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ABSTRACT

Dedicated ‘Stage IV’ observatories will soon observe the entire extragalactic sky, to measure the ‘cosmic shear’ distortion of
galaxy shapes by weak gravitational lensing. To measure the apparent shapes of those galaxies, we present an improved version
of the Fourier Power Function Shapelets (FPFS) shear measurement method. This now includes analytic corrections for sources
of bias that plague all shape measurement algorithms: Including noise bias (due to noise in non-linear combinations of observable
quantities) and selection bias (due to sheared galaxies being more or less likely to be detected). Crucially, these analytic solutions
do not rely on calibration from external image simulations. For isolated galaxies, the small residual ~10~3 multiplicative bias
and <10~* additive bias now meet science requirements for Stage IV experiments. FPFS also works accurately for faint galaxies
and robustly against stellar contamination. Future work will focus on deblending overlapping galaxies. The code used for this
paper can process >1000 galaxy images per CPU second and is available from https://github.com/mr-superonion/FPFS.

Key words: gravitational lensing: weak —techniques: image processing —cosmology: observations.

1 INTRODUCTION

The images of distant galaxies appear weakly but coherently distorted
because light from them is deflected by the gravity of intervening
matter along our line of sight (for reviews, see Bartelmann &
Schneider 2001; Kilbinger 2015). The anisotropic stretch of galaxy
images is termed weak gravitational lensing shear, denoted by
parameters y; and y,. This observable distortion depends upon,
and can be used to map, the distribution of baryonic and dark matter
in the Universe (for a review, see Massey, Kitching & Richard 2010).
Dedicated ‘Stage IV’ weak-lensing surveys such as the LSST!
(Ivezié¢ et al. 2019), Euclid® (Laureijs et al. 2011), and NGRST?
(Spergel et al. 2015) are being designed to constrain cosmology with
unprecedented precision. To ensure that systematic biases are within
statistical uncertainty, they require estimators of the applied shear

Pa=0+m)yi2+cia (D

to be measured from the noisy image of each galaxy, with multi-
plicative bias |m| < 0.003 and additive bias ¢;., S 10~* (Cropper
et al. 2013; Massey et al. 2013; The LSST Dark Energy Science
Collaboration 2018). In addition, these surveys will take a large

* E-mail: xiangchl @andrew.cmu.edu

IVera C. Rubin Observatory’s Legacy Survey of Space and Time: http:/ww
w.Isst.org/

2Euclid satellite mission: http://sci.esa.int/euclid/

3Nancy Grace Roman Space Telescope: http://roman.gsfc.nasa.gov/

amount of data, e.g. the LSST will produce about 20 terabytes
of raw data per night. Here, we develop a shear estimator that
is both accurate and fast enough to process the data from these
surveys.

A practical shear measurement method must overcome many
challenges to work on real astronomical imaging: Including the
detection and selection of distant galaxies, correction of detector
effects and the wavelength-dependent point-spread function (PSF),
and the combination of noisy pixellated data (for a review, see
Mandelbaum 2018). Some methods (Mandelbaum et al. 2018b;
Kannawadi et al. 2019; Hoekstra 2021; Li et al. 2021) advocate
empirical calibration of shear estimators such as reGauss (Hirata &
Seljak 2003) and 1ensfit (Miller et al. 2007; Fenech Conti et al.
2017) using simulated images. That merely shifts the challenge to
one of accurate simulation. The various processes interact in complex
ways, and it can be difficult to disentangle their effects.

In this paper, we extend the Fourier Power Function Shapelets
(FPFS; Li et al. 2018) method for shear measurement. We use
analytic features of the method to eliminate bias for isolated well-
sampled images of isolated galaxies, when the PSF is accurately
known and independent of wavelength. This is only one more step
towards a full pipeline, but the tests in this paper already separate out
and require control of

(1) ‘model bias’ (Bernstein 2010), due to incorrect assumptions
about galaxy morphology,

(ii) ‘noise bias’ (Refregier et al. 2012), where noise terms in a
non-linear expression for 7 are now removed up to second order, and
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Table 1. Table for accent notations. The examples are for the ellipticity, but
the notations also apply to other FPFS quantities in Section 2.

Ellipticity with different accents Definition

e1n Intrinsic ellipticity of galaxies

e1,2 Ellipticity of lensed galaxies

é1n Ellipticity of noisy lensed galaxies
e1n Ellipticity after noise bias correction

(iii) ‘selection bias’ (Kaiser 2000) due to the detection of galaxies
based on their appearance after both a shear and instrument PSF have
been applied.

The FPFS shear estimator uses four shapelet modes (Refregier 2003)
of a galaxy’s Fourier power function (Zhang 2008) to estimate shear
distortion. It avoids the need to artificially truncate the shaplet series
and thus is free from ‘model bias’ (Li et al. 2018). A weighting
parameter is introduced so that the ‘noise bias’ is proportional to the
inverse square of this free parameter for faint galaxies, and ‘noise
bias’ can be controlled by tuning the weighting parameter. In this
work, we further correct the second-order ‘noise bias’ in the FPFS
shear estimator and remove the ‘selection bias’. In addition, we show
that FPFS shear estimator is robust to stellar contamination in the
galaxy sample if the PSF is well-determined.

Several other existing methods also meet the Stage IV weak-
lensing surveys’ requirement on systematics control for isolated
galaxies, including METACALIBRATION (Huff & Mandelbaum
2017; Sheldon & Huff 2017), Fourier_Quad (Zhang, Zhang &
Luo 2017; Li & Zhang 2021), BFD (Bernstein & Armstrong
2014; Bernstein et al. 2016) without relying on calibration using
external image simulations. Continuing to develop several methods
simultaneously remains a useful mitigation of risk. Among these,
FPFS remains promising because it requires no prior information
about galaxy morphologies, is more than 100 times faster than
METACALIBRATION, processing over a thousand galaxy images
per CPU second.

This paper is organised as follows: In Section 2, we review the
previous formalism of the FPFS method, and analytically derive the
second-order correction for non-linear noise bias and the correction
for selection bias. In Section 3, we introduce simulated images
of galaxies used to verify (not calibrate) the performance of the
proposed shear estimator on isolated galaxies. In Section 4, we
present the results of the tests. In Section 5, we summarize and
discuss future work.

2 METHOD

The Li et al. (2018) implementation of FPFS measures shear from
four shapelet coefficients (Refregier 2003) of each galaxy’s Fourier
power function (Zhang 2008). We review that method in Section 2.1.
However, the noise bias is proportional to the inverse square of a
tuning parameter for faint galaxies. In addition, it assumes galaxies
selected to be in a sample have (isotropically) random intrinsic
orientations, and the measurement error from photon noise does
not prefer any direction. We correct non-linear noise bias to second-
order in Section 2.2, then correct two selection biases in Section 2.3.
Throughout this section, we use accents to denote measurable
quantities under different conditions and at different stages of image
processing; this notation is summarized for reference in Table 1.
We will introduce shear responses of observables and selections, our
notation for which is summarized for reference in Table 2.

