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moments, magnetic moments and transition dipole moments.
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1. Introduction

A new generation of experiments is now able to produce ul-
tracold 1� ground-state molecules by associating pairs of alkali 
atoms [1–14]. Precise knowledge of the rotational and hyperfine 
structure is critical for nearly all the foreseeable applications of 
these molecules (see e.g. [15]), and particularly for those that re-
quire long-lived quantum coherences between states [16–21]. Basic 
calculation of the rotational structure of diatomic molecules is well 
understood [22], but the addition of hyperfine structure, together 
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with external fields that prevent conservation of total angular mo-
mentum, greatly increases the size of the Hilbert space over which 
calculations must be performed. Experimental studies of ultracold 
molecules often involve external dc magnetic and electric fields 
and often also need an off-resonant optical field for trapping. There 
is a need in the ultracold-molecule community for accessible and 
open-source tools to perform these calculations.

In this work we present a flexible Python-based program for 
calculating the rotational and hyperfine structure of 1� molecules 
in external electromagnetic fields. Our code contains a module to 
automate the construction of the Hamiltonian, which is then di-
agonalized using functions from the numpy stack [23,24]. We also 
include functions that simplify the calculation of important quan-
tities such as the electric dipole moments for transitions between 
pairs of states. We give example plots that demonstrate use of the 
code to calculate Zeeman, dc Stark, and ac Stark maps for the hy-
perfine states of 1� molecules.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. Theoretical background

The model we consider is valid for diatomic molecules in a sin-
gle vibrational state of a 1� electronic state, as is relevant to most 
current experiments with ultracold bialkali molecules. For general-
ity, we label the molecule AB, where A and B are the component 
nuclei. The Hamiltonian of such a molecule is [25]

HAB = Hrot + Hhf + Hext, (1)

where Hrot describes the rotational structure, Hhf describes the hy-
perfine structure and Hext describes the interaction between the 
molecule and external fields.

We construct the Hamiltonian in the fully uncoupled basis 
where the relevant angular momentum quantum numbers are the 
molecule’s rotational angular momentum (N) and the spin of the 
two nuclei (iA, iB). Each of these angular momenta also has a pro-
jection onto the z axis of our coordinate system, defined by the 
direction of the magnetic field, giving six quantum numbers in to-
tal: N , MN , iA, mA, iB, mB. As we do not consider effects that could 
change the nuclear spin (only its projection) where relevant we 
write our basis states as |N, MN ,mA,mB〉 for brevity. We also de-
fine the vector operators N , I A and I B that are associated with 
each of these angular momenta.

In the following subsections, we give the mathematical expres-
sions that describe each of the components of the Hamiltonian (1).

2.1. The rotational Hamiltonian, Hrot

We describe the rotation of the molecule using a rigid-rotor 
model; this results in a spectrum of rotational states that have en-
ergy E N ≈ B v N(N + 1), where B v is the rotational constant of the 
molecule in vibrational state v . In terms of angular momentum 
operators, the rotational contribution to the Hamiltonian is [22]

Hrot = B v(N · N) − D v(N · N)2. (2)

This includes a small correction for centrifugal distortion, charac-
terised by the distortion coefficient D v .

2.2. The hyperfine Hamiltonian, Hhf

The hyperfine component of the Hamiltonian is necessary for 
molecules with non-zero nuclear spin. It describes interactions 
between the angular momentum of the two nuclei, and be-
tween each nucleus and the rotational angular momentum of the 
molecule. We can split this component further into terms that de-
scribe four different interactions,

Hhf = Hquad + H (0)
spin−spin + H (2)

spin−spin + Hspin−rotation. (3)

The first term Hquad describes the nuclear electric quadrupole in-
teraction and is written as

Hquad =
∑

j=A,B

eQ j · q j, (4)

where eQ j and q j are spherical tensors of rank 2 representing the 
nuclear quadrupole moment and electric field gradient (at the po-
sition of the nucleus) of nucleus j. This component of the Hamilto-
nian is governed by the molecular coupling constants (e Q q)A and 
(e Q q)B that contain both the magnitude of the nuclear electric 
quadrupole moments and the electric field gradients relevant for 
nuclei A and B, respectively; note this term is non-zero only when 
i j > 1/2.

