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A B S T R A C T 

Dedicated ‘Stage IV’ observatories will soon observe the entire e xtragalactic sk y, to measure the ‘cosmic shear’ distortion of 
galaxy shapes by weak gravitational lensing. To measure the apparent shapes of those galaxies, we present an impro v ed v ersion 

of the Fourier Power Function Shapelets ( FPFS ) shear measurement method. This now includes analytic corrections for sources 
of bias that plague all shape measurement algorithms: Including noise bias (due to noise in non-linear combinations of observable 
quantities) and selection bias (due to sheared galaxies being more or less likely to be detected). Crucially, these analytic solutions 
do not rely on calibration from external image simulations. For isolated galaxies, the small residual ∼10 

−3 multiplicative bias 
and � 10 

−4 additi ve bias no w meet science requirements for Stage IV experiments. FPFS also w orks accurately for f aint galaxies 
and robustly against stellar contamination. Future work will focus on deblending o v erlapping galaxies. The code used for this 
paper can process > 1000 galaxy images per CPU second and is available from https://github.com/mr-superonion/FPFS . 

Key words: gravitational lensing: weak – techniques: image processing – cosmology: observations. 
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 I N T RO D U C T I O N  

he images of distant galaxies appear weakly but coherently distorted
ecause light from them is deflected by the gravity of intervening
atter along our line of sight (for re vie ws, see Bartelmann &
chneider 2001 ; Kilbinger 2015 ). The anisotropic stretch of galaxy

mages is termed weak gravitational lensing shear , denoted by
arameters γ 1 and γ2 . This observable distortion depends upon,
nd can be used to map, the distribution of baryonic and dark matter
n the Universe (for a re vie w , see Massey , Kitching & Richard 2010 ).

Dedicated ‘Stage IV’ weak-lensing surv e ys such as the LSST 

1 

Ivezi ́c et al. 2019 ), Euclid 2 (Laureijs et al. 2011 ), and NGRST 

3 

Spergel et al. 2015 ) are being designed to constrain cosmology with
nprecedented precision. To ensure that systematic biases are within
tatistical uncertainty, they require estimators of the applied shear 

ˆ 1 , 2 = (1 + m ) γ1 , 2 + c 1 , 2 (1) 

o be measured from the noisy image of each galaxy, with multi-
licative bias | m | � 0 . 003 and additive bias c 1, 2 � 10 −4 (Cropper
t al. 2013 ; Massey et al. 2013 ; The LSST Dark Energy Science
ollaboration 2018 ). In addition, these surv e ys will take a large
 E-mail: xiangchl@andrew.cmu.edu 
 Vera C. Rubin Observatory’s Le gac y Surv e y of Space and Time: http://ww 

.lsst.org/
 Euclid satellite mission: http:// sci.esa.int/ euclid/ 
 Nancy Grace Roman Space Telescope: http:// roman.gsfc.nasa.gov/ 
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mount of data, e.g. the LSST will produce about 20 terabytes
f raw data per night. Here, we develop a shear estimator that
s both accurate and fast enough to process the data from these 
urv e ys. 

A practical shear measurement method must o v ercome man y
hallenges to work on real astronomical imaging: Including the
etection and selection of distant galaxies, correction of detector
ffects and the wavelength-dependent point-spread function (PSF),
nd the combination of noisy pixellated data (for a re vie w, see
andelbaum 2018 ). Some methods (Mandelbaum et al. 2018b ;
annawadi et al. 2019 ; Hoekstra 2021 ; Li et al. 2021 ) advocate

mpirical calibration of shear estimators such as reGauss (Hirata &
eljak 2003 ) and lensfit (Miller et al. 2007 ; Fenech Conti et al.
017 ) using simulated images. That merely shifts the challenge to
ne of accurate simulation. The various processes interact in complex
ays, and it can be difficult to disentangle their effects. 
In this paper, we extend the Fourier Power Function Shapelets

 FPFS ; Li et al. 2018 ) method for shear measurement. We use
nalytic features of the method to eliminate bias for isolated well-
ampled images of isolated galaxies, when the PSF is accurately
nown and independent of wavelength. This is only one more step
owards a full pipeline, but the tests in this paper already separate out
nd require control of 

(i) ‘model bias’ (Bernstein 2010 ), due to incorrect assumptions
bout galaxy morphology, 

(ii) ‘noise bias’ (Refregier et al. 2012 ), where noise terms in a
on-linear expression for ˆ γ are now removed up to second order, and
© 2022 The Author(s) 
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Table 1. Table for accent notations. The examples are for the ellipticity, but 
the notations also apply to other FPFS quantities in Section 2. 

Ellipticity with different accents Definition 

ē 1 , 2 Intrinsic ellipticity of galaxies 
e 1, 2 Ellipticity of lensed galaxies 
˜ e 1 , 2 Ellipticity of noisy lensed galaxies 
ˆ e 1 , 2 Ellipticity after noise bias correction 
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4 To a v oid bias, Li et al. ( 2018 ) found that the radius of a circular postage 
stamp around an isolated galaxy should be at least four times the galaxy’s 
radius determined by it’s reGauss moments (Hirata & Seljak 2003 ). In 
this paper, we use a large postage stamp with N = 32 pixels. The optimal 
postage stamp size, which adapts to the size of each galaxy and the presence 
of neighbours, will be discussed in future work. 
5 We choose not to normalize the power function by the area of the image as 
in the power spectral density, as the information from an isolated galaxy does 
not scale as the image size. We shall later adopt the same convention for the 
noise power for consistency. 
6 Since the shapelet basis vectors are orthogonal (Refregier 2003 ), and not 
convolved with the PSF (as in Massey & Refregier 2005 ), shapelet modes 
can be estimated by a direct projection following equation (4) – we do not 
need to know the projections on any other shapelet basis vectors to estimate 
one shapelet mode, and a v oid the need to artificially truncate the shapelet 
series. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/4/4850/6524913 by U
niversity of D

urham
 user on 26 M

ay 2022
(iii) ‘selection bias’ (Kaiser 2000 ) due to the detection of galaxies 
ased on their appearance after both a shear and instrument PSF have
een applied. 

he FPFS shear estimator uses four shapelet modes (Refregier 2003 ) 
f a galaxy’s Fourier power function (Zhang 2008 ) to estimate shear
istortion. It a v oids the need to artificially truncate the shaplet series
nd thus is free from ‘model bias’ (Li et al. 2018 ). A weighting
arameter is introduced so that the ‘noise bias’ is proportional to the
nverse square of this free parameter for faint galaxies, and ‘noise
ias’ can be controlled by tuning the weighting parameter. In this
ork, we further correct the second-order ‘noise bias’ in the FPFS

hear estimator and remo v e the ‘selection bias’. In addition, we show
hat FPFS shear estimator is robust to stellar contamination in the 
alaxy sample if the PSF is well-determined. 

Sev eral other e xisting methods also meet the Stage IV weak-
ensing surv e ys’ requirement on systematics control for isolated 
alaxies, including METACALIBRATION (Huff & Mandelbaum 

017 ; Sheldon & Huff 2017 ), Fourier Quad (Zhang, Zhang &
uo 2017 ; Li & Zhang 2021 ), BFD (Bernstein & Armstrong
014 ; Bernstein et al. 2016 ) without relying on calibration using
xternal image simulations. Continuing to de velop se veral methods 
imultaneously remains a useful mitigation of risk. Among these, 
PFS remains promising because it requires no prior information 
bout galaxy morphologies, is more than 100 times faster than 
ETACALIBRATION , processing o v er a thousand galaxy images 
er CPU second. 

