, (s, x) 2 Y;"*" is a weak solution to the
following mass-conservative random PDE:

dity (t, x) = —[§ Aty (8, %) + (fu(@n (8, %)) = fuun(t, X))

— [p (ful@n (@, 8) = fu(ua(t,£))p(dE))dt, 1€[0,T), x€eD,
(T, x) =Y. ", xeD,
U (t,x)=0, t€[0,T), xedD.

So, forall t € [0, T] and w € 2, in view of the invariant measure and (2.6),

/ftn(t,x)p(dx)=/)_’f’x’",o(dx)=EW/I7S”X’",0(dx)=O.

D D D
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Applying Lemma 3.2 to i,, we have

1
E[/IZ’X"I pdx)] = [/IY’X"I p(dx)].

D

Then putting above inequality into (5.16), we have
. T
El / NP )]+ (5 — KE f / e K| P P p (dx)dr
D 5 D

<E[ / e KT 75" p (). (5.17)
D

Taking K’ > K such that K’ satisfies the condition to K as well, we can see that (5.17) remains
true with K replaced by K. In particular,

) e ey e A

Therefore, we have

E[/ KS|YIX}’£| p (.X)d.x]<e (K’ K)TE[/ 7KT txn|2 71(.x)dx]. (518)

Since Y™, Y+ ¢ §2-K M\ M2 =K ([0, +00); LZ(D; R)),

sup E[ / e KTV "2 p(dx)] < Elsup / e KT QIYF™" 2 4+ 21Y7"" 1) p(dx)] < +00.
T>0 T>

Therefore, taking the limit as 7 — +o0 in (5.18), we have
E[/ e K1Y p(dx)] = 0.
D

The uniqueness of the solution is proved. ¢

Proposition 5.4. Under Conditions (H.6)', for arbitrary T and t € [0, T), define v,(t,-) =
YTT:;"’", where (YU, ZE5MY is the solution of time independent version of BDSDE (5.4) with
the mass-constant c, then vn (t,-) is a “perfect” stationary weak solution of the following SPDE

dva(t,x) =[5 80, (t, %) + fu(ua(t, %)) — [} fa(ua(t, X)) p(dx))dt
—g(x)dB; te€l0,+00), xeD,

Wn(t,x)=0 te[0,+00), x€dD,

fD vu(t,x)p(dx)=c for the given constant c.

(5.19)
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Proof. For arbitrary T and ¢ € [0, T'], by Proposition 5.3, u, (t, x) 2 t " satisfies the following
SPDE

dup(t,x) = A—[%Aun(t, X) + fulun(t,x)) = [ fu(ua(t, %)) p(dx))dt
+gx)d"B;, t€[0,T), x € D,

u, (T, x) = Tx", x €D,

Y (r,x)=0, t€[0,T), xedD.

Moreover, by the uniqueness of the solution of BDSDE (5.4) we can follow Theorem 4.2 to know
that ¥;° P satisfies the “perfect” stationary property (4.9) with respect to 6.

Define v,(f, x) £ YT ” " then, by a time reversal transform it follows that v, (¢, x) is a
solution of the followmg SPDE

dva(t, ) =[5 A0, (t, %) + fu(ua(t, %)) — [} fa(ua(t, X)) p(dx))dt
—g(x)dB;, t€(0,T], xeD,

v (0, x) =Y. ””, xeD,

Wn(t,x)=0, te(0,T], xedD.

(5.20)

We can prove a claim that v, (¢, x) does not depend on the choice of T using (4.9) and a similar
proof as in [18], [19].
Furthermore, notice

fvn(t,x)mdx):/ ”"p(dx>—f Yy*" p(dx) =c.

D D D

As T tends to +00, v, (¢, x) satisfies an infinite horizon SPDE (5.19). Due to the “perfect” sta-
tionary property (4.9) for Y{*" with respect to 6, we know that v, (¢, x) is a “perfect” stationary
solution of SPDE (5.19) with respectto 6. ¢

We turn back to SPDE (5.1). To pass the limits in (5.19) in some desired sense, we need that
(Y»»", Z>>") are bounded in some spaces uniformly in .