The second and third terms describe scalar and tensor interac-
tions between the nuclear spins,
2

H (0)
spin−spin = c4 I A · I B, (5a)

H (2)
spin−spin = −c3

√
6T2(C) · T2 (I A, I B) . (5b)

This depends on the molecular constants c3 and c4, and a pair 
of second-rank tensors T2 that describe the angular dependence 
of the interactions. In the above the tensor T2(C) has compo-
nents given by T 2

q (C) = C2
q (θ,φ), where C2

q is a Racah-normalised1

spherical harmonic of order 2. The arguments of each component 
are the polar angle θ of the molecule’s internuclear axis (n̂) from 
z and the azimuthal angle φ. The Racah-normalised forms of the 
spherical harmonics are related to the L2-normalised versions (Y k

q ) 
through C2

q (θ,φ) = √
4π/5Y 2

q (θ,φ).

The tensor T2(I A, I B) is the second-rank tensor product of the 
two vectors I A and I B. This can be written as

T 2±2 (I A, I B) = IA±1 IB±1, (6a)

T 2±1 (I A, I B) = 1√
2

(
IA±1 IB

0 + IA
0 IB±1

)
, (6b)

T 2
0 (I A, I B) = 1√

6

(
IA+1 IB−1 + IA−1 IB+1 + 2IA

0 IB
0

)
, (6c)

where I j
q are the components of I j .

The final term describes spin-rotation interactions that arise 
due to the magnetic moment of each nucleus interacting with the 
magnetic field generated by the rotating molecule. This term is 
given by

Hspin−rotation =
∑

j=A,B

c j N · I j, (7)

where c j is the coupling constant for nucleus j.

2.3. Interaction between the molecule and external fields, Hext

To interpret current experiments with ultracold molecules, we 
need to calculate the internal structure in the presence of exter-
nal electromagnetic fields. We further decompose the component 
of the Hamiltonian that describes the interactions between the 
molecule and external fields as

Hext = HZ + Hdc + Hac, (8)

where HZ, Hdc, and Hac describe the interaction with dc magnetic, 
dc electric, and non-resonant optical fields, respectively.

To describe the effect of a dc magnetic field B , we construct 
the Hamiltonian

HZ = −grμN N · B −
∑

j=A,B

g j
(
1 − σ j

)
μN I j · B. (9)

Here the first term accounts for the magnetic moment generated 
by the rotation of the molecule, described by the rotational g-
factor gr. The second term accounts for the magnetic moments 
associated with the nuclear spins, characterised by the nuclear g-
factors g j , shielded isotropically by a factor σ j .

For polar molecules, dc electric fields couple strongly to the ro-
tational angular momentum of the molecule. They can be used to 
orient the molecule in the laboratory frame, resulting in space-
fixed dipoles that produce strong interactions over long range. The 
coupling between a dc electric field Edc and the angular momen-
tum of the molecule is described by the Hamiltonian

1 Ck
0(0, 0) = 1.
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Hdc = −μ0 Edc · n̂, (10)

where μ0 is the magnitude of the electric dipole moment in the 
frame of the molecule and n̂ is a unit vector that points along the 
internuclear axis of the molecule.

Finally, interactions between the molecule and off-resonant op-
tical fields are important for molecules confined to optical traps. 
Here, there is an interaction between the molecule and the oscil-
lating electric field Eac of the trap light. For linearly polarised light 
the Hamiltonian is

Hac = −1

2
Eac ·α · Eac, (11)

where α describes the molecular polarisability tensor, which de-
pends on the wavelength of the light. The magnitude of Eac is 
related to the laser intensity by Iac = |Eac|2/(ε0c). The polaris-
ability of the molecules is generally anisotropic; for a molecule 
oriented at an angle θ to the laser polarisation, defined by the 
angle β from the z axis, the polarisability along the axis of polar-
ization is

α(θ) = α‖ cos2 θ + α⊥ sin2 θ

= α(0) + α(2) P2(cos θ),
(12)

where α(0) and α(2) describe isotropic and anisotropic compo-
nents of the molecular polarisability and P2(x) = (3x2 − 1)/2 is 
the second-order Legendre polynomial.

