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One signature of an expanding universe is the time variation of the cosmological abundances of its
different components. For example, a radiation-dominated universe inevitably gives way to a matter-
dominated universe, and critical moments such as matter-radiation equality are fleeting. In this paper, we
point out that this lore is not always correct and that it is possible to obtain a form of “stasis” in which the
relative cosmological abundances Ωi of the different components remain unchanged over extended
cosmological epochs, even as the universe expands. Moreover, we demonstrate that such situations are not
fine-tuned but are actually global attractors within certain cosmological frameworks, with the universe
naturally evolving toward such long-lasting periods of stasis for a wide variety of initial conditions.
The existence of this kind of stasis therefore gives rise to a host of new theoretical possibilities across the
entire cosmological timeline, ranging from potential implications for primordial density perturbations,
dark-matter production, and structure formation all the way to early reheating, early matter-dominated eras,
and even the age of the Universe.
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I. INTRODUCTION, MOTIVATION,
AND BASIC IDEA

One of the earliest and most profound discoveries of
modern cosmology is that we live in an expanding
Universe. With this one discovery, the age-old paradigm
of an everlasting static Universe was overthrown, replaced
by a Universe whose fundamental characteristics are time
dependent. Chief among these characteristics are the
abundances of the different components which contribute
to its energy density. Indeed, it is traditional to refer to the
different epochs through which the Universe evolves in
terms of the abundances which dominate during those
epochs, with the current paradigm positing that the
Universe passed from an initial inflationary epoch

dominated by vacuum energy to a reheating epoch domi-
nated by the energy of an oscillating inflaton to a radiation-
dominated post-reheating epoch to a matter-dominated
post-reheating epoch—one which is only now giving
way to a second epoch dominated by vacuum energy.
This passage from epoch to epoch is almost inevitable.

Indeed, according to the Friedmann equations, cosmologi-
cal expansion induces a redshifting effect that causes the
abundances of the different energy components of the
Universe to scale with time in different ways. It can
therefore happen that the smallest one now will later be
vast (just as the present now will later be past); these
abundances are constantly changing.
As an example, let us focus on the energy densities ρM

and ργ associated with matter and radiation, respectively,
along with their corresponding abundances ΩM ∼ ρM=H2

and Ωγ ∼ ργ=H2, where HðtÞ ¼ _a=a is the Hubble param-
eter and aðtÞ is the scale factor. In general, ρM and ργ evolve
as a−3 and a−4, respectively, but the time dependence of the
scale factor aðtÞ in turn depends (through the Friedmann
equations) on the instantaneous mix of components in the
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associated cosmology. We thus obtain an evolving non-
linear system in which the values of the abundances ΩM
and Ωγ at any moment influence their own instantaneous
rates of change. For example, we might start in a radiation-
dominated universe with Ωγ ≫ ΩM, but in such a universe
Ωγ remains approximately constant while ΩM ∼ tþ1=2. As a
result we find that ΩM grows and eventually becomes
significant compared to Ωγ . Indeed, with ΩM ≈Ωγ we find
ΩM ∼ tþ2=7 while Ωγ ∼ t−2=7. Thus ΩM continues to grow
even beyond Ωγ. Eventually we enter a matter-dominated
epoch with ΩM ≫ Ωγ , whereupon ΩM remains approxi-
mately constant while Ωγ ∼ t−2=3. Our radiation-dominated
epoch has thus become a matter-dominated epoch, simply as
a result of cosmological expansion. In a similarway, amatter-
dominated epoch generally gives way to a vacuum-energy-
dominated epoch. Indeed, special moments such as those
exhibitingmatter-radiation equality are fleeting, since even at
the instant whenΩM ¼ Ωγ we see thatΩM is growing while
Ωγ is shrinking. The lesson, then, seems clear: In an
expanding universe, the relative sizes of the different con-
tributions are continually in flux. As a result, epochs
containing nontrivial mixtures of energy components are
generally unstable, with component ratios such as ΩM=Ωγ

perpetually evolving in time regardless ofwhere such epochs
might be situated along the cosmological timeline.
In this paper, we shall demonstrate that this general

expectation need not always hold true. In particular, we
shall demonstrate that it is possible to construct scenarios in
which such mixed-component cosmological eras can be
stable over extended epochs lasting as many e-folds as
desired, with values of ΩM and Ωγ remaining strictly
constant despite cosmological expansion. In other words,
we shall demonstrate that it is generally possible to have
long-lasting epochs which are not matter dominated or
radiation dominated, and not necessarily dominated by any
particular component at all. We shall refer to such epochs as
periods of “stasis.” For example, we shall provide an
explicit model that gives rise to an extended stasis epoch
exhibiting strict matter-radiation equality, with ΩM ¼ Ωγ

holding throughout. Extended epochs lasting arbitrary
numbers of e-folds can also be constructed exhibiting
other ratios between ΩM and Ωγ .
As we shall demonstrate, these scenarios emerge natu-

rally in realistic scenarios of physics beyond the Standard
Model. Moreover, we shall demonstrate that these stasis
states are not fine-tuned and are indeed global dynamical
attractors within these scenarios. Thus, within these
scenarios, the universe need not begin within a period of
stasis in order for stasis to arise—the universe will
necessarily evolve into a stasis state for a wide variety
of initial conditions. Finally, we shall find in all cases that
the stasis state also has a natural ending after which normal
cosmological evolution resumes. Thus our stasis epoch has
both a beginning and an end—a feature which potentially

allows it to be “spliced” into various points along the
standard cosmological timeline.
It may initially seem impossible to arrange such periods

of stasis between matter and radiation. After all, for the
reasons discussed above, matter inevitably dominates over
radiation; this is so intrinsic a prediction of the Friedmann
equations that this conclusion seems unavoidable. On the
other hand, matter can decay back into radiation. This then
might provide a natural counterbalance to the effects of
cosmological expansion, causing the matter abundance
ΩM to shrink while the radiation abundance Ωγ grows.
Our idea, then, is a simple one: Can these two effects be
balanced against each other? More specifically, can
particle decay be balanced against cosmological expan-
sion in order to induce an extended time interval of stasis
during which the matter and radiation abundances each
remain constant?
Of course, particle decay is a relatively short process,

localized in time. In order to have an extended period of
stasis we would therefore require an extended period during
which particle decays are continually occurring. This
would be the case if we had a large tower of matter states
ϕl (l ¼ 0; 1;…; N − 1), with each state sequentially
decaying directly (or preferentially) into radiation. As is
well known from the Dynamical Dark Matter framework
[1–3], many scenarios for physics beyond the Standard
Model give rise to precisely such towers of dark-matter
states. The question is then whether these sequential decays
down the tower could be exploited in order to sustain an
extended period of cosmological stasis.
This is clearly a tall order, and at first glance such a

balancing might seem to be impossible. In order to
appreciate the difficulties involved, let us consider how
such an idealized scenario might work. A sketch of such a
scenario appears in Fig. 1, where we have illustrated the
behavior of the individual abundances ΩlðtÞ of each of
the matter fields within the tower (blue). In general, as
discussed above, each abundance ΩlðtÞ initially grows
according to a common power law as the result of
cosmological expansion; for convenience and simplicity
this power-law growth is sketched within Fig. 1 as linear.
However, once the appropriate decay time τl is reached for
each component (idealized in Fig. 1 as a sharp transition),
the behavior of ΩlðtÞ changes and now reflects an
exponential decay. Of course, our goal is for all of this
to occur in such a way that the sum

P
l ΩlðtÞ—i.e., the

total matter abundance ΩM also shown in Fig. 1 (red)—
remains constant.
Given this sketch, we can immediately see the compli-

cations involved. First, in order to keep the sum ΩM
constant, at any moment we need to somehow be canceling
the power-law growth of the abundances Ωl of the lighter
components which have not yet decayed against the
exponential decays of the abundances Ωl of the heavier
states which have. Second, we see that each successive Ωl
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must reach a greater maximum value before decaying than
did the previous abundanceΩlþ1, since with each decay we
have fewer remaining matter states contributing to ΩM.
Third, it follows from the Friedmann equations that the
exponent of the common power-law growth experienced by
each Ωl prior to decay must be correlated with the total
matter abundance ΩM—an observation which provides a
nonlinear “feedback” constraint on our system. Finally, as
our decays proceed down the tower, the decay lifetimes τl
are continually increasing. This implies that the corre-
sponding decay widths Γl are continually decreasing,
which means that the successive exponential decays must
occur with slower and slower rates. All of these features are
illustrated in Fig. 1.
With all of these tight constraints, it is remarkable that

such a stasis state with constant ΩM can ever emerge.
However, we shall demonstrate that this is exactly what
occurs. As a result, the existence of this kind of stasis state
gives rise to a host of new theoretical possibilities across the
entire cosmological timeline, ranging from potential impli-
cations for primordial density perturbations, dark-matter
production, and structure formation all the way to early
reheating, early matter-dominated eras, and the age of the
Universe.
This paper is organized as follows. In Sec. II, we start by

studying the stasis phenomenon itself and derive a set of

mathematical conditions that must be satisfied within any
period of stasis. At this stage of our analysis, the very
notion of a stasis state implicitly requires that such a state
be truly eternal, without beginning or end. In Sec. III, we
then present a model of stasis—i.e., a general model which
arises naturally in many extensions of the Standard Model
and which generally satisfies these conditions. Thus, our
model gives rise to stasis. However, we shall find that our
model contains certain “edge” (or “boundary”) effects that
cause the system to deviate from true stasis at times which
are extremely early or late compared with the time at which
our tower of states is originally produced. Thus, within our
model, we shall find that our stasis epoch is actually a finite
one in which there exist both a natural entrance into as well
as exit from stasis. This is ultimately a beneficial feature,
implying that our stasis state is ultimately of finite duration,
after which normal cosmological evolution resumes. In
Sec. IV, we then study what happens when such systems are
not originally in stasis and demonstrate that the stasis state
is a global dynamical attractor. Thus, regardless of the
initial conditions, our system will always eventually enter
into a stasis state and remain in stasis until all decays have
concluded.
Taken together, these results demonstrate that the stasis

state is both stable and robust. In Sec. V, we then consider
various extensions of our results. In particular, we study the

FIG. 1. A sketch of the basic stasis mechanism: The abundancesΩlðtÞ of individual matter components (blue) each experience power-
law growth due to cosmological expansion before eventually experiencing exponential decay. For simplicity in this idealized sketch, this
power-law growth is shown as linear while the transition to exponential decay is sketched as sharp. Nevertheless this process conspires
to keep the total matter abundance ΩM ≡P

l ΩlðtÞ constant (red), thereby producing an extended epoch of cosmological stasis. Note
that this process is highly nontrivial: The power-law growth for some Ωl must be balanced against the exponential decays of the other
Ωl while the exponent of the power-law growth is correlated with the value of the total ΩM through the Friedmann equations and the
decay rate Γl of each component is correlated with the time τl at which Ωl hits a maximum and the decay begins to dominate. As a
result this system does not exhibit time-translation invariance even though the total ΩM remains constant. Despite its complexity, we
shall demonstrate that the stasis state not only occurs naturally in well-motivated physics scenarios, but is actually a global dynamical
attractor in such situations, with the system generically evolving toward stasis even if it does not begin in stasis.
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behavior that emerges when additional energy components
beyond radiation and matter are introduced into the
cosmology. Finally, in Sec. VI, we summarize our results
and consider various possible theoretical and phenomeno-
logical implications of stasis across the cosmological
timeline. We also outline ideas for future research.
We emphasize that our main interest in this paper is the

stasis phenomenon itself—i.e., the theoretical possibility
that such stable mixed-component eras can be realized
within an expanding universe. Needless to say, phenom-
enological constraints may make it difficult to introduce
stasis epochs into certain portions of the standard cosmo-
logical timeline. For example, those portions of the timeline
after nucleosynthesis are deeply constrained by observa-
tional data and therefore cannot be significantly modified.
Such stasis epochs nevertheless represent a viable phe-
nomenological possibility during earlier periods along the
cosmological timeline, such as during earlier portions of
radiation domination or even during reheating. We shall
therefore study stasis as a general theoretical phenomenon
throughout most of this paper and defer our discussion of
its phenomenological implications to Sec. VI.

II. STASIS: GENERAL CONSIDERATIONS

Throughout this paper, “stasis”will refer to any extended
period during which the total matter and radiation abun-
dances ΩM and Ωγ remain constant despite cosmological
expansion. In this section, we provide an analytical dis-
cussion of stasis, with the goal of obtaining mathematical
conditions that characterize this state and must therefore be
satisfied therein. In particular, we shall do this in two
separate steps:

(i) We shall first determine a condition that character-
izes stasis at any moment in time—i.e., a minimal
condition necessary for stasis to exist; and

(ii) we shall then determine two additional conditions
that must hold in order for stasis to persist over an
extended period.

We shall now address each of these issues in turn.

A. Minimal condition for the existence of stasis

Let us begin by assuming a flat Friedmann-Robertson-
Walker universe containing only

(i) a tower of matter states ϕl where the indices
l ¼ 0; 1; 2;… are assigned in order of increasing
mass; and

(ii) radiation (collectively denoted γ) into which the ϕl
can decay.