FPFSv2 4851

2.1 Lietal. (2018)’s FPFS shear estimator

Starting with a noiseless galaxy image f, in an N x N postage
stamp,* we first calculate its 2D Fourier transform

fo= / fe T, o)

and its Fourier power function’

Fi = fifi = fil, 3)

where the asterisk denotes a complex conjugate. We focus on the
well-sampled case for ground-based telescope, in which the pixel size
is less than the Nyquist sampling rate; therefore, we can approximate
signals in configuration space as a continuous form. To compute
the Fourier transform, we assume periodic boundary conditions.
Consequently, k is enumerable, and fj is in a discrete form. Note
that the Fourier power function is always Hermitian symmetric and
the centroid of the galaxy power function is always at k = 0. This
will eliminate bias due to anisotropic mis-centring on the intrinsic
source plane, caused by noise or PSF.

In Fourier space, the effect of blurring by a PSF can be removed by
dividing Fy, by the PSF’s Fourier power function, G4 (Zhang 2008).
We decompose the result into shapelets® (Massey & Refregier 2005)

F
My =Y x:m<k>G—’;, @)
k

where, to remove a negative sign later, we use complex conjugates
of the polar shapelet basis functions (Fig. 1)

(=12 { [(n — m)/2]! }5

Ko §) = pimitl 7l(n + |m|)/2]!
r2 . .
X,OW‘L‘& (7> efpz/Z)%.eftmqﬁ’ (5)
2 e

where L] are the Laguerre Polynomials, n is the radial number and m
is the spin number, and rr determines the scale of shapelet functions
in Fourier space. In addition to k, we use polar coordinates (o, ¢)
to denote discrete locations in 2D Fourier space. The scale size of
shapelets used to represent the galaxy, rr, should be less than the
scale radius of PSF’s Fourier power, rp, to avoid boosting small-
scale noise during PSF deconvolution. In this paper, we fix rg/rp =
0.75.

To first order in shear, the shear distortion operator correlates a
finite number of shapelet modes (separated by |An| =2 and |Am| =
2 Massey & Refregier 2005). It is therefore possible to estimate an
applied shear signal using a finite number of shapelet modes. The Li

“4To avoid bias, Li et al. (2018) found that the radius of a circular postage
stamp around an isolated galaxy should be at least four times the galaxy’s
radius determined by it’s reGauss moments (Hirata & Seljak 2003). In
this paper, we use a large postage stamp with N = 32 pixels. The optimal
postage stamp size, which adapts to the size of each galaxy and the presence
of neighbours, will be discussed in future work.

SWe choose not to normalize the power function by the area of the image as
in the power spectral density, as the information from an isolated galaxy does
not scale as the image size. We shall later adopt the same convention for the
noise power for consistency.

6Since the shapelet basis vectors are orthogonal (Refregier 2003), and not
convolved with the PSF (as in Massey & Refregier 2005), shapelet modes
can be estimated by a direct projection following equation (4) — we do not
need to know the projections on any other shapelet basis vectors to estimate
one shapelet mode, and avoid the need to artificially truncate the shapelet
series.
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Table 2. Table for notations of responses that will be introduced in Section 2.

Linear response to small distortion Definition
RY Shear (y) response of FPFS ellipticity (e) at single galaxy level
RY Shear () response of average FPFS ellipticity (e) for a galaxy population

Shear (y) response of a selection from a galaxy population

X22¢ Xa2c

X31c

X20 n Xa0

X31s

X225 H Xa2s

Figure 1. Shapelet basis functions x,,. The indices ‘c’ and ‘s’ refer to the
real part and imaginary part of the complex shapelet basis functions. The
FPFS shear estimator combines projections on four shapelet basis functions:
X00, X22¢s X225, and x40. The linear grey colour map ranges from —0.18
(black) to 0.18 (white).

et al. (2018) FPFS algorithm uses four shapelet modes to construct
its shear estimator, with FPFS ‘ellipticity’,

M 22¢ M 22s

= — = —""—, 6
My + C : My + C ©)

€1
where My, and M, refer to the real (‘cos’) and imaginary (‘sin’)
components of the complex shapelet mode M»,, respectively. The
positive constant parameter C adjusts the relative weight between
galaxies of different luminosities. A large value of C puts more
weight on bright galaxies, and suppresses noise bias, while a small
value of C weights galaxies more uniformly. We similarly define a
few useful spin m = 0 FPFS quantities:

Moo,20,40

— 7
Moo + C O]

50,24 =
In principle, the value of C can be different in each of these quantities;
however, here, we set them all to 2.5 o, for simplicity, where oy,
is the standard deviation of measurement error on My, caused by
photon noise on galaxy images. The details of tuning the weighting
parameter is shown in Sections 4.1 and 4.2. The ‘flux ratio’ sy was
suggested by Li et al. (2018) as a criterion to select a galaxy sample,
helping to remove faint galaxies and spurious detections, etc.

When the image of a galaxy is distorted by shear y g, its ellipticity
transforms to first order in y as

éa — ey = Eot =+ Z ]/ﬁ (R;/)aﬁ’ (8)
p=1.2
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where components « € {1, 2} and B € {1, 2}, and the ‘shear
responsivity’ (R} )os = 0e,/dyp (Sheldon & Huff 2017). The shear
responsivity of the FPFS ellipticity for an individual galaxy is a
scalar quantity,’

1
k=7 (54
plus terms involving spin m = 4 modes — which all average to
zero when we now average RY over all galaxies in a sample,
to obtain a population responsivity (denoted with curly letters)
RY = (RY). We intend to investigate in future work O(y?) terms
in RY that may not necessarily be small near galaxy clusters.
Since the difference between (¢2) and (23) is negligible, we define
the shear response as the average responses of two shear compo-
nents and do not distinguish between the responses of two shear
components.

Assuming that the galaxy population is selected such that (e,) = 0
in the absence of shear, equation (8) suggests a shear estimator (Li
et al. 2018)

—so—ef—eg), )

0

P = f;;; :%4- Yo = Ya- (10)

The population variance of &, is known as the intrinsic shape noise.

2.2 Non-linear noise bias

2.2.1 Effect of observational noise

In real observations the galaxy image is contaminated by photon
noise and read noise. We denote the total image noise in Fourier
space as ny, i.e. the observed galaxy image is

fi = fi +ni, (1)
and the observed galaxy Fourier power function is
F = U = 1K1 (12)

‘We shall assume that the source and image noise do not correlate,
i.e. (frnk) = 0. We shall also assume that the noise is dominated
by background and read noise, so that we can neglect photon noise
on the galaxy flux.® This makes the noise a mean zero homogeneous
Gaussian random field that, averaged over different noise realisations,
has Fourier power function with expectation value

Ne = (men) | (13)

7Equation (9) differs by a minus sign from that in Li et al. (2018), who defined
the shear response with respect to the shear distortion in Fourier space. All the
shear responses in this paper are defined with respect to the shear distortion
in configuration space.