3. Program structure

The Diatomic-py package has two key modules: hamiltonian
and calculate. The former contains functions used to construct 
the Hamiltonian, while the latter allows the efficient calculation 
of key quantities from the eigenvalues and eigenstates found by 
diagonalizing the Hamiltonian.

3.1. Hamiltonian

The Hamiltonian matrix is a two-dimensional, square array of 
dimension (2 × iA + 1) × (2 × iB + 1) × (Nmax + 1)2. To create 
this object, the user supplies a Python dictionary containing the 
relevant molecular constants and a value for Nmax, the highest-
energy rotational state to include in the basis set, to the function
build_hamiltonians. We include current values of the con-
stants for a selection of experimentally relevant bialkali molecules 
from [16,26,27].

We now briefly describe the process that the build_hamil-
tonians function follows. The first step of the calculation is to 
populate nine two-dimensional numpy.ndarray objects using 
the generate_vecs function, one for each Cartesian component 
of the three angular momentum vectors. To perform this popula-
tion we use the standard definition of the ladder operators and the 
relations between spherical and Cartesian components of a general 
angular momentum j:

〈 j′,m′
j| j+ | j,m j〉 =

√
j( j + 1) − m jm′

jδ j, j′δm′
j ,m j+1, (13a)

j− = j†
+, (13b)

jx = 1

2
( j+ + j−) , (13c)

j y = i

2
( j− − j+) , (13d)

jz = 1

2
( j+ · j− − j− · j+) . (13e)
3

Following this initialisation step, we store each component of 
the various j as elements in a length-3 list. The final initialisation 
step is to create a single unified state space, which is done via 
repeated use of numpy.kron and identity matrices of appropriate 
dimensions. This transforms each of the 3 vectors from their own, 
independent, state spaces into the combined space of iA, mA, iB, 
mB.

The remainder of the functions in hamiltonian implement 
the expressions from section 2 with each of the terms in (1) cal-
culated by a separate function call and the component of HAB rep-
resented by a numpy.ndarray object. These component objects 
are shown in Fig. 1 for an exemplar molecule where iA = iB = 3/2
for the first 3 rotational states. The advantage of this approach is 
that, having abstracted the angular momentum to a vector once, it 
need not be repeated; this allows a speed-up using the fast vector 
processing of numpy and scipy. Similarly, for the terms in Hext, we 
initially treat the electric, magnetic or optical fields as unit vectors, 
such that these terms can be scaled later.

To assemble the total Hamiltonian, Hrot and Hhf are simply 
added together to form H . To calculate Hext, we first construct 
field-independent matrices HZ/|B|, Hdc/|Edc|, and Hac/Iac. These 
are then combined to form Hext, by multiplying them by |B|, |Edc|, 
and Iac as required. Each of these three terms is then added to H
to form the total Hamiltonian HAB. To diagonalise the Hamiltonian, 
we recommend using numpy.linalg.eigh as it can not only 
handle simultaneous multi-processing of multiple field magnitudes 
but also exploits the Hermitian property of the Hamiltonian matrix 
to speed up calculations. This function is based on the _syevd
and _heevd routines in the LAPACK linear algebra package for 
Fortran 90. As an example, to generate and diagonalize the Hamil-
tonians needed for a Zeeman plot covering a magnetic field range 
of 1 to 500 G, with a constant electric field Edc = 5 kV cm−1 and 
off-resonant light intensity Iac = 2.5 kW cm−2, we run the script:

import numpy
import diatomic.hamiltonian as hamiltonian
from diatomic.constants import Rb87Cs133