This paper is organised as follows: In Section 2, we review the
revious formalism of the FPFS method, and analytically derive the 
econd-order correction for non-linear noise bias and the correction 
or selection bias. In Section 3, we introduce simulated images 
f galaxies used to verify (not calibrate) the performance of the 
roposed shear estimator on isolated galaxies. In Section 4, we 
resent the results of the tests. In Section 5, we summarize and
iscuss future work. 

 M E T H O D  

he Li et al. ( 2018 ) implementation of FPFS measures shear from
our shapelet coefficients (Refregier 2003 ) of each galaxy’s Fourier 
ower function (Zhang 2008 ). We review that method in Section 2.1.
o we ver, the noise bias is proportional to the inverse square of a

uning parameter for faint galaxies. In addition, it assumes galaxies 
elected to be in a sample have (isotropically) random intrinsic 
rientations, and the measurement error from photon noise does 
ot prefer any direction. We correct non-linear noise bias to second- 
rder in Section 2.2, then correct two selection biases in Section 2.3.
hroughout this section, we use accents to denote measurable 
uantities under different conditions and at different stages of image 
rocessing; this notation is summarized for reference in Table 1 . 
e will introduce shear responses of observables and selections, our 

otation for which is summarized for reference in Table 2 . 
.1 Li et al. ( 2018 )’s FPFS shear estimator 

tarting with a noiseless galaxy image f x in an N × N postage
tamp, 4 we first calculate its 2D Fourier transform 

 k = 

∫ 
f x e 

−i k ·� x d 2 x, (2) 

nd its Fourier power function 5 

 k = f k f 
∗
k = | f k | 2 , (3) 

here the asterisk denotes a complex conjugate. We focus on the
ell-sampled case for ground-based telescope, in which the pixel size 

s less than the Nyquist sampling rate; therefore, we can approximate
ignals in configuration space as a continuous form. To compute 
he Fourier transform, we assume periodic boundary conditions. 
onsequently, k is enumerable, and f k is in a discrete form. Note

hat the Fourier power function is al w ays Hermitian symmetric and
he centroid of the galaxy power function is al w ays at k = 0. This
ill eliminate bias due to anisotropic mis-centring on the intrinsic 

ource plane, caused by noise or PSF. 
In Fourier space, the effect of blurring by a PSF can be remo v ed by

ividing F k by the PSF’s Fourier power function, G k (Zhang 2008 ).
e decompose the result into shapelets 6 (Massey & Refregier 2005 ) 

 nm 

= 

∑ 

k 

χ∗
nm 

( k ) 
F k 

G k 
, (4) 

here, to remo v e a ne gativ e sign later, we use comple x conjugates
f the polar shapelet basis functions (Fig. 1 ) 

nm 

( ρ, φ) = 

( −1) ( n −| m | ) / 2 

r 
| m |+ 1 
F 

{
[( n − | m | ) / 2]! 

π [( n + | m | ) / 2]! 

} 1 
2 

×ρ | m | L 

| m | 
n −| m | 

2 

(
r 2 

r 2 F 

)
e −ρ2 / 2 r 2 

F e −imφ, (5) 

here L 

p 
q are the Laguerre Polynomials, n is the radial number and m

s the spin number, and r F determines the scale of shapelet functions
n Fourier space. In addition to k , we use polar coordinates ( ρ, φ)
o denote discrete locations in 2D Fourier space. The scale size of
hapelets used to represent the galaxy, r F , should be less than the
cale radius of PSF’s Fourier power, r P , to a v oid boosting small-
cale noise during PSF deconvolution. In this paper, we fix r F / r P =
.75. 
To first order in shear, the shear distortion operator correlates a

nite number of shapelet modes (separated by | � n | = 2 and | � m | =
 Massey & Refregier 2005 ). It is therefore possible to estimate an
pplied shear signal using a finite number of shapelet modes. The Li
MNRAS 511, 4850–4860 (2022) 
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M

Table 2. Table for notations of responses that will be introduced in Section 2. 

Linear response to small distortion Definition 

R 

γ
e Shear ( γ ) response of FPFS ellipticity ( e ) at single galaxy level 

R 

γ
e Shear ( γ ) response of average FPFS ellipticity ( e ) for a galaxy population 

R 

γ

sel Shear ( γ ) response of a selection from a galaxy population 

Figure 1. Shapelet basis functions χnm . The indices ‘c’ and ‘s’ refer to the 
real part and imaginary part of the complex shapelet basis functions. The 
FPFS shear estimator combines projections on four shapelet basis functions: 
χ00 , χ22 c , χ22 s , and χ40 . The linear grey colour map ranges from −0.18 
(black) to 0.18 (white). 
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7 Equation (9) differs by a minus sign from that in Li et al. ( 2018 ), who defined 
the shear response with respect to the shear distortion in Fourier space. All the 
shear responses in this paper are defined with respect to the shear distortion 
in configuration space. 
8 Li & Zhang ( 2021 ) present a formalism to include galaxy photon noise, 
but we proceed here on the assumption that it is negligible for the faint 
galaxies that are most affected by noise bias, and verify the validity of this in 
Section 4.3. 
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t al. ( 2018 ) FPFS algorithm uses four shapelet modes to construct
ts shear estimator, with FPFS ‘ ellipticity ’, 

 1 ≡ M 22 c 

M 00 + C 

, e 2 ≡ M 22 s 

M 00 + C 

, (6) 

here M 22 c and M 22 s refer to the real (‘cos ’) and imaginary (‘sin ’)
omponents of the complex shapelet mode M 22 , respectively. The
ositive constant parameter C adjusts the relative weight between
alaxies of different luminosities. A large value of C puts more
eight on bright galaxies, and suppresses noise bias, while a small
alue of C weights galaxies more uniformly. We similarly define a
ew useful spin m = 0 FPFS quantities: 

 0 , 2 , 4 = 

M 00 , 20 , 40 

M 00 + C 

. (7) 

n principle, the value of C can be different in each of these quantities;
o we ver, here, we set them all to 2 . 5 σM 00 for simplicity, where σM 00 

s the standard deviation of measurement error on M 00 caused by
hoton noise on galaxy images. The details of tuning the weighting
arameter is shown in Sections 4.1 and 4.2. The ‘ flux ratio ’ s 0 was
uggested by Li et al. ( 2018 ) as a criterion to select a galaxy sample,
elping to remo v e faint galaxies and spurious detections, etc. 
When the image of a galaxy is distorted by shear γ β , its ellipticity

ransforms to first order in γ as 

¯ α → e α = ē α + 

∑ 

β= 1 , 2 

γβ

(
R 

γ
e 

)
αβ

, (8) 
NRAS 511, 4850–4860 (2022) 
here components α ∈ { 1, 2 } and β ∈ { 1, 2 } , and the ‘ shear
esponsivity ’ ( R 

γ
e ) αβ = ∂ e α/∂ γβ (Sheldon & Huff 2017 ). The shear

esponsivity of the FPFS ellipticity for an individual galaxy is a
calar quantity, 7 

 

γ
e = 

1 √ 

2 

(
s 4 − s 0 − e 2 1 − e 2 2 

)
, (9) 

lus terms involving spin m = 4 modes – which all average to
ero when we now average R 

γ
e over all galaxies in a sample,

o obtain a population responsivity (denoted with curly letters)
 

γ
e ≡ 〈 R 

γ
e 〉 . We intend to investigate in future work O( γ 2 ) terms

n R 

γ
e that may not necessarily be small near galaxy clusters.

ince the difference between 〈 ̄e 2 1 〉 and 〈 ̄e 2 2 〉 is negligible, we define
he shear response as the average responses of two shear compo-
ents and do not distinguish between the responses of two shear
omponents. 