8Li & Zhang (2021) present a formalism to include galaxy photon noise,
but we proceed here on the assumption that it is negligible for the faint
galaxies that are most affected by noise bias, and verify the validity of this in
Section 4.3.
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Note that this is different from Fj which is defined for each galaxy,
and we differentiate them with different fonts. Using Isserlis’ theorem
(also known as Wick’s theorem in quantum field theory), its 4-point
correlation function is

(nngnignyy) = (14 8%k — k') + 8k + k) NNy, (14)

where §* denotes the Kronecker delta function.

To account for image noise (following Zhang, Luo & Foucaud
2015), the expectation value of the noise power (13) can be measured
from blank patches of sky, and subtracted from an observed galaxy’s
Fourier power function. Using a tilde to label corrected quantities,
this yields

Fie = F{ = Ni, 15)

from which é,, §y, etc. can be defined similarly as in (6), (7), and
(4). Note the accent notation of FPFS flux ratio, s, follows that of
FPFS ellipticity, e, », shown in Table 1. However, compared to the
noiseless image power function Fj, this now contains residual noise
power

er = Fy — Fy = mn — N + fin + fing. (16)

Across a galaxy population, the expectation value of residual noise
is zero, (€x) = 0. For any individual galaxy, the residual noise power
includes contributions from the individual realisation of noise, and
any correlation between that noise and the galaxy flux (see also Li &
Zhang 2021). Combining equations (14) and (16), the two-point
correlation function of the residual noise power is

(aep) =

During shape measurement, the galaxy power function (which now
includes residual noise) is divided by the PSF power and decomposed
into shapelets (equation 4). The shapelet modes of the residual noise
are

€
m=2mmé. (18)
k

(8 (k — k') + 8*(k + k') (N7 + 2FNG). (17)

Again, their expectation values (£,,,) vanish because (€;) = 0. For
an individual galaxy however, the their covariance is

vnmnm = <gnmgn'm'>

_ Z (Xnan T o ) (N +2RN). (19

k

The shapelet modes thus become correlated (V,unn 7 0) due to
inhomogeneous and anisotropic residual noise, and anisotropy in the
PSF. The covariances can be measured from nearby blank patches of
sky, the galaxy itself, and the PSF model.

2.2.2 Correction for noise bias

Propagating the contribution of residual noise into FPFS ellipticity
estimators yields an expectation values

_ My + Ene > _ < Moy + Ena >

=( — ), =( — ). 20
@ <M00+C+€00 (@) Moo + C + Ego 20)
o

Expanding the FPFS ellipticity as Taylor series of 4 about
. K X ) 00+C
the point £y = 0 and inserting the covariance of shapelet modes

FPES v2 4853
(equation 19), this is

< <1 n Voooo > ~ Vooe

(Moo +C)? (Moo + C)?
+0 < M()() + C ) >
< < Voooo > ~ Voos

(Mo + C)? (Mg + C)?

£ 4
CLEN T -

where Voo Vooaos) refers to the covariance between £y and &,
(E225)- One can notice immediately that the second-order terms are
in the form of additive and multiplicative biases, proportional to the
inverse square of My, + C . And we shall neglect terms of fourth-
order and higher.

Therefore, one version of the FPFS ellipticity suitably corrected
for noise bias up to second-order is

R 1 <~ Voo2ze >
op=— e+ —"""—1),
T (Moo + C)?

1 Voozzs

@=—@+<J%7) (22)
T (Moo + C)

where T = 1 + 200 Similarly, the FPFS flux ratio measured

S (Mpo+C)? . . R
from a noisy image, 3y, is also subject to noise bias, but can be

corrected as

1 Voooo )
So==%+—=—""==])- 23
’ T(°<Mm+02 @
The corrected shear responsivity for a single, noisy galaxy becomes
R ) e
RZ:W(S4—s0—ef—e§), (24)

where corrected versions of the other FPFS quantities are listed in
Appendix A.

Once again, we average responsivity across a galaxy sample to
obtain population response 7@6’ = (Iéey). Assuming that (e,) =0,
and now also that (§e,) = 0, where

Sey =&, — eg (25)

is measurement error due to image noise, we obtain a new shear
estimator

0 0
A () ed (e
ﬁzﬁl=A5+ﬁZ+m=n (26)

that corrects for non-linear noise bias to second order. We label this
first estimator ‘A’ because we shall next propose more complications.
The performance of this shear estimator will be tested in Section 4.1.

2.3 Selection bias

For a complete sample of galaxies, the assumptions that (¢,) =0
and (Se,) = O are statistically correct. For an incomplete sample,
perhaps restricted to galaxies above a threshold in FPFS flux ratio
o, this assumption can be broken — creating a shear estimation bias
known as selection bias. We correct for the selection bias due to
anisotropic intrinsic shape noise, (&,) # 0, in Section 2.3.1, and for
the selection bias due to anisotropic measurement error, (§e,) # 0,
in Section 2.3.2.
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2.3.1 Selection bias due to anisotropic intrinsic shape noise

Here, we derive a correction for the selection bias that is introduced
if () # 0 in a galaxy population. This can occur if the population
is selected according to some quantity that is changed by shear. For
example, although unbiased selection could be based upon galaxies’
intrinsic FPFS flux ratios 3, it would in practice be based upon their
lensed flux ratios 5. To first order in y, these transform under shear
as

_ _ Z ds0
So — So = So + _—

Va- 27
a=1,2 a)/a

S0=350

The difference may cause individual galaxies to cross selection
thresholds, or to change weight. This effect was first studied in Kaiser
(2000) and is referred to as Kaiser flow. In the following discussion,
we shall neglect terms O(y?), and temporarily also neglect shape
measurement noise.

First, consider a complete population of galaxies, whose intrinsic
FPFS flux ratio, 5y, and intrinsic ellipticity, é, are distributed with
probability density function (PDF) P (5, &,). Because there is no
preferred direction in the Universe, the expectation value of intrinsic
galaxy ellipticity (é,) = 0.