Nmax=6
H0,Hz,Hdc,Hac =

hamiltonian.build_hamiltonians(Nmax,Rb87Cs133,\
zeeman=True,Edc=True,ac=True)

I = 2.5e7 #W / m^2
E = 5e5 #V / m
B = numpy.linspace(1, 500, int(50))*1e-4 #T

H = H0[..., None]+\
Hz[..., None]*B+\
Hdc[..., None]*E+\
Hac[..., None]*I

H = H.transpose(2,0,1)

energies, states = numpy.linalg.eigh(H)

The variable Rb87Cs133 contains all of the molecular constants 
for 87Rb133Cs needed for the construction of the Hamiltonian in a 
Python dictionary:

Rb87Cs133 = {"I1":1.5, # nuclear spin of nucleus A
"I2":3.5, # nuclear spin of nucleus B
"d0":1.225*DebyeSI, # molecule frame

dipole moment
"Brot":490.173994326310e6*h, # rotational

constant
"Drot":207.3*h, # centrifugal distortion

coefficient
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Fig. 1. Contributing terms to the molecular Hamiltonian are shown graphically for rotational states N = 0, 1, 2 and nuclear spins iA = iB = 3/2. Each contribution consists of a 
2D square matrix with ∑N=0,1,2(2N + 1)(2iA + 1)(2iB + 1) = 144 elements in each direction. Non-zero matrix elements are indicated by the coloured markings, with positive 
values designated red and negative values blue. The dotted and dashed lines show the boundaries between N = 0, 1 and N = 1, 2 states respectively. The magnetic field B
and the dc electric field Eac are coaxial and point along the z axis. For the ac Stark component Hac we set the laser polarisation at an angle β = 45◦ with respect to the z
axis. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
"Q1":-809.29e3*h, # electric quadrupole
coupling for A

"Q2":59.98e3*h, # electric quadrupole
coupling for B

"C1":98.4*h, # Nuclear spin-rotation
coefficient for A

"C2":194.2*h, # Nuclear spin-rotation
coefficient for B

"C3":192.4*h, # Tensor nuclear spin-spin
coefficient

"C4":19.0189557e3*h, # Scalar nuclear
spin-spin coeff.

"MuN":0.0062*muN, # magnetic moment from
rotation ang mom

"Mu1":1.8295*muN, # magnetic moment for A
incl. shielding

"Mu2":0.7331*muN, # magnetic moment for B
incl. shielding

"a0":2020*4*pi*eps0*bohr**3, # isotropic
pol, 1064nm

"a2":1997*4*pi*eps0*bohr**3, # anisotropic
pol, 1064nm

"Beta":0} # laser polarisation angle wrt z

All quantities in the dictionary are defined in SI units. We include 
sample dictionaries in an additional module constants.py from 
which we import Rb87Cs133 in this example. To perform the 
equivalent calculation for other molecules either a different set 
of constants can be imported from constants.py or a custom 
dictionary should be defined. Note that diatomic-py cannot cal-
culate the values of α(0) and α(2) and so these must be supplied, 
by the user, for each wavelength λ. Where available the constants 
we have supplied are for λ = 1064 nm.

3.2. Calculate

Calculate contains functions that deal with the result of
the Hamiltonian diagonalisation. This includes a set of
three functions label_states_N_MN, label_states_I_MI,
label_states_F_MF. These take the array of eigenvectors and 
evaluate the expectation values of N · N and Nz; I · I and Iz; and 
F · F and F z , respectively, and can be used to assign quantum 
numbers to the eigenstates. Here I = I A + I B is the operator for 
4

the total nuclear spin, and F = N + I is that for the total angular 
momentum.

