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Algebraicity of L-values attached
to quaternionic modular forms
Thanasis Bouganis and Yubo Jin
Abstract. In this paper, we prove the algebraicity of some L-values attached to quaternionic modular
forms. We follow the rather well-established path of the doubling method. Our main contribution
is that we include the case where the corresponding symmetric space is of non-tube type. We
make various aspects very explicit, such as the doubling embedding, coset decomposition, and the
definition of algebraicity of modular forms via CM-points.

1 Introduction

Special values of L-functions attached to automorphic forms have a long history in
modern number theory. Their importance is difficult to overestimate, and for this
reason, they have been the subject of intense study in recent decades. There is no
doubt that it is important to study L-values of automorphic forms whose underlying
symmetric space does not have hermitian structure (for example, automorphic forms
for GLn); however, in this paper, we will be dealing with a kind of automorphic
form where the corresponding symmetric space has a hermitian structure. To go a
bit further, we now introduce some notation.

Let D be a division algebra over Q, and let V be a free left D-module of finite rank
n. Denote End(V ,D) be the ring of D-linear endomorphism of V and GL(V ,D) =
End(V ,D)×. For a nondegenerate hermitian (or skew-hermitian) form ⟨ , ⟩ ∶ V × V →
D, we define a generalized unitary group

G ∶= Gn ∶= {g ∈ GL(V ,D) ∶ ⟨gx , g y⟩ = ⟨x , y⟩}.

One can define automorphic forms associated with such group as in [2]. These
can be seen as functions on a symmetric space G(R)/K, where K is a maximal
compact subgroup of G(R). In addition, when the associated symmetric space can be
given a hermitian structure, one can define holomorphic automorphic forms which
is what we refer as modular forms in this paper. The symmetric spaces G(R)/K
have been classified [12, Chapter X] (see also [17]). For positive integers n and
m, we denote by Cn

m the set of n × m matrices with entries in C. There are four
infinite families of irreducible hermitian symmetric spaces of non-compact type as
follows:
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2 T. Bouganis and Y. Jin

(A) {z ∈ Cn
m ∶ zz∗ < 1n},

(B) {z ∈ Cn ∶ z∗z < 1 + ∣tzz/2∣2 < 2},
(C) {z ∈ Cn

n ∶ tz = z, z∗z < 1n},
(D) {z ∈ Cn

n ∶ tz = −z, z∗z < 1n}.

The spaces above are the so-called bounded realizations of the symmetric spaces,
and one can with the use of the Cayley transform show that they are biholomorphic
to unbounded domains. For example, when D = Q and ⟨ , ⟩ is skew-hermitian, then G
is the symplectic group and we have the notion of Siegel modular forms defined over
symmetric spaces of type C. The unbounded realization is the classical Siegel upper
space. When D is an imaginary quadratic field, G is the unitary group and we have
the notion of Hermitian modular forms defined over symmetric spaces of type A. For
these two types of domains (and their groups), there has been an intensive study on the
algebraic properties of their attached special L-values. We will not cite here the vast
literature that has grown in the past few decades, so we will only mention here the
book [32], the more recent article [21] and the references therein for a more complete
account of the Siegel case, and the work of Harris [11] in the Hermitian modular forms
case.

The focus of this paper is on the domains of type D above. This domain arises when
we select D to be a definite quaternion algebra and the form ⟨ , ⟩ skew-hermitian
(see the next section for details). There are already some works for these modular
forms (for example, [3, 16, 35, 37]), but it is fair to say that these modular forms are
not as intensively studied as the Siegel or Hermitian ones. Even more importantly,
most, if not all, of the works are restricted to the case when the dimension of V is
even. The importance of this restriction is related to the unbounded realization of
the corresponding symmetric domain. In particular, when n is even, the unbounded
domain is biholomorphic to a tube domain, or what is usually called a domain of Siegel
Type I. When n is odd, the domain is not any more of tube type (a similar aspect is
seen also for Hermitian modular forms in the non-split case U(n, m) with n ≠ m).
The significance of this distinction will become clear later in this paper, since the non-
tube case is considerably more technical. For example, as we will see, the notion of an
algebraic modular form cannot be the usual one (algebraic Fourier coefficients) or the
doubling embedding which is needed in the doubling method is considerably more
complicated to write explicitly in the unbounded realization.

As we have indicated, we will be studying the special values of L-functions by using
the doubling method of Garrett, Shimura, Piatetski-Shapiro, and Rallis. Without going
here into details but referring later to the paper, the key idea is to obtain an integral
representation relating the L-function to the pullback of a Siegel-type Eisenstein series.
Then the analytic and algebraic properties of the L-function can be studied from those
of the Eisenstein series. The latter is well understood thanks to the rather explicitly
known Fourier expansion.

Our starting point is a cuspidal Hecke eigenform f ∈ Sk(K1(n)). We then consider
two copies of our group Gn with an embedding Gn ×Gn → GN with N = 2n, and
hence GN splits (see Section 4 for notation). For PN the Siegel parabolic subgroup of
GN , we describe in Proposition 4.3 the double coset PN/GN/Gn ×Gn . Then a Siegel-
type Eisenstein series over GN can be decomposed into several orbits, and except for
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Algebraicity of L-values attached to Quaternionic modular forms 3

one “main orbit,” all orbits vanish when considering an inner product (in one variable)
with the cusp form f . This allows us to prove the following formula (see Section 4 and,
in particular, Theorem 4.7 for details and further notation):

∫
Gn(Q)/Gn(A)/K1(n)K∞

E(g × h, s)f(h)dh = ck(s)D(s, f , χ)f(g),

where χ is a Dirichlet character, ck(s) is an explicit function on s, and D(s, f , χ) is a
Dirichlet series which is related (see equation (3.1)) to the twisted standard L-function
L(s, f , χ).

In Section 5, we review the definition of algebraic modular forms and differential
operators. It is well known how to define algebraic modular forms on hermitian
symmetric space. There are several different definitions, and we will mainly follow
the one via CM-point as in [32]. Using the Maass–Shimura differential operators,
we discuss the notion of a nearly holomorphic modular form in our setting. These
differential operators for all four types of symmetric spaces mentioned above have
been studied in [27, 29]. We will summarize the result there and apply it to the
Siegel-type Eisenstein series mentioned above. Based on this and thanks to the well-
understood Fourier expansion of Siegel-type Eisenstein series, we will prove our main
algebraic result for L-functions by the same method as in [32]. Our main result is
Theorem 6.3 which gives the following.

Theorem 1.1 Let n be an ideal in Z, and assume that all finite places v with v ∤ n are
split in B. Let f ∈ Sk(K1(n),Q) be an algebraic cuspidal Hecke eigenform, and let χ be
a Dirichlet character whose conductor divides the ideal n. Assume that k > 2n − 1, and
let μ ∈ Z such that 2n − 1 < μ ≤ k. Then

L(μ, f , χ)
πn(k+μ)− 3

2 n(n−1)⟨f , f⟩
∈ Q.

Remark 1.2 We note here that the condition on the conductor of the Dirichlet
character is not restrictive. Indeed, for f ∈ Sk(K1(n),Q) and χ of conductor m, we
can select n′ = nm instead of n since Sk(K1(n),Q) ⊂ Sk(K1(n′),Q).

Most of our arguments to prove the above are straightforward generalization of
[32] from the unitary and symplectic setting to our setting. Our main contribution is
making some of the not always obvious generalizations as explicit as possible, such
as the diagonal embedding, especially in the non-tube case (see Section 2.3), and the
coset decomposition PN/GN/Gn ×Gn (see Section 4). Another contribution of the
present paper is in the definition of algebraic modular forms (see Section 5), especially
in the non-tube case, where we follow a rather more explicit approach by using the
theory of CM-points developed by Shimura [32] rather than simply referring to the
more advanced and general theory of Harris [9, 10], Deligne [5], and Milne [20] on
automorphic vector bundles of Shimura varieties. Finally, we should add that our
computations are done mainly using the adelic language (in comparison to the more
classical in [32]), which is also inspired by [21].
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4 T. Bouganis and Y. Jin

2 Groups and symmetric spaces

In this and the next section, we introduce the notion of a quaternionic modular form
and discuss some main properties. Such modular forms have been already studied
(see, for example, [3, 16]), but we extend the discussion to include also the case of
non-split groups. For most of our notation here, we follow the one introduced in the
books [31, 32], where the case of Siegel and Hermitian modular forms is considered.

2.1 Quaternionic unitary groups

We start by fixing some notation. For more details on quaternion algebras, the reader
is referred to [36]. In this work, a quaternion algebra will mean a central simple algebra
of dimension 4 over Q. After selecting a basis, we can write it in the form

B = Q⊕Qζ ⊕Qξ ⊕Qζ ξ,

where

ζ2 = α, ξ2 = β, ζ ξ = −ξζ ,

with α, β nonzero square-free integers. We assume in this paper that B is definite, i.e.,
α, β < 0. The main involution of B is given by

⋅ ∶ B→ B ∶ a + bζ + cξ + dζ ξ ↦ a + bζ + cξ + dζ ξ = a − bζ − cξ − dζ ξ.

We warn the reader that we may, by abusing the notation, denote ⋅ various involution
of algebras (for example, complex conjugation on quadratic imaginary fields), but it
will be always clear from the context what is meant. The trace and the norm are defined
by tr(x) = x + x , N(x) = xx for x ∈ B. As usual, we write Mn(B) for the set of n × n
matrices with entries in B. We also use the notation Bm

n for the set of m × n matrices
with entries in B. For X ∈ Mn(B), we write X∗ = tX , X̂ = (X∗)−1 for the conjugate
transpose and its inverse (if makes sense).

Identify ζ , ξ with
√

α,
√

β ∈ Q, and let K = Q(ξ). We define the embedding

i ∶ B→ M2(K), a + bζ + cξ + dζ ξ ↦ [a + cξ α(b − dξ)
b + dξ a − cξ ] .

One easily checks that for x ∈ B,

i(x)∗ = I−1
i(x∗)I, I ∶= [−α 0

0 1] ,

t
i(x) = J−1

i(x∗)J , J ∶= [0 −1
1 0 ] ,

and i induces an isomorphism

i ∶ B ∼�→ {x ∈ M2(K) ∶ xIJ = IJx}.

We extend this map to an embedding i ∶ Mn(B) → M2n(K) by sending x = (x i j)
to (i(x i j)). Denote I′n = diag[I, . . ., I], J′n = diag[J , . . ., J] with n copies. Then, for
x ∈ Mn(B),
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i(x)∗ = I′−1
n i(x∗)I′n , t

i(x) = J′−1
n i(x∗)J′n ,

and i induces an isomorphism

i ∶ Mn(B)
∼�→ {x ∈ M2n(K) ∶ xI′n J′n = I′n J′n x}.

For a matrix with entries in quaternion algebra, the determinant det and the trace
tr will mean the reduced norm and the reduced trace. That is taking the determinant
and the trace for its image under i. It is well known that the definition of reduced
norm and trace is indeed independent of the choice of such embedding and the field
K. Denote

GLn(B) = {g ∈ Mn(B) ∶ det(g) ≠ 0}, SLn(B) = {g ∈ Mn(B) ∶ det(g) = 1}.

Let A be the adele ring of Q. By a place v, we mean either a finite place correspond-
ing to a prime or the archimedean place∞. The set of finite places is denoted by h. We
write A = AhR with finite adeles Ah and x = xhx∞ with x ∈ A, xh ∈ Ah , x∞ ∈ R. Fix
embeddings Q→ Qv and set Bv = B⊗Q Qv . The previous definition of trace, norm,
and determinant naturally extends locally or adelically. Fix a maximal order O of B
and set Ov = O⊗Z Zv . For a place v, we say v splits if Bv ≅ M2(Qv). If this is the case,
we fix an isomorphism iv ∶ Bv

∼�→ M2(Qv) and assume iv(Ov) = M2(Zv) for finite
place. B is called indefinite if Bv is split for v = ∞ and definite otherwise. In particular,
B is definite if α, β < 0, and indefinite otherwise. That is, for the infinite place, by our
assumption, B∞ is the Hamilton quaternion

H = R⊕Ri⊕Rj⊕Rij, i2 = j2 = −1, ij = −ji,

and the map i above induces an isomorphism

i ∶ Mn(H)
∼�→ {x ∈ M2n(C) ∶ xJ′n = J′n x}.

In this paper, we consider the following algebraic groups:

G = Gn(Q) = {g ∈ SLn(B) ∶ g∗ϕg = ϕ}, ϕ =
⎡⎢⎢⎢⎢⎢⎣

0 0 −1m
0 ζ ⋅ 1r 0

1m 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Here, n = 2m + r and we assume that m > 1 is the global Witt index of the group G.
Such a group is usually called a quaternionic unitary group, and has Q-rank equal to
m. For a split place v, G(Qv) is isomorphic to an orthogonal group. That is,

G(Qv) ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g ∈ SL2n(Qv) ∶ tg
⎡⎢⎢⎢⎢⎢⎣

0 0 1mv

0 θ 0
1mv 0 0

⎤⎥⎥⎥⎥⎥⎦
g =

⎡⎢⎢⎢⎢⎢⎣

0 0 1mv

0 θ 0
1mv 0 0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,(2.1)

with some anisotropic matrix θ = tθ ∈ SLrv (Qv) (that is, the corresponding quadratic
form does not represent zero), and 2n = 2mv + rv for some positive integers mv , rv
with mv ≥ 2m and rv ≤ 2r. In particular, G(Qv) is totally isotropic if r = 0 or (using
[33, Lemma 1.7]) if α ∈ Q×2

v . In these two cases, we have mv = n, rv = 0, and

G(Qv) ≅ {g ∈ SL2n(Qv) ∶ tg [ 0 1n
1n 0 ] g = [ 0 1n

1n 0 ]} .
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6 T. Bouganis and Y. Jin

We remark here that the condition on m being the Witt index of our group G implies
that r ≤ 3. Indeed, using a result in [13], we know that for r ≥ 4, ζ ⋅ 1r is isotropic if and
only if it is locally isotropic for all finite places v and infinity. But the latter (i.e., locally
isotropic for all finite places and infinity) is always the case for r ≥ 4. Indeed, for v split,
this follows from [33, Theorem 7.6] and for v nonsplit (including ∞) from [34].

We will discuss the local archimedean group G(R) and the associated symmetric
spaces in the next subsection.

We fix an integral two-sided ideal n = (N) of O generated by N = ∏v pnv
v ∈ Z. We

define an open compact subgroup K1(n) ⊂ G(Ah) by K1(n) = ∏v Kv , where

Kv =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ =
⎡⎢⎢⎢⎢⎢⎣

a b c
g e f
h l d

⎤⎥⎥⎥⎥⎥⎦
∈ G(Ov) ∶ γ ≡

⎡⎢⎢⎢⎢⎢⎣

1m ∗ ∗
0 1r ∗
0 0 1m

⎤⎥⎥⎥⎥⎥⎦
mod pnv

v

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

It is well known (see, for example, [22, p. 251]) that we have a finite decomposition

G(A) = ⋃
j

G(Q)t jK1(n)G(R).