Assuming that the galaxy population is selected such that 〈 ̄e α〉 = 0
n the absence of shear, equation (8) suggests a shear estimator (Li
t al. 2018 ) 

ˆ α ≡ 〈 e α〉 
R 

γ
e 

= 

�
�
�� 

0 
〈 ē α〉 
R 

γ
e 

+ γα = γα. (10) 

he population variance of ē α is known as the intrinsic shape noise. 

.2 Non-linear noise bias 

.2.1 Effect of observational noise 

n real observations the galaxy image is contaminated by photon
oise and read noise. We denote the total image noise in Fourier
pace as n k , i.e. the observed galaxy image is 

 

o 
k = f k + n k , (11) 

nd the observed galaxy Fourier power function is 

 

o 
k = f o k ( f 

o 
k ) 

∗ = | f o k | 2 . (12) 

We shall assume that the source and image noise do not correlate,
.e. 〈 f k n k 〉 = 0 . We shall also assume that the noise is dominated
y background and read noise, so that we can neglect photon noise
n the galaxy flux. 8 This makes the noise a mean zero homogeneous
aussian random field that, av eraged o v er different noise realisations,
as Fourier power function with expectation value 

 k = 

〈
n k n 

∗
k 

〉
. (13) 
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ote that this is different from F k which is defined for each galaxy,
nd we differentiate them with different fonts. Using Isserlis’ theorem 

also known as Wick’s theorem in quantum field theory), its 4-point 
orrelation function is 〈
n k n k ′ n 

∗
k n 

∗
k ′ 
〉 = (1 + δK ( k − k ′ ) + δK ( k + k ′ )) N k N k ′ , (14) 

here δK denotes the Kronecker delta function. 
To account for image noise (following Zhang, Luo & Foucaud 

015 ), the expectation value of the noise power (13) can be measured
rom blank patches of sky, and subtracted from an observed galaxy’s 
ourier power function. Using a tilde to label corrected quantities, 

his yields 

˜ 
 k = F 

o 
k − N k , (15) 

rom which ˜ e α , ˜ s 0 , etc. can be defined similarly as in (6), (7), and
4). Note the accent notation of FPFS flux ratio, s , follows that of
PFS ellipticity, e 1, 2 , shown in Table 1 . However, compared to the
oiseless image power function F k , this now contains residual noise 
ower 

k ≡ ˜ F k − F k = n k n 
∗
k − N k + f k n 

∗
k + f ∗k n k . (16) 

cross a galaxy population, the expectation value of residual noise 
s zero, 〈 εk 〉 = 0. F or an y individual galaxy, the residual noise power
ncludes contributions from the individual realisation of noise, and 
ny correlation between that noise and the galaxy flux (see also Li &
hang 2021 ). Combining equations (14) and (16), the two-point 
orrelation function of the residual noise power is 〈
εk ε

∗
k ′ 
〉 = ( δK ( k − k ′ ) + δK ( k + k ′ )) 

(
N 

2 
k + 2 F k N k 

)
. (17) 

During shape measurement, the galaxy power function (which now 

ncludes residual noise) is divided by the PSF power and decomposed 
nto shapelets (equation 4). The shapelet modes of the residual noise 
re 

 nm 

= 

∑ 

k 

χ∗
nm 

( k ) 
εk 

G k 
. (18) 

gain, their expectation values 〈 E nm 

〉 vanish because 〈 εk 〉 = 0 . For
n individual galaxy however, the their covariance is 

 nmn ′ m 

′ ≡ 〈
E nm 

E ∗n ′ m 

′ 
〉

= 

∑ 

k 

(
χ∗

nm 

χn ′ m 

′ + χnm 

χn ′ m 

′ 

G 

2 
k 

)(
N 

2 
k + 2 F k N k 

)
. (19) 

he shapelet modes thus become correlated ( V nmn ′ m 

′ �= 0) due to
nhomogeneous and anisotropic residual noise, and anisotropy in the 
SF. The covariances can be measured from nearby blank patches of
ky, the galaxy itself, and the PSF model. 

.2.2 Correction for noise bias 

ropagating the contribution of residual noise into FPFS ellipticity 
stimators yields an expectation values 

〈 ˜ e 1 〉 ≡
〈

M 22 c + E 22 c 

M 00 + C + E 00 

〉
, 〈 ˜ e 2 〉 ≡

〈
M 22 s + E 22 s 

M 00 + C + E 00 

〉
. (20) 

xpanding the FPFS ellipticity as Taylor series of E 00 
M 00 + C 

about 
he point E 00 = 0 and inserting the covariance of shapelet modes
equation 19), this is 

〈 ˜ e 1 〉 = 

〈
e 1 

(
1 + 

V 0000 

( M 00 + C) 2 

)
− V 0022 c 

( M 00 + C) 2 

+ O 

( ( E nm 

M 00 + C 

)4 
) 〉 

, 

〈 ˜ e 2 〉 = 

〈
e 2 

(
1 + 

V 0000 

( M 00 + C) 2 

)
− V 0022 s 

( M 00 + C) 2 

+ O 

( ( E nm 

M 00 + C 

)4 
) 〉 

, (21) 

here V 0022 c ( V 0022 s ) refers to the covariance between E 00 and E 22 c 

 E 22 s ). One can notice immediately that the second-order terms are
n the form of additive and multiplicative biases, proportional to the
nverse square of M 00 + C . And we shall neglect terms of fourth-
rder and higher. 
Therefore, one version of the FPFS ellipticity suitably corrected 

or noise bias up to second-order is 

ˆ  1 = 

1 

T 

(
˜ e 1 + 

V 0022 c 

( ˜ M 00 + C) 2 

)
, 

ˆ  2 = 

1 

T 

(
˜ e 1 + 

V 0022 s 

( ˜ M 00 + C) 2 

)
, (22) 

here T = 1 + 

V 0000 
( ̃  M 00 + C) 2 

. Similarly, the FPFS flux ratio measured
rom a noisy image, ˜ s 0 , is also subject to noise bias, but can be
orrected as 

ˆ  0 = 

1 

T 

(
˜ s 0 + 

V 0000 

( ˜ M 00 + C) 2 

)
. (23) 

he corrected shear responsivity for a single, noisy galaxy becomes 

ˆ 
 

γ
e = 

1 √ 

2 

(
ˆ s 4 − ˆ s 0 − ˆ e 2 1 − ˆ e 2 2 

)
, (24) 

here corrected versions of the other FPFS quantities are listed in
ppendix A. 
Once again, we average responsivity across a galaxy sample to 

btain population response ˆ R 

γ
e = 〈 ̂  R 

γ
e 〉 . Assuming that 〈 ̄e α〉 = 0,

nd now also that 〈 δe α〉 = 0, where 

e α ≡ ˆ e α − e α (25) 

s measurement error due to image noise, we obtain a new shear
stimator 

ˆ A α ≡ 〈 ˆ e α〉 
ˆ R 

γ
e 

= 

�
�
�� 

0 
〈 ē α〉 
ˆ R 

γ
e 

+ 

�
���

0 
〈 δe α〉 

ˆ R 

γ
e 

+ γα = γα (26) 

hat corrects for non-linear noise bias to second order. We label this
rst estimator ‘A’ because we shall next propose more complications. 
he performance of this shear estimator will be tested in Section 4.1.