We shall let ρl and ργ denote the corresponding energy
densities andΩl andΩγ the corresponding abundances. We
shall also let Γl denote the decay rates for the ϕl.
Recall that for any energy density ρi (where i ¼ l; γ), the

corresponding abundance Ωi is given by

Ωi ≡ 8πG
3H2

ρi; ð2:1Þ

where H is the Hubble parameter and G is Newton’s
constant. From this it follows that

dΩi

dt
¼ 8πG

3

�
1

H2

dρi
dt

− 2
ρi
H3

dH
dt

�
: ð2:2Þ

We can simplify this expression through the use of the
Friedmann “acceleration” equation for dH=dt, which in
this universe takes the form

dH
dt

¼ −H2 −
4πG
3

�X
i

ρi þ 3
X
i

pi

�

¼ −H2 −
4πG
3

�X
l

ρl þ 2ργ

�

¼ −
1

2
H2ð2þΩM þ 2ΩγÞ

¼ −
1

2
H2ð4 −ΩMÞ: ð2:3Þ

Note that in passing to the second line of Eq. (2.3) we have
recognized that matter and radiation have w ¼ 0 and w ¼
1=3 respectively, where wi ≡ pi=ρi is the equation-of-state
parameter for component i. Thus pl ¼ 0 and pγ ¼ ργ=3.
Likewise, in passing to the third line we have defined the
total matter abundance ΩM ≡P

l Ωl, and in passing to the
fourth line we have imposed the constraint ΩM þ Ωγ ¼ 1.
Substituting Eq. (2.3) into Eq. (2.2) we then obtain

dΩi

dt
¼ 8πG

3H2

dρi
dt

þHΩið4 −ΩMÞ; ð2:4Þ

yielding

dΩM

dt
¼ 8πG

3H2

X
l

dρl
dt

þHΩMð4 −ΩMÞ;

dΩγ

dt
¼ 8πG

3H2

dργ
dt

þHΩγð4 −ΩMÞ: ð2:5Þ

These are thus general relations for the time evolution of
ΩM andΩγ in terms of dρl=dt and dργ=dt. Of course, since
ΩM þΩγ ¼ 1, it follows that dΩM=dt ¼ −dΩγ=dt. From
Eq. (2.5) we therefore obtain the self-consistency constraint

8πG
3H2

�X
l

dρl
dt

þ dργ
dt

�
¼ HðΩM − 4Þ; ð2:6Þ

which is tantamount to asserting that ρl and ργ are the only
contributions to the total energy density of the universe.
Given the relations in Eq. (2.5), our final step is to insert

appropriate equations of motion for dρl=dt and dργ=dt.
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It is here that we introduce the idea that the production of
radiation γ comes from the decays of the ϕl. Since each ϕl
is assumed to decay into radiation γ with rate Γl, and given
that each decay process conserves energy, these equations
of motion are given by

dρl
dt

¼ −3Hρl − Γlρl;

dργ
dt

¼ −4Hργ þ
X
l

Γlρl: ð2:7Þ

Note that these equations of motion indeed satisfy the
constraint in Eq. (2.6). The results in Eq. (2.5) then take the
form

dΩM

dt
¼ −

X
l

ΓlΩl þHðΩM −Ω2
MÞ ð2:8Þ

with dΩγ=dt ¼ −dΩM=dt. Note that ΩM − Ω2
M ¼

ΩMð1 − ΩMÞ ¼ ΩMΩγ .
The differential equation for ΩM in Eq. (2.8) is com-

pletely general, describing the complete time evolution of
ΩM and Ωγ . It is important to realize that these differential
equations do not imply that ΩM or Ωγ are monotonic
functions of time. In general, eachΩl comprising ΩM has a
complicated time dependence: As evident from Eq. (2.8),
the decay process tends to push Ωl downward, while the
existence of an induced Ωγ > 0 in the background cosmol-
ogy tends to affect the Hubble expansion in such a way as
to pushΩl upward. Thus, eachΩl can either rise or fall as a
function of time, implying that ΩM—and therefore Ωγ—
can likewise either rise or fall as a function of time. This is
ultimately the result of the competition between the two
terms on the right side of Eq. (2.8). Of course, for situations
in which the decay widths Γl are all significantly greater
than H, the effects of the decays will dominate and in that
case dΩM=dt will be strictly negative, resulting in a
monotonically falling ΩM.
Given the result in Eq. (2.8), we now seek a steady-state

stasis solution in which ΩM and Ωγ are constant. Clearly
such a solution will arise if the effects of the ϕl decays are
precisely counterbalanced by the Hubble expansion. While
there are many ways of seeking such a solution, we shall do
this in two steps. First, we shall impose the condition that
dΩM=dt ¼ 0. This then yields the constraint

X
l

ΓlΩl ¼ HðΩM −Ω2
MÞ: ð2:9Þ

This is clearly a necessary (but not sufficient) condition for
stasis. In the next subsection, we shall determine the
additional conditions under which Eq. (2.9), once satisfied
at some time t�, actually remains satisfied over an extended
time interval.

Note that since 0 ≤ ΩM ≤ 1, both sides of Eq. (2.9) are
necessarily non-negative. Indeed, the right side of this
equation can equivalently be written as HΩMΩγ or
HðΩγ −Ω2

γÞ. It also follows from Eq. (2.9) that no solution
for dΩM=dt ¼ 0 is even possible at a given time unless

X
l

ΓlΩl ≤
H
4
: ð2:10Þ

This provides an upper limit on the possible decay widths
Γl. When this inequality is saturated with dΩM=dt ¼ 0 we
necessarily have ΩM ¼ Ωγ ¼ 1=2. Otherwise, if the
inequality in Eq. (2.10) is satisfied but not saturated, other
values of ΩM (both bigger and smaller than 1=2) are in
principle possible.

B. Conditions for the persistence of stasis

As we have seen, Eq. (2.9) furnishes us with a minimal
condition for stasis. In general, however, such a condition
will be satisfied only at a particular instant of time t�. By
itself, this would clearly not lead to a true stasis state in
which ΩM is constant. For the purposes of understanding
stasis, we are therefore interested in determining the addi-
tional condition(s), if any, that will allow Eq. (2.9) to
remain satisfied over an extended period of time. Indeed, it
is only in this way that we can obtain a true period of stasis.
Starting from Eq. (2.9), there are two ways in which we

might demand that ΩM actually remain constant at some
fixed stasis value ΩM. First, at t ¼ t�, we could impose not
only dΩM=dt ¼ 0, but also dnΩM=dtn ¼ 0 for all integers
n > 1. This would then guarantee the absence of any time
evolution for ΩM. However, rather than impose this infinite
set of constraints, we can do this in a much quicker way:
Assuming that the equality in Eq. (2.9) has been achieved at
some time t�, we now simply need to demand that both
sides of this equation evolve with time in the same manner.
This would ensure that Eq. (2.9) remains satisfied under
time evolution.
Before proceeding, we note two important implications

of imposing such an additional requirement. First, by
demanding that both sides of Eq. (2.9) behave identically
under time evolution, we are actually demanding an eternal
stasis in which ΩM is fixed, without beginning or end. Of
course, this sort of eternal stasis is only an idealized
abstraction which cannot be representative of a realistic
cosmology and which requires, in particular, a correspond-
ingly perpetual decay process. Nevertheless, understanding
the mathematics of such an idealized stasis will ultimately
prove useful in allowing us to understand how to achieve a
more realistic period of stasis in which ΩM remains
constant at some value ΩM over an extended but finite
time interval.
The second implication of demanding that both sides of

Eq. (2.9) evolve identically with respect to time is that t�,
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which we have identified as the time at which Eq. (2.9) is
instantaneously satisfied, now becomes nothing more than
a fiducial reference time, i.e., an arbitrary choice which
cannot carry physical significance. Indeed, although we
shall find it useful to assume that Eq. (2.9) is satisfied at
t ¼ t� before working our way toward a solution for all t,
no physical condition for stasis can ultimately depend on
the choice of t�.
In order to determine the extra conditions we require for

stasis, let us now study how each term in Eq. (2.9) evolves
with time during a supposed period of stasis. First, we
observe that we can solve for the Hubble parameter directly
via Eq. (2.3). Since ΩM is presumed constant with some
fixed value ΩM during stasis, we obtain the exact solution

HðtÞ ¼
�

2

4 −ΩM

�
1

t
⇒ κ ¼ 6

4 −ΩM
; ð2:11Þ

where κ corresponds to the parametrization HðtÞ ¼ κ=ð3tÞ.
Indeed, from Eq. (2.11) we verify the standard results that
κ ¼ 2 for ΩM ¼ 1 (i.e., a matter-dominated universe),
while κ ¼ 3=2 for ΩM ¼ 0 (i.e., a radiation-dominated
universe). We emphasize that Eq. (2.11) is an exact result
only under the stasis assumption, guaranteeing that ΩM—
and therefore κ—remain strictly constant. This solution for
HðtÞ in turn implies that during stasis, the scale factor
grows as

aðtÞ ¼ a�

�
t
t�

�
κ=3

¼ a�

�
t
t�

�
2=ð4−ΩMÞ ð2:12Þ

with t� representing an arbitrary fiducial time and the �
subscript indicating that the relevant quantity is evaluated at
t ¼ t�. Moreover, from the first equation within Eq. (2.7)
we find the solution

ρlðtÞ ¼ ρ�l

�
aðtÞ
a�

�
−3
e−Γlðt−t�Þ

¼ ρ�l

�
t
t�

�
−6=ð4−ΩMÞ

e−Γlðt−t�Þ: ð2:13Þ

This in turn implies that

ΩlðtÞ ¼ Ω�
l

�
t
t�

�
2−6=ð4−ΩMÞ

e−Γlðt−t�Þ: ð2:14Þ

Given these results, we thus have two conditions which
must be satisfied simultaneously in order to have an
extended period of stasis:

P
l
ΩlðtÞ ¼ ΩM;

P
l
ΓlΩlðtÞ ¼

2ΩMð1 −ΩMÞ
4 −ΩM

1

t
;

ð2:15Þ

where ΩlðtÞ is given in Eq. (2.14). Indeed, these two
conditions ensure that Eq. (2.9) is satisfied not only
instantaneously, at one particular time t�, but eternally,
for all times. Note that these results together imply the
constraint

P
lΓlΩlP
lΩl

¼ 2ð1 − ΩMÞ
4 −ΩM

1

t
: ð2:16Þ

Going forward, our goal will be to find systems for which
both constraints in Eq. (2.15) are satisfied as exactly as
possible.
At first glance, it may seem surprising that the con-

straints in Eq. (2.15) can ever be satisfied. Indeed, the forms
of these constraints present two immediate challenges.
First, while the right side of the second constraint in
Eq. (2.15) drops like 1=t, the individual component
abundances ΩlðtÞ never drop as 1=t: As indicated in
Eq. (2.14), they either grow as a power law during early
times t ≪ 1=Γl (when the exponential decay is not yet
dominant), or they fall exponentially as t ∼ 1=Γl (ulti-
mately overriding the power-law growth). However, what
Eq. (2.15) is telling us is that these two effects must
somehow cancel within the sum

P
l ΓlΩlðtÞ, leaving

behind an overall 1=t dependence. Second, all of this must
happen for each individual ΩlðtÞ while somehow simulta-
neously keeping their sum

P
l ΩlðtÞ fixed, so that the

rising values ofΩl from what are presumably lighter modes
with smaller widths (experiencing later decays) perfectly
compensate for the exponential decays of the heavier modes
(which experience earlier decays). Note that this second
challenge is indeed different from the first: The second
challenge concerns the unweighted sum of the individualΩl,
while the first challenge is sensitive to the sum in which each
contributionΩl is weighted by the corresponding width Γl.
However, as we shall now demonstrate, very accurate
simultaneous solutions to both constraints in Eq. (2.15)
can nevertheless indeed be found.

III. A MODEL OF STASIS

In Sec. II, we obtained two conditions, as listed within
Eq. (2.15), which together yield an eternal stasis existing
for all times. However, in reality, these conditions cannot be
strictly satisfied for all times. For example, regardless of
whether the tower of ϕl states is finite or infinite, there is an
early time immediately after these states are produced
during which the decay process is just beginning. However,
because the universe is expanding even at this early time,
the required balancing between decay and cosmological
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expansion cannot yet have been achieved, and conse-
quently we do not yet expect to have realized stasis.
Likewise, there will eventually come a time at which all
of the decays will have essentially concluded. At this point
we expect our period of stasis to end.
Despite these observations, the critical issue is whether

there exist solutions for the spectrum of decay widths fΓlg
and abundances fΩlg across our tower of states which will
at least lead to a period of stasis during the sequential decay
process. Given the discussion at the end of Sec. II, it might
seem that such solutions for fΓlg and fΩlg must be very
carefully arranged. Remarkably, however, we shall now
demonstrate that there exist solutions for fΓlg and fΩlg
which not only satisfy these constraints but which are also
relatively simple and which emerge naturally in realistic
scenarios for physics beyond the Standard Model.
Toward this end, let us consider a spectrum of decay

widths fΓlg and abundances fΩlg which satisfy the
general scaling relations

Γl ¼ Γ0

�
ml

m0

�
γ

; Ωð0Þ
l ¼ Ωð0Þ

0

�
ml

m0

�
α

; ð3:1Þ

where α and γ are general scaling exponents, where the
mass spectrum takes the form

ml ¼ m0 þ ðΔmÞlδ ð3:2Þ

with m0 ≥ 0, Δm > 0, and δ > 0 treated as general free
parameters, and where the superscript 0 within Eq. (3.1)
denotes the time t ¼ tð0Þ at which the ϕl are initially
produced (thereby setting a common clock for the sub-
sequent ϕl decays). Our goal is then to determine those
values—if any—of the eight parameters

fα; γ; δ; m0;Δm;Γ0;Ω
ð0Þ
0 ; tð0Þg ð3:3Þ

for which the constraints in Eq. (2.15) can be satisfied. Of
course, within the context of this model, we have ΩM ¼ 1

at t ¼ tð0Þ before the decay process has begun. This in turn

requires that we choose Ωð0Þ
0 ¼ ½PN−1

l¼0ðml=m0Þα�−1.
Before proceeding further, our choice of the scaling

relations in Eqs. (3.1) and (3.2) deserves comment. It may
initially seem that we have adopted these relations for the
sole purpose of achieving stasis. However, these exact
relations actually have an independent history [1,2] as
characterizing the towers of states that naturally emerge
within a variety of actual models of physics beyond the
Standard Model. For example, taking the ϕl as the Kaluza-
Klein (KK) excitations of a five-dimensional scalar field
compactified on a circle of radius R (or a Z2 orbifold
thereof) results in either fm0;Δm; δg ¼ fm; 1=R; 1g or
fm0;Δm; δg ¼ fm; 1=ð2mR2Þ; 2g, depending on whether
mR ≪ 1 or mR ≫ 1, respectively, where m denotes the
four-dimensional scalar mass [1,2]. Alternatively, taking

the ϕl as the bound states of a strongly coupled gauge
theory yields δ ¼ 1=2, where Δm and m0 are determined
by the Regge slope and intercept of the strongly coupled
theory, respectively [4]. Thus δ ¼ f1=2; 1; 2g serve as
compelling “benchmark” values. Likewise, γ is generally
governed by the particular ϕl decay mode. For example, if
ϕl decays to photons through a dimension-d contact
operator of the form Ol ∼ clϕlF=Λd−4, where Λ is an
appropriate mass scale and where F is an operator built
from photon fields, we have γ ¼ 2d − 7. Thus values such
as γ ¼ f3; 5; 7g can serve as relevant benchmarks. Finally,
α is governed by the original production mechanism for the
ϕl fields. For example, one typically finds that α < 0 for
misalignment production [1,2], while α can generally be of
either sign for thermal freeze-out [5].
Given this general model, we can now evaluate the sums

which appear on the left sides of our constraint equations in
Eq. (2.15). Our goal, of course, is to avoid assuming stasis
and to find the conditions under which our model never-
theless satisfies these stasis constraints.
We begin by focusing on the behavior of the abundance

of any individual component ΩlðtÞ. In Eq. (2.14), we
derived the time dependence of ΩlðtÞ, but this derivation
assumed that we were already within stasis. Indeed, within
the calculation leading to Eq. (2.14), the assumption of
stasis entered into the form of the gravitational redshift

factor ðt=tð0ÞÞ2−6=ð4−ΩMÞ; without assuming stasis, this
factor would be much more complicated. For simplicity
and generality, we shall therefore let hðti; tfÞ denote the net
gravitational redshift factor that accrues between any two
times ti and tf. We thus have