Moreover, thanks to the weak approximation which is valid for our group (see [22,
Proposition 7.11]), we can take t j such that (t j)v = 1 for v∣n (compare with [31, Lemma
8.12]). For finite places v not in the support of n, the Iwasawa decomposition is valid,
and hence we can take t j to be upper triangular. Let Γ j

1 = t jK1(n)t−1
j ∩G(Q). We can

take t0 = 1 so that

Γ0
1 = Γ1(N) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ =

⎡⎢⎢⎢⎢⎢⎣

a b c
g e f
h l d

⎤⎥⎥⎥⎥⎥⎦
∈ G(O) ∶ γ ≡

⎡⎢⎢⎢⎢⎢⎣

1m ∗ ∗
0 1r ∗
0 0 1m

⎤⎥⎥⎥⎥⎥⎦
mod N

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

2.2 Symmetric spaces

2.2.1 Abstract symmetric spaces

To motivate our definition of symmetric spaces, we start with a rather general and
abstract setting before giving explicit realizations of our symmetric spaces. Let i be any
embedding Mn(H) → M2n(C). Then, by the Skolem–Noether theorem, there exists
α ∈ M2n(C) with αα∗ = 1 such that ti(x) = αi(x∗)α−1. Let Φ ∈ GLn(B) be a skew-
hermitian form similar to ϕ above, that is, Φ = γ∗ϕγ for some γ ∈ GLn(B). Then the
group G(R) is isomorphic to

G = {g ∈ GL2n(C) ∶ g∗Hg = H, tgK g = K},

with H = i(Φ), K = α−1i(Φ). We call it a realization of G(R). Suppose that we are
given two such data (i1 , Φ1 , H1 , K1 ,G1) and (i2 , Φ2 , H2 , K2 ,G2) with Φ1 = S∗Φ2S.
Again, by Skolem–Noether, there exists β with ββ∗ = 1 such that i1(x) = β−1i2(x)β.
Put R = i2(S)β, then H1 = R∗H2R, K1 = tRK2R. Therefore, g ↦ RgR−1 gives isomor-
phism G1 ≅ G2.

Following [23], we will define the associated symmetric space via its Borel embed-
ding into its compact dual symmetric space. In our case, we have that the semisimple
compact dual of our group is the group SO(2n) (see [12, p. 330]), and the corre-
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sponding dual symmetric space is SO(2n)/U(n). This space may be identified (see,
for example, [28, p. 6]) with the space V = L/GLn(C) where

L = {U ∈ C2n
n ∶ tUKU = 0}.

We set

Ω = {U ∈ C2n
n ∶ −iU∗HU > 0, tUKU = 0} ⊂ L,

with the action of GLn(C) by right multiplication and G by left multiplication. The
symmetric space H is defined as

H = {z ∈ C2n
n ∶ U(z) ∈ Ω}, U(z) ∶= [ z

u0
] ,

for some fixed suitable u0, which we make explicit later. The following lemma is a
direct consequence of our definition for H.

Lemma 2.1 There is a bijection H ×GLn(C) → Ω given by z × λ = U(z)λ.

Note that G acts on Ω by left multiplication. By the above lemma, it follows that for
any element α ∈ G, we can find a z′ ∈H and an λ(α, z) ∈ GLn(C) such that

αU(z) = U(z′)λ(α, z).

We then define the action of G(R) on H by α.z ∶= αz ∶= z′ and λ(α, z) satisfies the
cocycle relation

λ(α1α2 , z) = λ(α1 , α2z)λ(α2 , z) for α1 , α2 ∈ G, z ∈H.

We set j(α, z) ∶= det(λ(α, z)) ∈ C×. We call λ(α, z) or j(α, z) automorphy factors.

More explicitly, write α = [a b
c d],

αU(z) = [az + bu0
cz + du0

] = [(az + bu0)(cz + du0)−1u0
u0

]u−1
0 (cz + du0).

That is, αz = (az + bu0)(cz + du0)−1u0,and λ(α, z) = u−1
0 (cz + du0).

For z1 , z2 ∈H, we set

η(z1 , z2) ∶= iU(z1)∗HU(z2),
δ(z1 , z2) ∶= det(η(z1 , z2)) and η(z) ∶= η(z, z), δ(z) ∶= δ(z, z).

We now note that

U(z1)∗HU(z2) = λ(α, z1)∗U(αz1)∗HU(αz2)λ(α, z2)

and

iU(αz1)∗HU(αz2) = [
η(αz1 , αz2) ∗

∗ ∗] , iU(z1)∗HU(z2) = [
η(z1 , z2) ∗

∗ ∗] .

In particular, we obtain that

λ(α, z1)∗η(αz1 , αz2)λ(α, z2) = η(z1 , z2),
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8 T. Bouganis and Y. Jin

and after taking the determinant, we have

j(α, z1)δ(αz1 , αz2) j(α, z2) = δ(z1 , z2).

In particular,

λ(α, z)∗η(αz)λ(α, z) = η(z), δ(αz) = ∣ j(α, z)∣−2δ(z).

We now discuss the relation between different realizations of the symmetric
space H. Given H1 , K1 and H2 , K2 as above, we have seen at the beginning of this
subsection that we can find an R such that H1 = R∗H2R, K1 = tRK2R. We then have an
isomorphism Ω1 ≅ Ω2 given by U ↦ RU which induces isomorphism ρ ∶H1 ≅H2.
Indeed, for z1 ∈H1, there exists some z2 ∈H2 , μ(z1) ∈ GLn(C) such that

R [ z1
u01

] = [ z2
u02

] μ(z1),(2.2)

and the isomorphism can be given by ρ(z1) = z2.
In the following lemma, we write ρ also for the isomorphism G1 → G2 given by

ρ(g1) ∶= Rg1R−1.

Lemma 2.2 Let ρ ∶ G1 → G2 , ρ ∶H1 →H2 given as above. Then:
(1) ρ(αz) = ρ(α)ρ(z) with α ∈ G1 , z ∈H1.
(2) λ(ρ(α), ρ(z)) = μ(αz)λ(α, z)μ(z)−1.
(3) η(ρ(z1), ρ(z2)) = μ̂(z1)η(z1 , z2)μ(z2)−1 for z1 , z2 ∈H1.

Proof (1) It suffices to prove that [ρ(αz)
u02

] = [ρ(α)ρ(z)
u02

]. By definition of the

isomorphism and action,

[ρ(αz)
u02

] = R [αz
u01

] μ(αz)−1 = Rα [ z
u01

] λ(α, z)−1 μ(αz)−1

= ρ(α) [ρ(z)
u02

] μ(z)λ(α, z)−1 μ(αz)−1

= [ρ(α)ρ(z)
u02

] λ(ρ(α), ρ(z))μ(z)λ(α, z)−1 μ(αz)−1 .

We must have λ(ρ(α), ρ(z))μ(z)λ(α, z)−1 μ(αz)−1 = 1, and our desired result follows
which we also obtain (2). (3) can be computed similarly by definition of η. ∎

2.2.2 The symmetric space Z

We now apply the above considerations to some explicit realizations of G(R). We first
define a symmetric spaceZwhich can be directly obtained from G(R). This realization
is useful in the computations of the doubling map and Lemma 4.6.
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Algebraicity of L-values attached to Quaternionic modular forms 9

Note that the map idefined above induces the following isomorphism onQ-groups:

i ∶ G ∼�→ G = {g ∈ GL2n(K) ∶ g∗Φg = Φ, tgΨg = Ψ},

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −12m
0 0 −1r 0
0 1r 0 0

12m 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 J′m I′m
0 −α−1 0 0
0 0 1r 0

−J′m I′m 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This induces the following isomorphism on R-groups:

i ∶ G(R) ∼�→ G∞ ∶= {g ∈ GL2n(C) ∶ g∗ϕ∞g = ϕ∞, tgψ∞g = ψ∞},

ϕ∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −12m
0 0 −1r 0
0 1r 0 0

12m 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, ψ∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 J′m
0 1r 0 0
0 0 1r 0
−J′m 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Let K∞ be a maximal compact subgroup of G(R). As in the last subsection,

Ω = {U ∈ C2n
n ∶ −iU∗ϕ∞U > 0, tUψ∞U = 0},

and define the symmetric space by

Z = Zn = Zm ,r = {z ∈ Cn
n ∶ U(z) ∈ Ω}, U(z) = [ z

u0
] , u0 = [

0 1r
12m 0] .

Explicitly,

Z = {z = (u, v , w) ∶= [ u v
w tvJ′m w] ∶

u ∈ C2m
2m , v ∈ C2m

r , w ∈ Crr , i(z∗ − z) > 0,
tww + 1 = 0, uJ′m + v tv − J′m tU = 0. } .

The action of G∞ on Z is given by

gz = (az + bu0)(cz + du0)−1u0 , λ(g , z) = u−1
0 (cz + du0), g = [a b

c d] ∈ G∞.

For z1 , z2 ∈ Z, we set η(z1 , z2) = i(z∗1 − z2), δ(z1 , z2) = det(η(z1 , z2)) and η(z) =
η(z, z), δ(z) = δ(z, z). We will take z0 = i ⋅ 1n to be the origin of Z and K∞ the
subgroup of G∞ fixing z0. Then g ↦ λ(g , z0) gives an isomorphism K∞ ≅ U(n) =
{g ∈ GLn(C) ∶ g∗g = 1n} and our symmetric space Z ≅ G∞/K∞. We note that we are
using the same notation K∞ for maximal subgroup of G∞ and its preimage in G(R).

2.2.3 The symmetric spaces H and B

We now give another two useful realizations. They are much simpler than the sym-
metric space Z and are useful in studying CM-points in Section 5.1. However, as the
isomorphism between G∞ above and G′∞ below is rather complicated, the action of
the Q-group G on the symmetric space is difficult to compute.

https://doi.org/10.4153/S0008414X23000184 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000184


10 T. Bouganis and Y. Jin

Note that G is isomorphic to

G′ = {g ∈ GLn(B) ∶ g∗ϕ′g = ϕ′}, ϕ′ =
⎡⎢⎢⎢⎢⎢⎣

ζ ⋅ 1m 0 0
0 ζ ⋅ 1r 0
0 0 −ζ ⋅ 1m

⎤⎥⎥⎥⎥⎥⎦
.

By changing rows and columns, the map i induces isomorphism

i ∶ G′ ∼�→ G
′ = {g ∈ GL2n(K) ∶ g∗Φ′g = Φ′ , tgΨ′g = Ψ′},

Φ′ = Jn , Ψ′ = diag[1, 1, 1,−α,−α,−α],

and

i ∶ G′(R) ≅ G′∞ ∶= {g ∈ GL2n(C) ∶ g∗Jn g = Jn , tgg = 12n}.

Take u0 = 1, and the symmetric space associated with this group is

H = Hn = {z ∈ Cn
n ∶ tzz + 1 = 0, i(z∗ − z) > 0}.

This is an unbounded realization of type-D domain in [17]. The action of G′∞ on H

and the automorphy factor is given by

gz = (az + b)(cz + d)−1 , λ(g , z) = cz + d , g = [a b
c d] .

For z1 , z2 ∈ H, we set η(z1 , z2) = i(z∗1 − z2). We take z0 = in ∶= i ⋅ 1n to be the origin
of H and K′∞ the subgroup of G′∞ fixing z0. Since η(gz0) = η(z0) = 2 for g ∈ K∞,
g ↦ λ(g , z0) gives an isomorphism K′∞ ≅ U(n) and thus H ≅ G′∞/K′∞.

Let T ′ = 1√
2 [

i −i
1 1 ], and sending g ↦ T ′−1 gT ′, we have isomorphism

i∞" ∶ G′∞
∼�→ G∞" = {g ∈ GL2n(C) ∶ g∗ϕ∞"g = ϕ∞", tgψ∞"g = ψ∞"},

with

ϕ∞" = [in 0
0 −in

] , ψ∞" = [ 0 −in
−in 0 ] .

Take u0 = 1, and the symmetric space associated with this group is defined as

B =Bn = {z ∈ Cn
n ∶ tz = −z, zz∗ < 1n}.

This is a bounded domain of type RIII in [14]. The action of G∞" on B and the
automorphy factor is given by

gz = (az + b)(cz + d)−1 , λ(g , z) = cz + d , g = [a b
c d] .

For z1 , z2 ∈ H, we set η(z1 , z2) = i(z∗1 z2 − 1). We take z0 = 0 to be the origin of B
and K∞" the subgroup of G∞" fixing z0. Since η(gz0) = η(z0) = −i for g ∈ K∞, g ↦
λ(g , z0) gives an isomorphism K∞" ≅ U(n) and thus H ≅ G∞"/K∞". The relation
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Algebraicity of L-values attached to Quaternionic modular forms 11

between H and B can be given explicitly by the Cayley transform

H
∼�→B ∶ z ↦ (z − i)(z + i)−1 .

Let z1 , z2 ∈Bn , α ∈ G(R) as above, and dz = (dzhk) be a matrix of the same shape
as z ∈ Cn

n whose entries are 1-forms dzhk . Comparing

[z1 1
1 −z1

]
∗

[1n 0
0 −1n

] [z2 1
1 −z2

] = [z
∗

1 z2 − 1 z∗1 + z2
z2 + tz1 1 − tz1z2

] = [z
∗

1 z2 − 1 z∗1 − z∗2
z2 − z1 1 − tz1z2

] ,

[αz1 1
1 −αz1

]
∗

[1n 0
0 −1n

] [αz2 1
1 −αz2

] = [(αz1)∗(αz2) − 1 (αz1)∗ − (αz2)∗
αz2 − αz1 1 − t(αz1)(αz2) ] ,

and using the fact (which can be obtained from the property of U(z))

α [z 1
1 −z] = [

αz 1
1 −αz] [

λ(α, z) 0
0 λ(α, z)] ,

we have

αz2 − αz1 = tλ(α, z1)−1(z2 − z1)λ(α, z2)−1 .

Therefore,

d(αz) = tλ(α, z)−1 ⋅ dz ⋅ λ(α, z)−1 .

Since the jacobian of the map z ↦ αz is j(α, z)−n+1, the differential form

dz = δ(z)−n+1 ∏
h≤k

[(i/2)dzhk ∧ dzhk]

is an invariant measure. If we have another realizationH (e.g.,Z,H) with identification
ρ ∶H → B, we then define dz ∶= d(ρ(z))with z ∈H to be the differential form on H.
Clearly, this is also an invariant measure.