The function transition_dipole_moment calculates the 
transition dipole moment (in units of the molecule-frame dipole 
moment) between one eigenstate |i〉 and a range of others | f 〉. 
This calculation is performed by first constructing the space-fixed 
electric dipole operator μ and then calculating 〈i|μ | f 〉 by matrix 
multiplication. We also include the functions magnetic_moment
and electric_moment that calculate the lab-frame magnetic 
and electric dipole moments (in SI units) for each eigenstate. Each 
of these functions constructs the appropriate dipole moment oper-
ator μz for either the electric or magnetic dipole moment pointed 
along the quantisation axis (z) before calculating the expectation 
value 〈i|μz |i〉.

Finally, we include a function for alternative ordering of the 
energy levels. By default the energy levels are returned in order 
of ascending energy, such that two levels that cross one another 
exchange indices. To prevent this, and return levels with indices
that reflect the character of the states rather than energy, we pro-
vide the function sort_smooth. This orders energy levels such 
that, for each state ψ p , the overlap 〈ψ p

k |ψ p
k+1〉 is maximal, where 

k is an index that increments with the independent variable of 
the calculation. For each k the function calculates the overlap of 
each eigenstate ψ p

k with all others for k + 1 i.e. the matrix prod-
uct CT

k Ck+1 = O k where Ck is the eigenvector matrix at field k. By
finding the index q for which the value of 〈q| O k |p〉 is maximal, 
we can locate which pair of eigenstates has the largest overlap. If 
p �= q then we infer that two energy levels have crossed and swap 
the indices such that ψq

k+1 ↔ ψ
p
k+1 and similarly with the eigenen-

ergies Eq
k+1 ↔ Eq

k+1.

3.3. Benchmarking

The accuracy of the calculation increases with the number of 
basis states included in the calculation. However, this also in-
creases the time for computation. The dc Stark component of the 
Hamiltonian causes the largest mixing between rotational states, 
and therefore calculations for molecules in large dc electric fields 
are the most sensitive to the number of states included in the 
calculation. For the purpose of these tests we use the molecule 
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Fig. 2. Convergence and code run time. We perform a calculation for 87Rb133Cs in a magnetic field B = 181.5 G and an electric field Edc = 5 kV cm−1, with an optical field of 
intensity Iac = 2.5 kW cm−2 and with λ = 1064 nm, that is linearly polarised orthogonal to the magnetic and electric fields. (a) Convergence of the calculated energy for the 
spin-stretched lowest-energy state (N = 0, M F = 5) as a function of the number of basis states included in the calculation. (b) Time taken by each calculation; each marker 
is the average time across 5 calculations performed using an Intel i5-8350U CPU @ 1.7 GHz with 8 GB of RAM.

Fig. 3. Zeeman structure of states with N = 0 and 1 for a selection of bialkali molecules: (a) 87Rb133Cs, (b) 40K87Rb, (c) 23Na87Rb, (d) 23Na40K. The hyperfine structure 
for N = 0 is shown in the lower panels, with the high-field hyperfine ground state indicated in black. The structure for N = 1 is shown in the upper panels. The relative 
transition strengths for one-photon transitions from the high-field hyperfine ground state are shown by the blue colour map.
87Rb133Cs; we do not anticipate that there will be much variation 
in the convergence or time for different bialkali species.

We control the number of basis states by changing the vari-
able Nmax, i.e. the quantum number of the highest-energy rota-
tional state included in the calculation. For each result, we plot 
the change in energy of the state when the new rotational state is 
included in the calculation.

For our example, we consider the 87Rb133Cs molecule in a 
magnetic field B = 181.5 G, a dc electric field Edc = 5 kV cm−1, 
and an optical field, with λ = 1064 nm, with laser intensity 
Iac = 2.5 kW cm−2, that is linearly polarised orthogonal to the 
magnetic and electric fields. This is a typical configuration at an 
energy scale relevant to prior experimental work [28]. We find that 
for this configuration, the energy of N = 0 changes by less than 
h × 1 Hz for Nmax > 7, better than the uncertainty on experimen-
tal measurements of the absolute binding energy [29] or typical 
uncertainty in rotational spectroscopy [26,30].