ΩlðtÞ ¼ Ωð0Þ
l hðtð0Þ; tÞe−Γlðt−tð0ÞÞ: ð3:4Þ

Note that this h factor is necessarily l independent since the
gravitational redshift affects all components equally. We
then find that

X
l

ΩlðtÞ ¼ Ωð0Þ
0 hðtð0Þ; tÞ

X
l

�
ml

m0

�
α

e−Γ0ðml
m0

Þγðt−tð0ÞÞ; ð3:5Þ

where we have used the scaling relations in Eq. (3.1).
In order to evaluate this sum, we shall make three

approximations. First, we shall take the continuum limit

Δm → 0; N → ∞ ð3:6Þ

such that mmax ≡m0 þ ðΔmÞðN − 1Þδ is held constant.
In this limit, the masses ml become a continuous variable
m ranging from m0 to mmax, so that for any function
fðml=m0Þ we can replace
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XN−1

l¼0

f

�
ml

m0

�

→
1

δ

Z
mmax

m0

dm
m −m0

�
m −m0

Δm

�
1=δ

f

�
m
m0

�

¼ 1

δ

Z
mmax−m0

0

dm
m

�
m
Δm

�
1=δ

f
�
m
m0

þ 1

�
; ð3:7Þ

where the additional integrand factor is the Jacobian
dl=dm. Simultaneously, we shall also take

m0 → 0; mmax → ∞ ð3:8Þ

in such a way that Δm=m0—and therefore all values of
ml=m0 ∼m=m0 in Eq. (3.1)—are kept constant. This limit
extends the range ofm integration in Eq. (3.7) from 0 to∞.
Finally, we shall also approximate

f

�
m
m0

þ 1

�
≈ f

�
m
m0

�
ð3:9Þ

within Eq. (3.7). This represents a “warping” of our
integrand which is relevant only for small values of m=m0.
We shall later verify that all three of these approxima-

tions are relatively harmless, with effects that can easily be
understood and interpreted. However, the net effect of these
three approximations is that we can convert our l sum in
Eq. (3.5) into an m integral via

XN−1

l¼0

f

�
ml

m0

�
→

1

δ

Z
∞

0

dm
m

�
m
Δm

�
1=δ

f

�
m
m0

�
; ð3:10Þ

whereupon Eq. (3.5) becomes

X
l

ΩlðtÞ¼
Ωð0Þ

0

δðΔmÞ1=δhðt
ð0Þ;tÞ

×
Z

∞

0

dmm1=δ−1
�
m
m0

�
α

e−Γ0ð m
m0
Þγðt−tð0ÞÞ: ð3:11Þ

For γ > 0 and αþ 1=δ > 0, we then find that this integral
can be evaluated in closed form, yielding the result

X
l

ΩlðtÞ ¼
Ωð0Þ

0

γδ

�
m0

Δm

�
1=δ

Γ
�
αþ 1=δ

γ

�

× hðtð0Þ; tÞ½Γ0ðt − tð0ÞÞ�−ðαþ1=δÞ=γ; ð3:12Þ

where ΓðxÞ denotes the Euler gamma function. Likewise,
repeating the same steps for

P
l ΓlΩlðtÞ, we obtain

X
l

ΓlΩlðtÞ¼
Γ0Ω

ð0Þ
0

γδ

�
m0

Δm

�
1=δ

Γ
�
αþγþ1=δ

γ

�

×hðtð0Þ;tÞ½Γ0ðt− tð0ÞÞ�−ðαþγþ1=δÞ=γ: ð3:13Þ

Thus, dividing Eq. (3.13) by Eq. (3.12) and recalling that
Γðxþ 1Þ=ΓðxÞ ¼ x, we obtain

P
lΓlΩlðtÞP
lΩlðtÞ

¼ αþ 1=δ
γ

1

t − tð0Þ
: ð3:14Þ

Comparing this result with the constraint equation in
Eq. (2.16), the first thing we notice is that our model has
produced a power-law time dependence in the time differ-
ence t − tð0Þ rather than in t itself. In principle, this
therefore does not satisfy the criterion in Eq. (2.16).
However, this criterion can be approximately satisfied so
long as

tð0Þ ≪ t: ð3:15Þ

In other words, as we originally anticipated, for stasis to
emerge within our model we must restrict our attention to
periods of time which are sufficiently far beyond the ϕl
production time that the initial “edge” effects have died
away. Indeed, the precision with which this power-law
scaling requirement is satisfied only increases the further
we are from these initial edge effects. Equation (3.15) is
thus our first condition for this model, indicating that we do
not expect stasis to develop in this model until considerably
after tð0Þ. This thereby provides a natural beginning to the
stasis period.
Let us now assume that Eq. (3.15) is satisfied.

Comparing the overall coefficients in Eqs. (2.16) and
(3.14) we then obtain a constraint on suitable values of
ðα; γ; δÞ:

1

γ

�
αþ 1

δ

�
¼ 2ð1 − ΩMÞ

4 −ΩM
: ð3:16Þ

Equivalently, for any tower of states parametrized by
ðα; γ; δÞ, this can be inverted in order to obtain the
corresponding predicted value ofΩM during stasis, yielding

ΩM ¼ 2γδ − 4ð1þ αδÞ
2γδ − ð1þ αδÞ : ð3:17Þ

For example, with ðα; γ; δÞ ¼ ð1; 5; 1Þ, Eq. (3.17) yields
ΩM ¼ 1=4. However, for ðα; γ; δÞ ¼ ð1; 7; 1Þ, Eq. (3.17)
yields ΩM ¼ 1=2. This is then a case of stasis with matter-
radiation equality. In general, from Eq. (3.17) we see that
stasis with matter-radiation equality will occur provided
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1þ αδ

γδ
¼ 2

7
: ð3:18Þ

The fact that we must have 0 ≤ ΩM ≤ 1 places bounds
on the possible values of α, γ, and δ that can give rise to
stasis. For example, in accordance with our expectation that
the heavier ϕl will decay more rapidly than the lighter ϕl,
we can restrict our attention to cases with γ > 0. In such
cases, Eq. (3.17) in conjunction with 0 ≤ ΩM ≤ 1 and the
requirement that αþ 1=δ > 0 [as indicated above
Eq. (3.12)] immediately leads to a restricted range for α:

−
1

δ
< α ≤

γ

2
−
1

δ
: ð3:19Þ

The conditions in Eqs. (3.16) and (3.17) emerged from
demanding that our model satisfy Eq. (2.16). However,
Eq. (2.16) only emerged as the quotient of the two more
fundamental constraints in Eq. (2.15). We must therefore
also demand that these constraints are each individually
satisfied. Of course, having already satisfied Eq. (2.16), we
need only concentrate on one of these constraints. Let us
assume that our model indeed gives rise to stasis for
t ≫ tð0Þ and then verify that this assumption leads to a
self-consistent result. Assuming stasis for t ≫ tð0Þ, we can
write

hðtð0Þ; tÞ ¼ hðtð0Þ; t�Þhðt�; tÞ

¼ hðtð0Þ; t�Þ
�
t
t�

�
2−6=ð4−ΩMÞ

; ð3:20Þ

where t� ≫ tð0Þ is some fiducial time beyond which stasis
has developed. Inserting this into our result in Eq. (3.12)
then yields

X
l

ΩlðtÞ¼
Ωð0Þ

0

γδ

�
m0

Δm

�
1=δ

Γ
�
αþ1=δ

γ

�

×hðtð0Þ;t�Þ
�
t
t�

�
2−6=ð4−ΩMÞ

½Γ0ðt−tð0ÞÞ�−ðαþ1=δÞ=γ:

ð3:21Þ

However, given the conditions in Eqs. (3.15) and (3.16), we
see that the rather complicated time dependence in
Eq. (3.21) cancels. This by definition verifies that we
are indeed within a period of stasis, with a constant
ΩM ≡P

l ΩlðtÞ. We are thus left with only one additional
self-consistency constraint on our model:

ΩM ¼ Ωð0Þ
0

γδ

�
m0

Δm

�
1=δ

Γ
�
αþ 1=δ

γ

�

× hðtð0Þ; t�Þ
�

1

Γ0t�

�ðαþ1=δÞ=γ
: ð3:22Þ

At first glance, this constraint equation is not particularly
illuminating. However, via Eqs. (3.4), (3.16), and (3.20),
we see that

Ωð0Þ
0 hðtð0Þ; t�Þ

�
1

Γ0t�

�ðαþ1=δÞ=γ
¼ Ω0ðτ0ÞeΓ0ðτ0−tð0ÞÞ

≈ eΩ0ðτ0Þ; ð3:23Þ

where τ0 ≡ 1=Γ0 and where in passing to the second line
we have assumed that τ0 ≫ tð0Þ. Substituting Eq. (3.23)
into Eq. (3.22) we thus obtain the constraint

ΩM ≈ XΩ0ðτ0Þ; ð3:24Þ

where

X ≡ e
γδ

�
m0

Δm

�
1=δ

Γ
�
αþ 1=δ

γ

�
: ð3:25Þ

Note that this proportionality constant X does not include
any of the potentially large ratios of time intervals that
originally appeared in Eq. (3.22). Thus, as long as
Δm ∼m0, we find that X ∼Oð1Þ.
It is not difficult to interpret this result. Ordinarily, ΩM

receives significant contributions ΩlðtÞ from each of the
individual components. However, by the time we reach
t ≈ τ0, the lightest component is just about to begin
decaying while all of the heavier components have already
decayed to various extents. Thus the dominant contribution
toΩM at t ¼ τ0 comes fromΩ0ðτ0Þ, while the contributions
Ωlðτ0Þ with l ≥ 1 are exponentially suppressed. We then
expect that ΩM will be approximately equal to Ω0ðτ0Þ, with
the proportionality coefficient X in Eq. (3.24) including
(and the difference X − 1 quantifying) the residual con-
tributions from all of the heavier states as well as the
approximations made in passing from the exact (discrete)
sum in Eq. (3.5) to the integral in Eq. (3.11). Of course, for
t≳ τ0, our decay process ends and our system exits from
the stasis state.
We therefore conclude that our system satisfies the

requirements for an extended period of stasis during the
decay process so long as the conditions in Eqs. (3.15),
(3.17), and (3.24) are satisfied. Alternatively, comparing
with the parameter list in Eq. (3.3), we see that Eq. (3.15)
constrains tð0Þ (or simply requires that this production time
be significantly earlier than any ensuing period of stasis),
while Eq. (3.17) gives the resulting value of ΩM in terms of
fα; γ; δg and Eq. (3.24) involves all of the remaining
parameters and can be viewed as constraining the overall

scaleΩ0ðτ0Þ [or equivalentlyΩð0Þ
0 ]. Although it might seem

that the constraints in Eqs. (3.17) and (3.24) represent fine-
tunings that we must impose on the parameters of our
model, we shall find in Sec. IV that no such fine-tuning is
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required and that stasis ultimately emerges within this
model even if these constraints are not originally satisfied.
As evident from the above derivation, we have made a

number of approximations in obtaining these results. In
particular, in order to evaluate the sum in Eq. (3.5), we
made three approximations: We treated our tower of states
as a continuum, as in Eq. (3.6); we then took the limits in
Eq. (3.8), thereby essentially disregarding “edge” effects at
the top and bottom of our tower; and finally we made the
approximation in Eq. (3.9). These approximations indicate
that the precise power-law time dependence that is required
for stasis according to the constraints in Eq. (2.15) is at best
only approximate for a realistic discrete tower of states ϕl.
However, it is easy to understand the situations in which
these approximations might fail, thereby disturbing the
power-law behavior and consequently disrupting the result-
ing stasis. In general, for γ > 0, the decay widths Γl
increase as a function of the masses ml, implying that the
heavier ϕl states tend to decay first while the lighter ϕl
decay later. For this reason, we expect that the approx-
imations in Eqs. (3.8) and (3.9)—approximations which
primarily come into play only at the tops or bottoms of our
towers—will primarily affect the behavior of our system
only at extremely early and/or late times, respectively. This
is consistent with our further condition in Eq. (3.15).
Indeed, as a particularly dramatic example of these edge
effects, we observe that with γ > 0 and αþ 1=δ > 0, our
integral results in Eqs. (3.12) and (3.13) actually diverge as
t approaches the initial production time tð0Þ. Of course, this

divergence is completely spurious, since our actual model
has a finite number of states within the decaying tower and
thus contains no such divergences. This is clear illustration
of the fact that our integral approximation is highly
inaccurate at such early times.
It is precisely the failure of our approximations at

extremely early and/or late times which explains why
our stasis (which would otherwise have been strictly
eternal, i.e., time-independent, as in Sec. II) actually has
a beginning and an end, emerging in full force only after the
first few decays have already occurred and ending as the
system approaches the final decays. We therefore regard
these edge effects as beneficial features, indicating that
there will necessarily exist both an entrance into, as well as
an exit from, our stasis epoch, such as would be required in
any realistic cosmological scenario. At other times far from
these edge effects, we shall nevertheless find numerically
that this stasis is quite robust.
In order to illustrate the stasis epoch—together with its

beginning and end—we can perform a direct numerical
study of this system, with the time evolution determined
through exact numerical solutions of the relevant
Boltzmann equations for our discrete tower of decaying
states without any approximations. In Fig. 2 we illustrate
the behavior of the individual abundances ΩlðtÞ as well as
the resulting behavior for their sum ΩMðtÞ, where for con-
creteness we have chosen the benchmark values ðα; γ; δÞ ¼
ð1; 7; 1Þ [for which ΩM ¼ 1=2], with Δm ¼ m0, N ¼ 300,
and ΓN−1=Hð0Þ ¼ 0.01. As anticipated, we see that we not