.3 Selection bias 

or a complete sample of galaxies, the assumptions that 〈 ̄e α〉 = 0
nd 〈 δe α〉 = 0 are statistically correct. For an incomplete sample,
erhaps restricted to galaxies abo v e a threshold in FPFS flux ratio

ˆ  0 , this assumption can be broken – creating a shear estimation bias
nown as selection bias. We correct for the selection bias due to
nisotropic intrinsic shape noise, 〈 ̄e α〉 �= 0, in Section 2.3.1, and for
he selection bias due to anisotropic measurement error, 〈 δe α〉 �= 0,
n Section 2.3.2. 
MNRAS 511, 4850–4860 (2022) 
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.3.1 Selection bias due to anisotropic intrinsic shape noise 

ere, we derive a correction for the selection bias that is introduced
f 〈 ̄e α〉 �= 0 in a galaxy population. This can occur if the population
s selected according to some quantity that is changed by shear. For
xample, although unbiased selection could be based upon galaxies’
ntrinsic FPFS flux ratios ̄s 0 , it would in practice be based upon their
ensed flux ratios s 0 . To first order in γ , these transform under shear
s 

¯ 0 → s 0 = s̄ 0 + 

∑ 

α= 1 , 2 

∂s 0 

∂γα

∣∣∣∣
s 0 = ̄s 0 

γα. (27) 

he difference may cause individual galaxies to cross selection
hresholds, or to change weight. This effect was first studied in Kaiser
 2000 ) and is referred to as Kaiser flow. In the following discussion,
e shall neglect terms O( γ 2 ), and temporarily also neglect shape
easurement noise. 
First, consider a complete population of galaxies, whose intrinsic
PFS flux ratio, s̄ 0 , and intrinsic ellipticity, ē α are distributed with
robability density function (PDF) P̄ ( ̄s 0 , ̄e α). Because there is no
referred direction in the Universe, the expectation value of intrinsic
alaxy ellipticity 〈 ̄e α〉 = 0. 

Next, let us identify a subset of the population. In the absence of
hear, this can be selected via a cut s low 

0 < s̄ 0 < s 
upp 
0 between lower

nd upper bounds on the intrinsic FPFS flux ratio. Because the
election criterion is a spin-0 quantity without preferred direction,
he expectation value of intrinsic galaxy ellipticity must be preserved 

〈 ē α〉 
∣∣∣
γα= 0 

= 

∫ ∫ s 
upp 
0 

s low 
0 

P̄ ( ̄s , ̄e α) ̄e α d ̄s d ̄e α = 0 . (28) 

o we ver, if a shear has been applied, the selection s̄ low 
0 < s 0 < s̄ 

upp 
0 

ust be between limits on lensed quantities 

〈 ē α〉 = 

∫ ∫ s 
upp 
0 

s low 
0 

P̄ ( ̄s , ̄e α) ̄e α d s d ̄e α. (29) 

sing equation (27), this selection is equi v alent to modified bounds
n the intrinsic source plane 

〈 ē α〉 = 

∫ ∫ s 
upp 
0 − ∂s 0 

∂γα

∣
∣
∣
s 0 = s 

upp 
0 

γα

s low 
0 − ∂s 0 

∂γα

∣
∣
∣
s 0 = s low 

0 
γα

P̄ ( ̄s , ̄e α) ̄e α d ̄s d ̄e α, (30) 

hich can have spurious anisotropy 〈 ̄e α〉 �= 0. We define the shear
esponse of the galaxy selection on the galaxy sample level, R 

γ

sel , as
he ratio between this anisotropy versus the shear that caused it: 

 

γ

sel ≡
〈 ̄e α〉 − 〈 ̄e α〉| γα= 0 

γα

= 

〈 ̄e α〉 
γα

= −P̄ 

(
s 

upp 
0 

) 〈
ē α

∂s 0 

∂γα

〉∣∣∣∣
s 0 = s 

upp 
0 

+ P̄ 

(
s low 

0 

) 〈
ē α

∂s 0 

∂γα

〉∣∣∣∣
s 0 = s low 

0 

, 

(31) 

here P̄ ( s upp 
0 ) and P̄ ( s low 

0 ) are the marginal probability distributions
f s 0 at s 

upp 
0 and s low 

0 , respectively. Those marginal probability
istributions can be estimated approximately by the average marginal
robability distributions in [ s upp 

0 − 0 . 01 , s upp 
0 + 0 . 01 ] and [ s low 

0 −
 . 01 , s low 

0 + 0 . 01 ], respectively. Note that in real observations, we
re only able to estimate the marginal probability distributions
rom noisy, lensed galaxies instead of from noiseless, intrinsic
alaxies. We take the assumption that the difference between the
ntrinsic, noiseless marginal probability distributions and lensed,
oisy probability distributions is negligible. Using equation (18) of
NRAS 511, 4850–4860 (2022) 
i et al. ( 2018 ), 〈
ē α

∂s 0 

∂γα

〉∣∣∣∣
s 0 = s low 

0 

= 

√ 

2 
〈(

e 2 α
)
(1 − s 0 ) 

〉∣∣
s 0 = s low 

0 
, (32) 

e can obtain the shear response of the selection from measurable
uantities. 
A shear estimator incorporating this selection responsivity 

ˆ B α ≡ 〈 ˆ e α〉 
ˆ R 

γ
e + R 

γ

sel 

= 

������ 

0 〈 δe α〉 
ˆ R 

γ
e + R 

γ

sel 

+ 

〈 ē α〉 
ˆ R 

γ
e + R 

γ

sel 

+ 

ˆ R 

γ
e γα

ˆ R 

γ
e + R 

γ

sel 

= γα

(33) 

hould then be immune to selection bias due to anisotropic intrinsic
hape noise. Its performance will be tested on galaxy image simula-
ions in Section 4.3. 

.3.2 Selection bias due to anisotropic measurement error 

ere, we re-introduce image noise, and derive a correction for the
election bias that is introduced if 〈 δe α〉 �= 0 in a galaxy population.
his can occur if image noise leads to measurement error in a galaxy’s
PFS ellipticity δe α that correlates with measurement error in a
uantity used for sample selection, e.g. the FPFS flux ratio ˆ s 0 . 
Consider first a population of galaxies with a PDF of noiseless but

ow lensed quantities P ( e α, s 0 ) . In this lensed plane, measurement
rror on the FPFS flux ratio is (cf. equation 25) 

s 0 ≡ ˆ s 0 − s 0 . (34) 

he definitions of s 0 and e α ensure that, if the image noise is Gaussian,
he noise on s 0 and e α will both be close to Gaussian. In this case,
he contribution of image noise to the population variances is 

σ 2 
s = 〈 ( δs 0 ) 2 〉 , 

σ 2 
e α

= 〈 ( δe α) 2 〉 , (35) 

oth of which can be estimated from observed galaxy images
see equations A3) using the covariance of measurement errors
n shapelet modes (cf. equation 19). The accuracy of the variance
stimate will be tested in Section 4.2. Furthermore, the correlation
etween the measurement errors is 

e αs = 

〈 δe αδs 0 〉 
σe α σs 

, (36) 

hich can also be estimated from noisy galaxy images (see equa-
ions A4). As indicated by equations (A4) and (19), ρes �= 0 in
his lensed plane if either the PSF or the noise power function is
nisotropic. 