In Fig. 2(b), we show the time that each calculation took us-
ing an Intel i5-8350U CPU @ 1.7 GHz with 8 GB of RAM. We break 
the run time up into the construction phase, where the Hamil-
tonian is constructed, and the numerical diagonalization using
numpy.linalg.eigh. We see that the Hamiltonian construc-
tion takes an order of magnitude longer than the diagonalization 
for all calculations. However, for a calculation with multiple field 
5

magnitudes, this construction step must be performed only once. 
We anticipate that the duration of the diagonalization stage would 
scale linearly with the number of field magnitudes being studied 
and as the cube of the number of basis states i.e. as (Nmax + 1)6. 
Note that the largest calculations shown, with Nmax = 9, take only 
a few minutes in total to complete, demonstrating the utility of the 
code without access to high-performance computing facilities.

4. Examples

In this section we briefly describe example calculations that are 
relevant to current research into controlling the quantum states of 
ultracold bialkali molecules.

4.1. Zeeman and dc Stark effects

In Fig. 3 we show the Zeeman structure for N = 0, 1 for a se-
lection of bialkali molecules up to 600 G in increments of 10 G. 
To perform the calculations, we generate a 3D numpy array con-
structed by layering the 2D Hamiltonian from each magnetic field 
to be evaluated, and simultaneously diagonalising all Hamiltonians 
in a single call of numpy.linalg.eigh. For each molecule, we 
highlight the spin-stretched hyperfine state that becomes the ab-
solute ground state in the limit of large magnetic field, and also 
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Fig. 4. dc Stark shift for the N = 0, 1 for a selection of bialkali molecules: (a) 87Rb133Cs, (b) 40K87Rb, (c) 23Na87Rb, (d) 23Na40K. The electric field is applied in addition to 
a parallel dc magnetic field of 200 G. The N = 0 hyperfine structure is shown in the lower panels, with the high-field hyperfine ground state indicated in bold. The N = 1
structure is shown in the upper panels. The relative transition strength is coded as in Fig. 3.
Fig. 5. Energies for states of 87Rb133Cs with N = 0 and 1, and allowed transitions 
from the absolute ground state (N = 0, M F = 5) at a magnetic field of 181.5 G. 
States in N = 1 with allowed one-photon transitions are highlighted and labelled as 
M F = 4, 5, 6. The panel on the right shows the transition dipole moment (TDM) for 
each transition as a fraction of the molecule-frame dipole moment (μ0).

the states with N = 1 that are connected to it by an allowed 
one-photon transition. In Fig. 4, we show similar dc Stark maps 
calculated using a similar approach for the same molecules in a 
200 G magnetic field. For each calculation, we take the field from 
0 V cm−1 to 250 V cm−1 in increments of 2.5 V cm−1.

4.2. Transition energies and transition dipole moments

Electric dipole transitions between rotational states may be 
driven using resonant microwaves. In Fig. 5 we show the hyper-
fine states of 87Rb133Cs in a 181.5 G magnetic field. We choose 
the absolute ground state (N = 0, M F = 5) as the initial state from 
which we want to calculate the transition dipole moments of all 
allowed transitions. From here, there are allowed one-photon mi-
crowave transitions to N = 1 states with M F = 4, 5, 6, depending 
on the polarisation of the driving field with respect to the quanti-
sation axis, as defined by the magnetic field. For each transition we 
show the energy of the final state with respect to the initial state 
along with the transition dipole moment in units of the molecule-
frame dipole moment (for 87Rb133Cs, μ0 = 1.23 D [6]).