FIG. 2. The individual matter abundances Ωl (orange and blue) and the corresponding total matter abundance ΩM (red), plotted as
functions of the numberN of e-folds since the initial ϕl production. These curves were generated through a direct numerical solution of
the relevant Boltzmann equations for our discrete tower of decaying states without invoking any approximations and correspond to the
parameter choices ðα; γ; δÞ ¼ ð1; 7; 1Þ [for which ΩM ¼ 1=2], with Δm ¼ m0, N ¼ 300, and ΓN−1=Hð0Þ ¼ 0.01. In the left panel the
abundances are plotted on a linear scale, while in the right panel these same abundances are plotted on a logarithmic scale. We see that
our system begins withΩM ¼ 1 at t ¼ tð0Þ, with each individualΩl component exhibiting a nontrivial behavior, first growing as a power
law due to cosmological redshifting before ultimately decaying exponentially. Despite this complexity, their sum ΩM nevertheless
evolves toward a stasis epoch in which ΩM remains essentially constant for approximately 15e-folds before exiting stasis. Even longer
periods of stasis can be produced ifN is increased. This thereby provides a concrete realization of the basic stasis mechanism sketched in
Fig. 1. Eventually the stasis ends as we approach the final decays of the lightest modes.
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only have a robust period of stasis lasting ≈15 e-folds, but
we also have a clear entrance into this epoch as well as an
exit from it. During the stasis epoch, we nevertheless find
that ΩM holds steady at the value ΩM predicted in
Eq. (3.17). As we shall shortly see, similar results hold
for other values of our benchmarks as well, leading to other
values for ΩM.
Two final comments are in order. First, we observe from

the right panel of Fig. 2 that although the individual
abundance contributions ΩlðtÞ have fairly complicated
behaviors, they each attain a maximum value at approx-
imately t ≈ τl ≡ 1=Γl before beginning their exponential
decays. [More precisely, the maximum value in each case
occurs at tl ¼ ζτl, where ζ ≡ 2–6=ð4 −ΩMÞ, but these
extra factors of ζ will cancel below and can thus be
ignored.] Moreover, when plotting logΩ versus N ∼ log t
(such as in this panel), we see that these maximum values
all lie along a straight line which we may consider to be the
“envelope” function for the individual ΩlðtÞ. This linear
envelope function is a critical ingredient in producing the
stasis state.
It is easy to see how this envelope function emerges

during stasis. From Eqs. (3.4) and (3.20) we see that

ΩlðτlÞ ¼ Ωð0Þ
l hðtð0Þ; t�Þ

�
τl
t�

�ðαþ1=δÞ=γ
e−1; ð3:26Þ

where t� is any fiducial time within stasis and where
we have approximated e−Γlðτl−tð0ÞÞ ∼ e−1 for τl ≫ tð0Þ. We
then find

ΩlðτlÞ
Ω0ðτ0Þ

¼ Ωð0Þ
l

Ωð0Þ
0

�
τl
τ0

�ðαþ1=δÞ=γ

¼
�
ml

m0

�
α
�
τl
τ0

�ðαþ1=δÞ=γ

¼
�
Γl

Γ0

�
α=γ

�
τl
τ0

�ðαþ1=δÞ=γ

¼
�
τl
τ0

�
1=ðγδÞ

; ð3:27Þ

indicating that this envelope line has constant positive
slope 1=ðγδÞ.
The existence of this envelope line provides an added

perspective regarding the constraint in Eq. (3.24). It is clear
that this rising envelope line must eventually intersect the
horizontal ΩM ¼ const line. What Eq. (3.24) tells us is that
this intersection point occurs near t ≈ τ0, as illustrated in
the right panel of Fig. 2.
Our second comment is that we are now also in a

position to estimate the duration of the stasis state. In
general, if we disregard the “edge effects” at the beginning
and end of the decay process, we can roughly identify the
stasis state as stretching from the decay of the heaviest state

in the tower at t ≈ τN−1 until the decay of the lightest state at
t ≈ τ0, where we have treated each of these quantities as
significantly greater than tð0Þ. We then find that the number
of e-folds during stasis is given by

N s ≡ log

�
aðt ¼ τ0Þ
aðt ¼ tN−1Þ

�
¼ 2

4 − ΩM
log

�
ΓN−1

Γ0

�

¼ 2γ

4 − ΩM
log

�
mN−1

m0

�

¼ 2γ

4 − ΩM
log

�
1þ Δm

m0

ðN − 1Þδ
�

≈
2γδ

4 − ΩM
logN; ð3:28Þ

where we have used Eq. (2.12) in the first equality and
where in passing to the final line we have taken N ≫ 1 and
Δm=m0 ∼Oð1Þ. We thus see that we can adjust the number
of e-folds associated with the stasis epoch simply by
adjusting the number of states in the tower.

IV. STASIS AS A GLOBAL ATTRACTOR

In previous sections we have studied the properties of the
stasis state and developed a model in which this state
naturally arises. Indeed, in Fig. 2 we demonstrated this
numerically for a particular choice of parameters in our
model. However, it may seem that this choice was some-
how fine-tuned. To address this issue, we shall now return
to the basic dynamical equations that underlie this system
and demonstrate that the stasis state is actually a global
attractor for this system. Thus, regardless of the particular
parameter choices we might make within our model, we are
inevitably drawn into a stasis epoch.
We begin our analysis with Eq. (2.8). Indeed, this

equation serves as the fundamental equation of motion
for our system and thus governs its dynamics. Our goal,
then, is to demonstrate that all solutions to this equation
within our model framework inevitably head toward the
stasis solution ΩM → ΩM, where ΩM is the value of ΩM
during stasis. Unfortunately, Eq. (2.8) contains two quan-
tities whose general connections to ΩM and ΩM are not
obvious: These are the l sum

P
l ΓlΩl and the Hubble

parameter HðtÞ. Our first task will therefore be to derive
general expressions for each of these quantities within our
model, but without assuming stasis.
Let us first consider

P
l ΓlΩl. We have already evalu-

ated this quantity in Sec. III, obtaining the result in
Eq. (3.13). Indeed, like the corresponding result in
Eq. (3.12), this result is completely general and does not
rely on any assumption of stasis. As a result, the quotient of
these two results in Eq. (3.14) is also completely general.
We therefore have the result
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X
l

ΓlΩl ¼
�
αþ 1=δ

γ

�
ΩM

t − tð0Þ

¼
�
2ð1 −ΩMÞ
4 −ΩM

�
ΩM

t − tð0Þ
; ð4:1Þ

where in passing to the second line we have used the result
in Eq. (3.16). Note, in particular, that the result in Eq. (3.16)
also holds independently of stasis since it is nothing more
than a rewriting of the ðα; γ; δÞ parameters in terms of the
eventual stasis value ΩM. We thus see from Eq. (4.1) that in
general

P
l ΓlΩl depends on both ΩM and ΩM.

Let us now turn to the Hubble parameter HðtÞ. We
previously evaluated HðtÞ in Eq. (2.11), but that derivation
assumed stasis. We must therefore now proceed more
generally by integrating Eq. (2.3). This immediately yields
the relation

1

H
−

1

Hð0Þ ¼ ðt − tð0ÞÞ
�
4 − hΩMi

2

�
; ð4:2Þ

where Hð0Þ is the Hubble value at t ¼ tð0Þ and where hΩMi
at any time t is the time-averaged value of ΩM since
t ¼ tð0Þ:

hΩMi≡ 1

t − tð0Þ

Z
t

tð0Þ
dt0ΩMðt0Þ: ð4:3Þ

Equation (4.2) then immediately yields

HðtÞ ¼ 2

4 − hΩMi
1

t − tð0Þ
; ð4:4Þ

where we have assumed Hð0Þðt − tð0ÞÞ ≫ 1. As expected,
this result reduces to the result in Eq. (2.11) if we are within
an eternal stasis, but otherwise depends on the complete
time history of the Hubble parameter since t ¼ tð0Þ and thus
makes absolutely no assumptions about the actual time
evolution of ΩM.
Inserting our results for

P
l ΓlΩl and HðtÞ from

Eqs. (4.1) and (4.4) into Eq. (2.8), we find that our equation
of motion for this system now takes the form

dΩM

dt
¼ ΩM

t − tð0Þ

�
2ð1 −ΩMÞ
4 − hΩMi

−
2ð1 −ΩMÞ
4 −ΩM

�
: ð4:5Þ

Of course, this result immediately allows us to verify that
dΩM=dt ¼ 0 whenΩM ¼ hΩMi ¼ ΩM, consistent with our
original (eternal) stasis solution. However, in general,
we see that this equation—although first order in time
derivatives—actually depends on two time-dependent var-
iables, ΩM and hΩMi, which need not have any direct
relation to each other.
One way to analyze the dynamics of this system is to

recognize that the definition of hΩMi in Eq. (4.3) actually

provides us with another first-order differential equation,
this one for hΩMi:

dhΩMi
dt

¼ 1

t − tð0Þ
½ΩM − hΩMi�: ð4:6Þ

Indeed, this equation is nothing but the time derivative of
the definition in Eq. (4.3). The two coupled first-order
equations (4.5) and (4.6) could then be combined into a
single second-order differential equation for ΩM. However,
it will prove simpler (and more conceptually transparent) to
retain these two first-order equations, treating ΩM and
hΩMi as independent variables, and then study the behavior
of the corresponding two-variable dynamical system

dΩM

dt
¼ 1

t − tð0Þ
fðΩM; hΩMiÞ;

dhΩMi
dt

¼ 1

t − tð0Þ
gðΩM; hΩMiÞ; ð4:7Þ

where

fðΩM; hΩMiÞ≡ΩM

�
2ð1 −ΩMÞ
4 − hΩMi

−
2ð1 −ΩMÞ
4 −ΩM

�
;

gðΩM; hΩMiÞ≡ΩM − hΩMi: ð4:8Þ

We note in passing that we are always free to shift our
independent variable for this system from t to log t, thereby
rendering the right sides of Eq. (4.7) independent of time.
This system is therefore effectively autonomous.
It is clear from these equations that the stasis solution

corresponds to ΩM ¼ hΩMi ¼ ΩM. Moreover, this solution
will be a local attractor if both of the eigenvalues of the
corresponding Jacobian matrix J are negative when J is
evaluated at the stasis point. In our case, the Jacobian
matrix is given by J ¼ ðt − tð0ÞÞ−1Ĵ, where Ĵ is the time-
independent Jacobian matrix

Ĵ ¼
� ∂ΩM

f ∂hΩMif

∂ΩM
g ∂hΩMig

�
: ð4:9Þ

Evaluated at the stasis point, this matrix takes the form

Ĵjs ¼
�
A B

1 −1

�
; ð4:10Þ

where the symbol js indicates that the expression is
evaluated within stasis and where

A≡ −
2ΩM

4 − ΩM
; B≡ 2ΩMð1 −ΩMÞ

ð4 −ΩMÞ2
: ð4:11Þ

The corresponding eigenvalues are therefore given by
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λ� ¼
−ð4þΩMÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

M − 16ΩM þ 16

q
2ð4 −ΩMÞ

; ð4:12Þ

whereupon we see that

λ� < 0 for all 0 ≤ ΩM ≤ 1: ð4:13Þ

We therefore conclude that the stasis state is (at least) a
local attractor, stable against small deviations δΩM and
δhΩMi. Thus, if perturbed, our system will necessarily
return to the stasis state.
Of course, the question remains as to whether our system

will flow to the stasis state if we are originally far from it. In
such cases,ΩM and hΩMi need not be close toΩM and need
not even be close to each other. The best way to answer this
question is therefore to assume arbitrary initial values for
ΩM and hΩMi within the range 0 ≤ fΩM; hΩMig ≤ 1 and
then examine how these two variables evolve under the
time evolution specified in Eq. (4.7). In other words, we
seek to determine the trajectories that our system maps out
in the ðΩM; hΩMiÞ plane according to Eq. (4.7). In Fig. 3,
we illustrate these trajectories for the case in which the
stasis solution is given by ΩM ¼ hΩMi ¼ ΩM ¼ 1=2. As
we see, all trajectories for this system ultimately flow
toward this stasis point. Moreover, similar trajectory maps
emerge regardless of the chosen stasis point. We therefore
conclude that the stasis state is not only a local attractor, but
actually a global one.
At first glance, given that our initial conditions at the

production time t ¼ tð0Þ are always ΩM ¼ hΩMi ¼ 1, it
might seem that most of the trajectories plotted in Fig. 3 are
irrelevant for our situation. However, we must recall that in
deriving the differential equations in Eq. (4.7) that govern
our system—particularly in establishing Eq. (4.1)—we
made a number of approximations when passing from
the discrete sum in Eq. (3.5) to the integral form in
Eq. (3.11). These approximations were discussed in detail
in Sec. III and are listed in Eqs. (3.6), (3.8), and (3.9). Some
of these approximations turn out to be of little consequence
for the current situation, such as taking the continuum limit
as in Eq. (3.6). However, the mmax → ∞ approximation
within Eq. (3.8) can be significant, since this approximation
essentially eliminates the transient edge effects that arise at
early times immediately after the production time tð0Þ, when
the heaviest ϕl states are just beginning to decay. Since the
integral approximation ignores these edge effects, the
corresponding dynamical equations in Eq. (4.7) are valid
only after these edge effects have died away.
These edge effects can nevertheless have significant

impacts on the dynamics of our system. For example, if
the decay widths are relatively large, the most massive ϕl
states will decay extremely promptly, thereby inducing a
significant initial depletion of ΩM and hΩMi that occurs

before Eq. (4.7) becomes valid. We shall see explicit
examples of this phenomenon below. Thus, while the
differential equations in Eq. (4.7) accurately describe the
dynamics of our system after the initial edge effects have
died away, these initial edge effects are capable of shifting
ΩM and hΩMi to new locations Ω0

M and hΩMi0 in the
ðΩM; hΩMiÞ plane which are quite far from their original
tð0Þ location ΩM ¼ hΩMi ¼ 1. It is then these new values
Ω0

M and hΩMi0 which constitute the “initial” point for the
subsequent trajectory in Fig. 3. Thus, to the extent that we
regard our dynamical system as governed by the differential
equations in Eq. (4.7), we should properly regard the initial
conditions for this dynamics to be those associated with Ω0

M
and hΩMi0. In other words, the initial conditions for the
trajectories in Fig. 3 should be taken to be those that exist not
at the production time tð0Þ but rather at a subsequent time after
which the initial edge effects have died away. These edge
effects can thus can place our system on an entirely different
trajectory than that beginning at ΩM ¼ hΩMi ¼ 1.
Fortunately, this observation does not affect our con-

clusion that the stasis state is a global attractor. No matter
what behaviors are induced within our system by the initial
edge effects, we know that they must ultimately yield
valuesΩ0

M and hΩMi0 which remain within the plane shown
in Fig. 3. Indeed, we have seen in Fig. 3 that any such
trajectory within this plane eventually leads to the stasis
state. Thus our stasis state remains a global attractor even
when the initial edge effects are included.