The PDF of noisy lensed quantities can thus be approximated by 

ˆ 
  P � P 

δ (37) 

here � refers to the convolution operation and 

 

δ( e α, s 0 ) ≡ 1 

2 πσs σe α

exp 

( 

− e 2 α

2 σ 2 
e α

− s 2 0 

2 σ 2 
s 

+ ρe αs 

e αs 0 

σe α σs 

) 

. (38) 

onvolution with a symmetric kernel P 

δ does not shift the centroid
f P , so the average ellipticity of a complete population remains
nbiased. Ho we ver, a cut on FPFS flux ratio ˆ s 0 in the presence of
oise can bias the average ellipticity such that 〈 δe α〉 �= 0, if the
easurement errors δe α and δs 0 are correlated. The resulting change

n ellipticity is 

 

� 

α ≡
∫ ∫ s 

upp 
0 

s low 
0 

e α( ˆ P − P ) d e α d s 0 , (39) 
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Figure 2. The normalized number histogram as a function of CModel SNR. 
The histogram is weighted by FPFS ellipticity weight with three different 
setups, i.e. C = 0 (solid line), C = 500 (dashed line), and C = 2000 (dotted 
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hich we propose to estimate from measurable quantities 

ˆ  � 

α  

∫ ∫ s 
upp 
0 

s low 
0 

e α( ˆ P � P 

δ − ˆ P ) d e α d s 0 . (40) 

or simplicity, we do not recover P by deconvolving ˆ P ; instead, we
ake the approximation – ˆ P  P . 

A final shear estimator correcting for noise bias and both types of
election bias is thus 

ˆ C α = 

〈 ˆ e α〉 − ˆ e � 

α

ˆ R 

γ
e + R 

γ
s 

= γα. (41) 

he performance of all shear estimators will be tested in Section 4.3.

 IMAG E  SIMULATION  

.1 Galaxies, PSF and noise 

e test the FPFS shear estimators by running them on mock 
stronomical images that have been sheared by a known amount. 
ur mock data are very similar to sample 2 of Mandelbaum et al.

 2018b ), replicating the image quality and observing conditions 
f the Hyper-Suprime Cam (HSC) surv e y on the 8-m ground-
ased Subaru telescope, whose deep coadded i -band images of the 
 xtragalactic sk y resolv e ∼20 galaxies per arcmin 2 brighter than i =
4.5 9 (Mandelbaum et al. 2018a ; Li et al. 2021 ). The pixel scale
s 0 . ′′ 168 . 

Galaxy images are generated using the open-source package Gal- 
im (Rowe et al. 2015 ). We randomly select 8 × 10 4 galaxies without
epetition from the COSMOS HST Surv e y catalogue 10 (Leauthaud 
t al. 2007 ), which has limiting magnitude F 814 W = 25.2. All
alaxies have known photometric redshifts. The galaxy shapes are 
pproximated with the best-fitting parametric (de Vaucouleurs 1948 
r S ́ersic 1963 ) profile, sheared, convolved with a model of the
SC PSF, then rendered in 64 × 64 pixel postage stamp images 

including a border around the 32 × 32 pixel region used for shear
easurement). The pixel values are finally are multiplied by 2.587 

o rescale the units, so their i = 27 photometric zeropoint matches
hat of real HSC pipeline data (Li et al. 2021 ). 

The image PSF is modelled as a Moffat ( 1969 ) profile, 

 m 

( x ) = [1 + c( | x | /r P ) 2 ] −3 . 5 , (42) 

here c = 2 0.4 − 1 is a constant parameter and r P is adjusted such that
he full width half-maximum (FWHM) of the PSF is 0 . ′′ 6, matching
he mean seeing of the HSC surv e y (Li et al. 2021 ). The profile is
runcated at a radius four times larger than the FWHM. The PSF is
hen sheared so that it has ellipticity ( e 1 = 0 . 02 , e 2 = −0 . 02) . 

We add image noise from a constant sky background and read 
oise. This includes anisotropic (square-like) correlation between 
djacent pixels matching the autocorrelation function of a third-order 
anczos kernel, i.e. a = 3 in 

 ( x , y ) = 

{
sinc ( x /a) sinc ( x ) sinc ( y /a) sinc ( y ) if | x | , | y | < a 

0 otherwise , 

(43)

here sinc ( x) = sin ( πx) /πx. This k ernel w as used to w arp and
o-add images taken during the first-year HSC surv e y (Bosch
 A cut at i < 24.5 is applied to the real HSC shear catalog, to remo v e faint 
alaxies and false detections. For the simulations in this paper, we force a 
easurement for each input galaxy and do not apply a magnitude cut. 

0 https://zenodo.org/r ecor d/3242143#.YPBGdfaRUQV 

e

e

c

t al. 2018 ). Ignoring pix el-to-pix el correlations, our resulting
oise variance is 7 × 10 −3 , which is about two times of the
verage noise variance in HSC data shown in (Li et al. 2021 ).
n this paper, we do not include photon noise on the galaxy
uxes. This is to increase efficiency because the same realisation 
f noise can be used in multiple images (see belo w). Ho we ver, it
eans that our tests on the ef fecti veness of correction for selection

ias are an optimistic limit. In Section 4.3, we present tests that
racket the performance achie v able if photon noise were to be
ncluded. 

Our simulated images thus include galaxies with a realistic range of 
ignal-to-noise ratios, SNR, greater than ∼10 (Fig. 2 ). We measure
 galaxy’s SNR using CModel (Lupton et al. 2001 ), which fits
ach image with a linear combination of an exponential and a de
aucouleurs (de Vaucouleurs 1948 ) model, as implemented in the 
SC pipeline (Bosch et al. 2018 ). Writing the FPFS ellipticity as a
eighted dimensionless quantity e 1 ≡ w M 22 c / M 00 , where w = (1
 C / M 00 ) −1 , we find that a value of C = 2000 reduces the ef fecti ve

ontribution of the faintest galaxies by a factor ∼3 (dotted line in
ig. 2 ). Ho we ver , shear measurements from faint galaxies are noisier ,
nd we shall find in Section 4.2 that this weighting also optimises
 v erall SNR. 

.2 Shape noise cancellation 

o efficiently reduce intrinsic shape noise in our shear measurements, 
e generate images of each galaxy in pairs (following Massey et al.
007 ), where the intrinsic ellipticity of one is rotated by 90 deg
flipping its sign) before applying shear. We then generate three 
mages of each pair with three different shears: ( γ 1 = 0.02, γ 2 = 0),
 γ 1 = −0.02, γ 2 = 0), and ( γ 1 = 0, γ 2 = 0), but all with exactly the
ame realisation of image noise (following Pujol et al. 2019 ; Sheldon
t al. 2020 ). All images are convolved with the same PSF. 