Lemma 5.5. Under Conditions (H.6)/, if (Y1, Z!™) is the solution of BDSDE (5.4), then we
have

supsupsup E[ |YS’”"”|2p(dx)]—i—supsupE[/ /|Z§’x’"|2,o(dx)ds]<+oo.

n s>t >0 n >0
D

Proof. Define yrp(y) =y I “M<y<M}+MQy—M)Iiy>pmy— MQ2y+ M)Ijy_py. Obviously,
forany y € R, ¥p1(y) — y? as M — 4o00. Applying Itd formula to e ="y, (Y/"") we have

T
fe*“sz(Y;’x’")p(dx)+//e*“I{_MSY;,X,,,<M}|z;’x’”|2p(dx)dr
s D

D
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T
—X//‘e_“wM(Yrt’x’")zp(dx)dr

T
- / Ty (V") p(dx) + / f e Y (VI fu (VIR / Fu V5 p(d)] o (d)dr
s D D

D

T T
[ [ sl pandr - [ [ @ mexinpana's,
D

s

T
—//e_)”r1//1/‘,[(Yrt’x’")Z£’x’n,O(dx)dWr. (5.21)
s D

Since the stochastic integrals are martingales, we have
£l / (Y (V) p(d0)] + E / f gy g ZE5 o (dx)dr]
L[ [ par)
N
T
= e[ Ty p@ol+ EL[ [ o
D s D
T

- / Fu(YP ) p(d) | p(dx)dr] + ET / / € g (YR (1

D s D

~ [rrrroamp@ndn+ L[ [l padr
s D

D

Taking M — +o00 we have
T
E[ / e MY P p(dx)] + El / f e M| Z" P p(dx)dr]
N

T T
—AE[//‘e*)‘r|Yr”x‘”|2p(dx)dr]—2E[//e*“Yr”x’”(Yr"x‘" —/Y,r’x’"p(dx)),o(dx)dr]
s D s D D
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T
=21 [ T P+ EL [ Ig0IPpndr)
D s D

T
+2E[ / / e MY fu (v — f Fu (Y5 p(dx)]p(dx)dr]. (5.22)
s D D
Actually,
T
et [ [ermprrfiaen - [ Lo mpaoleandn <o, 6529
s D D

To see this, first note that due to the invariant measure p, we have

T
2E] f / &My (v f Fa V5 o (d)]p (dx)dr]
s D D

T
—2EP[EY] / / e Myt f(ytsny — BV / Fu ¥ p (@) p(dx)drl,
s D D

We only need to prove
B[ e ot - B v e @olet [ fapnpaon <o
D D D
For this, we divide the left hand side into three cases by the indicator functions.

Case 1: |Y/"| <n.

BV [ v v o@ol = EV[ v o@nl [ Fr i)
D D D

P

< =BV e o1+ (B[ @ p@o) 7 (YL e plan)
D D D
=0.

t
Case 2: Y/ < —n.

EY / YEU F (P p(dx)] — EV / YEon @) EY / Fo@ M) p(d)]
D D

D

— BV / (WPY!5" — pnP VYIS prP YO p(d)]
D
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—EV[ / Y5 p(dn) EV / (n? — pnP YIS — pn)p(dx)]
D D

==t VL[ Rp@ot+ pnt N EVL [ ¥ p@n)?

D D
<—pn? 1BV / Y2 p(dx)] + pr?~ BV / YR p )]
D D

=0.

Case 3: Y/ > n.
It is similar to Case 2.

On the other hand,

T
—2E[ / / e Myl Tyl — / Y75 p(dx)) p(dx)dr]
s D D
T
=—2E[f/e*“|y;»“|2p(dx)dr]
s D

T
+2EB[EW[//e_’\’Yr”"*”EW[/ Y551 p(dx)]p(dx)dr]]
s D D
T

T
=—2E[//e*“|Y;»X»"|2p(dx)dr]+2EB[/ e*“|EW[/ Y p(dx)])2dr]
s D D

s

T
> —ZE[f/e_”|Yr”x’”|2p(dx)dr]. (5.24)
s D

Hence (5.23) and (5.24) are true, and putting them into (5.22) we have

T
B[ e o+ L [ eizi Pownar,
D s D
T
—()»+2)E[//e_M|Y,l’x’n|2,0(dx)dr]
s D

T
< El / Y52 p(dn)] + EL / / e g (XN 2 p(dx)dr]. (5.25)
D s D
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Similar to (3.2), we use the Poincare inequality to have

T
B[ e o) = 6+ 2 EL[ [ v P padr)
N
T
+WE[//ef“wjﬁx’"ﬁp(dx)dr]
s D

<E[/ AT|fo”| P(dx)]+// e Mg p(dx)dr+ (e—m _e M),

Taking A = 217 + 2, we have

L[ 1P pid) (5.26)
D

—E[f HI=9 1y "2 (dx)] + / / e ()12 p(dx)dr+ <1 e Ty,
s D

T,x,n

Forany T, Y; " = Sy Y0 " Putting this into (5.26), we have

El / Y5 P o(d)]

D

T
AT ar— Kc? AT
=e MIVE| / Y9 Pp(d)] + f f e Mg P pdx)dr + — o (1 —e M),
D s D

Taking T — +o0 in above, we have for any s > ¢,

supsupsup E[ | Y22 p(dx)] < 4o00.

n szt t>0

From (5.25), we also have that

n >0

S“PSHPE[//|Z§’x’"lzp(dx)dS]<+oo. o
D

Moreover, we have a bounded estimate for the solution of SPDE (5.19) in the following sense.
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Theorem 5.6. Let v, be the solution of SPDE (5.19). Under Conditions (H.6), there exists a full

measure set Q2 X D C Q x D with (P x p)[Q2 x D] =1 satisfying for each (w,x) € Q x D, 3
N(w, x) > 0 such that when n > N (w, x), |v,(t, x, w)| <n foreacht > 0.