Next, let us identify a subset of the population. In the absence of
shear, this can be selected via a cut si°¥ < 5§y < s,”" between lower
and upper bounds on the intrinsic FPFS flux ratio. Because the
selection criterion is a spin-0 quantity without preferred direction,
the expectation value of intrinsic galaxy ellipticity must be preserved

//I P (5,e,) e, dsde, = 0. (28)

However, if a shear has been applied, the selection 5)° < sy < 5,77

must be between limits on /ensed quantities

§IPP
(@) ://0 P (5, &) e, dsde,. (29)
S(])ow

Using equation (27), this selection is equivalent to modified bounds
on the intrinsic source plane

sp= qupV
P (5,2,) 8, didé,, (30)

1ow7h

which can have spurious anisotropy (¢,) # 0. We define the shear
response of the galaxy selection on the galaxy sample level, R”,, as
the ratio between this anisotropy versus the shear that caused it:

<Ea> - <Eoz)|ya:0 — (Ea>
Ve Ya

BS()
v P low s Y
2y 7, > ol + (So ) <ea 74 >

where P(s,™) and P(s{*) are the marginal probability distributions
of s at s, and s, respectively. Those marginal probability
distributions can be estimated approximately by the average marginal
probability distributions in [sy™ — 0.01, 5™ +0.017] and [s{™™ —
0.01, s + 0.01 ], respectively. Note that in real observations, we
are only able to estimate the marginal probability distributions
from noisy, lensed galaxies instead of from noiseless, intrinsic
galaxies. We take the assumption that the difference between the
intrinsic, noiseless marginal probability distributions and lensed,
noisy probability distributions is negligible. Using equation (18) of

R, =

sel

Il
~
—~
[}
[=3¢—1
=}
=]
N
/\
]
(=5
n
(=]

so=si"

(€2Y)

MNRAS 511, 4850-4860 (2022)

Liet al. (2018),

<_ 8s0 >
ey —
9V

we can obtain the shear response of the selection from measurable
quantities.
A shear estimator incorporating this selection responsivity

0
B (Ca) (5W (@a)

e = Ry + 7?’sel _/R)‘/—F 7?’sel Ry + Rsel

=vV2{(2)d =50))|, _ o (32)

S0=5)

so=si™

R Vo
R R,
(33)

should then be immune to selection bias due to anisotropic intrinsic
shape noise. Its performance will be tested on galaxy image simula-
tions in Section 4.3.

2.3.2 Selection bias due to anisotropic measurement error

Here, we re-introduce image noise, and derive a correction for the
selection bias that is introduced if (de,) 7# O in a galaxy population.
This can occur if image noise leads to measurement error in a galaxy’s
FPFS ellipticity de, that correlates with measurement error in a
quantity used for sample selection, e.g. the FPFS flux ratio §.

Consider first a population of galaxies with a PDF of noiseless but
now lensed quantities P (e, So) . In this lensed plane, measurement
error on the FPFS flux ratio is (cf. equation 25)

850 = 5() — 50. (34)

The definitions of s( and e,, ensure that, if the image noise is Gaussian,
the noise on sy and ¢, will both be close to Gaussian. In this case,
the contribution of image noise to the population variances is

o] = ((8s50)%),
oo = ((8ea)’),

both of which can be estimated from observed galaxy images
(see equations A3) using the covariance of measurement errors
on shapelet modes (cf. equation 19). The accuracy of the variance
estimate will be tested in Section 4.2. Furthermore, the correlation
between the measurement errors is

Peys = M7 (36)

0o, O

(35)

which can also be estimated from noisy galaxy images (see equa-
tions A4). As indicated by equations (A4) and (19), p.s # 0 in
this lensed plane if either the PSF or the noise power function is
anisotropic.

The PDF of noisy lensed quantities can thus be approximated by

P~P®PpP (37
where ® refers to the convolution operation and
1 &2 52 €450
Ple,, s9) = —exp | ——2% — 0 4 = ). 38
( « O) 2770}(7,:,1 p ( 2032 20s2 Peys 0e, 0y ( )

Convolution with a symmetric kernel P? does not shift the centroid
of P, so the average ellipticity of a complete population remains
unbiased. However, a cut on FPFS flux ratio §y in the presence of
noise can bias the average ellipticity such that (de,) # 0, if the
measurement errors de, and 8sy are correlated. The resulting change
in ellipticity is

(PP
5//0 eo(P — P)de, dsp, (39)
S[])ow
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which we propose to estimate from measurable quantities
s(‘;PP R R
e ~ // eo(P ® P° — P)de, dso. (40)
low
S0

For simplicity, we do not recover P by deconvolving P ; instead, we
take the approximation — P ~ P .

A final shear estimator correcting for noise bias and both types of
selection bias is thus

(6q) — &%
RY +RY

The performance of all shear estimators will be tested in Section 4.3.

P = = Va. 1)

3 IMAGE SIMULATION

3.1 Galaxies, PSF and noise

We test the FPFS shear estimators by running them on mock
astronomical images that have been sheared by a known amount.
Our mock data are very similar to sample 2 of Mandelbaum et al.
(2018b), replicating the image quality and observing conditions
of the Hyper-Suprime Cam (HSC) survey on the 8-m ground-
based Subaru telescope, whose deep coadded i-band images of the
extragalactic sky resolve ~20 galaxies per arcmin? brighter than i =
24.5° (Mandelbaum et al. 2018a; Li et al. 2021). The pixel scale
is 07168.

Galaxy images are generated using the open-source package Gal-
sim (Rowe et al. 2015). We randomly select 8 x 10* galaxies without
repetition from the COSMOS HST Survey catalogue'® (Leauthaud
et al. 2007), which has limiting magnitude F814W = 25.2. All
galaxies have known photometric redshifts. The galaxy shapes are
approximated with the best-fitting parametric (de Vaucouleurs 1948
or Sérsic 1963) profile, sheared, convolved with a model of the
HSC PSF, then rendered in 64 x 64 pixel postage stamp images
(including a border around the 32 x 32 pixel region used for shear
measurement). The pixel values are finally are multiplied by 2.587
to rescale the units, so their i = 27 photometric zeropoint matches
that of real HSC pipeline data (Li et al. 2021).

The image PSF is modelled as a Moffat (1969) profile,

gn(X) = [1 + c(|x|/rp)* 1737, (42)

where ¢ = 2%* — 1 is a constant parameter and rp is adjusted such that
the full width half-maximum (FWHM) of the PSF is 076, matching
the mean seeing of the HSC survey (Li et al. 2021). The profile is
truncated at a radius four times larger than the FWHM. The PSF is
then sheared so that it has ellipticity (e; = 0.02, e, = —0.02).

We add image noise from a constant sky background and read
noise. This includes anisotropic (square-like) correlation between
adjacent pixels matching the autocorrelation function of a third-order
Lanczos kernel, i.e. a = 3 in

sinc (x /a) sinc (x) sinc (y/a) sinc ()

L(x,y)={0

ifx|[, [yl <a
otherwise,
43)

where sinc (x) = sin (wx)/mwx. This kernel was used to warp and
co-add images taken during the first-year HSC survey (Bosch

9A cut at i < 24.5 is applied to the real HSC shear catalog, to remove faint
galaxies and false detections. For the simulations in this paper, we force a
measurement for each input galaxy and do not apply a magnitude cut.
10https://zenodo.org/record/3242143#.YPBGdfaRUQV
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Figure 2. The normalized number histogram as a function of CModel SNR.
The histogram is weighted by FPFS ellipticity weight with three different
setups, i.e. C = 0 (solid line), C = 500 (dashed line), and C = 2000 (dotted
line).

et al. 2018). Ignoring pixel-to-pixel correlations, our resulting
noise variance is 7 x 1073, which is about two times of the
average noise variance in HSC data shown in (Li et al. 2021).
In this paper, we do not include photon noise on the galaxy
fluxes. This is to increase efficiency because the same realisation
of noise can be used in multiple images (see below). However, it
means that our tests on the effectiveness of correction for selection
bias are an optimistic limit. In Section 4.3, we present tests that
bracket the performance achievable if photon noise were to be
included.