2.3 Doubling embedding

We keep the notation as before and consider two groups

Gn1 = {g ∈ GLn1(B) ∶ g∗ϕ1 g = ϕ1} , ϕ1 =
⎡⎢⎢⎢⎢⎢⎣

0 0 −1m1

0 ζ ⋅ 1r 0
1m1 0 0

⎤⎥⎥⎥⎥⎥⎦
,

Gn2 = {g ∈ GLn2(B) ∶ g∗ϕ2 g = ϕ2} , ϕ2 =
⎡⎢⎢⎢⎢⎢⎣

0 0 −1m2

0 ζ ⋅ 1r 0
1m2 0 0

⎤⎥⎥⎥⎥⎥⎦
,

with n1 = 2m1 + r, n2 = 2m2 + r. We always assume that m1 ≥ m2 > 0. We set N = n1 +
n2 = 2m1 + 2m2 + 2r, and consider the map
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12 T. Bouganis and Y. Jin

Gn1 ×Gn2 → Gω = {g ∈ GLN(B) ∶ g∗ωg = ω}, ω = [ϕ1 0
0 −ϕ2

] ,

by sending g1 × g2 ↦ diag[g1 , g2]. Note that R∗ωR = JN/2 ∶= [
0 −1N/2

1N/2 0 ],

with

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1m1 0 0 0 0 0
0 1/2 0 0 −ζ−1 0
0 0 0 1m2 0 0
0 0 −1m1 0 0 0
0 −1/2 0 0 −ζ−1 0
0 0 0 0 0 1m2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Composing the above map with g ↦ R−1 gR, we obtain an embedding

ρ ∶ Gn1 ×Gn2 → Gω → GN = {g ∈ GLN(B) ∶ g∗JN/2 g = JN/2}.

We can thus view Gn1 ×Gn2 as a subgroup of GN . To ease notation, we write Gn1 ×Gn2

as its image in GN under ρ and β × γ for β ∈ Gn1 , γ ∈ Gn2 as an element in GN under
the embedding ρ.

Now we consider a special case of this embedding, namely the case where
m1 = m2 = m, n1 = n2 = n. To ease the notation, we always omit the subscript “n” and
keep the subscript N = 2n. The embedding ρ then induces

ρ ∶ G∞ ×G∞ → GN∞, g1 × g2 ↦ R−1diag[g1 , g2]R,

with

R = R∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12m 0 0 0 0 0 0 0
0 1/2 0 0 0 0 −1 0
0 0 1/2 0 0 1 0 0
0 0 0 0 12m 0 0 0
0 0 0 −12m 0 0 0 0
0 −1/2 0 0 0 0 −1 0
0 0 −1/2 0 0 1 0 0
0 0 0 0 0 0 0 12m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the entries with ±1,±1/2 should be understood as ±Ir ,± 1
2 Ir . Let Z,ZN be

symmetric spaces associated with G∞, GN∞. We are now going to define an associated
embedding of symmetric space ι ∶ Z × Z→ ZN . We first define the embedding

Ω1 × Ω2 → ΩN , U1 ×U2 ↦ R−1 [U1 0
0 JU2

] , J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

J′m 0 0 0
0 0 −1r 0
0 1r 0 0
0 0 0 J′m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Let z1 = (u1 , v1 , w1), z2 = (u2 , v2 , w2) ∈ Z. The image of U(z1) ×U(z2) ∈ Ω1 × Ω2
under this map is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 v1 0 0
w1

tv1 J′m w1 0 1
0 1 −w2v∗2 J′m −w2
0 0 −J′mu2 −J′mv2
1 0 0 0
0 1

2
w2v∗2 J′m

2
w2
2

−w1
tv1 J′m
2

−w1
2 0 1

2
0 0 J′m 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=∶ [A(z1 , z2)
B(z1 , z2)

] .

We then define the embedding of symmetric space as

ι ∶ Z × Z→ ZN , z1 × z2 ↦ A(z1 , z2)B(z1 , z2)−1S ,

where S ∶= diag[1, 1/2, 1/2, 1].
Explicitly, if we write w−1

0 ∶= 1 +w1w2 , w′0 ∶= 1 −w1w2, then

ι(z1 , z2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 − v1w2w0w1
tv1 J′m v1w−1

1 w0w1 −v1w2w0 −v1w−1
1 w0w1w2v∗2

2w0w1
tv1 J′m 2w0w1 w′0w0 −2w0w1w2v∗2

−2w2w0w1
tv1 J′m w−1

1 w′0w0w1 −2w2w0 −2w−1
1 w0w1w2v∗2

−J′mv2w0w1
tv1 J′m −J′mv2w0w1 −J′mv2w0 −J′mu2 J′−1

m + J′mv2w0w1w2v∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, we note that we have “normalized” our embedding by S so that ι maps the
origin of Z × Z to the “origin” of ZN . That is, ι(z0 × z0) = i ⋅ 1N =∶ Z0, where z0 and Z0
are the origins of Z and ZN , respectively.

For example, in the case where r = 0, then the embedding is quite simple, namely
ι(z1 , z2) = diag[u1 ,−u∗2 ], where in the case of r = 1, it is given by (note that in this case
w1 = w2 = i)

ι(z1 , z2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 − 1
2 v1

tv1 J′m 1
2 v1 − i

2 v1
i
2 v1v∗2

i tv1 J′m i 0 −v∗2
−tv1 J′m 0 i iv∗2

− i
2 J′mv2

tv1 J′m − i
2 J′mv2 − 1

2 J′mv2 −u∗2 − 1
2 J′mv2v∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We now show that the embedding of the symmetric spaces is compatible with the
embedding of the groups.

Proposition 2.3 For g1 , g2 ∈ G∞, z1 , z2 ∈ Z, we have:
(1) ι(g1z1 , g2z2) = ρ(g1 , g2)ι(z1 , z2).
(2) j(ρ(g1 , g2), ι(z1 , z2))det(B(z1 , z2)) = j(g1 , z1) j(g2 , z2)det(B(g1z1 , g2z2)).
(3) δ(ι(z1 , z2)) = ∣det(B(z1 , z2))∣−2δ(z1)δ(z2).
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Proof By our definition of embedding and the action,

[ι(g1z2 , g2z2)
1 ] = R−1 [U(g1z1) 0

0 JU(g2z2)
]B(g1z1 , g2z2)−1S

= R−1 [g1 0
0 g2

]RR−1 [U(z1) 0
0 JU(z2)

] [λ(g1 , z1) 0
0 λ(g2 , z2)

]
−1

B(g1z1 , g2z2)−1S

= [ρ(g1 , g2)ι(z1 , z2)
1 ] λ(ρ(g1 , g2), ι(z1 , z2))×

S−1B(z1 , z2) [
λ(g1 , z1) 0

0 λ(g2 , z2)
]
−1

B(g1z1 , g2z2)−1S .

We must have

λ(ρ(g1 , g2), ι(z1 , z2))S−1B(z1 , z2) [
λ(g1 , z1) 0

0 λ(g2 , z2)
]
−1

B(g1z1 , g2z2)−1S = 1,

and the desired result follows. Taking the determinant, we also obtain (2).
Suppose z1 = g1z0 , z2 = g2z0 for g1 ∈ G1∞ , g2 ∈ G2∞ with z0 the origin of Z1 or Z2.

Then

δ(ι(z1 , z2)) = δ(ρ(g1 , g2)ι(z0 , z0)) = ∣ j(ρ(g1 , g2), ι(z0 , z0))∣−2δ(ι(z0 , z0))

= ∣ j(g1 , z0) j(g2 , z0)det(B(z0 , z0)−1B(g1z0 , g2z0))∣−2δ(z0)δ(z0)

= ∣det(B(z1 , z2))∣−2δ(z1)δ(z2). ∎

3 Quaternionic modular forms, Hecke operators, and L-functions

In this section, we introduce the notion of a modular form of scalar weight and define
the Hecke operators in our setting. We then define the associated standard L-function.
We keep writing G for Gn with n = 2m + r as above.

3.1 Modular forms and Fourier–Jacobi expansion

Fix an integral ideal n as in the previous section.

Definition 3.1 A holomorphic function f ∶ Z→ C is called a quaternionic modular
form for a congruence subgroup Γ and weight k ∈ N if for all γ ∈ Γ,

f (γz) = j(γ, z)k f (z).

We note here that since we are assuming m ≥ 2, we do not need any condition at
the cusps due to Koecher’s principle (see [16, Lemma 1.5]).

Denote the space of such functions by Mk(Γ). Here, we are using the realization
(G∞,Z) for our symmetric space. In fact, the definition is independent of the choice
of realizations in the following sense. If we choose another realization H (e.g., H,B)
with identification ρ ∶H → Z, then with notation as in equation (2.2), to a function
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f ∶ Z→ C, we associate a function g on H by setting g(z) = det(μ(z))−k f (ρ(z)).
Then f ∶ Z→ C is a modular form if and only if g ∶H → C is a modular form.

We write S ∶= S(Q) ∶= {X ∈ Mm(B) ∶ X∗ = X} for the (additive) algebraic group
of hermitian matrices. We use S+ (resp. S+) denote the subgroup of S consisting
of positive-definite (resp. positive) elements. For a fractional ideal a ⊂ B, we set
S(a) = S ∩ Mm(a). Denote e∞(z) ∶= exp(2πiz) for z ∈ C and λ = 1

2 tr. For f ∈ Mk(Γ)
and γ ∈ G, there is a Fourier–Jacobi expansion of the form

( f ∣kγ)(z) = ∑
τ∈S+

c(τ, γ, f ; v , w)e(λ(i(τ)u)), z = (u, v , w) ∈ Z.

In particular, for γ = 1, we simply write

f (z) = ∑
τ∈S+

c(τ; v , w)e(λ(i(τ)u)).

We call f a cusp form if c(τ, γ, f ; v , w) = 0 for every γ ∈ G and every τ such that
det(h) = 0. The space of cusp form is denoted by Sk(Γ).

Given a function f ∶ G(A) → C, we can, by abusing the notation, also view it as a
function f ∶ G(Ah) × Z→ C by setting f(gh , z) ∶= j(gz , z0)kf(gh gz) with z = gz ⋅ z0.

Definition 3.2 A function f ∶ G(A) → C is called a quaternionic modular form of
weight k, level n if:

(1) viewed as a function f ∶ G(Ah) × Z→ C, f(gh , z) is holomorphic in z,
(2) for α ∈ G(Q), k∞ ∈ K∞, and k ∈ K1(n),

f(αgk∞k) = j(k∞, z0)−kf(g),

or equivalently,
(2’) viewed as a function f ∶ G(Ah) × Z→ C, for α ∈ G(Q), k ∈ K1(n), we have

f(αghk, αz) = j(α, z)kf(gh , z).

We will denote the space of such functions by Mk(K1(n)).

We call f ∈Mk(K1(n)) a cusp form if

∫
U(Q)/U(A)

f(ug)du = 0,

for all unipotent radicals U of all proper parabolic subgroups of G. The space of cusp
forms will be denoted by Sk(K1(n)).

It is well known that the above two definitions are related by

Mk(K1(n)) ≅⊕
j

Mk(Γ j
1 (N)), Sk(K1(n)) ≅⊕

j
Sk(Γ j

1 (N)).

Write f ↔ ( f0 , f1 , . . ., fh) for the correspondence under above maps. Here, f j(z) =
f(t j , z) = j(gz , i)kf(t jz) with z = gz ⋅ i.

When n = 2m, r = 0, then the Fourier–Jacobi expansion becomes the usual Fourier
expansion. For x ∈ Qv , v ∈ h, define ev(x) = e∞(−y) with y ∈ ⋃∞n=1 p−nZ such that
x − y ∈ Zv . Set eA(x) = e∞(x∞)∏v∈h ev(xv). Let f ∈Mk(K1(n)). For g ∈ G(A),
we write it as g = γt j kp∞k∞ with γ ∈ G(Q), k ∈ K1(n), k∞ ∈ K∞. Take t j of the
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form [q j σ j q̂ j
0 q̂ j

]with q j ∈ GLm(Bh), σ j ∈ S(Ah) and p∞ = [q∞ σ∞q̂∞
0 q̂∞

]with q∞ ∈

GLm(B∞), σ∞ ∈ S(R). Set q = q jq∞, σ = σ jσ∞, then f has a Fourier expansion of the
form

f(g) = j(k∞ , z0)−k ∑
τ∈S

det(q∞)−k c(τ, q; f)e∞(λ(q∗τq)z0)eA(λ(τσ)).

We call c(τ, q; f) the Fourier coefficients of f .
For two modular forms f , h ∈ Mk(Γ), we define the Petersson inner product by

⟨ f , h⟩ = ∫
Γ/Z

f (z)h(z)δ(z)kdz,

whenever the integral converges. For example, this is well defined when one of f , g is
a cusp form. Adelically, for f , h ∈Mk(K1(n)), we define

⟨f , h⟩ = ∫
G(Q)/G(A)/K1(n)K∞

f(g)h(g)dg .

Here, dg, an invariant differential of G(A), is given as follows: dg = dghdg∞, where
dgh is the canonical measure on G(Ah) normalized such that the volume of K1(n) is
1 and dg∞ = d(g∞z0) with dz an invariant differential of Z.

Viewing f , h as functions f , g ∶ G(Ah) × Z→ C, we have

⟨f , h⟩ = ∫
G(Q)/(G(Ah)/K1(n)×Z)

f(g , z)h(g , z)δ(z)kdghdz.

Again, these integrals are well defined if one of f , h is a cusp form. If f ↔ ( f j), h ↔
(h j), then

⟨f , h⟩ = ∑
j
⟨ f j , h j⟩.

3.2 Hecke operators and L-functions

In the rest of the paper, we make the assumption that all finite places v with v ∤ n are
split in B. We define the groups

E =∏
v∈h

GLm(Ov), M = {x ∈ GLm(B)h ∶ xv ∈ Mm(Ov)}.

Let X = ∏v Xv be a subgroup of G(Ah) with Xv = Kv if v∣n and Xv = Gv if otherwise.
Define the Hecke algebraT = T(K1(n),X) be theQ-algebra generated by double coset
[K1(n)ξK1(n)]with ξ ∈ X. Given f ∈Mk(K1(n)), the Hecke operator [K1(n)ξK1(n)]
acts on f by

(f ∣[K1(n)ξK1(n)])(g) = ∑
y∈Y

f(g y−1),

where Y is a finite subset of Gh such that

K1(n)ξK1(n) = ⋃
y∈Y

K1(n)y.
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Algebraicity of L-values attached to Quaternionic modular forms 17

We say that f ∈ Sk(K1(n)) is an eigenform if there exist some numbers λf(ξ) ⊂ C

called eigenvalues such that

f ∣[K1(n)ξK1(n)] = λf(ξ)f for all ξ ∈ X.