FIG. 3. Trajectories (blue curves) within the ðΩM; hΩMiÞ plane
for the system defined in Eq. (4.7). For concreteness we have
shown the case with stasis values ΩM ¼ hΩMi ¼ ΩM ¼ 1=2
(central red dot), but similar results emerge for all stasis values
ΩM. Because this system is effectively autonomous, any point
along a given trajectory can be taken as a starting point without
affecting the subsequent trajectory. Given these trajectories, we
see that the stasis state serves as a global attractor for this system.
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Changing the parameters of our model can alter not only
the initial edge effects, but also the resulting stasis
abundance ΩM. However, as discussed above, the emer-
gence of a stasis state at ΩM is a robust phenomenon which
persists even as the values of the parameters of our model
are changed. For example, in Fig. 4, we show the time
evolution of ΩM for a variety of values of α and γ, taking
δ ¼ 1 as a fixed benchmark. In each case, we see that ΩM
immediately begins to fall from 1 but eventually enters into
a stasis epoch in which ΩM is essentially fixed at the
corresponding stasis value ΩM predicted by Eq. (3.17).
Indeed, as evident within Fig. 4, this stasis epoch can
persist for many e-folds (and can be extended indefinitely
by increasing N) before dissipating when the lightest ϕl
states decay. We emphasize that these plots were generated
as direct numerical solutions of the relevant Boltzmann
equations without invoking any approximations. They thus
accurately represent the actual behavior of our system.
Even more dramatically, the emergence of the stasis state

is also robust against changes in the overall decay rate for
the ϕl particles. This feature is illustrated in Fig. 5.
In general, for any tower of ϕl states whose decay rates
Γl are connected through the scaling relations in Eq. (3.1),
we can parametrize this overall decay rate through the

dimensionless quantity ΓN−1=Hð0Þ, where ΓN−1 is the decay
rate Γl for the most massive particle (i.e., that with
l ¼ N − 1) and where Hð0Þ denotes the value of the
Hubble parameter at the production time t ¼ tð0Þ. When
ΓN−1=Hð0Þ ≪ 1, the decays begin relatively slowly after the
production time tð0Þ and the initial edge effects are
correspondingly mild. As a result, the approximations
leading to Eq. (4.7) become valid rather quickly, with
Ω0

M and hΩMi0 still fairly close to 1. By contrast, when
ΓN−1=Hð0Þ ≫ 1, a significant number of the heaviest ϕl

states decay promptly after tð0Þ, leading to a rapid depletion
in ΩM and hΩMi. Indeed, in such cases ΩM may even
initially fall below the eventual stasis value ΩM, as
illustrated in Fig. 5. Nevertheless, the stasis state still
serves as an attractor in such cases; the only difference
is that ΩM now approaches its stasis value ΩM from below
rather than above. Indeed, in such cases these edge effects
have produced an “initial” value Ω0

M which lies below ΩM,
so that our system follows a trajectory within Fig. 3 along
which the value of ΩM increases rather than decreases.
We conclude, then, that our stasis state is a global

attractor, emerging regardless of the initial conditions

FIG. 4. The total matter abundance ΩM, plotted as a function of
the number N of e-folds since the initial ϕl production time tð0Þ
for a variety of different benchmark values of ðα; γÞ satisfying the
constraints in Eq. (3.19). For each plot we have taken δ ¼ 1,
Δm ¼ m0, N ¼ 105, and Hð0Þ=ΓN−1 ¼ 0.1 as relevant bench-
marks. Each curve begins at ΩM ¼ 1 at the initial time tð0Þ and
eventually falls to ΩM → 0 as t → ∞. However, we see that in
each case there is a prolonged epoch lasting many e-folds during
which ΩMðtÞ settles into a stasis state with ΩMðtÞ ¼ ΩM; indeed
the duration of the stasis state can be increased at will simply by
increasing N. For each value of ðα; γÞ, the corresponding stasis
values ΩM are indicated with horizontal dashed lines. Ultimately
in each case, the period of stasis ends as we reach the final ϕl
decays; the resulting oscillations in ΩM reflect the discretization
effects associated with the successive final decays.

FIG. 5. The total matter abundance ΩM, plotted as a function of
the number N of e-folds since the initial ϕl production time tð0Þ

for a variety of different values of ΓN−1=Hð0Þ, where Hð0Þ is the
value of the Hubble parameter at the ϕl production time tð0Þ. For
this plot we have chosen the benchmark values ðα; γ; δÞ ¼
ð1; 7; 1Þ and taken Δm ¼ m0 and N ¼ 300. We see that as
ΓN−1=Hð0Þ increases, our decays occur more rapidly and ΩM

therefore drops more rapidly from its initial value 1 after tð0Þ.
Indeed, for ΓN−1=Hð0Þ ≳ 3, the initial drop in ΩM is so rapid that
ΩM initially drops below the stasis value ΩM before rebounding
due to cosmological expansion; ΩM therefore ultimately ap-
proaches the stasis value ΩM from below. Such curves then
correspond to trajectories in Fig. 3 for which stasis is approached
from the ΩM < 1=2 region. However, in all cases our system is
inevitably drawn toward the same stasis configuration, illustrat-
ing that the stasis state is indeed a global attractor for this system.
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and regardless of the values of the parameters in our model.
Our stasis state is thus the Rome of our dynamical system,
and all roads lead to it.

V. STASIS IN THE PRESENCE OF ADDITIONAL
ENERGY COMPONENTS

Thus far, we have considered the emergence of stasis
within universes consisting of only matter and radiation.
Given this, a natural question is to understand how this
picture is modified if our universe also contains an addi-
tional energy component X beyond matter and radiation,
with general equation-of-state parameter wX. To study this,
we can repeat our derivations, only now allowing for an
initial abundance ΩX in addition to ΩM and Ωγ .
Our derivation proceeds exactly as before. Including an

energy contribution for which pX ¼ wXρX, we find that
Eq. (2.3) now becomes

dH
dt

¼ −
1

2
H2½2þ ΩM þ 2Ωγ þ ð1þ 3wXÞΩX�

¼ −
1

2
H2½4 − ΩM þ ð3wX − 1ÞΩX�; ð5:1Þ

where in passing to the second line we have now identified
Ωγ ¼ 1 −ΩM − ΩX. This in turn implies that Eq. (2.4)
becomes

dΩi

dt
¼ 8πG

3H2

dρi
dt

þHΩi½4 −ΩM þ ð3wX − 1ÞΩX�: ð5:2Þ

While Eq. (2.7) continues to apply without modification,
we now additionally have dρX=dt ¼ −3ð1þ wXÞHρX.
This of course assumes that X is uncoupled from matter
or radiation. Substituting these results into Eq. (5.2) we
then find that the time evolutions of our three abundances
ΩM, Ωγ , and ΩX are described by a system of three coupled
differential equations:

dΩM

dt
¼ −

X
l

ΓlΩl þHΩMðΩγ þ 3wXΩXÞ;

dΩγ

dt
¼

X
l

ΓlΩl −HΩγ½ΩM þ ð1 − 3wXÞΩX�;

dΩX

dt
¼ HΩX½Ωγ − 3wXðΩM þ ΩγÞ�: ð5:3Þ

Of course, dΩM=dtþ dΩγ=dtþ dΩX=dt ¼ 0, so only two
of these equations are independent.
As expected, these equations reduce to Eq. (2.9) when

ΩX ¼ 0 and when we can therefore identify Ωγ ¼ 1 −ΩM.
Moreover, we see from the third equation within Eq. (5.3)
that if ΩX vanishes at any initial time, then ΩX remains
vanishing for all times, thereby reproducing our previous
results. However, we are now interested in stasis configu-
rations in which ΩM, Ωγ , and ΩX are all constant but

nonzero, with values ΩM, Ωγ , and ΩX ≡ 1 −ΩM − Ωγ ,
respectively.
Since stasis requires a nonzero constant ΩX, a minimal

condition for stasis is dΩX=dt ¼ 0. From the third line of
Eq. (5.3) we then see that this will only happen if

wX ¼ Ωγ

3ðΩM þΩγÞ
: ð5:4Þ

Equivalently, inverting this relation, we see that for any
value of ΩX with equation-of-state parameter wX, the
corresponding stasis solutions for this system must all take
the general form

ΩM¼ð1−3wXÞð1−ΩXÞ;
Ωγ ¼3wXð1−ΩXÞ: ð5:5Þ

It is easy to interpret the condition in Eq. (5.4). In
general, the quantity in Eq. (5.4) is nothing but the
equation-of-state parameter for the combined matter þ
radiation subsystem during stasis. Thus, Eq. (5.4) tells us
that we can append any additional component ΩX onto a
combined matterþ radiation subsystem without destroying
its stasis property so long as the equation-of-state parameter
wX of this additional component matches the stasis equa-
tion of state of the original matter þ radiation subsystem.
This ensures that the total system—with the X component
included—continues to have the same stasis equation of
state wX as the original matter þ radiation subsystem and
thus remains wX dominated. The X abundance ΩX then
remains constant under cosmological redshifting—even
though it is unaffected by the decays of the matter
components—simply as a result of the general property
that the abundance of any quantity with a given equation-
of-state parameter w always remains constant in a fully
w-dominated universe.
Equation (5.4) came from the final equation in Eq. (5.3)

and thus represents only one condition for stasis. The other
remaining condition comes from the first two equations in
Eq. (5.3). Indeed, demanding dΩM=dt ¼ dΩγ=dt ¼ 0 we
obtain the additional condition

X
l

ΓlΩl ¼ H
ΩMΩγ

ΩM þ Ωγ

¼ 3wXHΩM: ð5:6Þ

This result is the analog of Eq. (2.9).
Of course, wewish to ensure that Eq. (5.6) holds not only

at one instant but over an extended stasis time interval.
Within such an interval we see from Eqs. (5.1) and (5.4)
that the Hubble parameter H now takes the simple form

HðtÞ ¼ 2

3ð1þ wXÞ
1

t
; ð5:7Þ
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whereupon we find that

ΩlðtÞ ¼ Ω�
l

�
t
t�

�
2wX=ð1þwXÞ

e−Γlðt−t�Þ ð5:8Þ

for any fiducial time t� during stasis. From Eq. (5.6) we
thus have two additional conditions beyond that in Eq. (5.4)
which must also be satisfied simultaneously in order to
have an extended period of stasis:

P
l
ΩlðtÞ ¼ ΩM;

P
l
Γl ΩlðtÞ ¼

2wXΩM

1þ wX

1

t
;

ð5:9Þ

where ΩlðtÞ is given in Eq. (5.8). Equation (5.9) is of
course the analog of Eq. (2.15) and leads to the condition

P
lΓlΩlP
lΩl

¼ 2wX

1þ wX

1

t
; ð5:10Þ

which is the analog of Eq. (2.16).
It turns out that our model from Sec. III—in conjunction

with an additional energy component X—furnishes us with
a realization of this three-component stasis as well. Indeed,
the only required modification to our model is that we no
longer assert ΩM ¼ 1 as an initial condition at the pro-
duction time tð0Þ. Because of the assumed presence of the
additional X component within our system, we shall instead
leave the initial value ofΩM arbitrary. However, proceeding
exactly as in Sec. III, we once again obtain the result given
in Eq. (3.14)—a result which did not depend on the initial
value of ΩM. Comparing with Eq. (5.10) we thus identify

2wX

1þ wX
¼ αþ 1=δ

γ
; ð5:11Þ

or equivalently

wX ¼ 1þ αδ

2γδ − ð1þ αδÞ : ð5:12Þ

We thus see that the parameters ðα; γ; δÞ of our model must
be chosen appropriately for the equation-of-state parameter
wX of the desired X component that we wish to add. Our
model then yields constant stasis values fΩM;Ωγ;ΩXg
satisfying Eq. (5.5), with the same provisos as discussed in
Sec. III for the two-component stasis.
Note that our model does not yield specific values for