To measure the shear measurement bias (equation 1) of an 
stimator ˆ γ , we calculate 

 1 = 

〈 ̂ e 0 1 〉 〈
ˆ R 

γ 0 

e 

〉 (44) 
MNRAS 511, 4850–4860 (2022) 
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Figure 3. The achieved multiplicative shear measurement bias, as a function 
of weighting parameter, C , both with (solid line) and without (dashed line) 
the second-order correction for non-linear noise bias. All measured values 
of bias are ne gativ e, and their absolute values are shown. The grey region 
denotes the requirement on the control of multiplicative bias for the LSST 

surv e ys (The LSST Dark Energy Science Collaboration 2018 ). 
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nd 

 1 = 

〈 ̂ e + 

1 − ˆ e −1 〉 
0 . 02 〈 ̂  R 

γ+ 

e + 

ˆ R 

γ−
e 〉 − 1 , (45) 

here ˆ e + 

1 and ˆ R 

γ+ 

e are the first component of ellipticity and shear
esponse estimated from the images with positive shear, ˆ e −1 and ˆ R 

γ−
e 

rom images with ne gativ e shear, and ˆ e 0 1 and ˆ R 

γ 0 
e from undistorted

mages. We repeat this whole process 250 times with different noise
ealisations. For these very well-sampled images, we expect the
ultiplicative bias and additive bias are comparable on component

ˆ 2 . 

 RESULTS  

n this section, we test the shear estimators derived in Section 2 using
he image simulation described in Section 3. The shear estimators
hat will be tested include the original Li et al. ( 2018 ) shear estimator,
ˆ α (defined in equation 10), the shear estimator after correcting
he second-order noise bias, ˆ γ A 

α (equation 26), the shear estimator
fter correcting the selection bias from anisotropic shape noise, ˆ γ B 

α

equation 33), and anisotropic measurement error, ˆ γ C 
α (equation 41).

e first test the correction for noise bias in Section 4.1 and the
easurement of shape measurement error from noisy galaxy images

n Section 4.2. Then, we test the correction for selection bias in
ection 4.3. Subsequently, we check the redshift dependence of the
alibration biases in Section 4.4. Finally, we test the performance
f FPFS on poorly resolved galaxies in Section 4.5 and on stellar
ontamination in Section 4.6. 

Note that we force a shear measurement for every simulated galaxy
uring these tests. For isolated images, the process of source detection
nfluences shear estimation from a population of galaxies, if that
opulation is determined mainly by the selection function of the
etector. The right hand of fig. 3 of Li et al. ( 2018 ) showed the s 0 
istograms of detected and undetected galaxies in an HSC-like image
imulation Mandelbaum et al. ( 2018b ) – most of the undetected
alaxies are clustered at small s 0 . Therefore, the influence of the
election function of the detector can be remo v ed by tuning the
ower threshold of s 0 . For crowded images, removing the bias from
etection is challenging since, as shown in Sheldon et al. ( 2020 ), the
bility of a detection algorithm to recognise blending depends upon
he underlying shear distortion. 

.1 Non-linear noise bias 

his subsection tests the performance of the second-order noise bias
orrection derived in Section 2.2. To be more specific, we change the
eighting parameter, C , and measure the multiplicative bias of our
PFS shear estimator with the second-order noise bias correction,

ˆ A , using the simulations described in Section 3. The multiplicative
ias in Fig. 3 is reduced below the requirement for the LSST surv e y
hen the weighting parameter is greater than 200. Since we use all

he galaxies in the simulation without any additional selection for
he test shown in this subsection, selection bias does not contribute
o this result. 

We also compare the result of the FPFS shear estimator including
he second-order noise bias correction to that of the original FPFS
hear estimator without the second-order noise bias correction in
ig. 3 . As shown, the noise bias is reduced by an order of magnitude
fter the second-order noise bias correction. The additive bias is
onstantly below 10 −4 , and we do not plot the additive bias here. 

Note, the correction of noise bias in Section 2.2 assumes that
oise are homogeneous in configuration space so that noise are not
NRAS 511, 4850–4860 (2022) 
orrelated in Fourier space. In our simulation described in Section 3,
he input noise is homogeneous. In general, the background photon
oise is homogeneous in real observ ations; ho we ver the source pho-
on noise is not homogeneous, although its contributions in ground-
ased surv e ys are small. In the presence of galaxy source photon
oise, the performance of the second-order noise bias correction is
xpected to be worse than the solid line in Fig. 3 ; ho we ver, it should
e better than the dashed line Fig. 3 that does not include any second-
rder noise bias correction. 

.2 Shape noise and shape measurement uncertainty 

his subsection calculates the statistical uncertainty in shear estima-
ion from a population of galaxies, 

γ = 

√ 〈
1 
2 

(
ˆ e 2 1 + ˆ e 2 2 

)〉
ˆ R 

γ
e 

. (46) 

his total uncertainty is a combination of noise due to galaxies’
ntrinsic shapes, e RMS , and shape measurement error due to realisa-
ions of noise in images of galaxies, σ e . We shall assume these add
n quadrature, such that 〈

1 

2 

(
ˆ e 2 1 + ˆ e 2 2 

)〉 = e 2 RMS + σ 2 
e . (47) 

he standard error on the mean shear measured from a population of
 galaxies is thus σγ / 

√ 

N . Note, ho we ver, that this v alue depends
n which population of galaxies it is averaged over. 
To obtain e RMS , we measure the intrinsic FPFS ellipticity of each

alaxy from a realisation of the galaxy image simulation with zero
oise and zero input shear (see Section 3). We average the two
omponents of ellipticity, then calculate the RMS across our sample
f galaxies. The intrinsic shape noise, e RMS , increases with weighting
arameter C (dotted line in Fig. 4 ). 
To obtain σ 2 

e , we first measure the total uncertainty using a noisy
ealisation of the galaxy image simulation (see Section 3), again
veraging the two components of ellipticity. We then subtract e RMS ,

art/stac342_f3.eps
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Figure 4. The 1 σ statistical uncertainty on shear measurements ˆ γ1 for 
individual galaxies (solid line), as a function of weighting parameter, C . 
The total uncertainty has contributions due to image noise (dashed line) and 
intrinsic shape noise (dotted line) – both of which we measure using noiseless 
galaxy images that would not be available to a real surv e y. Ho we ver, the ‘ •’ 
(‘ + ’) symbols show the same measurement noise (intrinsic shape noise) 
accurately estimated using equation (35) and noisy galaxy images, which are 
observable. 
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ollowing equation (47). The shape measurement error, σ e , decreases 
ith weighting parameter C (dashed line in Fig. 4 ). 
The total statistical uncertainty on ˆ γi is thus a balance between 

ontributions from shape noise (an increasing function of C ) and 
rom measurement error (a decreasing function of C ). Total uncer- 
ainty is minimised for 1000 � C � 2000, which is therefore optimal
f each galaxy in a sample is equally likely to contain shear signal.
n this paper we set C = 2000 unless otherwise mentioned, which
s close to 2 . 5 σM 00 . The corresponding non-linear noise bias for this
efault setup is well below the LSST requirement as shown in Fig. 3 .
Shape measurement error can be also be estimated independently, 

sing only noisy galaxy images, and without access to noise-free ver- 
ions – as would be required when handling real astronomical data. 
ollowing equation (A2), we estimate ˆ σe (circles in Fig. 4 ), then use
easurements of total noise and equation (47) to estimate intrinsic 