Our simulated images thus include galaxies with a realistic range of
signal-to-noise ratios, SNR, greater than ~10 (Fig. 2). We measure
a galaxy’s SNR using CModel (Lupton et al. 2001), which fits
each image with a linear combination of an exponential and a de
Vaucouleurs (de Vaucouleurs 1948) model, as implemented in the
HSC pipeline (Bosch et al. 2018). Writing the FPFS ellipticity as a
weighted dimensionless quantity e; = w M./ Moo, where w = (1
+ C/Myy)~", we find that a value of C = 2000 reduces the effective
contribution of the faintest galaxies by a factor ~3 (dotted line in
Fig. 2). However, shear measurements from faint galaxies are noisier,
and we shall find in Section 4.2 that this weighting also optimises
overall SNR.

3.2 Shape noise cancellation

To efficiently reduce intrinsic shape noise in our shear measurements,
we generate images of each galaxy in pairs (following Massey et al.
2007), where the intrinsic ellipticity of one is rotated by 90 deg
(flipping its sign) before applying shear. We then generate three
images of each pair with three different shears: (y; = 0.02, y, = 0),
(y1=-0.02, Y, =0),and (y; =0, y, = 0), but all with exactly the
same realisation of image noise (following Pujol et al. 2019; Sheldon
et al. 2020). All images are convolved with the same PSF.

To measure the shear measurement bias (equation 1) of an
estimator 7, we calculate

(@9)

(R

c (44)

MNRAS 511, 4850-4860 (2022)

220z Aey 9z uo Jasn weyin( Jo AusieAiun Aq €1L6+259/0581/1/1 | S/alonde/seuw/woo dno olwapese//:sdiy Woll papeojumod]


https://zenodo.org/record/3242143#.YPBGdfaRUQV
art/stac342_f2.eps

4856  X. Li, Y. Li and R. Massey

and
@ —ép)

S T E——" 45
0.02(RYT + RI™) “3)

my
where & and Ié},’+ are the first component of ellipticity and shear
response estimated from the images with positive shear, &, and IéZ‘
from images with negative shear, and & and IéeVO from undistorted
images. We repeat this whole process 250 times with different noise
realisations. For these very well-sampled images, we expect the
multiplicative bias and additive bias are comparable on component

7z

4 RESULTS

In this section, we test the shear estimators derived in Section 2 using
the image simulation described in Section 3. The shear estimators
that will be tested include the original Li et al. (2018) shear estimator,
7, (defined in equation 10), the shear estimator after correcting
the second-order noise bias, )7;* (equation 26), the shear estimator
after correcting the selection bias from anisotropic shape noise, P2
(equation 33), and anisotropic measurement error, . (equation 41).
We first test the correction for noise bias in Section 4.1 and the
measurement of shape measurement error from noisy galaxy images
in Section 4.2. Then, we test the correction for selection bias in
Section 4.3. Subsequently, we check the redshift dependence of the
calibration biases in Section 4.4. Finally, we test the performance
of FPFS on poorly resolved galaxies in Section 4.5 and on stellar
contamination in Section 4.6.

Note that we force a shear measurement for every simulated galaxy
during these tests. For isolated images, the process of source detection
influences shear estimation from a population of galaxies, if that
population is determined mainly by the selection function of the
detector. The right hand of fig. 3 of Li et al. (2018) showed the s¢
histograms of detected and undetected galaxies in an HSC-like image
simulation Mandelbaum et al. (2018b) — most of the undetected
galaxies are clustered at small sy. Therefore, the influence of the
selection function of the detector can be removed by tuning the
lower threshold of s¢ . For crowded images, removing the bias from
detection is challenging since, as shown in Sheldon et al. (2020), the
ability of a detection algorithm to recognise blending depends upon
the underlying shear distortion.

4.1 Non-linear noise bias

This subsection tests the performance of the second-order noise bias
correction derived in Section 2.2. To be more specific, we change the
weighting parameter, C, and measure the multiplicative bias of our
FPFS shear estimator with the second-order noise bias correction,
74, using the simulations described in Section 3. The multiplicative
bias in Fig. 3 is reduced below the requirement for the LSST survey
when the weighting parameter is greater than 200. Since we use all
the galaxies in the simulation without any additional selection for
the test shown in this subsection, selection bias does not contribute
to this result.

We also compare the result of the FPFS shear estimator including
the second-order noise bias correction to that of the original FPFS
shear estimator without the second-order noise bias correction in
Fig. 3. As shown, the noise bias is reduced by an order of magnitude
after the second-order noise bias correction. The additive bias is
constantly below 107#, and we do not plot the additive bias here.

Note, the correction of noise bias in Section 2.2 assumes that
noise are homogeneous in configuration space so that noise are not
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Figure 3. The achieved multiplicative shear measurement bias, as a function
of weighting parameter, C, both with (solid line) and without (dashed line)
the second-order correction for non-linear noise bias. All measured values
of bias are negative, and their absolute values are shown. The grey region
denotes the requirement on the control of multiplicative bias for the LSST
surveys (The LSST Dark Energy Science Collaboration 2018).

correlated in Fourier space. In our simulation described in Section 3,
the input noise is homogeneous. In general, the background photon
noise is homogeneous in real observations; however the source pho-
ton noise is not homogeneous, although its contributions in ground-
based surveys are small. In the presence of galaxy source photon
noise, the performance of the second-order noise bias correction is
expected to be worse than the solid line in Fig. 3; however, it should
be better than the dashed line Fig. 3 that does not include any second-
order noise bias correction.

4.2 Shape noise and shape measurement uncertainty

This subsection calculates the statistical uncertainty in shear estima-
tion from a population of galaxies,

1 (52 4 52
(3 (e1+8))
0, = 5.
Y AY
Re
This total uncertainty is a combination of noise due to galaxies’
intrinsic shapes, eryms, and shape measurement error due to realisa-

tions of noise in images of galaxies, o,. We shall assume these add
in quadrature, such that

(46)

1
< 5 @+ é§)> = s + 07 47)

The standard error on the mean shear measured from a population of
N galaxies is thus o, / /N . Note, however, that this value depends
on which population of galaxies it is averaged over.

To obtain erps, we measure the intrinsic FPFS ellipticity of each
galaxy from a realisation of the galaxy image simulation with zero
noise and zero input shear (see Section 3). We average the two
components of ellipticity, then calculate the RMS across our sample
of galaxies. The intrinsic shape noise, erms, increases with weighting
parameter C (dotted line in Fig. 4).