ΩM,Ωγ , orΩX until specific initial values ofΩM andΩγ are
chosen at the production time tð0Þ. In principle this is no
different from the simpler two-component case we have
already considered, given that even in the two-component
case we also chose a specific initial value ΩM ¼ 1 (with an

implied corresponding initial choice Ωγ ¼ 0). Indeed, this
choice precluded any room for an initial additional energy
component ΩX. In this sense, allowing more general initial
values ΩM < 1 with Ωγ ¼ 0 is tantamount to allowing an
initial value ΩX > 0. After the initial transient edge effects
have died away, this then ultimately leads to a particular
nonzero stasis valueΩX, whereupon we then obtain specific
predicted values for ΩM and Ωγ satisfying Eq. (5.5).
Following the steps in Sec. IV, we can also demonstrate

that our three-component stasis continues to be an attractor
like its two-component cousin. Of course our phase space is
now described by four independent dynamical variables,
namely, ΩM, hΩMi, Ωγ , and hΩγi. One potentially surpris-
ing feature is that the corresponding 4 × 4 Jacobian matrix
[analogous to the Jacobian matrix in Eq. (4.9)] actually has
only three negative eigenvalues and one zero eigenvalue.
However, this is completely in keeping with our expect-
ation that our stasis solution is no longer an attractor point
in the corresponding phase space but rather an attractor
line. This attractor line is analogous to a flat direction in the
sense that all points along the line correspond to equally
valid solutions. Indeed, moving along this “flat direction”
corresponds to shifting the value of ΩX, with the corre-
sponding values of ΩM and Ωγ tracking the line of stasis
solutions given in Eq. (5.5). It is therefore not a surprise that
it ultimately comes down to a particular choice of initial
conditions for ΩX (or equivalently for ΩM and Ωγ) which
determines where along this line our resulting stasis is
eventually realized.
We see, then, that the two-component stasis which has

been the focus of this paper is not an isolated phenomenon,
existing for universes containing only matter and radiation.
Rather, we now see that our two-component stasis is
actually the endpoint of an entire line of possible stasis
solutions in which a variety of additional energy compo-
nents X with varying abundancesΩX and equations of state
wX are also possible. This observation once again reinfor-
ces our conclusion that stasis is a generic feature in these
sorts of theories.
Of course, not all types of energy components X may be

introduced. From Eq. (5.4) it follows that

0 < wX < 1=3: ð5:13Þ

As discussed in Ref. [6], this includes, for example, the
energies associated with scalar theories in which the scalars
ϕ oscillate coherently within monomial potentials
VðϕÞ ∼ jϕjn, where 2 < n < 4. However, this precludes
energy components with wX < 0, such as vacuum energyΛ
with wΛ ¼ −1. This result implies that stasis is not possible
when ΩΛ ≠ 0. However, even with ΩΛ ≠ 0, it is possible
that the ratio of ΩM and Ωγ might nevertheless remain
constant, thereby yielding what might be considered a
weaker form of stasis. Of course, even when ΩΛ ≠ 0, an
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extended period of approximate stasis can exist during
cosmological epochs for which ΩΛ—though growing—is
still small. Indeed, as we shall discuss in Sec. VI, this is the
most likely context in which any phenomenologically
realistic model of stasis might appear. Moreover, as long
as ΩΛ ≠ 0 at some initial time, the inevitable growth of ΩΛ
provides an additional natural mechanism for exiting the
period of stasis and resuming a more traditional period of
cosmological evolution.
At first glance, given the result in Eq. (5.4), it might seem

that our extra X component could itself be composite,
consisting of two subcomponents A and B, so long as this
composite X sector has the required total abundance ΩX ¼
1 − ΩM −Ωγ as well as the required total equation-of-state
parameter wX given in Eq. (5.4). If so, one could imagine
that as ΩA grows, ΩB would shrink to compensate and
thereby keep ΩA þΩB and wX fixed. One could even
further speculate that the growing component could be
vacuum energy Λ. However, it is easy to verify that even
though we might carefully set ΩX and wX to the required
values at a given time, the ensuing A=B dynamics will
generally keep neither the total abundance of the X sector
fixed at ΩX nor the total equation-of-state parameter fixed
at wX, as required for stasis within the matter þ radiation
sector. Indeed, the only way to have our X sector retain both
its abundance ΩX and its equation-of-state parameter wX is
to have the X sector consist of only a single component X
whose abundance is then naturally fixed as a result of
its equation-of-state parameter wX matching that of the
matter þ radiation sector.

VI. DISCUSSION AND COSMOLOGICAL
IMPLICATIONS

In this paper we have demonstrated the existence of a
new theoretical possibility for early-Universe cosmology:
epochs of cosmological stasis during which the relative
abundances Ωi of the different energy components remain
constant despite cosmological expansion. Such stasis
epochs therefore need not be radiation dominated or matter
dominated and need not be dominated by any particular
component at all. We demonstrated that such epochs
emerge naturally in many extensions to the Standard
Model and that the stasis state even serves as a global
attractor within the associated cosmological frameworks.
As a result, within these frameworks, the universe will
naturally evolve toward such periods of stasis for a wide
variety of initial conditions, even if the system does not
begin in stasis. Moreover, as we have seen, each period of
stasis comes equipped with not only a natural beginning but
also a natural ending. Depending on the parameters of the
underlying theory, such stasis epochs can nevertheless
persist for arbitrary lengths of time.
Needless to say, our results give rise to a host of new

theoretical possibilities for physics across the entire

cosmological timeline. Indeed, an epoch of cosmological
stasis can be expected to provide nontrivial modifications to
the evolution of primordial density perturbations as well as
the dynamics of cosmic reheating. The existence of a stasis
epoch can also affect dark-matter production, structure
formation, and even estimates of the age of the Universe.
However, in order to study such possibilities, we must first
understand where and how our stasis epoch might arise
within what might otherwise be considered the standard
cosmological timeline.
Within the standard ΛCDM cosmology, the Universe

first undergoes a phase of accelerated expansion known as
cosmic inflation. Immediately after this inflationary epoch,
the energy density of the Universe is typically dominated
by the coherent oscillations of the inflaton field. The
subsequent decays of this field then reheat the Universe,
thereby giving rise to a radiation-dominated (RD) era.
Since the energy density of radiation is diluted by cosmic
expansion more rapidly than that of matter, the relative
abundance of matter rises over time, reaches parity with the
abundance of radiation at the point of matter-radiation
equality (MRE), and then exceeds the abundance of
radiation, eventually coming to dominate the Universe.
The ensuing matter-dominated (MD) era then persists until
very late times, at which point vacuum energy becomes
dominant.
Although this timeline is relatively simple and compel-

ling, there is considerable room for modification without
running afoul of experimental or observational data. In
particular, it is possible to imagine “splicing” an epoch of
stasis into this timeline, either as an additional segment
inserted into the timeline or as the replacement for a
segment which is removed.
To see how this might occur, let us first recall that our

stasis scenario is one in which the universe passes from a
matter-dominated epoch into a period of stasis and then
finally into a radiation-dominated epoch. In general, this
initial MD epoch begins at the time tð0Þ at which our ϕl
states are produced—provided the ϕl are produced non-
relativistically and with a sufficiently large abundance. Of
course, if these fields are relativistic at the production time
tð0Þ, or if there exists a significant abundance of radiation at
that time, then the universe might be radiation dominated
for a few e-folds after tð0Þ. However, even in such cases, our
ϕl states will eventually come to dominate the universe and
the universe will enter a matter-dominated epoch. Thus, in
either case, our stasis scenario generically begins with a
prestasis MD epoch. However, once our ϕl particles begin
to decay, we then enter the stasis period. Indeed, as we have
demonstrated in Sec. IV, the stasis state is a global attractor
regardless of the particular initial conditions. Thus, as long
as the ϕl states are produced with appropriately scaled
abundances and lifetimes as in Sec. III, we will necessarily
enter into a period of stasis. Finally, as we reach the time at
which the last ϕl states decay, we then exit the stasis era
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and enter a radiation-dominated epoch in which no ϕl

particles remain.
Given these observations, there are many locations along

the standard ΛCDM timeline during which a stasis epoch
might occur. However, for concreteness, we shall highlight
two scenarios that naturally stand out when constructing a
cosmological model of stasis.

(i) Stasis spliced into RH.—A minimal approach to
splicing a period of stasis into the standard cosmo-
logical timeline involves choosing a location where
there is already a transition from a MD universe to a
RD universe, accompanied by an episode of particle
production during which our ϕl states might be
initially populated. Within the standard cosmology,
there is only one such location: during reheating.
Indeed, assuming that the inflaton oscillates coher-
ently within a nearly quadratic potential, the uni-
verse is effectively matter dominated during this
period, evolving with an equation-of-state parameter
w ≈ 0. The decay of the inflaton, which is usually
assumed to reheat the universe, would instead
produce the ϕl states. Such states would then
quickly become nonrelativistic (if they were not
already produced nonrelativistically), thereby ex-
tending the reheating period into a longer MD
epoch. The subsequent stasis epoch and the ϕl
decays therein would then ultimately provide a
new environment for reheating [7]. Finally, once
the ϕl decays have concluded, the universe will be
radiation dominated, with a traditional ΛCDM
evolution beyond that point. Thus, schematically,
this scenario amounts to an insertion into the RH
epoch of the form

RH → RHþ stasis: ð6:1Þ

(ii) Stasis spliced into RD.—Given that our stasis
scenario leads to a radiation-dominated epoch,
another possibility is to splice the stasis scenario
directly into the usual RD era. This would require
that tð0Þ, the production time for our ϕl states, occur
at a time when the universe is already radiation
dominated. If the ϕl states behave as massive matter,
then their energy density will eventually dominate
the total energy density of the universe even though
the universe was radiation dominated at tð0Þ. This
scenario thus induces a new early matter-dominated
epoch (EMDE) immediately prior to the onset of
stasis, with the subsequent transition to stasis only
occurring once the ϕl states begin to decay. During
the ensuing stasis epoch, of course, the universe
consists of an admixture of matter and radiation with
unchanging relative abundances. Finally, after the
last ϕl particles have decayed, the universe is once
again radiation dominated, with subsequent time

evolution proceeding in the traditional ΛCDM
manner. Thus, this scenario schematically amounts
to an insertion into the RD epoch of the form

RD → RDþ EMDEþ stasisþ RD: ð6:2Þ

In either of these scenarios, the equation-of-state param-
eter w for the stasis epoch can take essentially any value
within the range 0 < w < 1=3. Indeed, within the stasis
scenario this is achieved through the emergence of a stable
mixed state rather than through the introduction of a pure
state involving a new type of cosmological fluid. As a result
of this unorthodox value of w, the evolution of the universe
during the stasis era is unlike its evolution during any other
cosmological epoch, expanding more rapidly than it does
during a RD epoch but more slowly than it does during a
MD epoch.
In Fig. 6 we illustrate the traditional ΛCDM cosmology

as well as the two alternative scenarios itemized above. In
the top panel, we show the traditional ΛCDM cosmology,
sketching the relative cosmological abundances Ωi asso-
ciated with vacuum energy (i ¼ Λ, in red), matter (i ¼ M,
in blue), and radiation (i ¼ γ, in orange) as they evolve
through an initial inflationary epoch followed by a reheat-
ing epoch, a radiation-dominated epoch, and ultimately a
matter-dominated epoch that is only now giving way to an
epoch dominated again by vacuum energy. We have also
shaded each region according to the dominant energy
component during that epoch. By contrast, in the middle
and bottom panels, we sketch the new scenarios in which a
stasis interval with ΩM ¼ Ωγ ¼ 1=2 occurs within the
reheating epoch (middle panel) or the radiation-dominated
epoch (lower panel). As shown, the latter possibility
requires the introduction of a new EMDE immediately
prior to the emergence of the stasis state. Of course, it is
only for simplicity that we have chosen to illustrate these
stasis states as having ΩM ¼ Ωγ ¼ 1=2 in Fig. 6; any stasis
configuration with ΩM ¼ 1 −Ωγ would have been equally
valid for either of the two cases shown.
In either case, we see from Fig. 6 that the intervening

stasis period has the effect of delaying the entire cosmo-
logical timeline. Thus, while the universe eventually returns
to the traditional ΛCDM script in each case, it does so at an
age which is advanced relative to that normally ascribed to
it within the ΛCDM framework. We also observe that
during these stasis epochs, the universe is not dominated by
any particular energy component. It is for this reason that
the stasis epochs are not shown in Fig. 6 with any shaded
background. Normally it is not possible to have such an
extended unshaded epoch; the different abundances Ωi are
constantly in flux and it is only during the relatively brief
transition periods between epochs that the universe might
fail to have a dominant component. However, during stasis,
this situation can persist across an arbitrary number of
e-folds.
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FIG. 6. Sketch of the traditional ΛCDM cosmology (top panel) as well as the two scenarios itemized in the text and described
schematically in Eqs. (6.1) and (6.2) in which a stasis epoch withΩM ¼ Ωγ ¼ 1=2 is inserted into the cosmological timeline (middle and
bottom panels). Abundances associated with vacuum energy (red), matter (blue), and radiation (orange) are plotted as functions of the
numberN of e-folds, with corresponding background shadings indicating the dominant component in each epoch. In the “stasis spliced
into RH” scenario (middle panel), reheating occurs during the stasis epoch and results from the decays of the ϕl states [7]. By contrast,
in the “stasis spliced into RD” scenario (bottom panel), reheating has already concluded but the insertion of the stasis scenario induces
the existence of an early matter-dominated era (labeled EMDE).