hape noise ˆ e RMS (crosses in Fig. 4 ). These reproduce the measure- 
ents from noiseless image simulations with remarkable accuracy. 
The total FPFS shear measurement uncertainty is similar to 

hat from the calibrated reGauss shear estimator Mandelbaum 

t al. ( 2018b ). To demonstrate this, we run the HSC pipeline
 hscPipe v 7) for source detection and shape measurement on 
ur simulated images (see Bosch et al. 2018 for details on the
ipeline), which includes catalogue cuts at i < 24.5, resolution 
 0.3, and SNR > 10 (Mandelbaum et al. 2018a ). To weight

he galaxies, we use fixed C = 2000 for FPFS . For reGauss ,
e use the optimal weight of a real galaxy in the first-year HSC

hear catalogue, selected as the closest match in the log (SNR)-
og (resolution) plane. Since the reGauss algorithm is subject to 
ertain forms of shear estimation bias (e.g. model bias, noise bias),
e also use the reGauss ellipticities measured from the simulation 
ith γ 1 = 0.02 and γ 1 = −0.02 to linearly calibrate its shear 

esponse. For this galaxy sample, which has higher S/N than the 
revious sample, we find shear estimation uncertainty of σγ = 0.298 
or FPFS , and σγ = 0.288 for reGauss . 
.3 Selection bias 

his subsection tests the performance of the selection bias correction. 
pecifically, we adjust the faint-end cut on the FPFS flux ratio, ̂  s 0 >

 

low 
0 , and estimate the shear measurement bias in shear estimators ˆ γ B 

α

equation 33) and ˆ γ C 
α (equation 41). Throughout this section, s upp = 

 , and the weighting parameter is set to C = 2000 . 
The measured multiplicative biases (top panel of Fig. 5 ) are

ithin the LSST science requirement, for estimators both with ( ̂  γ C )
nd without ( ̂  γ B ) correction for selection bias due to anisotropic
easurement error. Estimator ˆ γ C impro v es upon ˆ γ B by ∼10 −3 

n average, which indicates that the multiplicative bias due to 
nisotropic measurement error is at about this level. 

The measured additive biases (bottom panel of Fig. 5 ) are below
.5 × 10 −4 for ˆ γ B and below 1 × 10 −4 for ˆ γ C , which indicates that
he additive bias due to the anisotropic measurement error is at the
evel of 10 −4 . 

.4 Redshift dependence of bias 

his subsection tests whether the shear measurement biases depend 
pon galaxy redshift. We divide simulated galaxies into three bins (0
z < 0.6, 0.6 ≤ z < 1.2, 1.2 ≤ z < 1.8) according to the photometric

edshift of the input COSMOS galaxies (Ilbert et al. 2009 ). The
verage reGauss resolution and CModel SNR as functions of 
edshift are shown in Fig. 6 . 

First, we test shear estimator ˆ γ A without selecting by any ob- 
ervables other than the COSMOS redshift. Since the COSMOS 

edshifts are from input galaxies and are not influenced by shear
MNRAS 511, 4850–4860 (2022) 
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M

Figure 6. Average reGauss resolution (top panel) and CModel SNR 

(bottom panel) as functions of redshift. The error bars show the 1 σ scatter of 
the corresponding observables in each bin. 
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Figure 7. Shear measurement multiplicative bias (top panel) and additive 
bias (bottom panel), as a function of galaxy redshift. The grey region indicates 
the LSST science requirement. Plotted points are offset by ±0.02 to prevent 
the error bars from o v erlapping. 

Table 3. The average reGauss resolution (first row), shear multiplicative 
bias (second row), and shear additive bias (third row) for three samples of 
galaxies simulated as a collection of random point sources. All these galaxies 
are smaller than those in the HSC shape catalog, which analyses only galaxies 
with reGauss resolution greater than 0.3 (Li et al. 2021 ). 

Smallest Smaller Small 

reGauss resolution 0.12 0.19 0.27 
m 1 (10 −4 ) 0.4 ± 0.9 −1.4 ± 0.7 −1.0 ± 0.5 
c 1 (10 −4 ) −2.8 ± 4.5 −0.8 ± 1.1 −0.5 ± 0.7 
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istortion or image noise, the redshift binning does not lead to
election bias. In addition, ˆ γ A does not account for selection
ias; therefore, this test measures any redshift-dependence of the
on-linear noise bias. We find multiplicative bias | m | < 1 × 10 −3 ,
nd additive bias | c| < 1 × 10 −4 at all redshifts (solid lines in
ig. 7 ). 
Second, we test shear estimator ˆ γ B on a galaxy sample selected

ith ̂  s 0 > s low 
0 = 0 . 2. The estimator does not account for the selection

ias due to anisotropic measurement error, so this test isolates the
erformance of its correction for selection bias due to anisotropic
hape noise. We find multiplicative bias | m | ≈ 2 × 10 −3 for redshift
 < 1, increasing to 6 × 10 −3 at high redshift 1.2 ≤ z < 1.8. The
dditive bias is 2 σ consistent with zero at all redshifts (dashed lines
n Fig. 7 ). 

Finally, we test shear estimator ˆ γ C on the same galaxy sample
ith ˆ s 0 > s low 

0 = 0 . 2. This estimator accounts for selection bias due
o both anisotropic shape noise and anisotropic measurement error.
t produces multiplicative bias consistently < 1 × 10 −3 , and additive
ias that is 2 σ consistent with zero (dotted lines in Fig. 7 ). Comparing
he multiplicative biases of ˆ γ B and ˆ γ C , we find that the amplitude
f the selection bias due to the anisotropic measurement error is a
ew part in 10 3 . For these isolated galaxies, our final FPFS shear
stimator meets the science requirement of the LSST surv e y, shown
s a grey region in Fig. 7 . 

.5 Performance with very small source galaxies 

ince our fiducial image simulation is based on a training sample
f galaxies resolved by HST and with magnitude i < 25.2, it does
ot include the smallest galaxies that a future surv e y might hav e
NRAS 511, 4850–4860 (2022) 
mbition to measure. To test the accuracy of FPFS on galaxies
hat are barely resolved (especially by ground-based observations),
e use GalSim to simulate small galaxies composed of 20 points

andomly distributed (Zhang et al. 2015 ) to follow a 2D Gaussian
rofile with input half-light radius ranging from 0 . ′′ 07 to 0 . ′′ 2 . The
ux of each knot is the same. The measured reGauss resolutions
ange from 0.12 to 0.27 as shown in Table 3 . Each galaxy sample
as 4 × 10 7 galaxies and with an average CModel SNR ∼ 15, and
ach galaxy is rotated by 45 deg four times to reduce shape noise
rom both spin m = 2 and spin m = 4 quantities. Here, we do not
dd any additional selection, so that selection bias is not present. As
hown in Table 3 , FPFS can accurately measure shear from even
xtremely small and faint galaxies. If mixed with bigger and brighter
alaxies, they will receive a low weight and contribute little to the
ignal. Crucially, they will not bias it. 
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Figure 8. Normalized number histograms of the first component of FPFS 
ellipticity e 1 (solid line) and FPFS response R 

γ
e (dashed line) measured from 

simulated images of stars. The vertical dotted line shows the expectation 
value. 
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11 Hyper Suprime-Cam: ht tps://hsc.mt k.nao.ac.jp/ssp/
12 Dark Energy Surv e y: https://www.darkenergysurve y.org/
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.6 Stellar contamination 

n real observations, stars may not be perfectly remo v ed from the
alaxy sample. To test the performance of our FPFS shear estimator 
ith such stellar contamination, we simulate 1 × 10 7 star images 
ith an average SNR 17 . 8 . This corresponds to an extreme situation

hat the object’s reGauss resolution equals zero. Then, we measure 
he FPFS ellipticity and FPFS response from these stars. Again, we 
eglect the PSF model errors and assume that we know the two-point
orrelation function of noise. 