To obtain o2, we first measure the total uncertainty using a noisy
realisation of the galaxy image simulation (see Section 3), again
averaging the two components of ellipticity. We then subtract egrys,
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Figure 4. The lo statistical uncertainty on shear measurements p; for
individual galaxies (solid line), as a function of weighting parameter, C .
The total uncertainty has contributions due to image noise (dashed line) and
intrinsic shape noise (dotted line) — both of which we measure using noiseless
galaxy images that would not be available to a real survey. However, the ‘e’
(‘“4+”) symbols show the same measurement noise (intrinsic shape noise)
accurately estimated using equation (35) and noisy galaxy images, which are
observable.

following equation (47). The shape measurement error, o, decreases
with weighting parameter C (dashed line in Fig. 4).

The total statistical uncertainty on y; is thus a balance between
contributions from shape noise (an increasing function of C ) and
from measurement error (a decreasing function of C). Total uncer-
tainty is minimised for 1000 < C < 2000, which is therefore optimal
if each galaxy in a sample is equally likely to contain shear signal.
In this paper we set C = 2000 unless otherwise mentioned, which
is close to 2.5 oy, The corresponding non-linear noise bias for this
default setup is well below the LSST requirement as shown in Fig. 3.

Shape measurement error can be also be estimated independently,
using only noisy galaxy images, and without access to noise-free ver-
sions — as would be required when handling real astronomical data.
Following equation (A2), we estimate &, (circles in Fig. 4), then use
measurements of total noise and equation (47) to estimate intrinsic
shape noise érms (crosses in Fig. 4). These reproduce the measure-
ments from noiseless image simulations with remarkable accuracy.

The total FPFS shear measurement uncertainty is similar to
that from the calibrated reGauss shear estimator Mandelbaum
et al. (2018b). To demonstrate this, we run the HSC pipeline
(hscPipe v7) for source detection and shape measurement on
our simulated images (see Bosch et al. 2018 for details on the
pipeline), which includes catalogue cuts at i < 24.5, resolution
> 0.3, and SNR > 10 (Mandelbaum et al. 2018a). To weight
the galaxies, we use fixed C = 2000 for FPFS. For reGauss,
we use the optimal weight of a real galaxy in the first-year HSC
shear catalogue, selected as the closest match in the log (SNR)-
log (resolution) plane. Since the reGauss algorithm is subject to
certain forms of shear estimation bias (e.g. model bias, noise bias),
we also use the reGauss ellipticities measured from the simulation
with y; = 0.02 and y; = —0.02 to linearly calibrate its shear
response. For this galaxy sample, which has higher S/N than the
previous sample, we find shear estimation uncertainty of o, = 0.298
for FPFS, and o, = 0.288 for reGauss.
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Figure 5. The multiplicative bias (top panel) and additive bias (bottom panel)
as a function of lower limit on the FPFS flux ratio. The grey region indicates
the LSST science requirement.

4.3 Selection bias

This subsection tests the performance of the selection bias correction.
Specifically, we adjust the faint-end cut on the FPFS flux ratio, §; >
i, and estimate the shear measurement bias in shear estimators 3
(equation 33) and )70? (equation 41). Throughout this section, s"PP =
00, and the weighting parameter is set to C = 2000.

The measured multiplicative biases (top panel of Fig. 5) are
within the LSST science requirement, for estimators both with (7€)
and without (pB) correction for selection bias due to anisotropic
measurement error. Estimator € improves upon B by ~1073
on average, which indicates that the multiplicative bias due to
anisotropic measurement error is at about this level.

The measured additive biases (bottom panel of Fig. 5) are below
1.5 x 10~* for ® and below 1 x 10~* for €, which indicates that
the additive bias due to the anisotropic measurement error is at the
level of 1074,

4.4 Redshift dependence of bias

This subsection tests whether the shear measurement biases depend
upon galaxy redshift. We divide simulated galaxies into three bins (0
<z<0.6,0.6 <z<1.2,1.2 <z < 1.8)according to the photometric
redshift of the input COSMOS galaxies (Ilbert et al. 2009). The
average reGauss resolution and CModel SNR as functions of
redshift are shown in Fig. 6.

First, we test shear estimator P without selecting by any ob-
servables other than the COSMOS redshift. Since the COSMOS
redshifts are from input galaxies and are not influenced by shear
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Figure 6. Average reGauss resolution (top panel) and CModel SNR
(bottom panel) as functions of redshift. The error bars show the lo scatter of
the corresponding observables in each bin.

distortion or image noise, the redshift binning does not lead to
selection bias. In addition, * does not account for selection
bias; therefore, this test measures any redshift-dependence of the
non-linear noise bias. We find multiplicative bias |m| < 1 x 1073,
and additive bias |c| < 1 x 10~* at all redshifts (solid lines in

Fig. 7).
Second, we test shear estimator P on a galaxy sample selected
with § > si*¥ = 0.2. The estimator does not account for the selection

bias due to anisotropic measurement error, so this test isolates the
performance of its correction for selection bias due to anisotropic
shape noise. We find multiplicative bias |m| & 2 x 1073 for redshift
z < 1, increasing to 6 x 1073 at high redshift 1.2 < z < 1.8. The
additive bias is 20 consistent with zero at all redshifts (dashed lines
in Fig. 7).

Finally, we test shear estimator € on the same galaxy sample
with §) > s(l{’“’ = 0.2. This estimator accounts for selection bias due
to both anisotropic shape noise and anisotropic measurement error.
It produces multiplicative bias consistently <1 x 1073, and additive
bias thatis 20 consistent with zero (dotted lines in Fig. 7). Comparing
the multiplicative biases of $B and 7€, we find that the amplitude
of the selection bias due to the anisotropic measurement error is a
few part in 10°. For these isolated galaxies, our final FPFS shear
estimator meets the science requirement of the LSST survey, shown
as a grey region in Fig. 7.

4.5 Performance with very small source galaxies

Since our fiducial image simulation is based on a training sample
of galaxies resolved by HST and with magnitude i < 25.2, it does
not include the smallest galaxies that a future survey might have
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Figure 7. Shear measurement multiplicative bias (top panel) and additive
bias (bottom panel), as a function of galaxy redshift. The grey region indicates
the LSST science requirement. Plotted points are offset by 0.02 to prevent
the error bars from overlapping.

Table 3. The average reGauss resolution (first row), shear multiplicative
bias (second row), and shear additive bias (third row) for three samples of
galaxies simulated as a collection of random point sources. All these galaxies
are smaller than those in the HSC shape catalog, which analyses only galaxies
with reGauss resolution greater than 0.3 (Li et al. 2021).