4.3. ac Stark effects

The ac Stark effect is important for optically trapped molecules. 
Using our code, transition frequencies can be calculated as a func-
6

tion of either laser intensity Iac or polarisation angle β . We give 
examples of each of these calculations for the molecules 87Rb133Cs 
and 40K87Rb at experimentally relevant magnetic fields of 181.5 G 
and 545.9 G respectively, and laser wavelength λ = 1064 nm. In 
each case we highlight allowed transitions for microwaves po-
larised along z from an initial state with N = 0; we choose 
(N = 0, M F = 5) for 87Rb133Cs and (N = 0, mK = −4, mRb = 1/2)

for 40K87Rb. In Fig. 6 we show the relevant transition frequen-
cies as a function of the laser intensity for β = 0◦ and 90◦ . For 
the case of 87Rb133Cs at β = 90◦ we observe a complex pat-
tern of avoided crossings as the trapping light mixes states with 
different M F . This behaviour matches that observed in experi-
ments [31,28]. In Fig. 7 we show a similar plot, but varying β

with fixed Iac = 2.35 kW cm−2. To perform this calculation we re-
calculate the component H (2)

ac of the Hamiltonian from scratch for 
each value of β . The horizontal dashed line shows the transition 
frequency for the strongest allowed transition in the absence of 
the trap light. For 40K87Rb, there is one strong transition that is 
allowed across all polarisation angles. This transition frequency 
crosses the free-space value when β = 52◦ , in agreement with ex-
perimental observations of Neyenhuis et al. [16].

5. Installation and usage

Installation of the package is performed by using the .whl files 
from the GitHub repository [32] or directly from the Python Pack-
age Index using pip install diatomic.

6. Conclusions and outlook

We have presented a Python code that automates the construc-
tion of a Hamiltonian that describes the rotational and hyperfine 
structure of 1� molecules. The Hamiltonian includes terms to de-
scribe interactions between the molecule and external dc mag-
netic, dc electric and the off-resonant optical fields necessary for 
trapping the molecules. This facilitates the straightforward calcu-
lation of Zeeman, dc Stark, and ac Stark maps of the hyperfine 
structure that can be readily compared with measurements from 
current experiments. Additional functions for the calculation of 
static magnetic and electric dipole moments of states are also pro-
vided.

Useful future additions to the code may include: greater flex-
ibility in the geometry of the applied fields, e.g. non-parallel dc 
magnetic and dc electric fields; simulation of dressing by near-
resonant microwave fields; extension to 2� molecules, relevant to 
experiments on laser-cooled molecules.
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Fig. 6. The frequency of rotational transitions as a function of off-resonant laser intensity. We show calculations for transitions from (a) the absolute ground state 
|N = 0, M F = +5〉 of 87Rb133Cs and (b) the state |N = 0, MN = 0,mK = −4,mRb = 1/2〉 of 40K87Rb. In each case, the off-resonant laser field has a wavelength λ = 1064 nm 
and is linearly polarised at an angle β with respect to z. Sub-levels that are not accessible are shown in yellow as a function of laser intensity. The relative transition 
strengths for microwaves polarised along z are shown as a blue colour map. For the calculations for 87Rb133Cs the magnetic field is fixed to be 181.5 G, appropriate for 
matching the experiments of Blackmore et al. [28]. In the calculations for 40K87Rb the magnetic field is fixed to 549.5 G, appropriate for comparison with the experiments of 
Neyenhuis et al. [16]. The dashed black line indicates the intensity used for the calculations shown in Fig. 7.

Fig. 7. The frequency of rotational transitions as a function of off-resonant laser polarisation. We show calculations for transitions from (a) the absolute ground state 
|N = 0, M F = +5〉 of 87Rb133Cs (b) the state |N = 0, MN = 0,mK = −4,mRb = 1/2〉 of 40K87Rb. In each case the off-resonant laser field has a wavelength λ = 1064 nm, an 
intensity of 2.35 kW cm−2, and is linearly polarised at an angle β with respect to z. The relative transition strengths for microwaves polarised along z are shown as a blue 
colour map. For the calculations shown in (a) the magnetic field is fixed to be 181.5 G, appropriate for matching the experiments of Blackmore et al. [28]. For the calculations 
shown in (b) the magnetic field is fixed to 549.5 G, appropriate for comparison with the experiments of Neyenhuis et al. [16]. The dashed black lines indicate the transition 
frequencies for the strongest transition in N = 1 in the absence of the laser field.
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