Measurements stars yield mean values 〈 ̂ e 1 〉 = (1 . 0 ± 1 . 1) × 10 −5 

nd R 

γ
e = (1 . 8 ± 2 . 0) × 10 −5 (Fig. 8 ). That the expectation value

f both is consistent with zero (and much smaller than the mean re-
ponse of simulated HST COSMOS galaxies, | R 

γ
e | ∼ 0 . 18), ensures

hat FPFS is robust to stellar contamination, so long as the PSF is
ell-determined. Stellar contamination of n per cent will reduce the 
umerator and denominator of equation (41) by n per cent, leaving the
hear estimator unbiased. This is the same good property as META-
ALIBRATION , demonstrated in Fig. 5 of Sheldon & Huff ( 2017 ). 

 SUMMARY  A N D  O U T L O O K  

n this paper, we impro v e the FPFS weak lensing shear estimator,
y implementing corrections for two dominant biases. First, with 
n assumption that noise in an image is a homogeneous Gaussian 
andom field, we correct for shear measurement noise bias to second 
rder. Second, we derive analytic expressions to remove selection 
iases due to both anisotropic shape noise and anisotropic measure- 
ent error. Crucially, the analytic corrections that we implement in 
PFS do not rely upon slow and computationally e xpensiv e iterativ e
rocesses, or upon calibration via external simulations. Our publicly- 
 vailable code ( https://github.com/mr -superonion/FPFS ) can pro- 
ess more than a thousand galaxy images per CPU second. 

Using mock imaging of isolated SNR � 10 galaxies with known 
hear, we demonstrate that we have improved the method’s accuracy 
y an order of magnitude. FPFS now meets the science requirements 
or a Stage IV weak-lensing surv e y (e.g. Cropper et al. 2013 ; The
SST Dark Energy Science Collaboration 2018 ). 
Future work should revise this paper’s assumption that galaxies 

re isolated. Li et al. ( 2018 ) and MacCrann et al. ( 2022 ) report
hat the blending of light between neighbouring galaxies on the 
rojected plane causes a few per cent multiplicative bias for deep
round-based imaging surv e ys e.g. the HSC 

11 Surv e y (Aihara et al.
018 ), DES 

12 (DES; Dark Energy Surv e y Collaboration 2016 ),
nd the future LSST. The bias from blending includes shear- 
ependent blending identification (Sheldon et al. 2020 ) and bias 
elated to redshift-dependent shear distortion (MacCrann et al. 2022 ). 
ETADETECTION (Sheldon et al. 2020 ) is an impro v ed v ersion of
ETACALIBRATION , able to correct for bias due to shear dependent 
lending identification. Correction for biases related to blending in 
PFS should be the next effect to be tackled. After that, we also

ntend to explore the use of shapelet modes of order > 2, which
hould contain independent information on the shear signal. 
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PPENDIX  A :  S E C O N D - O R D E R  R E V I S I O N  F O R  

O N - L I N E A R  NOISE  BIAS  

ere, we present the expectation values of noisy, measurable quan-
ities (indicated with a tilde), relative to those of the unobservable,
oiseless quantities (without a tilde). We only keep to the second-
rder terms of noise residuals and neglect the higher-order terms.
irst, we obtain the expectation for ˜ s 0 and ˜ s 4 : 

〈 ˜ s 0 〉 = 

〈
s 0 

(
1 + 

V 0000 

( M 00 + C) 2 

)〉
−

〈 V 0000 

( M 00 + C) 2 

〉
, 

〈 ˜ s 4 〉 = 

〈
s 4 

(
1 + 

V 0000 

( M 00 + C) 2 

)〉
−

〈 V 0040 

( M 00 + C) 2 

〉
. (A1) 

Then, we use the covariance matrix of the shapelet modes
equation 19) to derive the expectation for ˜ e 2 1 , 2 , ˜ s 

2 
0 , and ˜ e 1 , 2 ̃  s 0 : 

〈
˜ e 2 1 

〉 = 

〈
e 2 1 

(
1 + 3 

V 0000 

( M 00 + C) 2 

)〉

+ 

〈 V 22 c22 c 

( M 00 + C) 2 
− 4 e 1 

V 0022 c 

( M 00 + C) 2 

〉
, 

〈
˜ e 2 2 

〉 = 

〈
e 2 2 

(
1 + 3 

V 0000 

( M 00 + C) 2 

)〉

+ 

〈 V 22 s22 s 

( M 00 + C) 2 
− 4 e 2 

V 0022 s 

( M 00 + C) 2 

〉
, 

〈
˜ s 2 0 

〉 = 

〈
s 2 0 

(
1 + 3 

V 0000 

( M 00 + C) 2 

)〉

+ 

〈 V 0000 

( M 00 + C) 2 
− 4 s 0 

V 0000 

( M 00 + C) 2 

〉
, 

 ˜ e 1 ̃  s 0 〉 = 

〈
e 1 s 0 

(
1 + 3 

V 0000 

( M 00 + C) 2 

)〉
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+ 

V 0022 c 

( M 00 + C) 2 
− 2 s 0 

V 0022 c 

( M 00 + C) 2 

−
〈

2 e 1 
V 0000 

( M 00 + C) 2 

〉
, 

 ˜ e 2 ̃  s 0 〉 = 

〈
e 2 s 0 

(
1 + 3 

V 0000 

( M 00 + C) 2 

)〉

+ 

〈 V 0022 s 

( M 00 + C) 2 
− 2 s 0 

V 0022 s 

( M 00 + C) 2 

〉

−
〈

2 e 2 
V 0000 

( M 00 + C) 2 

〉
. (A2) 

hese quantities are used to derive the variance of measurement error
n FPFS ellipticity δe 1, 2 defined in equation (25) and flux ratio δs 0 
efined in equation (34) due to the photon noise on galaxy images
here noise terms of fourth order and higher are neglected. 

 ( δe 1 ) 
2 〉 = 

〈
ˆ e 2 1 − e 2 1 

〉
= 

〈
˜ e 2 1 

V 0000 

( ˜ M 00 + C) 2 
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V 22 c22 c 
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V 0022 c 
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〉
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 ( δe 2 ) 
2 〉 = 
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〉
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V 0000 
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V 22 s22 s 

( ˜ M 00 + C) 2 
− 2 ̃  e 2 

V 0022 s 
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〉
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〈 ( δs 0 ) 2 〉 = 
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V 0000 
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(A3) 

n addition, the correlation between the measurement errors δe 1, 2 

nd δs 0 is given by 

 δs 0 δe 1 〉 = 〈 ˆ s 0 ̂  e 1 − s 0 e 1 〉 
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〈
˜ e 1 ̃  s 0 

V 0000 
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, (A4) 

Finally, we deriv e e xpectation for the noisy quantities related to
he selection shear response: 
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