We use the notation l(ξ) ∶= det(r) if ξ ∈ G(Oh)diag[r̂, 1, r]G(Oh) with r ∈ M. For a
Hecke character χ, we define the series

D(s, f , χ) = ∑
ξ∈K1(n)/X/K1(n)

λf(ξ)χ∗(l(ξ))l(ξ)−s , Re(s) ≫ 0.

Here, χ∗ is the associated Dirichlet character of χ. We further define the L-function
by

L(s, f , χ) = Λn(s, χ)D(s, f , χ), Λn(s, χ) =
n−1
∏
i=0

Ln(2s − 2i , χ2).(3.1)

Here, the subscript n means the Euler factors at v∣n are removed.
Define Tv = T(Kv ,Xv) be the local counterpart of T so T = ⊗′vTv . Obviously, Tv

is trivial if v∣n. For v ∤ n, by our assumptions, we can identify the local group Gv with
local orthogonal group, as in equation (2.1). Such local Hecke algebra is discussed in
[33] where a Satake map is constructed

ω ∶ Tv → Q[t1 , ..., tmv , t−1
1 , . . ., t−1

mv
],

where mv is the local Witt index of G(Qv) and 2n = 2mv + rv as in equation (2.1).
Given an eigenform f , the map ξ ↦ λf(ξ) induces homomorphism Tv → C which are
parameterized by Satake parameters

α±1
1,v , . . ., α±1

mv ,v .

The L-function then has an Euler product expression

L(s, f , χ) = ∏
p∤n

Lp(s, f , χ),

with Lp(s, f , χ) given by
rv
2

∏
i=1
(1 − χ(p)p2i+2mv−2−2s)−1

mv

∏
i=1
((1 − α i , p χ(p)pmv+rv−2−s)(1 − α−1

i , p χ(p)pmv−s))−1 .

In particular, if r = 0 or α ∈ Q×2
v , then G(Qv) is totally isotropic (i.e., mv = n, rv = 0)

so that

Lp(s, f , χ) =
n
∏
i=1
((1 − α i , p χ(p)pn−2−s)(1 − α−1

i , p χ(p)pn−s))−1 .

Here, we write p for the prime corresponding to some place v in the notation above.
Finally, it is known that L(s, f , χ) is absolutely convergent for Re(s) > 2n − 1 (see [33,
Proposition 17.4]).

Remark 3.1 We first note that for p not dividing n, the local L-factors defined
above are given in [31, Theorem 16.16] or [33, Proposition 17.14]. These agree with
the Euler factors of the Langlands L-function defined by the (standard) embedding
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18 T. Bouganis and Y. Jin

LGo = SO2n(C) ↪ GL2n(C) (with a suitable normalization on s). Here, LGo denotes
the connected component of the L-group of G, which can be identified with SO2n(C)
(see, for example, [37, Appendix B]).

In this paper, our starting point is an eigenform f for the Hecke algebra related to
K1(n) (i.e., the analog of Γ1(N) in the classical GL2 setting). As it is noted above, this
Hecke algebra is locally trivial for primes dividing n and, hence, the corresponding
Euler factor is also trivial. On the other hand, if we denote by K any congruence
subgroup with the property that there is an n such that K1(n) ⊂ K (as, for example,
of the form K0(n), the analo of the classical Γ0(N)) and we further assume that
our f is an eigenform for the Hecke algebra corresponding to such a K, then since
Sk(K) ⊂ Sk(K1(n)), we may consider the above L-function viewing f ∈ Sk(K1(n)).
However, in such a situation, our L-function will be only the partial L-function for
the Hecke algebra with respect to K since we will be simply setting Lp(s, f , χ) = 1 for
p∣n.

It is a delicate matter to define the missing Euler factor in such a situation. Indeed,
it is a conjecture of Langlands [18] that one can associate with all places a local L-
factor and local root number such that the global complete L-function satisfies a
functional equation. In such a situation and using the doubling method, Yamana
[38] gives a definition of local L-factors and proves the functional equation for
cuspidal representations over classical groups. However, his local L-factors are not
given explicitly, but rather an existential result is proved [38, Theorem 5.2].

We will return to this matter (complete vs. incomplete L-function) again after we
prove our main theorem (see Remark 6.4).

4 Eisenstein series and integral representation of L-functions

4.1 Siegel Eisenstein series and its Fourier expansion

We fix an integer 0 ≤ t ≤ m, and for x ∈ G, we write

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 b1 c1 c2
a3 a4 b2 c3 c4
g1 g2 e f1 f2
h1 h2 l1 d1 d2
h3 h4 l2 d3 d4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with block size (t, m − t, r, t, m − t) × (t, m − t, r, t, m − t). The t-Klingen parabolic
subgroup of Gn is defined as

P t
n = {x ∈ G ∶ a2 = g2 = h2 = h3 = h4 = l2 = d3 = 0}.

Clearly, we have Pm
n = Gn . We define a projection map πt ∶ P t

n → G2t+r by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 b1 c1 c2
a3 a4 b2 c3 c4
g1 0 e f1 f2
h1 0 l1 d1 d2
0 0 0 0 d4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦
⎡⎢⎢⎢⎢⎢⎣

a1 b1 c1
g1 e f1
h1 l1 d1

⎤⎥⎥⎥⎥⎥⎦
.
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In particular, if r = 0, then n = 2m. In this case, the parabolic subgroup for t = 0,

Pn ∶= P0
n = {[

a b
c d] ∈ Gn ∶ c = 0} ,

is called Siegel parabolic subgroup. We now fix weight l ∈ N, and let χ be a Hecke
character whose conductor divides n. The Siegel-type Eisenstein series is defined as

El(x , s) = Em
l (x , s; χ) = ∑

γ∈Pn/Gn

φ(γx , s),

with

φ(x , s) = χh(det(dp))−1 j(x , z0)−l ∣det(dp)∣−s
h ∣ j(x , z0)∣l−s ,

if x = pkk∞ ∈ Pn(A)K1(n)K∞ and φ(x , s) = 0 if otherwise. Let Jh ∈ Gn(A) be an
element defined by Jv = Jm for v ∈ h and J∞ = 1. We set E∗l (x , s) = El(xJ−1

h , s). Then
we have the following proposition (see, for example, [3]).

Proposition 4.1 E∗l (x , s) has a Fourier expansion of form

E∗l ([
q σ q̂
0 q̂ ] , s) = ∑

h∈S
c(h, q, s)eA(λ(hσ)),

where q ∈ GLm(BA) and σ ∈ S(A). The Fourier coefficient c(h, q, s) ≠ 0 only if
(q∗hq)v ∈ T(Qv) ∩ Mm(n−1

v ) for all v ∈ h. In this case, we have

c(h, q, s)=A(n)χ(det(qh))
−1 det(q∞)s ∣det(q)∣2m−1−s

h αn(q∗h hqh , s, χ)ξ(q∞q∗
∞

, h, s + l , s − l).

Here:
(1) A(n) ∈ Q× is a constant depending on n.
(2) If h has rank r, then

αn(q∗hq, s, χ) = ∏
m−r
i=1 Ln(2s − 4m + 2r + 2i + 1, χ2)

∏m−1
i=0 Ln(2s − 2i , χ2) ∏

p
Ph ,q , p(χ∗(p)p−s),

where Ph ,q , p(X) ∈ O[X] and Ph ,q , p = 1 if det(h) ∈ 2m+1Z×p . Here, p is the prime corre-
sponding to v.

(3) Let p be the number of positive eigenvalues of h, q the number of negative
eigenvalues of h, and t = m − p − q, then for y ∈ S+∞, h ∈ S∞,

ξ(y, h, s + l , s − l) = Γt(2s − 2m + 1)
Γm−q(s + l)Γm−p(s − l)ω(y, h, s + l , s − l),

where

Γm(s) = πm(m−1)
m−1
∏
i=0

Γ(s − 2i), m ∈ Z,

and ω is holomorphic with respect to s + l , s − l . In particular, when p = m,

ξ(y, h, 2l , 0) = 22−2m(2πi)2ml Γ−1
m (2l)det(h)l− 2m−1

2 e(iλ(hy)).
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For g ∈ G(A), write it as g = γt j kp∞k∞ with γ ∈ G(Q), k ∈ ηK0(n)η−1 , k∞ ∈ K∞,

and t j = [
q j σ j q̂ j
0 q̂ j

] , p∞ = [q∞ σ∞q̂∞
0 q̂∞

]. Set q = q jq∞, σ = σ jσ∞, then by modular-

ity property, E∗l (g , s) can be written as

E∗l (g , s) = j(k∞, z0)−l ∑
h

c(h, q, s)eA(λ(hσ)),

with c(h, q, s) in the above propositions. We are interested in the special values
E∗l (g , s) for s = l . From the Fourier expansion, we have the following proposition by
counting poles and degree of π in those Gamma functions.

Proposition 4.2 Assume that l > n − 1. Then the Fourier coefficients c(h, q, l) ≠ 0
unless h > 0 and in this case

det(q∞)−l c(h, q, l) = C ⋅ e∞(iλ(q∗hq)).

Here, up to a constant in Q, C = χ(det(qh))−1∣det(q)∣2m−1−l
h . In particular, E∗l (g , l) is

holomorphic in the sense that when viewed as a function on G(Ah) × Z, E∗l (gh , z, l) is
holomorphic in z.

We note, in particular, that the proposition implies that also El(g , l) is holomor-
phic in the above sense since E∗l (x , s) = El(xJ−1

h , s).

4.2 Coset decompositions

Let

ρ ∶ Gn ×Gn → GN , g1 × g2 ↦ R−1diag[g1 , g2]R,

be the doubling embedding defined before. To ease the notation, we may omit the
subscript n. Denote PN for the Siegel parabolic subgroup of GN and P t = P t

n the t-
parabolic subgroup of G.

Proposition 4.3 For 0 ≤ t ≤ m, let τt be the element of GN given by

τt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1m 0 0 0 0 0
0 1r 0 0 0r 0
0 0 1m 0 0 0
0 0 et 1m 0 0
0 0r 0 0 1r 0
e∗t 0 0 0 0 1m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, et = [
1t 0
0 0] ∈ B

m
m .

Then τt form a complete set of representatives of PN/GN/G ×G.

Proof This can be proved similarly to the proofs of Lemmata 4.1 and 4.2 in [30]. Let
W = {w ∈ BN

2N ∶ wJnw∗ = 0, rank(w) = N}, then PN/GN ≅ GLN/W . Therefore, it suf-
fices to find representatives of GLN/W/G ×G. Let w = [a1 b1 c1 a2 b2 c2] ∈
W of column size (m, r, m, m, r, m). The condition wJnw∗ = 0 is equivalent to
wR∗ωRw∗ = 0. Explicitly, wR∗ = [x y] with

x = [a1
b1
2 + b2ζ−1 a2] , y = [−c1 − b1

2 + b2ζ−1 c2] , xϕ1x∗ = yϕ2 y∗ .
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Multiplying by some element in GLN , we can assume that

xϕ1x∗ = yϕ2 y∗ =
⎡⎢⎢⎢⎢⎢⎣

0 0 et
0 ζIr 0
e∗t 0 0

⎤⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎣

0 0 et
0 0r 0
e∗t 0 0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ t ≤ m.

Let V = Bn with standard basis {ε i} and denote x i be the ith row of x. Let Ũ be
the subspace of V spanned by basis ε i with i ≤ t or m + r ≤ i ≤ m + r + t and Ũ⊥ the
subspace spanned by other basis, so V = Ũ ⊕ Ũ⊥. Let θ be the restriction of ϕ1 on Ũ
and η the restriction on Ũ⊥, then we can write (V , ϕ1) = (Ũ , θ) ⊕ (Ũ⊥, η). Assume
xϕx∗ is given by the first matrix as above, let U be the subspace of V spanned by vector
x i with i ≤ m or m + r ≤ i ≤ m + r + t, and let U ′ be the subspace spanned by other x i .
We also denote U⊥ = {v ∈ V ∶ uϕv∗ = 0 for any u ∈ U}, then V = U ⊕U⊥. Then there
exists an automorphism γ of (V , ϕ) such that Uγ = Ũ , U⊥γ = Ũ⊥. Now U ′γ ⊂ Ũ⊥ is
a totally η-isotropic subspace; thus; there exists an automorphism γ′ of (Ũ⊥ , η) such
that U ′γγ′ ⊂ ∑m+t+r+1≤i≤n Bε i . Viewing γ′ as an automorphism of (V , ϕ) and putting
g1 = γγ′, we have (similarly for y)

x g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1t 0 0 0 0
0 0 0 0 u
0 0 1 0 0
0 0 0 1t 0
0 0 0 0 v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, yg2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1t 0 0 0 0
0 0 0 0 u′
0 0 1 0 0
0 0 0 1t 0
0 0 0 0 v′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We further modify

g1 ↦ g1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1t 0
0 1 0 0 0
0 0 1 0 0
−1t 0 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so x g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1t 0
0 0 0 0 u
0 0 1 0 0
1t 0 0 0 0
0 0 0 0 v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore,

w(g1 × g2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1t 0 −1 0 0 0 0
0 0 0 0 0 0 u 0 0 u′
0 0 0 0 0 0 0 −ζ 0 0
1t 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 v 0 0 v′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By our assumption rank(w) = N , we must have [u u′
v v′] is of full rank. If xϕ1x∗ equals

the second matrix as above, then by the same argument, we can obtain a similar result
but without the term 1 in the middle of x g1 and yg2, which contradicts the assumption
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rank(w) = N . Suppose [a b
c d] = [

u u′
v v′]

−1

, and multiplying

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1t 0 0 0 0
0 a 0 0 b
0 0 −ζ−1 0 0
0 0 0 1t 0
0 c 0 0 d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ GLN ,

on the left, we then get the desired form in the proposition. ∎

Put Vt = τt(Gn ×Gn)τ−1
t ∩ PN . Then, by straightforward computation,

Vt = {β × γ ∈ P t
n × P t

n ∶ κt πt(β) = πt(γ)κt},κt =
⎡⎢⎢⎢⎢⎢⎣

0 0 −1t
0 1r 0
1t 0 0

⎤⎥⎥⎥⎥⎥⎦
.

To simplify the computation, we may also use the modified representatives τ̃t =
τt(1n × (κt × 12m−2t)) for 0 ≤ t ≤ m. Put Ṽt = τ̃t(Gn ×Gn)τ̃−1

t ∩ PN . Then

Ṽt = {β × γ ∈ P t
n × P t

n ∶ πt(β) = πt(γ)}.