Proof. From Lemma 5.5 we know

supsup E[ [ v, (, x)[*p(dx)] = supsup E[ | |¥;*"*p(dx)] < +o0.
n >0 2 n >0 o

For t > 0, set Af1 ={(w,x) € 2 x D: |v,(t,x,w)| > n}. For arbitrary n, by Chebyshev’s
inequality, we have

(P x p)[AY] < /Ivn(O ) p(dx)] < —supsulgE[ va (£, ) p(dx)].
n o t>
D

Set (2 x D), = U (22 (ALY for ¢ > 0. Then (P x p)[(Q x D)ol = 1 by the Borel-

m=1
Cantelli Lemma. Moreover, it is easy to see from definition of (m)o that, for each (w, x) €
(2 x D)o, 3 N(w, x) > 0 such that for all n > N(w, x), |v,(0, x)| <n.
Let Q be the set of rational numbers in [0, +00). Note that by Proposition 5.4, v, (¢, x) is
a stationary weak solution if the given mass is a constant and the function g is independent of
the time variable ¢. This suggests for any ¢’ € Q, v, (¢, x) = 6;v, (0, x). Due to the probability-
preserving property of 6.,

o o +00 400
(Q@x D)y =0,(Q@x D)= [l@.x)eQx D: [v,(0.x.6y0)| <n}.

m=1n=m

Thus (P x p)[(Q x D)1 = 1.
Define now a full-measure set 2 x D = ﬂ,,EQ (2 x D)y C 2 x D.Note

— oo too +oo +00 /
o= U Awr-U N Neor
t'eQ m=1n=m m=1n=m¢cQ

Then for each (w, x) € 52/;7) 3 N(w, x) > 0 such that for eachn > N, (w, x) € ﬂ[,eQ(A;/)C,
i.e. foreacht’ € Q, |v, (¢, w, x) < n. Note that for each 7 > 0, there exists a sequence t,,, m € Q,
such that ¢t = lim,— 40 1. Hence vy, (£, x) = limy,— 400 U, (£, X) by the continuity of v, in the
time variable ¢ proved in Proposition 2.8. Thus for each (w, x) € §_>\<_/D, when n > N(w, x),
|v,(t,x,w)| <nforeacht>0. ¢

We denote by A the event that there exists N(w,x) > 0 such that when n > N(w, x),
|vn (2, x, w)| < n for each r > 0. By Theorem 5.6,

A holds on a full — measure set in 2 x D. (5.27)
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For any fixed w € €2, denote by D(w) the set in D such that o happens and A holds. Obviously,
for a.s. w € Q, D(w) is a full measure set in D. Otherwise, there is a subset * C Q with
P[Q*] > 0 such that when w € Q*, p[D(w)] < 1. Consider (2 x D)* = {(w,x): w € Q*, x €
(D(®))} Then (P x p)[(£2 x D)*] = [q. p[(D(®)) 1P[dw] > 0 and for (w, x) € (2 x D)*, A
does not hold. This contradicts with (5.27). Therefore, for a.s. w € €2, there exists N (w) > 0 such
that when n > N (w), SPDE (5.19) satisfied by v,, coincides with equation (5.1):

dvn(t,x) =[5 Ava(t, x) — v (1, %) + v, (1, X) + [, (V5 (t, %) — va(t, X)) p(dx)1dt
—g(x)dB;, xeD,

B (t,x) =0, xe€dD,

fD v, (t,x)p(dx)=c for a given constant c.

In this way, we find a stationary weak solution of SPDE (5.1) for a.s. w € Q.
With the above results and following a similar argument as in Section 4, we obtain the follow-
ing result.

Theorem 5.7. Under Conditions (H.6)', for arbitrary T and t € [0, T], define v,(t, -) £ Y;_t"’n,

—t
where (Yf’x’", Zﬁ’x’") is the solution of BDSDE (5.4), then for sufficiently large n, v,(t,-) is a
weak solution of SPDE (5.1). Moreover, vy, (t, ) is a “perfect” stationary solution and its law is
the invariant measure of the Markov progress generated by SPDE (5.1).
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