Smallest Smaller Small
reGauss resolution 0.12 0.19 0.27
mi(107%) 04+09 —1.4+£0.7 —1.0+£0.5
c1(107%) —28+45 —-08+1.1 —-0.5+£0.7

ambition to measure. To test the accuracy of FPFS on galaxies
that are barely resolved (especially by ground-based observations),
we use GalSim to simulate small galaxies composed of 20 points
randomly distributed (Zhang et al. 2015) to follow a 2D Gaussian
profile with input half-light radius ranging from 0707 to 0”2 . The
flux of each knot is the same. The measured reGauss resolutions
range from 0.12 to 0.27 as shown in Table 3. Each galaxy sample
has 4 x 107 galaxies and with an average CModel SNR ~ 15, and
each galaxy is rotated by 45 deg four times to reduce shape noise
from both spin m = 2 and spin m = 4 quantities. Here, we do not
add any additional selection, so that selection bias is not present. As
shown in Table 3, FPFS can accurately measure shear from even
extremely small and faint galaxies. If mixed with bigger and brighter
galaxies, they will receive a low weight and contribute little to the
signal. Crucially, they will not bias it.
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Figure 8. Normalized number histograms of the first component of FPFS
ellipticity e (solid line) and FPFS response R’ (dashed line) measured from
simulated images of stars. The vertical dotted line shows the expectation
value.

4.6 Stellar contamination

In real observations, stars may not be perfectly removed from the
galaxy sample. To test the performance of our FPFS shear estimator
with such stellar contamination, we simulate 1 x 107 star images
with an average SNR 17.8 . This corresponds to an extreme situation
that the object’s reGauss resolution equals zero. Then, we measure
the FPFS ellipticity and FPFS response from these stars. Again, we
neglect the PSF model errors and assume that we know the two-point
correlation function of noise.

Measurements stars yield mean values (¢;) = (1.0 £ 1.1) x 103
and R? = (1.8 £2.0) x 107> (Fig. 8). That the expectation value
of both is consistent with zero (and much smaller than the mean re-
sponse of simulated HST COSMOS galaxies, |R}| ~ 0.18), ensures
that FPFS is robust to stellar contamination, so long as the PSF is
well-determined. Stellar contamination of n per cent will reduce the
numerator and denominator of equation (41) by n per cent, leaving the
shear estimator unbiased. This is the same good property as META -
CALIBRATION, demonstrated in Fig. 5 of Sheldon & Huft (2017).

5 SUMMARY AND OUTLOOK

In this paper, we improve the FPFS weak lensing shear estimator,
by implementing corrections for two dominant biases. First, with
an assumption that noise in an image is a homogeneous Gaussian
random field, we correct for shear measurement noise bias to second
order. Second, we derive analytic expressions to remove selection
biases due to both anisotropic shape noise and anisotropic measure-
ment error. Crucially, the analytic corrections that we implement in
FPF'S do not rely upon slow and computationally expensive iterative
processes, or upon calibration via external simulations. Our publicly-
available code (https://github.com/mr-superonion/FPFS) can pro-
cess more than a thousand galaxy images per CPU second.

Using mock imaging of isolated SNR>10 galaxies with known
shear, we demonstrate that we have improved the method’s accuracy
by an order of magnitude. FPFS now meets the science requirements
for a Stage IV weak-lensing survey (e.g. Cropper et al. 2013; The
LSST Dark Energy Science Collaboration 2018).

Future work should revise this paper’s assumption that galaxies
are isolated. Li et al. (2018) and MacCrann et al. (2022) report
that the blending of light between neighbouring galaxies on the
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projected plane causes a few per cent multiplicative bias for deep
ground-based imaging surveys e.g. the HSC!! Survey (Aihara et al.
2018), DES!?> (DES; Dark Energy Survey Collaboration 2016),
and the future LSST. The bias from blending includes shear-
dependent blending identification (Sheldon et al. 2020) and bias
related to redshift-dependent shear distortion (MacCrann et al. 2022).
METADETECTION (Sheldon et al. 2020) is an improved version of
METACALIBRATION, able to correct for bias due to shear dependent
blending identification. Correction for biases related to blending in
FPFS should be the next effect to be tackled. After that, we also
intend to explore the use of shapelet modes of order >2, which
should contain independent information on the shear signal.

ACKNOWLEDGEMENTS

We thank Jun Zhang, Daniel Gruen for their helpful comments.
XL thanks people in IPMU and UTokyo — Minxi He, Nobuhiko
Katayama, Wentao Luo, Masamune Oguri, Masahiro Takada, Naoki
Yoshida, Chenghan Zha — and people in the HSC collaboration —
Robert Lupton, Rachel Mandelbaum, Hironao Miyatake, Surhud
More — for valuable discussions. In addition, we thank the anonymous
referee for feedback that improved the quality of the paper.

XL was supported by the Global Science Graduate Course (GSGC)
program of the University of Tokyo and JSPS KAKENHI Grant
Number JP19J22222. RM is supported by the UK Space Agency
through grant ST/W002612/1. The Flatiron Institute is supported by
the Simons Foundation.

DATA AVAILABILITY

The code used for image processing and galaxy image simulation in
this paper is available from https://github.com/mr-superonion/FPFS.

REFERENCES

Aihara H. et al., 2018, PASJ, 70, S8

Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291

Bernstein G. M., 2010, MNRAS, 406, 2793

Bernstein G. M., Armstrong R., 2014, MNRAS, 438, 1880

Bernstein G. M., Armstrong R., Krawiec C., March M. C., 2016, MNRAS,
459, 4467

Bosch J. et al., 2018, PASJ, 70, S5

Cropper M. et al., 2013, MNRAS, 431, 3103

Dark Energy Survey Collaboration, 2016, MNRAS, 460, 1270

de Vaucouleurs G., 1948, SAnAp, 11, 247

Fenech Conti 1., Herbonnet R., Hoekstra H., Merten J., Miller L., Viola M.,
2017, MNRAS, 467, 1627

Hirata C., Seljak U., 2003, MNRAS, 343, 459

Hoekstra H., 2021, A&A, 656, A135

Huff E., Mandelbaum R., 2017, preprint (arXiv:1702.02600)

Tlbert O. et al., 2009, ApJ, 690, 1236

Ivezié Z. et al., 2019, ApJ, 873, 111

Kaiser N., 2000, ApJ, 537, 555

Kannawadi A. et al., 2019, A&A, 624, A92

Kilbinger M., 2015, Rep. Prog. Phys., 78, 086901

Laureijs R. et al., 2011, preprint (arXiv:1110.3193)

Leauthaud A. et al., 2007, ApJS, 172,219

Li H., Zhang J., 2021, ApJ, 911, 115

Li X., Katayama N., Oguri M., More S., 2018, MNRAS, 481, 4445

Li X. et al., 2021, preprint (arXiv:2107.00136)

Lupton R., GunnJ. E., Ivezi¢ Z., Knapp G. R., Kent S., 2001, in Harnden F. R.
J., Primini F. A., Payne H. E., eds, ASP Conf. Ser. Vol. 238, Astronomical