One easily shows that (compare with Lemma 4.3 in [30])

P t
n × P t

n = ⋃
ξ∈G2t+r

Ṽt((ξ × 12m−2t) × 12n) = ⋃
ξ∈G2t+r

Ṽt(12n × (ξ × 12m−2t)),

PN τ̃t(Gn ×Gn) = ⋃
ξ,β ,γ

PN τ̃t((ξ × 12m−2t)β × γ) = ⋃
ξ,β ,γ

PN τ̃t(β × (ξ × 12m−2t)γ),

where ξ runs over G2t+r and β, γ run over P t
n/Gn . In particular,

PN τ̃m(Gn ×Gn) = ⋃
ξ∈Gn

PN τ̃m(ξ × 1n) = ⋃
ξ∈Gn

PN τ̃m(1n × ξ).

We denote K1(n) = ∏v Kv be the open compact subgroup of Gn(Ah) defined
before. We also consider the open compact subgroup of GN , KN

1 (n) = ∏v∈h KN
v with

KN
v (n) = {γ = [a b

c d] ∈ GN(Av) ∩ MN(Ov) ∶ γ ≡ 1N mod nv} .

Proposition 4.4 Assume n is coprime to (2) and (ζ). Then, for v∣n, τ̃m(ξ × 1)τ̃−1
m ∈

PN(Qv)KN
v if and only if ξ ∈ Kv .
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Proof Let ξ =
⎡⎢⎢⎢⎢⎢⎣

a b c
g e f
h l d

⎤⎥⎥⎥⎥⎥⎦
∈ Gn where blocks has size (m, r, m) × (m, r, m). We

calculate that

τ̃m(ξ × 1)τ̃−1
m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
−h −l −d + 1 d l ζ

2 0
−ζ−1 g −ζ−1(e − 1) −ζ−1 f ζ−1 f e+1

2 0
a − 1 b c −c −bζ

2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Suppose τ̃m(ξ × 1)τ̃−1
m ∈ PN(Qv)KN

v , then there exist p ∈ PN(Qv), say

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 p11 p12 p13
0 0 0 p21 p22 p23
0 0 0 p31 p31 p33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

such that pτ̃m(ξ × 1)τ̃−1
m ∈ KN

v . It is obvious that p13 ≡ p23 ≡ 0 mod c and p33 ≡
1 mod c. Comparing the third and fourth columns, we have

p11(−d + 1) + p12(−ζ−1 f ) + p13c ≡ 0 mod n, p11d + p12(ζ−1 f ) + p13(−c) ≡ 1 mod n;

p21(−d + 1) + p22(−ζ−1 f ) + p23c ≡ 0 mod n, p21d + p22(ζ−1 f ) + p23(−c) ≡ 0 mod n;

p31(−d + 1) + p32(−ζ−1 f ) + p33c ≡ 0 mod n, p31d + p32(ζ−1 f ) + p33(−c) ≡ 0 mod n.

This forces p11 ≡ 1 mod n and p21 ≡ p31 ≡ 0 mod n. Comparing the second and fifth
columns and using our assumption on n, we have

p11(−l) + p12(−ζ−1(e − 1)) + p13b ≡ 0 mod n, p11(l ζ) + p12(e + 1) + p13(−bζ) ≡ 0 mod n;

p21(−l) + p22(−ζ−1(e − 1)) + p23b ≡ 0 mod n, p21(l ζ) + p22(e + 1) + p23(−bζ) ≡ 2 mod n;

p31(−l) + p32(−ζ−1(e − 1)) + p33b ≡ 0 mod n, p31(l ζ) + p32(e + 1) + p33(−bζ) ≡ 0 mod n.

The second line shows that p22 ≡ e ≡ 1 mod n and then p12 ≡ p32 ≡ 0 mod n by other
formulas. Therefore, p ∈ PN(Qv) ∩ KN

v . From the above identities, we already have

d − 1 ≡ f ≡ c ≡ l ≡ e − 1 ≡ b ≡ 0 mod n.

The claim ξ ∈ Kv then follows from the above identities together with

p i1(−h) + p i2(−ζ−1 g) + p i3(a − 1) ≡ 0 mod n, i = 1, 2, 3. ∎
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4.3 Integral representation

Let χ be a Hecke character whose conductor divides the fixed ideal n. Recall that we
write N = 2n. We define σ ∈ GN(Ah) as σv ∶= 1, the identity matrix, if v ∤ n, and σv =
τ̃m if v∣n.

We then consider the weight k Siegel-type Eisenstein series (twisted by τ̃m) on GN
defined as

E(g, s) ∶= En
k (g σ−1 , s; χ), g ∈ GN(A).

By decomposition of GN . we can write

E(g, s) =
m
∑
t=0

∑
γ∈PN/PN τ̃ t(G×G)

ϕ(γg, s) =∶
m
∑
t=0

Et(g, s).

Assume g = h × g with h, g ∈ G(A), and let f ∈ Sk(K1(n)) be a cusp form.
We are going to study the integral

∫
G(Q)/G(A)/K1(n)K∞

E(g × h, s)f(h)dh.

Proposition 4.5 Assume that t < m, then

∫
G(Q)/G(A)/K1(n)K∞

Et(g × h, s)f(h)dh = 0.

Proof Let Ut be the unipotent radical of P t
n . Then the integral equals

∫
G(Q)/G(A)/K1(n)K∞

∑
ξ∈G2t+r

∑
β ,γ∈P t

n/G
ϕ(τ̃t((ξ × 12n−2t)βg × γh), s)f(h)dh

= ∫
P t

n/G(A)/K1(n)K∞
∑

ξ∈G2t+r

∑
γ∈P t

n/Gn

ϕ(τ̃t((ξ × 12n−2t)g × γh), s)f(h)dh

= ∫
U t(A)P t

n(Q)/G(A)/K1(n)K∞
∫

U t(Q)/U t(A)
∑
ξ,γ

ϕ(τ̃t(ξng × γh), s)f(nh)dndh.

Since ξ normalizes Ut and τ̃t(n × 1) ∈ Pn , this equals

= ∫
U t(A)P t

n(Q)/G(A)/K1(n)K∞
∫

U t(Q)/U t(A)
∑
ξ,γ

ϕ(τ̃t(ξg × γh), s)f(nh)dndh,

which vanishes by the cuspidality of f . ∎

Therefore,

∫
G(Q)/G(A)/K1(n)K∞

E(g × h, s)f(h)dh = ∫
G(Q)/G(A)/K1(n)K∞

Em(g × h, s)f(h)dh

= ∫
G(A)/K1(n)K∞

ϕ(τ̃m(g × h), s)f(h)dh.

The infinite part is calculated in following lemma.
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Lemma 4.6 For k + Re(s) > 2n + 1, we have

∫
G∞/K∞

ϕ∞(τ̃m(g∞ × h∞), s)f(hh ⋅ h∞)dh∞ = ck(s)f(hh ⋅ g∞),

with

ck(s) = α(s)π
n(n−1)

2
Γ(s + k − 2n + 3)Γ(s + k − 2n + 5) . . . Γ(s + k − 1)

Γ(s + k − n + 2)Γ(s + k − n + 3) . . . Γ(s + k)

= α(s)π
n(n−1)

2
∏q−1

j=0 Γ(s + k − n + 1 − t − 2 j)

∏q−1
j=0 Γ(s + k − 2 j)

,

where n = 2q + t with q ∈ N and t ∈ {0, 1} and α(s) is a holomorphic function on s ∈ C
such that α(λ) ∈ Q for all λ ∈ Q.
Proof Note that

j(τ̃m(g∞ × h∞), z0 × z0) = j(τ̃m , g∞z0 × h∞z0) j(g∞, z0) j(h∞, z0).

Put w = h∞z0 , z = g∞z0, then since

f (w) = j(h∞, z0)kf(h∞), j(τ̃m , z ×w) = δ(w , z),

the integral becomes

j(g∞, z0)−k δ(z) s−k
2 ∫

Z
δ(w , z)−k ∣δ(w , z)∣k−s δ(w) k+s

2 f (w)dw .

This kind of integral is calculated in [31, Appendix A2] and [14]. In particular, it is
shown there that for k + Re(s) > n + 1

2 ,

∫
Z

δ(w , z)−k ∣δ(w , z)∣−2s δ(w)s+k f (w)dw = c̃k(s) f (z)δ(z)−s ,

where c̃k(s) is a function on s which does not depend on f. Indeed, as it is explained
in [31], the quantity c̃k(s) is independent of f and it is equal to

c̃k(s) = α(s)∫
B

det(I + zz̄)s+kdz,

where dz is the invariant measure on the bounded domain and is given as dz = det(I +
zz̄)−n+1dz, and α(s) is a holomorphic function on s such that α(λ) ∈ Q for all λ ∈ Q
(actually it can be made precise, but we do not need it here). But this last integral has
been computed in [14, p. 46] from which we obtain that

c̃k(s) = α(s)π
n(n−1)

2
Γ(2λ + 1)Γ(2λ + 3) . . . Γ(2λ + 2n − 3)

Γ(2λ + n)Γ(2λ + n + 1) . . . Γ(2λ + 2n − 2) ,

where λ = s + k − n + 1.
Setting now s ↦ s−k

2 , we obtain that

j(g∞, z0)−k δ(z) s−k
2 ∫

Z
δ(w , z)−k ∣δ(w , z)∣k−s δ(w) k+s

2 f (w)dw =

c̃k((s − k)/2) j(g∞, z0)−k f (z) = ck(s)f(hh ⋅ g∞),
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where we have set ck(s) ∶= c̃k((s − k)/2). ∎

By changing variables, it remains to calculate

∫
K1(n)/G(Ah)

ϕh(τ̃m(h × 1), s)f(gh−1)dh.

Note that for v∣n, ϕv is nonzero unless hv ∈ Kv . Hence, it remains to consider the
integral over ∏v∤n Kv/G(Qv). These unramified integrals are well known by [19, 33,
37]. Indeed, by the Cartan decomposition, we can write

G(Qv) = ∐
e1 , . . . ,emv ∈Z

0≤e1≤. . .≤emv

Ke1 , . . . ,emv
,

Ke1 , . . . ,emv
= Kvdiag[pe1

v , . . ., pemv
v , 1rv , p−e1

v , . . ., p−emv
v ]Kv ,

where mv is the local Witt index of G(Qv) and pv the prime corresponds to v. Note
that by definition of ϕ,

ϕv(τ̃m(hv × 1)) = (χv(pv)p−s
v )e1+⋯+emv .

Assume that f is an eigenform such that f ∣[Ke1 , . . . ,emv
] = λf(Ke1 , . . . ,emv

)f . Then the
integral over Kv/G(Qv) contributes a Dirichlet series

∑
e1 , . . . ,emv ∈Z

0≤e1≤⋯≤emv

λf(Ke1 , . . . ,emv
)(χv(pv)p−s

v )e1+⋯+emv .

In conclusion, we obtain

∏
v∤n

∑
e1 , . . . ,emv ∈Z

0≤e1≤. . .≤emv

λf(Ke1 , . . . ,emv
)(χv(pv)p−s

v )e1+⋯+emv ⋅ f(g) = D(s, f , χ)f(g).

We summarize the discussion in the following theorem.

Theorem 4.7 Let f ∈ Sn
k(K1(n)) be an eigenform, and assume that n is coprime to

(2ζ). Then

∫
G(Q)/G(A)/K1(n)K∞

E(g × h, s)f(h)dh = ck(s)D(s, f , χ)f(g).

5 Algebraic modular forms and differential operators

In order to move from the analytic considerations discussed so far to algebraic
questions, we need to discuss the notion of an algebraic modular form in our
setting. The notion of algebraic modular forms on Hermitian symmetric space is
well understood. There are mainly four characterizations of algebraic modular forms:
via Fourier–Jacobi expansion, CM-points, pullback to elliptic modular forms, and
canonical model of automorphic vector bundle. For example, in [20, Section III.7],
automorphic forms are interpreted as sections of certain automorphic vector bun-
dles. The canonical model of automorphic vector bundles then defines a subspace
of algebraic automorphic forms (see also [9, 10]). It is also proved there that this
definition is equivalent to the definition in terms of values at CM-points. In [6], Garrett
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gives three characterizations of algebraicity for scalar-valued modular forms via CM-
points, Fourier–Jacobi expansion, and pullback to elliptic modular forms. They are
also proved to be equivalent.

However, in this work, instead of simply referring to the results of Harris as in
[9, 10], we have decided to offer a definition of algebraic modular forms via CM-
points using the rather more explicit language of Shimura as in [32], without need
to refer to the more advanced and general theory as developed by Deligne, Milne,
and others. Indeed, our approach of the definition of CM-points and the underlying
periods follows an idea in the first works of Shimura on the subject [25], where one
“tensors” a given embedding h ∶ K1 ×⋯× Kn ↪ G, of CM field K i , with another CM
field K, disjoint to the K i ’s to obtain a point whose associated abelian variety is of CM
type (see also [5, Proof of Theorem 6.4]). In this way, we will be able to define and study
the CM-points in our case by considering an embedding of our group into a unitary
group, after a choice of an imaginary quadratic field. However, we will show that our
definition of CM-points and the attached periods is independent of the choice of the
auxiliary imaginary quadratic field. This should be seen as our main contribution in
this section, which we believe it is worth appearing in the literature and could be
helpful to other researchers, thanks to its rather explicit nature and basic background,
Finally, we will show that in certain case, when the underlying symmetric space is a
tube domain, i.e., a Siegel Domain of Type I, our definition is equivalent to standard
definition using the Fourier expansion.

5.1 CM-points

We introduce the following setting, with some small repetition of what we have
discussed so far.

We let B be a definite quaternion algebra over Q, T∗ = −T ∈ Mn(B) a skew-
hermitian matrix, and define the algebraic group

G ∶= G(T) ∶= {g ∈ SLn(B) ∶ g∗T g = T}.

Let K i , i = 1, . . . , n, be imaginary quadratic fields and consider the CM algebra
Y = K1 ×⋯× Kn and Y 1 = {y ∈ Y ∶ yyρ = 1} with ρ induced by the nontrivial invo-
lutions (i.e., complex conjugation) on each K i . We are interested in embeddings
h ∶ Y 1 → G(T). Clearly, h(Y 1) ⊂ G(T)(R) and (Y 1 ⊗Q R)× is a compact subgroup
of G(T)(R). Let us show that there always exists such an embedding.

Without loss of generality, we may write T = diag[a1 , . . ., an] in diagonal form. We
then select as imaginary quadratic fields K i ∶= Q(a i), for i = 1, . . . , n, and define the
embedding

h ∶ Y 1 → G(T), (y1 , . . ., yn) ↦ diag[y1 , . . ., yn].