FIG. 7. The same scenarios as illustrated in Fig. 6, only now sketched in terms of the evolution of the comoving Hubble radius ðaHÞ−1.
The present-day horizon scale is also indicated. In each panel the black lines indicate the standard ΛCDM cosmology, while the red lines
indicate the new cosmologies that result in the stasis spliced into RH and stasis spliced into RD scenarios (left and right panels,
respectively). In each case we have explicitly indicated the time tð0Þ at which the ϕl states are initially produced as well as the times τN−1
and τ0 which approximate the onset and cessation, respectively, of the stasis state. In both cases we see that the insertion of a stasis period
delays the subsequent timeline relative to traditional ΛCDM expectations.
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In Fig. 7, we illustrate these same two alternate scenar-
ios, this time plotting not the corresponding cosmological
abundances Ωi but rather the corresponding comoving
Hubble radius ðaHÞ−1. Within each panel of Fig. 7, we
show not only the standardΛCDM cosmology (black lines)
but also the corresponding modified cosmology (red lines)
in which a stasis epoch arises. Note that the sketches in
Figs. 6 and 7 correspond to the regime in which
Hð0Þ ≫ ΓN−1, thereby ensuring that all of the ϕl states
behave like matter before they start decaying.
One important feature illustrated in these figures is that

the introduction of a stasis period either prior to or during
the traditional RD era requires a shortening of the duration
of the RD era as a whole. For example, we observe from
the sketches in Fig. 6 that the period during which Ωγ

dominates (shaded orange) is far longer in the ΛCDM case
than it is in either of two cases that involve a prior period
of stasis. We stress that this shortening of the radiation-
dominated era is not imposed in order to preserve the age of
the Universe; indeed, as already noted above, both of the
cosmologies that include the stasis epoch reach the present
day only after a longer time interval has elapsed. Rather,
this shortening of the subsequent Ωγ-dominated epoch is
required in order to guarantee not only a fixed horizon scale
today, but also a fixed number of e-folds sinceMRE. Indeed,
both of these quantities are measured through observational
data, implying that the final ΛCDM-like portions of the
cosmological timelines after MRE may be shifted horizon-
tally in Fig. 7 but never vertically.
Introducing an epoch of stasis into the standard cosmo-

logical timeline has a number of effects. First, within
modified cosmologies involving a stasis epoch, the comov-
ing Hubble radius grows more slowly than it does in the
standard cosmology. This in turn can have numerous
consequences for observational cosmology. For example,
perturbations in the matter density reenter the horizon at a
later time in cosmologies involving a stasis epoch than they
do in the standard cosmology. Consistency with observa-
tional data therefore typically requires that the number of
e-folds between horizon crossing and the end of inflation
must be smaller in such cosmologies. This in turn affects
the predictions for inflationary observables [8–11].
Another potential observational consequence of stasis

stems from its effect on structure formation. During a RD
epoch, primordial density perturbations which have already
entered the horizon grow only logarithmically with the
scale factor. By contrast, during a stasis epoch, these
perturbations could potentially grow much more rapidly,
as is the case within an EMDE [12–14]. Such rapid growth
could therefore likewise result in the formation of compact
objects such as primordial black holes [14,15] or ultra-
compact minihalos [12,16].
Unlike the scenarios illustrated in Figs. 6 and 7, it is also

possible to imagine scenarios in which a period of stasis
replaces an unorthodox modification to the standard

cosmology but otherwise places us back on the same
cosmological timeline. For example, as illustrated in
Fig. 8, one particularly well-known modified cosmology
consists of introducing an EMDE entirely within the usual
RD era. Such an EMDEmay be inserted either earlier within
the RD era (as shown in purple in Fig. 8) or later (as shown in
dark cyan). Nevertheless, as sketched in Fig. 8, it is possible
to imagine splicing a stasis epoch into this region instead
(red). Even though the stasis scenario and the EMDE
scenario place the Universe on the same cosmological
timeline for all subsequent times all the way to the present
day, it would be interesting to explore the extent towhich one
can use present-day observational information in order to
determine which path the Universe ultimately followed. The
scenario in Fig. 8 thus provides a framework within which
one can directly compare the effects of an EMDE insertion
against those of a stasis insertion. Density perturbations with
different wave numbers enter the horizon at different times
during the different cosmologies depicted in Fig. 8.
Moreover, once they enter the horizon, they do not scale
the sameway with the scale factor a during a period of stasis
as they do in a MD epoch. As a result, one would in general
expect these different cosmologies to yield different pertur-
bation spectra, with possible implications for small-scale
structure.
A stasis epoch could also impact particle-physics proc-

esses in the early Universe in a number of ways. Indeed,
any model involving the out-of-equilibrium production of
particles would be affected by the corresponding modifi-
cation of the expansion history. The abundance of dark
matter in our present Universe typically depends on the

FIG. 8. Sketch of a scenario in which the insertion of a period of
stasis (red) into the standard ΛCDM cosmology (black) replaces
either of two possible EMDE insertions (green or purple). This
replacement nevertheless leaves the universe on the same
subsequent cosmological timeline. Such a scenario therefore
provides a testing ground for comparing the phenomenological
effects of an EMDE insertion versus those of a stasis insertion.
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equation of state of the Universe both during and after the
epoch in which that abundance is initially generated (see,
e.g., Refs. [17–26]). Likewise, the manner in which a
lepton or baryon asymmetry evolves with time within the
early Universe is often sensitive to the expansion history of
the Universe and the extent to which energy can be
transferred between different cosmological components.
For example, within the context of electroweak baryo-
genesis, the washout of the baryon asymmetry by sphaleron
processes is mitigated in scenarios in which the Universe
expands faster during the electroweak phase transition than
it does during radiation domination [27–31]. Moreover,
entropy production from the late decays of heavy fields,
such as those needed to sustain a stasis epoch, can also
serve to dilute a preexisting baryon or lepton asymmetry
[32]. This can be advantageous [33] in models such as
Affleck-Dine baryogenesis [34–36] in which the initial
baryon asymmetry is typically too large. Modifying the
expansion history of the Universe can also modify the
dynamics which governs the evolution of light scalar fields
such as the QCD axion and other, axionlike particles. For
example, it has been shown that an EMDE can render
phenomenologically viable certain regions of parameter
space for low-mass axion dark matter which would other-
wise have been excluded [37]. It is reasonable to expect that
a period of cosmological stasis would have similar conse-
quences for the dynamics of such fields. Similarly, if a
stochastic gravitational background can be produced prior
to or during the stasis epoch, its power spectrum is also
expected to be modified due to the change in the expansion
history and the injection of entropy from successive ϕl
decays [38–40].
The splicing of a stasis epoch into the cosmological

timeline could also have implications for dark-matter
physics. In this paper, we have not assumed any particular
relation between the dark matter and the dynamics involved
in cosmic stasis. However, most canonical mechanisms for
establishing a cosmological abundance of dark-matter
particles turn out to be compatible with modified cosmol-
ogies which include a stasis epoch.
The extent to which the presence of a stasis epoch

impacts the properties of the dark matter ultimately
depends on the time at which the dark-matter abundance
is established. One possibility is that the dark-matter
abundance is generated only after stasis has concluded.
In this case, the stasis epoch has essentially no impact on
the dark matter. Another possibility is that the dark-matter
abundance is established prior to the stasis epoch but
remains negligible throughout this epoch and therefore
does not disrupt the stasis itself. In this case, the rate at
which the dark-matter abundance redshifts as a function of
time is modified because of the different background
cosmology—in particular, the different equation-of-state
parameter w—involved in stasis.

Yet another possibility is that the dark-matter abundance
is established during the stasis epoch itself. This possibility
is particularly intriguing, as the dynamics of dark-matter
production can be modified in several ways if this pro-
duction occurs during a stasis epoch. For example, when
thermal freeze-out occurs during a stasis epoch, the
annihilation cross section required in order to achieve an
appropriate late-time abundance for a given dark-matter
particle is smaller than it is when freeze-out occurs in the
standardΛCDM cosmology. This is because the production
of entropy from ϕl decays dilutes the dark-matter relic
abundance. Indeed, this is similar to the case when freeze-
out occurs during an EMDE [11,41–46]. It is also possible
that a nonthermal population of dark-matter particles could
be produced directly from the decays of the ϕl. The late-
time velocities of such dark-matter particles can be non-
negligible, leading to a suppression of power on small
scales. Indeed, this is also known to occur in situations in
which a significant number of dark-matter particles are
produced by the decays of the oscillating scalar or massive
particle species which dominates the Universe during an
EMDE [47]. However, the dark-matter velocity distribu-
tions which arise from ϕl decays during a stasis epoch can
be expected to be even more complicated than they would
be within an EMDE, as these velocity distributions receive
contributions from a large number of states decaying at
different times. In such scenarios, methods such as those
developed in Ref. [48] could potentially be employed in
order to extract information about the ϕl.
While the dark matter need not be related to the ϕl, it is

also interesting to consider the possibility that the particle
species which constitutes the dark matter is in fact simply
the most long-lived of these ϕl tower states. Consistency
with the standard cosmology at late times would of course
require that the lifetime of this lightest state be parametri-
cally longer and its initial abundance parametrically smaller
than those of the other ϕl. However, such separations of
scales can occur naturally in a number of new-physics
scenarios, including scenarios wherein the ϕl are the
Kaluza-Klein modes of a field which propagates in the
bulk in a theory involving extra spacetime dimensions.
Given the results of this paper, many avenues for future

research suggest themselves. For example, in addition to
the issues discussed above, our work in this paper implicitly
rested on certain assumptions which can be relaxed. One
assumption which has been implicit throughout our analy-
sis is that the states ϕl are all nonrelativistic when they are
produced at tð0Þ. While this is possible if these states are
produced through a freeze-out mechanism, this would
typically not be the case if the different states are produced
through the decays of a heavier particle. As discussed in
Ref. [48], the phase-space distribution of the ϕl particles
could therefore be rather nontrivial at the time tð0Þ. Indeed,
this distortion of the phase-space distribution could be
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viewed as introducing an additional initial edge effect that
would also have to be taken into account in our analysis.
Another assumption implicitly made throughout our

work is that the different ϕl states remain out of equilib-
rium until they completely decay. Within a specific particle-
physics model, this assumption would need to be verified.
In particular, if stasis takes place while the temperature of
the thermal bath is sufficiently large, thermal processes
could induce the thermalization of the lighter states within
the tower and thereby modify their relative abundances,
while the heavier states remain decoupled and act as
massive matter.
In our work we also assumed that the ϕl states decay

only into radiation. However, it is possible that the heavy
states might decay into lighter ϕl states within the tower or
other light particles beyond the tower. Of course, if the
daughter states are sufficiently light, or more generally if
the mass differences between parents and daughters are
sufficiently large, such decays will be highly exothermic.
The daughters will then be produced relativistically and
continue to act as radiation. As such, these decays will
continue to effectively transfer energy density from matter
back to radiation and can therefore continue to serve as the
counterbalance to cosmological expansion which tends to
push the relative abundances the other way and induce
stasis. However, as the Universe continues to cool, these
daughter states will eventually become nonrelativistic—an
effect which then flows in the opposite direction, effec-
tively transferring radiation back to matter. Indeed, this
reversal might serve as another means of exiting a stasis
epoch. In either case, such nontrivial dynamics will
produce a nontrivial time evolution for the background
cosmology. This in turn could affect all sectors of the
corresponding theory, including its dark sector, and thereby
leave interesting signatures in the matter power spectrum
[48] and corresponding halo-mass distributions [49].
In this context, we emphasize that we have not assumed in

this work that our ϕl states are scalars. Indeed, these fields
may well be fermionic, which would then permit decays into
final states which are collectively fermionic andwhichmight
include light matter fields such as neutrinos which could
potentially act as radiation, as discussed above.Of course, the
spins of the parent and daughter states can potentially affect
the set of relevant exponents γ which govern the scalings of
the decay widths Γl in Eq. (3.1) and which ultimately feed
into the matter abundance ΩM during stasis.
In a similar vein, in this work we have implicitly

assumed that the energy density ρl associated with each
massive field ϕl results from particlelike excitations of that
field. However, if the ϕl states are scalars, these fields may
also have homogeneous zero modes whose coherent
oscillations give rise to energy densities which scale in
exactly the same way. (An example of this phenomenon is
the well-known coherent oscillation of the axion field.) It
therefore follows that a collection of scalar fields ϕl with

coherently oscillating zero modes can likewise support
stasis. This is an intriguing possibility, since large numbers
of scalar fields are a generic prediction of string theory and
a variety of other extensions of the Standard Model.
Moreover, vacuum-misalignment production provides a
natural mechanism through which a spectrum of energy
densities ρl with power-law scalings can be generated for
such scalars at early times [1].
The nontrivial dynamics of such ϕl zero modes can

nevertheless play an interesting role in determining the
associated scaling exponents. Recall that if the misalign-
ment production time at which ρl is produced is suffi-
ciently early that HðtÞ≳ 2ml=3 for a given l, the
corresponding ϕl zero mode will be overdamped and
the corresponding energy density ρl will behave like
vacuum energy. Indeed, it is only after we reach a time
at which HðtÞ ∼ 2ml=3 that the ϕl zero mode will “turn
on” and become underdamped; the corresponding energy
density ρl is then associated with the resulting zero-mode
oscillations and begins to scale like massive matter. This
nontrivial process by which such states turn on can have
nontrivial implications for stasis. If the production time
occurs at a late time when HðtÞ ≲ 3ml=2 for all l in the
tower, all of the ϕl will immediately behave as matter and
contribute to ΩMðtÞ from the moment when they are
produced. We would therefore have realized the initial
conditions for our stasis model, and a stasis epoch would
merge as long as the relevant parameters satisfy the
appropriate constraints, such as those in Eq. (3.19).
However, if the production time occurs earlier, it is possible
that only the heaviest ϕl states will be “turned on” and
immediately contribute to ΩMðtÞ at the production time. By
contrast, the lighter states will experience only a subsequent
“staggered” turn on as time progresses [1]. This would then
have three effects: The effective number of states in the
tower contributing to ΩMðtÞ would increase with time as
increasing numbers of states turn on; our system would
initially contain a vacuum-energy component which even-
tually drops as a function of time, ultimately becoming
relatively small; and the contributionsΩlðtÞ from the lighter
states in the tower will be enhanced relative our usual
expectations at the time when they turn on and begin to
contribute to the total matter abundance ΩMðtÞ. This
enhancement is the result of the fact that these ΩlðtÞ would
have grown as vacuum energy rather than as matter during
the intervening time after production but prior to turning on.
At times after all ϕl states have turned on, our entire

tower acts as matter and there is no remaining vacuum-
energy component. At such times, we would also expect to
have stasis, but with a modified scaling exponent α which
reflects the enhancement of the light abundances Ωl that
occurred during the period wherein the lighter ϕl were still
experiencing their staggered turn ons. However, if the
heavier ϕl begin decaying during this staggered turn-on
phase, the situation is much more complicated. At late
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times during this phase, we expect the vacuum-energy
component, though nonzero, to be relatively small. It is
possible that this will therefore not disrupt the emergence of
stasis during this period, even though the effective number
of matter states in the tower is still evolving. This case
requires further investigation.
Another assumption made in our work is that the values

of the scaling exponents ðα; γ; δÞ and mass parameters
ðm0;ΔmÞ remain constant throughout our tower of ϕl
states. While this is true for the towers of states which
emerge in many extensions to the Standard Model, there do
exist scenarios in which these exponents themselves
deform from one value to another as one passes between
the high-mass and low-mass portions of the same ϕl tower
[1,50]. In such cases, the properties of the corresponding
stasis epoch can also shift slightly as the stasis proceeds
through successive ϕl decays. For example, one stasis
value of ΩM may persist for many e-folds before gradually
shifting to another value which then persists through an
additional extended epoch. It is also possible that some
portions of the ϕl will have parameters ðα; γ; δÞ that lie
outside the limits in Eq. (3.19). In such cases, stasis would
persist only during the decays of those states for which
Eq. (3.19) is valid, and thus the effective size of the tower
may appear truncated relative to N.
In this paper, we have paid significant attention to the