"Hyper Suprime-Cam: https://hsc.mtk.nao.ac jp/ssp/
2Dark Energy Survey: https://www.darkenergysurvey.org/

MNRAS 511, 4850-4860 (2022)

220z Aey 9z uo Jasn weyin( Jo AusieAiun Aq €1L6+259/0581/1/1 | S/alonde/seuw/woo dno olwapese//:sdiy Woll papeojumod]


art/stac342_f8.eps
https://github.com/mr-superonion/FPFS
https://github.com/mr-superonion/FPFS
http://dx.doi.org/10.1093/pasj/psx081
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1111/j.1365-2966.2010.16883.x
http://dx.doi.org/10.1093/mnras/stt2326
http://dx.doi.org/10.1093/mnras/stw879
http://dx.doi.org/10.1093/pasj/psx080
http://dx.doi.org/10.1093/mnras/stt384
http://dx.doi.org/10.1093/mnras/stw641
http://dx.doi.org/10.1093/mnras/stx200
http://dx.doi.org/10.1046/j.1365-8711.2003.06683.x
http://dx.doi.org/10.1051/0004-6361/202141670
http://arxiv.org/abs/1702.02600
http://dx.doi.org/10.1088/0004-637X/690/2/1236
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1086/309041
http://dx.doi.org/10.1051/0004-6361/201834819
http://dx.doi.org/10.1088/0034-4885/78/8/086901
http://arxiv.org/abs/1110.3193
http://dx.doi.org/10.1086/516598
http://dx.doi.org/10.3847/1538-4357/abec6d
http://dx.doi.org/10.1093/mnras/sty2548
http://arxiv.org/abs/2107.00136
https://hsc.mtk.nao.ac.jp/ssp/
https://www.darkenergysurvey.org/

4860 X Li, Y. Li and R. Massey

Data Analysis Software and Systems X. Astron. Soc. Pac., San Francisco,
p. 269

MacCrann N. et al., 2022, MNRAS, 509, 3371

Mandelbaum R., 2018, ARA&A, 56, 393

Mandelbaum R. et al., 2018a, PASJ, 70, S25

Mandelbaum R. et al., 2018b, MNRAS, 481, 3170

Massey R., Refregier A., 2005, MNRAS, 363, 197

Massey R. et al., 2007, MNRAS, 376, 13

Massey R., Kitching T., Richard J., 2010,
086901

Massey R. et al., 2013, MNRAS, 429, 661

Miller L., Kitching T. D., Heymans C., Heavens A. F., Van Waerbeke L.,
2007, MNRAS, 382, 315

Moffat A. E. J., 1969, A&A, 3, 455

Pujol A., Kilbinger M., Sureau F., Bobin J., 2019, A&A, 621, A2

Refregier A., 2003, MNRAS, 338, 35

Refregier A., Kacprzak T., Amara A., Bridle S., Rowe B., 2012, MNRAS,
425, 1951

Rowe B. T. P. et al., 2015, A&C, 10, 121

Sérsic J. L., 1963, BAAA, 6, 41

Sheldon E. S., Huff E. M., 2017, ApJ, 841, 24

Sheldon E. S., Becker M. R., MacCrann N., Jarvis M., 2020, ApJ, 902,
138

Spergel D. et al., 2015, preprint (arXiv:1503.03757)

The LSST Dark Energy Science Collaboration, 2018, preprint
(arXiv:1809.01669)

Zhang J., 2008, MNRAS, 383, 113

Zhang J., Luo W., Foucaud S., 2015, J. Cosmology Astropart. Phys., 1,
24

Zhang J., Zhang P., Luo W., 2017, AplJ, 834, 8

Rep. Prog. Phys., 73,

APPENDIX A: SECOND-ORDER REVISION FOR
NON-LINEAR NOISE BIAS

Here, we present the expectation values of noisy, measurable quan-
tities (indicated with a tilde), relative to those of the unobservable,
noiseless quantities (without a tilde). We only keep to the second-
order terms of noise residuals and neglect the higher-order terms.
First, we obtain the expectation for §, and 3y4:

~ _ VOOOO _ VOOOO
(§o) = <so (1 + (Mo 1 CF C)2)> <7(Moo i C)2> ,

L Voooo B Voodo
0 = (o (1 s ) - (gt ).

Then, we use the covariance matrix of the shapelet modes
(equation 19) to derive the expectation for éf 2 Eg, and & »3:

o/ Voooo
(e1) = <el (1 +3(M00+C)2)>

< Voeaze Voo2ze >
+ —4e )
(Mg + C)? (Mg + C)?

@ = (1300 Ter)
i <(M1:j2f22>2 e (MZOTCV > ’
@ = (s (1+350755))
V V
* <(M0003(-)0C)2 — <MOOO$OC>2> ’

~ VOOOO
<61S0) = <elso (1 +3m)>
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+ < VOOZZC _ 2S VOOZZ(' >
(Moo + C?* " (Mo + C)?
<2 Voooo >
- el )
(Mo + C)?

- Voooo
(eZSO> = <6250 (l + 3m>>

n < Vooros 25 Vioo22s >
(Moo +C? """ (Mgo + C)?

VOOOO
B <2€2 (oo + CF > ' (A2

These quantities are used to derive the variance of measurement error
on FPFS ellipticity de; , defined in equation (25) and flux ratio s
defined in equation (34) due to the photon noise on galaxy images
where noise terms of fourth order and higher are neglected.

(Ber)’) = (&] — i)

_ <~2 Voooo ~V22c226 2z ~Voozzc >
(Mo + C)* (Mg + C)? (Moo + C)?
((bex)’) = (&3 — €3)
/2 Voo Vassoas 25 Voo22s >
T\ <Moo +CO? T (Moo +CPR "7 (Mop + CP
((850)%) = s0)
<~2 ~ Voooo _ Voooo 25 Voooo > .
(Moo + C)* (Moo + C)? (Mg + C)?
(A3)

In addition, the correlation between the measurement errors e, »
and 85y is given by

(8s0der) = (§o81 — soer)

<~ - Voooo Voozze >
= €150 ——= =+ =
(Mg 4+ C)* (Mo + C)?
<~ Voo22e _ Voooo >
— {50 —= +é — ,
(Mg + C)? (Mg + C)?
(8soder) = (Spé2 — spez)
<~ ~ Voooo Voo22s >
= { €850 = + —
(Mg + C)> (Mo + C)?

Voo2os 5 V
B <50 Mooz, o — 0000 : > 7 (A4)
(Moo + C) (Moo + C)

Finally, we derive expectation for the noisy quantities related to
the selection shear response:

(@) = <(e1)2s0 (1 +6(M::°%C)2>>
+ <2e. a _3SO)W?)%C)2>’
((@)%50) = <(€2)2So ( 1+ 6(1”;:)%) >

Voooo Vaos22s
-3 2_ T8 _ Teasias
<(62) (Moo + C>2> - <S° (Moo + C>2>

v0022x

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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