Back to our general considerations, we select an imaginary quadratic field K which
is different from K i ’s above, and splits B. It is easy to see that that there exists always
such a field K. We now fix an embedding Mn(B) → M2n(K). Denote the image of T
in M2n(K) by T and the unitary group

U(T) ∶= {g ∈ GL2n(K) ∶ g∗Tg = T}.
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We note that the group of R-points of U(T) is isomorphic to

U(n, n) = {g ∈ GL2n(C) ∶ g∗ [i ⋅ 1n 0
0 −i ⋅ 1n

] g = [i ⋅ 1n 0
0 −i ⋅ 1n

]} .

Its action on the bounded domain (see, for example, [32]),

B = {z ∈ Mn(C) ∶ 1 − z∗z > 0},

is defined by gz = (az + b)(cz + d)−1 for g = [a b
c d], with the obvious block matrices.

The two factors of automorphy are given by λ(g , z) = c tz + d, and μ(g , z) = cz + d .
The embedding Mn(B) → M2n(K) induces an embedding i ∶ G(T) → U(T) which
is compatible with natural inclusion ι ∶B→ B. We will view G(T) (resp. B) as a
subgroup (resp. subspace) of U(T) (resp. B) under this embedding.
Lemma 5.1 (1) Y is spanned by Y 1 over Q. In particular, there exists an element β ∈ Y 1

such that Y = Q[β] and β1 , . . . , βn , βρ
1 , . . . , βρ

n are pairwise distinct.
(2) There is a unique w ∈B which is a common fixed point for h(Y 1).

Proof The first part can be shown exactly as [32, Lemma 4.12], and for the second
part, we adapt an idea of the proof of that lemma. Without loss of generality, we can
assume that the origin 0 of B is a fixed point for h(Y 1) and our task is to show that it
is the unique fixed point. We note that the maximal compact subgroup in G(T)(R)
fixing the origin is isomorphic to U(n), and hence with respect to the embedding
G(T)(R) ↪ U(n, n), we have that U(n) ↪ U(n) ×U(n) diagonally, i.e., a ↦ (a, a).
In particular, we have an embedding h(Y 1) ↪ U(n) ↪ U(n, n). Assume now that
there is another point z ∈B which is a fixed point of h(Y 1). Then we must have that
z = aza−1 for every element diag[a, ā] ∈ (U(n) ×U(n)) ∩ h(Y 1). But for such a point
we have that a∗a = 1 and hence a−1 = ta. That is, z = az ta. Since a ∈ U(n) ↪ U(n) ×
U(n), we may diagonalize it, say with eigenvalues λ i , i = 1, . . . , 2n, and hence we must
have z i j = 0 for every λ i ≠ λ j . Taking a to be the element obtained from β above, we
have that z has to be the origin. ∎

We call a point fixed by some h(Y 1) as above a CM-point, and we note that
this definition does not depend on the choice of the field K. For example, take
T = diag[ζ ⋅ 1m , ζ ⋅ 1r ,−ζ ⋅ 1m]. This is the group G′ in ection 2, and we have described
its embedding into unitary group and the action on B explicitly there. Let h and Y be
as above, and one easily checks that 0 is the fixed point of h(Y 1) and thus a CM-point.

We now want to attach some CM periods to our CM-points. We will do this by
relating our definition with the notion of CM-points of unitary groups. Indeed, our
selection of the field K allows us to view our group as a subgroup of a unitary group,
and hence an embeddingB↪ B. Our next aim is to relate the just-defined CM-points
in B with the well-studied, as in [32], CM-points of H. It is here that we employ the
idea of Shimura, which was used in [25] (see also [26, Section 7]) to study CM-points
in general type-C domains.

Let w ∈B ⊂ B be a CM-point fixed by h(Y 1) ⊂ G ⊂ U(n, n). Then, for such a
point, we have that

Λ(α, w)p(x , w) = p(xα, w), α ∈ h(Y 1), x ∈ C2n ,
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where Λ(α, w) ∈ GL2n(C) and p(x , z) ∶ C2n ×B→ C2n are the maps defined in
[32, §4.7]. In this way, we can obtain an embedding Y → EndC(C2n) by sending
α ↦ Λ(α, w) where we have used the fact that Y is spanned by Y 1 over Q. We now
extend this to an injection h of K ⊗Q Y ≅ S ∶= S1 ×⋯× Sn into End(C2n), where
Si = KK i . Indeed, we set

h(β ⊗ α)p(x , w) = p(βxα, w) = p(xβα, w) = p(xαβ, w).

That is, the point w can be seen as a fixed point of S1 ⊗Q R, where S1 = {s ∈
S ∣ ssρ = 1} with ρ the involution on S induced by the complex conjugation on KK i .
Hence, w is a CM-point in B defined in [32, §4.11] for unitary groups. In particular, w
has entries in Q by [32, Lemma 4.13].

Remark 5.2 Following [32, Section 4], let Ω = {K , Ψ, L,T, {u i}s
i=1} be a PEL type

and F(Ω) family of polarized abelian varieties of PEL type. The abelian varieties in
F(Ω) are parameterized by B. More precisely, there is a bijection

Γ/B ∼�→ F(Ω), Γ = {γ ∈ U(T) ∶ Lγ = L, u i γ − u i ∈ L}.

As in [24], we can define Ω′ = {B, Ψ′ , L, T , {u i}s
i=1} for quaternions, and F(Ω′)

are parameterized by B. The natural inclusion F(Ω′) → F(Ω) is compatible with
B→ B. Moreover, similar to [6, 25], we actually have an embedding of canonical
models between Γ/B and Γ′/B for certain congruence subgroups Γ, Γ′.

As we have remarked, CM-points for unitary groups have been extensively
studied in [32, Chapter II]. We recall some of their properties. For α ∈ S1,
we put ψ(α) ∶= λ(h(α), w) ∈ GLn(C), ϕ(α) ∶= μ(h(α), w) ∈ GLn(C), and Φ(α) =
diag[ψ(α), ϕ(α)] ∈ GL2n(C). We can then find B, C ∈ GLn(Q) (see [32, p. 78]) such
that for all α ∈ S,

Bψ(α)B−1 = diag[ψ1(α), . . . , ψn(α)], Cϕ(α)C−1 = diag[ϕ1(α), . . . , ϕn(α)],

for some ring homomorphism ϕ i , ψ i ∶ S→ C, where we have Q-linearly extended ψ
and ϕ, from S1 to S. We set

p∞(w) ∶= C−1diag[pS(ϕ1 , Φ), . . . , pS(ϕn , Φ)]C ∈ GLn(C),

p∞ρ(w) ∶= B−1diag[pS(ψ1 , Φ), . . . , pS(ψn , Φ)]B ∈ GLn(C),

where the CM periods pS(ψ i , Φ) ∈ C× and pS(ϕ i , Φ) ∈ C× are defined as in [32,
p. 78]. Actually, we should remark here that the periods pS(ψ i , Φ), pS(ϕ i , Φ) are
uniquely determined up to elements in Q

×
, but this is sufficient for our applications.

We now use the fact that w ∈B ⊂ B is a CM-point for both (Y , h) and also for
(S, h). Note that ψ(α) = ϕ(α) for α ∈ Y 1 ⊂ S1. Indeed, for α ∈ G(R), we have that

(see [25, equation (2.18.9)]) [a b
c d] = [

d −c
−b a

], and hence, in particular, we have

that λ(α, z) = μ(α, z) since tz = −z. In particular, the values ψ(α) = ϕ(α) = λ(α, w) =
μ(α, w) for α ∈ Y 1, that is, the restrictions of ϕ and ψ to Y 1, are independent of the
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choice of the field K. Furthermore, we note that ψ(α) = ϕ(α) for all α ∈ K with αα = 1
seen as elements of U(n, n), i.e., α12n ∈ U(n, n).

In the following lemma, we use the notation IY , JY , JS j as defined in [32, p. 77].

Lemma 5.3 With notation as above, for all 1 ≤ i ≤ n, we have that

pS(ψ i , Φ) = pY(ResS/Y(ψ i), Φ′) = pY(ResS/Y(ϕ i), Φ′) = pS(ϕ i , Φ),

where Φ′ = ResS/Y ϕ = ResS/Y ψ ∈ IY .

Proof Let us write Φ = ∑n
j=1 Φ j with Φ j ∈ IS j and Φ′ = ∑n

j=1 Φ′j , with Φ′j ∈ IK j . Then
we have that Φ j = InfS j/K j(Φ′j). Indeed, first, we observe that Ψ = ∑n

j=1 ResS j/K Φ j ∈
IK (see [32, p. 85]), where Ψ as in Remark 5.2. Moreover, we know that Φ = ϕ + ψ with
ϕ, ψ ∈ IS as above, and we have seen that ψ = ϕ when restricted to K via K ↪ Y ⊗Q K =
S. But, on the other hand, we have seen that ψ = ϕ when restricted to Y, from which
we obtain that Φ j = Φ′j ⊗ τ +Φ′j ⊗ τ, where τ is a fixed embedding of K ↪ C (i.e., a
CM type for K). Since S j = K j ⊗Q K, the claim that Φ j = InfS j/K j(Φ′j) now follows.

The statement of the lemma is now obtained from the inflation-restriction proper-
ties of the periods (see [32, p. 84]):

pS(ψ i , Φ) =
n
∏
j=1

pS j(ψ i j , Φ j) =
n
∏
j=1

pK j(ResS j/K j(ψ i j), Φ′j) = pY(ResS/Y(ψ i), Φ′),

where ψ i j ∈ JS j induced by ψ i ∈ JS = ⋃n
j=1 JS j . Similarly follows also the other

equality. ∎

The above lemma shows that we have p∞(w) = p∞ρ(w) for w ∈B and they are
independent of the choice of the imaginary quadratic field K we chose above (and
hence of the embedding to the unitary group). We then simply define p(w) = p∞(w) =
p∞ρ(w) for the period attached to CM-point w ∈B. By [32, Proposition 11.5] and the
definition of periods, we immediately have:

(1) The coset p(w)GLn(Q) is determined by the point w ∈B independently of the
embedding (Y , h) chosen above.

(2) p(γw)GLn(Q) = λ(γ, w)p(w)GLn(Q) for all γ ∈ G(Q).

Remark 5.4 Even though the definition of a CM-point in B given above is enough
for our applications, we mention here that there is a more general definition as
follows. We may take Y above as Y = Mn1(K1) ×⋯ × Mns(Ks)with K i CM fields and
the condition that n = ∑s

i=1 n i[K i ∶ Q] and assume that there exists an embedding
h ∶ Y 1 → G(T) where Y 1 ∶= {y ∈ Y ∣ yyρ = 1} with the involution on Y induced by
complex conjugation and transpose. Then one can show as above that h(Y 1 ⊗Q R) has
a unique fixed point w ∈B. Picking as before an imaginary quadratic field K disjoint
from all K i , we can see that the point w ∈B↪ B corresponds to an abelian variety Aw
with endomorphism ring equal to Y ⊗Q K. In particular, we have that Aw is isogenous
to An1

1 ×⋯× Ans
s , where the abelian variety A i has CM by the field Si ∶= KK i .
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5.2 Algebraic modular forms

We keep the notation from before. In particular, we write G for G(T) and we have
an embedding i ∶ G → U(T) as above. For the following considerations, we need to
augment our definition of modular forms from scalar-valued to vector-valued.

We start with a Q-rational representation ω ∶ GLn(C) → GL(V). Given a function
f ∶B→ V and g ∈ G, define ( f ∣ω g)(z) = ω(λ(g , z))−1 f (gz). For a congruence sub-
group Γ, the space of modular forms Mω(Γ) consists of holomorphic function with
the property f ∣ωγ = f for all γ ∈ Γ. Put Mω = ⋃Mω(Γ) where the union is over all
congruence subgroups, and

Aω = ⋃
e
{g−1 f ∶ f ∈ Mτe , 0 ≠ g ∈ Me},

Aω(Γ) = {h ∈ Aω ∶ h∣ωγ = h for γ ∈ Γ},

where e runs over Z and τe denotes the representation defined by τe(x) =
det(x)e ω(x).

Definition 5.1 Let W be a set of CM-points which is dense in B. Put Pω(w) =
ω(p(w)) for w ∈W.

(1) An element f ∈ Aω is called algebraic, denoted by f ∈ Aω(Q), if Pω(w)−1 f (w)
is Q-rational for every w ∈W where f is finite.

(2) We set Mω(Q) ∶= Mω ∩Aω(Q), and Mω(Γ,Q) ∶= Mω(Γ) ∩ Mω(Q).

We can compare the definition for our group with the unitary group. Let ω ∶
GLn(C) ×GLn(C) → GL(V) be Q-rational representation. Denote Aω ,Aω(Γ) for
modular function spaces for unitary group as in [32, §5.3]. The composition of ω with
the diagonal embedding GLn → GLn ×GLn gives a representation ω ∶ GLn(C) →
GL(V). Clearly, if f ∈ Aω , then its pullback f ○ ι ∈ Aω is a quaternionic modular form.
Moreover, f ∈ Aω(Q) and f ○ ι is finite, then the pullback f ○ ι ∈ Aω(Q).

Even though we have provided a definition of algebraicity for modular forms on the
bounded domain B, we can transfer it also to the other realization of the symmetric
spaces discussed in Section 2. Indeed, with the notation of Section 2.2, suppose we
are given two of these realizations (i1 , Φ1 , H1 , K1 ,G1) and (i2 , Φ2 , H2 , K2 ,G2), with
i1 = i2 both induced from an algebraic embedding Mn(B) → M2n(K), where K is
an imaginary quadratic field which splits B. In particular, the matrix R in equation
(2.2) has algebraic entries, and hence we obtain that the bijective map ρ ∶H1 →H2 as
defined there is algebraic, in the sense that maps algebraic points of H1 to algebraic
points of H2. We also conclude from this that μ(z), as defined in the same equation, is
algebraic if z is. In particular, given any realization H, there is a bijection ρ ∶H →B.
We define the CM-points on H to be the inverse image with respect to ρ of the CM-
points of B.

As we have discussed, every vector-valued modular form g ∶H → V corresponds
uniquely to a modular form f ∶B→ V by the rule g(z) = ω(μ(z))−1 f (ρ(z)). So it is
enough to now observe that if w is a CM-point of H, which by definition means ρ(w)
is a CM-point of B, and we have established above μ(w) ∈ GLn(Q). Hence, we can
use the same periods Pω(w) for both f and g.
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In particular, the algebraicity as defined for bounded domains can be transferred
to the unbounded domain Z. Let now f ∶ Z→ C be a weight k modular form defined
in Section 3, we can take its Fourier–Jacobi expansion. We denote the Fourier–Jacobi
coefficients by c(τ, f ; v , w). When r = 0, n = 2m, we simply denote it by c(τ, f ).

Proposition 5.5 (1) For congruence subgroup Γ, we have Mk(Γ) = Mk(Γ,Q) ⊗
Q
C.