edge effects which occur at early and late times and which
are ultimately responsible for the entrance into as well as
the exit from our stasis epoch. However, it may also be
possible to exploit these edge effects in order to construct
variations of the cosmologies that we have discussed here.
For example, in our stasis spliced into RD scenario in
Eq. (6.2), we indicated that an EMDE must immediately
precede our stasis epoch. Indeed, given that our stasis
model in Sec. III begins with a fully matter-dominated
universe as an initial condition, such an EMDE is required
if we wish to adopt the model in Sec. III wholesale when
splicing it into the RD epoch of the ΛCDM timeline.
However, we have seen that the edge effects associated with
this model can quickly deform such an early matter-
dominated initial condition into one in which most of
the initial matter abundance is quickly dissipated. Indeed,
we have already seen from the orange and yellow curves in
Fig. 5 that such a rapid depletion can occur as an initial
edge effect for sufficiently large values of ΓN−1=Hð0Þ. One
could therefore contemplate splicing a previous RD-
dominated epoch directly onto the time at which much
of the initial matter abundance ΩM is already depleted.
Alternatively (but with similar phenomenological conse-
quences), we can imagine that the creation of the ϕl states
occurs at the beginning of the inserted epoch but that the
chosen value of ΓN−1=Hð0Þ is sufficiently large that any
interval of early matter domination is extremely short.
As discussed in Sec. III, theories involving large extra

spacetime dimensions naturally give rise to infinite towers

of Kaluza-Klein states which can serve as the ϕl. The
spectrum of such states depends on the dimensionality and
geometry of the compactification manifold, and the sim-
plest case in which a single extra dimension is compactified
on a circle (or a Z2 orbifold thereof) results in KK spectra
with ðm0;Δm; δÞ ¼ ðm; 1=R; 1Þ or ðm; 1=ð2m2RÞ; 2Þ,
where R is the compactification radius and m is the
four-dimensional mass of the compactified field. Indeed,
the first possibility occurs if mR ≪ 1, while the second
arises if mR ≫ 1. Both of these values of δ are within the
ranges that produce viable stasis values of ΩM.
Clearly, the space of models involving such large extra

dimensions is huge, and thus the set of corresponding
values of α and γ is also huge, depending on the model-
specific details of how these states are produced in the
early Universe and how they decay to the visible sector.
However, one critical model-independent issue concerns
the extent to which a viable period of stasis can even arise
within such a framework. As we have seen in Eq. (3.28), a
bona fide period of stasis requires a relatively large tower of
ϕl states—i.e., a relatively large value of N. Given this, and
given that KK theories are essentially effective field
theories, one might therefore worry that there might be
an intrinsic upper limit to the size of N. However, this
worry ultimately turns out to be unfounded because the
ultraviolet (UV) cutoff for such theories is set not by the
compactification radius but by other factors which relate to
the onset of new physics [such as the possible emergence of
a grand-unified theory (GUT) or quantum gravity]. Indeed,
there exist numerous explicit examples in the literature in
which the compactification scale can be separated by many
orders of magnitude from the scale of new physics. For
example, there is a vast literature, initiated in Refs. [51–55],
in which the size of extra spacetime dimensions is set far
below such scales in a self-consistent way. Of course, one
might worry that the emergence of KK states would drive
gauge couplings toward Landau poles (through the same
couplings to the visible sector that induce the ϕl decays),
but there exist numerous examples where this does not
happen, even within theories whose low-energy limits
include the Standard Model [56,57].
Within such frameworks, then, the number of KK states

is therefore essentially unbounded and there is no model-
independent obstruction to having a large tower of states
and thus a stasis epoch of long duration. Of course, it will
be interesting to actually construct phenomenologically
viable models of KK-induced stasis. Doing so will ulti-
mately depend on a number of further model-specific
factors, such as the desired placement of this epoch within
the cosmological timeline and the assumption of an
appropriate theory of particle physics during that time
(be it the Standard Model or a supersymmetric or grand-
unified extension thereof).
Another framework for physics beyond the Standard

Model which naturally gives rise to large towers of states is
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string theory. String theories generally have critical space-
time dimensions exceeding four and thus typically involve
geometric compactifications down to four dimensions. For
this reason, many of the different string states (particularly
those in the so-called “bulk”) are endowed with towers of
additional KK excitations. Moreover, these KK states will
generally be unstable and decay, although their particular
decay phenomenologies depend on the properties of the
specific string model under discussion. All of this is
therefore consistent with the possibility of achieving
KK-induced stasis, as discussed above.
However, string theories include not only towers of KK

states, but also towers of Regge excitations. These exci-
tations are independent of the spacetime compactification
and are a consequence of the extended nature of the string
itself. Unlike the KK states (and their closed-string cousins,
the winding states), these Regge states have mass spectra
which correspond to the scaling exponent δ ¼ 1=2. In
principle, this is not a problem for stasis; we have kept δ
arbitrary in our analysis, and nothing precludes δ ¼ 1=2.
However, these towers of Regge excitations also have a
degeneracy of states at each mass level which grows
exponentially with the mass of the state. This is the
well-known Hagedorn phenomenon [58]. As a result, such
theories tend to have effective energy densities ρl and
abundances Ωl which grow exponentially with the masses
ml before other effects (such as those due to Boltzmann
suppression [4]) are included. It would therefore be
interesting to explore the extent to which stasis can arise
in such scenarios, or more generally in theories with non-
power-law scaling relations.
The above comments regarding Regge excitations are

independent of the relevant scales in these theories. For this
reason we have not worried about states which might be
super-Planckian and which might therefore form black
holes. However, one important special class of string
theories consists of those strings whose radii of compacti-
fication are very large compared to the inverse string scale.
These are precisely the strings that are capable of yielding
reduced GUT [52,54], Planck [51,53,55], and string
[52,59,60] scales. Depending on the details of their con-
structions, such strings may even be effectively stable
without spacetime supersymmetry [57,61]. In general, such
string theories have densely populated towers of light KK
states whose masses lie well below these reduced GUT,
Planck, or string scales. Such strings are thus prime
candidates for producing not only a KK-induced stasis,
as described above, but one which is realized within a full
string-theoretic (and therefore UV-complete) framework.
Moreover, the Regge excitations within such frameworks
play no role at scales below the string scale and can
therefore be disregarded as far as stasis is concerned.
A third framework for physics beyond the Standard

Model which gives rise to an infinite tower of ϕl states
consists of QCD-like theories at strong coupling. In such

cases, the fundamental QCD-like degrees of freedom
(e.g., “quarks”) are bound into an infinite spectrum of
composite objects (“hadrons”). It turns out that such
theories can be analyzed via the so-called AdS=CFT
correspondence [62]. Through this correspondence, such
strongly coupled theories map onto five-dimensional
gravitational theories whose low-energy limits are KK
theories on anti–de Sitter (AdS) spacetimes. For example,
the scale ΛIR below which the strongly coupled theory
becomes confining and the cutoff scale ΛUV above which
the effective theory involving the “quarks” breaks down
are related by ΛIR ¼ ΛUVe−πkR, where R is the radius of
the extra dimension and k is the AdS curvature scale.
Thus, within the πkR ≫ 1 regime, there is a significant
separation ΛUV ≫ ΛIR between these scales. Moreover,
within this same regime, the mass m0 ∼ πmKK of the
lightest composite state in the theory and the difference
mlþ1 −ml ∼ πmKK between the masses of adjacent states
in the tower are both set by the scale mKK ≡ ke−πkR [63].
Thus, one finds that for πkR ≫ 1, there can exist a large
number of states with masses below the cutoff scale ΛUV,
as required for stasis.
Vacuum-misalignment production provides a natural

mechanism for generating a spectrum of abundances for
the composite states in strongly coupled theories of this
sort. In particular, if there also exists a fundamental scalar
in the theory which dynamically acquires a mass as the
result of a phase transition at a critical temperature
Tc ≪ ΛIR, the composite states can acquire abundances
by mixing with this fundamental scalar [64]. The scaling

behavior of Ωð0Þ
l with ml depends on the details of the

model and the background cosmology. For example, one
finds that α ¼ −1 in situations in which all of the mass-
eigenstate fields of the theory at temperatures below Tc are
sufficiently heavy that their zero modes begin oscillating
immediately at the time of the phase transition. By contrast,
in situations in which the zero modes for these fields begin
oscillating only at later times, one finds that α < −1.
In general, in order to assess whether a cosmological

model involving a large tower of states might potentially be
able to give rise to a stasis epoch, one must examine
whether the effective scaling exponents α, γ, and δ obtained
for that cosmology satisfy the criterion in Eq. (3.19). This
remains true even when these states are composite. In the
regime in which the dynamically generated mass of the
fundamental scalar is small compared to all other relevant
scales in the theory, the decay widths typically scale with
ml such that γ ≈ 4 [64]. On the other hand, mixing with the
fundamental scalar does not dramatically alter the mass
spectrum of the theory within the πkR ≫ 1 regime, where-
uponmlþ1 −ml remains roughly constant [65]. This implies
that δ ≈ 1. However, amore detailed analysis reveals that this
mass splitting decreases slightly with l, implying that the
effective value of δ for such a tower of states is actually
slightly less than 1. As a result, for the case in which α ¼ −1,
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one finds that a tower of partially composite “hadrons” is at
least approximately consistentwith the criterion inEq. (3.19)
and thus appears promising as a potential model for cosmic
stasis. It will be interesting to further explore possible
realizations of stasis along these lines.
Finally, let us discuss the possibility that the ϕl are

actually primordial black holes (PBHs). The abundances of
PBHs scale as matter, and thus an early PBH-dominated
epoch can serve as the initial matter-dominated epoch
required for stasis. Of course, such PBHs do not produce
radiation via particlelike decay—they do so via evapora-
tion. This is nevertheless a process that effectively converts
matter into radiation, and thus it is possible that this too
could yield a stasislike solution that counterbalances the
redshifting effects of cosmic expansion. One novel feature
is that lighter PBHs tend to evaporate more rapidly than
heavier PBHs. However, as long as the abundances of these
lighter PBHs are greater than those of the heavier PBHs,
one could still potentially achieve a stasis; this stasis would
simply proceed up the tower, from lighter to heavier PBHs,
rather than down. Another novel feature is that black-hole
evaporation does not follow an exponential decay law;
rather, the mass of an evaporating black hole (and therefore
the energy density of the corresponding PBH population)
drops with time according to a nontrivial function which
can in various regimes be approximated as a power law. It is
nevertheless possible that stasis can be achieved even with
such a change in this functional form. We leave this
question for further study [7].
Many aspects of our work are tangentially related to

ideas which have already been discussed in the literature.
For example, the idea that the Friedmann equations can
admit attractor solutions which cause certain cosmological
components to evolve in predictable ways is of course not a
new one. Within the context of quintessence, for example,
so-called “tracker solutions” have been identified wherein
the equation-of-state parameter for the scalar sector evolves
toward the equation-of-state parameter for the dominant
background component, be it either matter or radiation
[66]. Certain types of interactions between the dark-energy
sector and the matter sector at the level of Friedmann
equations have also been exploited in order to engineer
attractor solutions to these equations, with potential impli-
cations for the cosmic coincidence problem [67–70]. It can
also be shown that there exist certain types of interactions
which can be added to the equations of motion for the
cosmological components without disturbing the Lotka-
Volterra structure of these equations [71,72]. Such “jungle
universe”models often exhibit nontrivial attractor solutions.
Despite these similarities, the stasis scenario presented in

this paper differs from these other cosmological scenarios
in several crucial ways. First, we do not assume any
unorthodox equation of state for any of the particle species
involved in our scenario. We also do not introduce any
ad hoc suppositions concerning the form of the scalar

potential in our theory, nor do we posit the existence of any
additional interaction terms in the Friedmann equations.
Instead, we demonstrated that stasis emerges as the result of
a subtle and complex interplay between the effects of
cosmic expansion and the conversion of matter to radiation
through particle decays. This is typically not the case for
the “tracking” solutions that arise in quintessence models,
wherein the scalar sector simply mimics the background
rather than modifying the equation of state of the universe
as a whole. Jungle-universe models, by contrast, are more
akin to our stasis scenario in this respect. Nevertheless, the
structure of the dynamics which gives rise to a stasis epoch
is fundamentally different from the dynamics which gov-
erns such models. Likewise, the dynamics underlying stasis
does not require the introduction of any interaction terms
within the Friedmann equation that do not, a priori,
originate from fundamental particle interactions.
The above ideas concerning the physical implications

of stasis are likely only the tip of the iceberg, and new
phenomenological possibilities involving stasis are likely to
continue to present themselves. Of course, this is to be
expected. In general, the expansion of the Universe has
far-reaching implications for almost everything contained
within it. As a result, there are many possible “clocks” that
can be used to measure the passage of cosmological time.
One of these clocks, for example, is based directly on the
expansion itself, tracking the number of e-folds of growth in
the cosmological scale factor. However, another clock is
based on the abundances of the different energy components
and the passage between cosmological epochs. Viewed from
this perspective, stasis represents a way of suspending the
passage of time for the second clock while allowing the first
clock to keep ticking. This in turn causes the different clocks
to fall out of alignment, implying that standard abundance-
based time markers (such as the moment of matter-radiation
equality)maynowoccurwithin a universewhose overall size
is quite different than normally assumed. Even more impor-
tantly, thismethod ofmisaligning the clocks introduces long-
lived mixed-component epochs whose equations of state w
lie between 0 and 1=3 and remain fixed throughout the entire
interval. Indeed, as we have seen, this implies that we can
have long-lived epochs which are not radiation dominated or
matter dominated and in fact are not dominated by any
particular component at all. This decoupling of the different
clocks, together with the existence of such stable mixed-
component epochs, thus introduces newdegrees of flexibility
into early-Universe model building, and it is likely that these
features can be exploited to address a number of cosmo-
logical puzzles. The implications of stasis are thus ripe for
future exploration.
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