(2) For every f ∈ Mk and σ ∈ Aut(C/Q), we have c(τ, f σ ; 0, w) = c(τ, f ; 0, w)σ , for
all τ and w.

(3) Let r = 0, n = 2m (the Tube Domain case), and f ∈ Mk , then f ∈ Mk(Q) if and
only if c(τ, f ) ∈ Q for all τ.

(4) For congruence subgroup Γ and σ ∈ Aut(C/Q), we have Sk(Γ)σ = Sk(Γ) and
Sk(Γ) = Sk(Γ,Q) ⊗

Q
C.

Proof This can be proved similarly as [32, Propositions 11.11, 11.15, and 26.8]. See also
[20, Proposition 7.2] for (1) and [6] for (2) and (3).

We briefly explain the proof for (3). Let r = 0, n = 2m, and f ∈ Mk(Γ) for a
congruence subgroup Γ. Let V be the model of Γ/Z defined over Q, then A0(Γ) can
be identified with the function field of V. By the same method in [32, Sections 6, 7],
one can show that g ∈ A0(Γ) if and only if g has algebraic Fourier coefficients. We will
reduce our problem for f ∈ Mk to A0 similarly to what is done in the proof of [32,
Proposition 11.11].

Let W be a dense subset of CM-points in Z. We first assume that
det(p(w))−k f (w) ∈ Q for all w ∈W where f is finite. Note that there exists a
function U ∈ Ak(Q) on Z holomorphic in w with det(U)(w) ≠ 0. Indeed, denote
H for the unbounded realization of B via the Cayley transform, and we can simply
put U(z) = R(z) for z ∈ Z↪H with R the function in [32, Proposition 9.11]. We set
g ∶= det(U)−k f , and note that

g(w) = det (U(w)−1
p(w))k det(p(w))−k f (w).

But now we have that U(w)−1p(w) is Q -rational since this holds for the function R
in unitary case. That is, g(w) is Q-rational for every CM-point w where g is finite;
thus, g ∈ A0(Q). Since f = det(U)−k g, we obtain that f also has algebraic Fourier
expansion.

For the other direction, we keep the same notation. If f ∈ Mk has algebraic Fourier
expansion, then g ∈ A0(Q). For every CM-point w, we may choose the function U
above such that U is finite at w and U(w) is invertible. If f is finite at w, then so is g and
g(w) is Q rational. The equality of g(w) as above then shows that det(p(w))−k f (w)
is Q-rational, and hence f ∈ Mk(Q). ∎

We end this subsection by giving a definition for adelic modular forms. Let f ∈Mk
be an (adelic) modular form of scalar weight k, i.e., we are taking ω = detk . We say
that f is algebraic, denoted by f ∈Mk(Q) if for a dense subset W of CM-points in Z,
Pk(w)−1f(gh g) ∈ Q for all w ∈W. Since j(g , w) ∈ Q for CM-point w, this is the same
as all component f j under correspondence f ↔ ( f0 , . . ., fh) are algebraic.

Proposition 5.6 (1) Let K = K1(n) or K0(n), then Mk(K) =Mk(K ,Q) ⊗
Q

C, Sk(K) = Sk(K ,Q) ⊗
Q
C.
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(2) Let r = 0, n = 2m, and f ∈Mk , then f ∈Mk(Q) if and only if the Fourier
coefficients c(τ, q, f) ∈ Q.

Let r = 0, n = 2m, and keep the notation for Eisenstein series in previous sections.
Let El(g , s) be a Siegel Eisenstein series for group Gn . By explicit computation
of Fourier expansion, we have E∗l (g , l) ∈Ml(Q). Clearly, we also have El(g , l) ∈
Ml(Q).

5.3 Differential operators and nearly holomorphic functions

In this subsection, we summarize some of the result of [29] (see also [32, Chapter
3]) on differential operators on type-D domains and then apply these operators to
Siegel-type Eisenstein series. We will be working with the bounded realization of our
symmetric space, but thanks to the remark above, we can transfer the definitions from
one realization to the other. We set

B = {z ∈ Cn
n ∶ tz = −z, z∗z < 1n}, T ∶= {z ∈ Cn

n ∶ tz = −z}, η(z) ∶= 1 − z∗z.

Here, T is the tangent space of B at the origin 0.
Given a positive integer d and two finite-dimensional complex vector spaces W and

V, we denote by Mld(W , V) the vector space of allC-multilinear maps of W ×⋯×W
(d copies) into V and Sd(W , V) the vector space of all homogeneous polynomial maps
of W into V of degree d. We omit the symbol V if V = C. Given a representation
ω ∶ GLn(C) → V , we define a representation {ω ⊗ τd , Mld(T, V)} by

[(ω ⊗ τd)(a)h](u1 , . . ., ud) = ω(a)h(tau1a, . . ., taud a),

for a ∈ GLn(C), h ∈ Mld(T, V), u i ∈ T. In particular, taking d = 1 and ω the trivial
representation, we define the representation {τ, S1(T)} of GLn(C) by [τ(a)h](u) =
h(taua) for h ∈ S1(T), u ∈ T.

Take anR-rational basis {εν} ofT overC and for u ∈ T = ∑ν uν εν . For z ∈B, write
z = ∑μ zν εν . For f ∈ C∞(B, V), we define D f ,D f ,C f ∈ C∞(B, S1(T, V)) by

(D f )(u) = ∑
ν

uν
∂ f
∂zν

, (D f )(u) = ∑
ν

uν
∂ f
∂zν

, (C f )(u) = (D f )(tη(z)uη(z)).

We further define Dd f ,D
d

f ,Cd f by

D
d f =DD

d−1 f , D
d

f =DD
d−1

f , C
d f = CC

d−1 f , D
0 f =D

0
f = C f = f .

And, define Dd
ω f ∈ C∞(B, Sd(T, V)) by

D
d
ω f = (ω ⊗ τd)(η(z))−1

C
d[ω(η(z)) f ].

We now recall the important fact, due to Hua, Schmid, Johnson, and Shimura (see, for
example, [27]), that the representation {τd , Sd(T)} is the direct sum of irreducible
representations and each irreducible constituent has multiplicity one. In particular,
for each GLn(C)-stable subspace Z ⊂ Sd(T), we can define the projection map ϕZ of
Sd(T) onto Z. Define DZ

ω f ∈ C∞(B, Z ⊗ V) by DZ
ω f = ϕZD

d
ω f .

https://doi.org/10.4153/S0008414X23000184 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000184


34 T. Bouganis and Y. Jin

Lemma 5.7 With notation as above, we have:

(1) π−1D f ∈ Aτ(Q) for every f ∈ A0(Q).
(2) Let Z be a GLn(C)-stable subspace of Sd(T). If f ∈ Aω(Q), then

π−d
Pω(w)−1

D
Z
ω f (w)

is Q-rational for any CM-point w.

Proof The proof is the same as the one in [32, Theorems 14.5 and 14.7] (see also [27,
Sections 5 and 6]). Indeed, as we have a natural inclusion B→ B, we can reduce our
problem to unitary case. For example, for (1), denote D f for the differential operators
in unitary case. The lemma is proved for this case in [32, Theorem 14.5]. Let p be the
complex dimension ofB, and we can take p elements g1 , . . ., gp ∈ A0(Q) such that g1 ○
ε, . . ., gp ○ ε are algebraically independent. Put f j = g j ○ ε. As shown in the last section,
g j ○ ε ∈ A0(Q) so ∂/∂ f1 , . . ., ∂/∂ fp are well-defined derivations of A0(Q). For every
f ∈ A0(Q), we haveD f = ∑ j(∂ f /∂ f j)D f j . NowD( f j) = (Dg j) ○ ε and π−1Dg j isQ-
rational. This proves our assertion. ∎

We now set r(z) ∶= −η(z)−1z. Let d be a nonnegative integer and {ω, V} the
representation as before. A function f ∈ C∞(B, V) is called nearly holomorphic of
degree d if it can be written as a polynomial in r, of degree less than d, with V-
valued holomorphic functions on B as coefficients. We denote the space of such
functions by Nd(B, V). Let Nd

ω be the space consisting of functions satisfying the
modular properties as in Mω but now replacing the holomorphic condition with
nearly holomorphic. For a congruence subgroup Γ, we can similarly define the space
Nd

ω(Γ). An exact same argument in the proof of [32, Lemma 14.3] shows that this
space is finite-dimensional over C.

Suppose V is Q-rational. A function f ∈Nd
ω is called algebraic, denoted by

f ∈Nd
ω(Q), if Pω(w)−1 f (w) is Q-rational for w ∈W = {g ⋅ 0 ∶ g ∈ G(Q)}. Put

Nd
ω(Γ,Q) =Nd

ω(Q) ∩Nd
ω(Γ). The proof of the following lemma is the same as the

one in [32, Theorem 14.9].

Lemma 5.8 Let Z be an irreducible subspace of Sp(T). Then π−pDZ
ω f ∈Nd+p

ω⊗τZ
(Q)

for every f ∈Nd
ω(Q). Here, τZ is the restriction of τp to Z.

We now extend the above definitions to adelic modular forms. Let f ∈Mk and
viewing it as a function on G(Ah) ×B by setting f(gh , z) = j(gz , z0)kf(gh gz) with
z = gz ⋅ 0 ∈B. Then Dkf ,DZ

k f is defined as applying differential operators on z ∈B.
A function f ∶ G(Ah) ×B→ C is called nearly holomorphic if it is nearly holomorphic
in z ∈B. We can then define the space Nd

k and of nearly holomorphic modular forms
as before. Similarly, we can define subspace Nd

k (Q). These definitions are equivalent
to all components in the correspondence f ↔ ( f1 , . . ., fh) being nearly holomorphic
or algebraic nearly holomorphic.

We now apply the differential operators to Siegel-type Eisenstein series and show
that it is nearly holomorphic for certain values of s. We will keep the notation of
Section 4, and so in particular El(g , s) is the Siegel-type Eisenstein series associated
with group Gn , n = 2m of weight l and character χ.
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Proposition 5.9 Assume l > n − 1, and let μ ∈ Z such that n − 1 < μ ≤ l . Then:
(1) El(g , μ) ∈ παN

m(l−μ)
l (Q) with α = m(l − μ).

(2) DenoteEl(g , s) = Λn(s, χ)El(g , s, χ). ThenEl(g , μ) ∈ πβN
m(l−μ)
l (Q)with β =

m(l + μ) − m(m − 1).

Proof For this, we use [27, Theorem 2D], which classifies the irreducible represen-
tations of (τmp , Smp(T)). In particular, for p ∈ Z and a weight q, we can define the
operator Δp

q by Δp
qf = (DZ

ωf)(ψ) with ω = detq , Z = Cψ ⊂ Smp(T), and ψ = detp/2.
Here, the square root of the determinant denotes the Pfaffian of the skew-symmetric
matrix. Then

Δp
qN

t
q(Q) ⊂ πmpN

t+mp
q+p (Q).

We have shown that El(g , l) ∈Ml(Q), so Δp
l El(g , l) ∈ πmpN

mp
l+p(Q). Take p = l − μ,

then by the explicit formula in [27, Theorem 4.3], we have

Δp
μEμ(g , μ) = C ⋅ El(g , μ), with C ∈ Q×.

This concludes the proof of the proposition. ∎

6 Main results

We now recall that we have established the integral representation of the L-function:

L(s, f , χ)f(g) = ck(s)∫
G(Q)/G(A)/K1(n)K∞

E(g × h, s)f(h)dh.

Here,Ek(g, s) = Λn(s, χ)E(g, s); E(g, s) = Ek(gσ−1 , s) for g ∈ GN(A) and σ = 1 if v ∤
n, σ = τ̃m if v∣n, where Ek(g, s) is the Siegel-type Eisenstein series defined on GN of
weight k and N = 2n.

We first prove a lemma which is the analog of [32, Lemma 26.12] in our setting.

Lemma 6.1 Let f ∈ Nd
k (Q) be an algebraic nearly holomorphic form associated with

group GN . Then there exist g j , h j ∈ Nd
k (Q) associated with group Gn such that

f(g × h) =
e
∑
j=1

g j(g)h j(h).

Proof Write

f(g × h) = j(g∞ × h∞, z0 × z0)−kf(gh × hh , z ×w)
with z = g∞z0 , w = h∞z0 ∈ Zm ,r . By definition, f (z, w) ∶= f(gh × hh , z ×w) is nearly
holomorphic in z ×w. Similarly to the proof of [32, Lemma 26.12], one can show that
it is also nearly holomorphic in z and f (z, w) is nearly holomorphic in w. Therefore,
f ∈ Nd

k (Q) (resp. f ∈ Nd
k (Q)) as a function in g or h.

Let {g j}e
j=1 be a Q-rational basis of Nd

k (Q). For each fixed h, we have f(g × h) =
∑e

j=1 g j(g)h j(h) with h j(h) ∈ C. Since g j are linearly independent, we can find e
points g1 , . . ., ge such that det(g j(zk))e

j,k=1 ≠ 0. Solving the linear equations f(g , h) =
∑e

j=1 g j(zk)h j(h), we find functions h j ∈ Nd
k .
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It suffices to prove that {h j} are algebraic. Since W = {g ⋅ z0 ∶ g ∈ G(Q)} is a dense
subset of Zm ,r , we can take g j such that g jz0 ∈W. We easily calculate the period
Pk(z0 × z0) =Pk(z0)Pk(z0); hence,

Pk(z0 × z0)−1f(gh × hh) =
e
∑
j=1

Pk(z0)−1g j(gh)Pk(z0)−1h j(h).

By algebraicity of f , g j , we have Pk(z0)−1h j(h) ∈ Q, and thus for all w = h∞z0 ∈W,
we have Pk(w)−1h j(h) ∈ Q. Hence, h j ∈ Nd

k (Q), which completes the proof. ∎
Before stating the main theorem, we need to establish one more result.

Proposition 6.2 Assume that k > 2n − 1, and let μ ∈ Z such that 2n − 1 < μ ≤ k. Then
there exists a function T(g , h) with T(g , h) ∈ Nm(k−μ)

k (Q) ×Mk(Q) such that

⟨T(g , h), f(h)⟩ = ⟨E(g × h, μ), f(h)⟩.
Proof This is the analog of Lemma 29.3 proved in [32] in the unitary case. Actually,
it is even simpler in our case since we do not need to involve some more complicated
differential operators needed in the unitary case. Here, we simply indicate some
changes to the proof in [32] to cover our case. We follow the notation of Appendix
A8 in [32] and write g for the real Lie algebra of G ∶= G(R). We then have the familiar
decomposition of the complexification gC = tC ⊕ p+ ⊕ p− where t is the Lie algebra of
the fixed maximal compact subgroup K ≅ U(n). Finally, we write U for the universal
enveloping Lie algebra of gC, and Kc = GLn(C) for the complexification of K.

Given a representation (ρ, V) of Kc , we write C∞(ρ) for the functions f ∈
C∞(G, V) such that f (xk−1) = ρ(k) f (x) for all k ∈ K ⊂ Kc , and x ∈ G. As in [32],
there is a bijection between C∞(Z, V) and C∞(ρ) which we denote by f ↦ f ρ . We
also write H(ρ) for the functions in C∞(ρ) such that Y f = 0 for all Y ∈ p−. These
functions correspond to holomorphic functions in C∞(Z, V).

Recall (see [32]) that a U-module Y is called unitarizable if there exists a positive-
definite hermitian form { , } ∶ Y × Y→ C such that {X g , h} = −{g , Xh} for every
g , h ∈ Y and X ∈ g.

Let us now take ρ = detk for some k > 2m − 1. Then we have that for any nonzero
f ∈ H(ρ), the U-module structure of U f depends only on the weight k, and that such
a module is unitarizable. This follows exactly as in [32, Theorem A8.4] where the cases
of unitary and symplectic groups are considered. What needs to be explained is the
bound on the weight k. For this, there are two remarks that one needs to make: first
that the bound follows from the fact that in our type-D setting, the function ψZ is
given by (see [27])

ψZ(s) =
m
∏
h=1

r2h

∏
i=1
(s − i + 2h − 1) .

For the notation, we refer to [27] since what is important in the proof is the fact
that ψZ(−k) ≠ 0 which is satisfied for the selected bound on k. The other remark is
the existence of a nonzero g ∈ H(det) and a discrete subgroup Γ of G such that Γ/G
is compact and f (γx) = f (x) for all γ ∈ Γ. This is the analog of [32, Lemma A8.5],
which covers the unitary case. But again, the existence of such a g and a discrete Γ can
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be derived from the existence of such elements in the unitary case, say Γ̃ and g̃ (the
content of Lemma A8.5 and the natural closed embedding G ↪ U(n, n). In particular,
we may take Γ ∶= Γ̃ ∩G and g as the restriction of g̃ to G.

The importance of considering U-module structures which are unitarizable
becomes clear from the following result on holomorphic projection. Namely, if we still
write ρ = detk , and consider an f ∈ N d

k (Q) for any d ∈ N such thatU f ρ is unitarizable,
then there exists an element q ∈ Mk(Q) such that ⟨ f , h⟩ = ⟨q, h⟩ for all h ∈ Sk . This is
a rather general result and can be obtained exactly in the same way as it is done in [32,
Lemma A8.7] in the unitary and symplectic case with little changes.

We can now complete the proof of the proposition. First, we note that unitarizable
U-modules behave well with respect to the doubling mapping. Let us write Gi with
i = 1, 2 for groups of type similar to G, and we insert the index i to all notations.
Assume we have a doubling embedding G1 ×G1 ↪ G2 of the kind considered in
this paper, and we write Δ for the corresponding embedding of symmetric spaces.
Then, if f ∈ H2(ρ) such that the U2-module U2 f is unitarizable, then the U1 × U1
module Δ∗U f is unitarizable with respect to both variables. This follows similar to
[32, Lemma A8.11]. Hence, in order to complete the proof, it is enough to show that
the Eisenstein series Ek(g , μ) belongs to a unitarizable U-module, since then when
we pull it back with respect to the diagonal embedding, we can keep the one variable
constant (the variable g in the statement of the proposition) and take the holomorphic
projection with respect to the other. This final claim follows from the fact shown in
Proposition 5.9 that the Eisenstein series Ek(g , μ) on GN with N = 2n are obtained
from holomorphic ones of weight l ≥ N − 1 = 2n − 1 by applying the Shimura–Maass
operators Δp

l . But these operators are well known to be obtained as operators of the
universal enveloping algebra. Indeed, this is shown for the symplectic and unitary case
in the first few lines of [32, §A8.8] and more generally in [7]. ∎

We can now prove the theorem on the algebraicity of the L-values (we remind the
reader here of Remark 1.2 made in the Introduction).

Theorem 6.3 Let n be an ideal in Z, and assume that all finite places v with v ∤ n are
split in B. Let f ∈ Sk(K1(n),Q) be an eigenform with k > 2n − 1, and let χ be a Dirichlet
character whose conductor divides the ideal n. Let μ ∈ Z such that 2n − 1 < μ ≤ k, then

L(μ, f , χ)
πn(k+μ)− 3

2 n(n−1)⟨f , f⟩
∈ Q.

Proof We prove the theorem following an idea used in the proof of [32, Theorem
29.5], which allows us to cover also the non-split (i.e., non-tube) case. By the above
proposition, we can replace E(g × h, μ) by T(g , h) holomorphic in h such that the
integral can be rewritten as

ck(μ)L(μ, f , χ)f(g) = ⟨T(g , h), f(h)⟩.

By Lemma 6.1, we have

π−βT(g , h) =
e
∑
j=1

g j(g)h j(h),
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with g j ∈ Nn(k−μ)
k (Q), h j ∈Mk(Q), and β = n(k + μ) − n(n − 1). We note here that,

indeed, h j ∈Mk(Q), as one can see in the proof of Lemma 6.1 that the analytic
properties of the h j ’s follow from that of the restricted function on the h variable
since they are obtained as the solutions of a linear system where the “constant” vector
consists of holomorphic functions.

Then the above equation can be written as

ck(μ)L(μ, f , χ)
πβ f(g) =

e
∑
j=1
⟨h j , f⟩ ⋅ g j(g).

Since we are assuming k > 2n − 1, we may apply [8, Corollary 2.4.6] and write
Mk(Q) = Sk(Q) ⊕ Ek(Q) as a direct sum of space of algebraic cusp form and the
space of algebraic Eisenstein series. In particular, we can find h′j ∈ Sk(Q) such that
⟨h j , f⟩ = ⟨h′j , f⟩. Let w = g∞z0 be a CM-point with period Pk(w), then by defini-
tion, Pk(w)−1g j(gh g∞) ∈ Q. Therefore, at g = gh g∞, we can further find some h" ∈
Sk(K1(n),Q) such that

ck(μ)L(μ, f , χ)
πβ f(gh ⋅ g∞) =Pk(w)⟨h", f⟩.

Denote

V = {f ∈ Sk(K1(n)) ∶ f ∣Tξ = λ(ξ)f},V(Q) = V ∩ Sk(K1(n),Q)
for the space consisting of eigenforms with the same eigenvalues as f . Since
Sk(K1(n)) = Sk(K1(n),Q) ⊗

Q
C and Sk(K1(n),Q) is stable under the action of

Hecke operators, we obtain that the eigenvalues λ(ξ) ∈ Q. Hence, we have V =
V(Q) ⊗

Q
C. We may now write Sk(K1(n),Q)) = V(Q) ⊕U for some Q-rational

vector space U (compare with the first few lines of the proof of [32, Theorem 28.5]).
With w = g∞z0 as above, let hw be the projection of h" to V(Q), then for all f ∈ V(Q)
and any CM-point w = g∞z0, we have

ck(μ)L(μ, f , χ)
πβ

f(gh ⋅ g∞)
Pk(w)

= ⟨hw , f⟩.

For a fixed μ, we can choose w such that ⟨hw , f⟩ ≠ 0, since L(μ, f , χ) ≠ 0, thanks to
the Euler product expansion and absolute convergence for such an μ > 2n − 1. Such
hw span V(Q), so for any h, h′ ∈ V(Q), we have ⟨h, h′⟩ ∈ πβ ck(μ)−1L(μ, f , χ)Q and
thus ⟨h, h′⟩/⟨f , f⟩ ∈ Q. Choose g∞ such that f(gh g∞) ≠ 0. Then, by algebraicity of f ,
we have

ck(μ)L(μ, f , χ)
πβ⟨f , f⟩ = ⟨hw , f⟩

⟨f , f⟩ ( f(gh ⋅ g∞)
Pk(w)

)
−1

∈ Q,

and the result follows from the value of ck(μ) in Lemma 4.6. ∎
Remark 6.4 We finally give several remarks on our main theorem.

(1) As it was discussed in Remark 3.1, if f is assumed to be an eigenform in
Sk(K) for some K ⊃ K1(n), then the L-function above is only the partial L-function
corresponding to such an f . However, in our case since our result are for values of
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L at the absolute convergent range (larger than 2n − 1), we can extend our results to
include such missing Euler factors. Indeed, if we consider a p∣n and write Lp(p−s) =
Pp(χ(p)p−s)−1 for such an Euler factor, then for an integer μ > 2n − 1, we have
Pp(χ(p)p−μ) ≠ 0 since both the complete and the partial L-functions are absolutely
convergent there. Hence, if one further knows that Pp(χ(p)p−μ) ∈ Q, then one can
simply “add” the Euler factor to the algebraicity result above. As it was mentioned
above, the existence of the correct Euler factors has been established by Yamana in
[38]; however, to the best of our knowledge, there is no result on their algebraicity,
that is, it has not yet been established that Pp(X) ∈ Q[X] even though such a result is
expected to hold.

(2) Of course, the motivation for a theorem as above stems from the celebrated
Deligne’s conjectures [4]. These conjectures are related to critical values of motivic
L-functions and are of central importance in modern number theory. This critical
values can be defined by the Γ-factors appearing in the functional equation of the
motive. Of course, in our setting and to the best of our knowledge, we do not have
a motive corresponding to our automorphic object f . As it is often the case in such
situations, one attempts to define the critical values by looking at the Γ-factors of the
automorphic object. However, similarly to Remark 3.1, the explicit form of the Euler
factors at infinity (i.e., Γ-factors) such that a functional equation is satisfied, is not
known (see [38, Theorem 5.2]).

The next best thing one can do is to “declare” as the right Γ-factors the ones that
are obtained by combining the expression ck(s) derived by the reproducing kernel
in Lemma 4.6 and then include the Γ-factors which give good analytic properties to
the Siegel-type Eisenstein series. Such an approach is taken, for example, by Shimura
[32] for Hermitian and Siegel modular forms and also by Böcherer and Schmidt [1,
Appendix] in the Siegel modular forms case. In our case, since we are taking k ≥ 2n,
the Γ-factors for the Siegel-type Eisenstein series are Γn(s + k) ∶= πn(n−1)∏n−1

i=0 Γ(s +
k − 2i) (see [3, Theorem 3.8]), and hence for the L-function is (using the notation of
Lemma 4.6 and write n = 2q + t with t ∈ {0, 1}),

Γ(s) ∶= ck(s)Γn(s + k)=α(s)π
3n(n−1)

2
∏q−1

j=0 Γ(s + k − n + 1 − t − 2 j)

∏q−1
j=0 Γ(s + k − 2 j)

n−1
∏
i=0

Γ(s + k − 2i) =

α(s)π
3n(n−1)

2

q−1

∏
j=0

Γ(s + k − n + 1 − t − 2 j)
n−1
∏
i=q

Γ(s + k − 2i),

where, we recall, α(s) is a holomorphic function for all s ∈ C. It is worth mentioning
here that in the case of n even, the above Γ-factors agree with those computed in [3,
Theorem 8.2] where a very different method was used involving theta series and an
Eisenstein series of different group and weight.

Declaring now as critical values the integral values of s such that Γ(s) and Γ(2n −
1 − s) (note our normalization of the Satake parameters) have no poles, we find that
the critical values are at the interval

{μ ∈ Z ∶ 2n − 1 − k ≤ μ ≤ k}.
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In particular, the values in our theorem above are all within the critical range (in the
above sense).

Let it now explain a bit more the assumption in our theorem, namely that we are
assuming k > 2n − 1 and why we obtain results only for the critical values 2n − 1 <
μ ≤ k, and not for the whole range indicated above. The condition on the weight
k > 2n − 1 is required since in our proof we need to be able to separate algebraically
the cuspidal part from the Eisenstein part, that is,Mk(Q) = Sk(Q) ⊕ Ek(Q). For this,
we rely on a celebrated result of Harris in [8] which holds under the assumption that
k > 2n − 1. We remark that the case of r = 0 (split case) and r ≠ 0 (non-split case)
are very different, and a similar phenomenon shows up also in the unitary group
for the case of U(n, n) and the case U(n, m), n ≠ m as, for example, in Theorem
[32, Theorem 27.12]. The restriction of the range 2n − 1 < μ ≤ k is due to the use of
nearly holomorphic Eisenstein series (see Proposition 6.2 and Theorem 5.9) and the
nonvanishing L(μ, f , χ) ≠ 0 used in the proof above.

We mention here that in the split case (r = 0), we can obtain algebraicity result
in [15] for n + 1 ≤ μ ≤ k. The techniques there are very different to the ones used
here and are modeled to the seminal paper of Böcherer and Schmidt [1], and rely
on the use of some holomorphic differential operators (no use of nearly holomorphic
Eisenstein series) and some further assumptions on nonvanishing eigenvalues. We
simply mention here that these techniques seem to be particular to the split case
(especially the holomorphic operators) and it is not known how they can be applied
to the non-split case, which is the main case of interest of this paper.

(3) One may expect a refined result of above theorem. That is, for σ ∈ Gal(Q/Q),

( L(μ, f , χ)
πn(k+μ)− 3

2 n(n−1)G(χ)n⟨f , f⟩
)

σ

= L(μ, f σ , χσ)
πn(k+μ)− 3

2 n(n−1)G(χσ)n⟨f σ , f σ⟩
,

where G(χ) is certain Gauss sum. It is known that the Fourier coefficients of Siegel
Eisenstein series have these nice Galois properties, but it is not clear whether its
pullback still preserves the Galois properties. The same problem also occurs in [32] for
unitary groups. When our group G is a split (i.e., r = 0), f σ can be simply defined as the
action of Gal(Q/Q) on the Fourier coefficients of f . In this setting, our Lemma 6.1 has
a refined version as in [32, Lemma 24.11] for Case UT there (the split unitary group)
and we actually obtained the above refined algebraicity result in [15]. In the general
case treated in this paper, which of course includes the case of non-split groups (r ≠ 0),
we have to characterize the algebraic modular forms using CM-points and thus, when
pulling back the Eisenstein series, we can only prove our Lemma 6.1 over Q as in
[32, Lemma 26.12] for Case UB, which includes the non-split unitary groups. And, of
course, as it is clear from the proof of Theorem 6.3, the more refined results require
the understanding of the action of Gal(Q/Q) on ( f(gh ⋅g∞)

Pk(w) ) ∈ Q in the notation used
in the proof of the theorem.

(4) Finally, we mention that as in [30, 32], we can also applying the pullback of
Siegel Eisenstein series for two different groups Gn ×Gn′ . This will give the Klingen
Eisenstein series, and thus the algebraicity result for the Klingen Eisenstein series can
also be obtained.
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