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1. Introduction: Bayesian emulation and uncertainty quantification
The COVID-19 pandemic disrupted healthcare systems and caused substantial fatalities around
the globe. Various models have been developed to aid decision makers in the assessment of
policy options, from simple analytic models up to complex agent-based models (ABMs). JUNE,
introduced in [1], is of the latter type, and its high level of demographic and spatial resolution
demands substantial computational resources to evaluate. A critical component in the uncertainty
analysis, and subsequent use for decision support of a complex epidemiological model such as
JUNE, is the process of model calibration: the matching of the model to observed data from the
real system.

This process can be extremely challenging, and in many cases, its intractability precludes the
full exploitation of sophisticated models, which may otherwise contain nuanced insights into
the system of interest. The problem of calibrating a complex and computationally demanding
model is not unique to epidemiology and occurs in a wide range of scientific disciplines including
cosmology, climate, systems biology, geology and energy systems [2–5]. To solve this problem, an
area of Bayesian statistics arose, sometimes referred to as the uncertainty analyses of complex
computer models, or to use its more recent (and slightly more general name): the area of
uncertainty quantification (UQ) [5–7]. UQ provides a statistical methodology combining a large
number of efficient techniques with a set of overarching principles that address how to analyze
complex models rigorously, transparently and robustly, for use in scientific investigations, for
making real-world predictions and for subsequent decision support. A core goal of this work is
to demonstrate the capability of such methods for use with complex epidemiological models. A
full analysis of the behaviour of models with a large number of input parameters and possibly
several outputs, and their subsequent calibration, encounters the following three major issues:

(i) For complex models, the evaluation time of the model is often so long that an exhaustive
exploration of the model’s behaviour over its full input parameter space is infeasible.

(ii) When comparing models to observed real-world data, an adequate statistical description
of the link between model and reality, covering all major uncertainties and allowing for
the rigorous use of an imperfect model, is required.

(iii) When calibrating, the appropriate scientific goal should be to identify all locations in
input parameter space that lead to acceptable fits between model and observed data,
and not just to find the location of a single good match.

We summarize in the next section three UQ methods: (a) Bayes linear emulation, (b) linking
models to reality and (c) Bayesian history matching, which address the aforementioned three
problems. We then apply these UQ methods to the JUNE model in §3.

2. Bayesian emulation and history matching

(a) Bayes linear emulation
Complex models typically have runtimes that can vary from seconds to days or even weeks,
greatly inhibiting full model exploration, calibration, forecasting etc. Many of the techniques
in UQ therefore revolve around the construction of Bayesian emulators: statistical constructs
that mimic the scientific model in question, providing predictions of the model outputs with
associated uncertainty, at as yet unevaluated input parameter settings [8]. The emulators provide
insight into the model’s core structure and, unlike the models they mimic, are extremely fast
to evaluate, typically being several orders of magnitude faster. Hence, they facilitate previously
infeasible model exploration and global parameter searches. As an emulator makes predictions
that have an associated (input dependent) uncertainty statement, they naturally fit within an
overarching Bayesian uncertainty analysis, in which the impact of using an emulator instead of
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the model, can be understood and quantified. Emulators can be built for deterministic models,
stochastic models, multilevel models (composed of models of increasing fidelity) and networks
of models, providing a flexible and powerful set of tools to deal with a large class of scientific
scenarios. Here, we outline the construction of Bayes Linear emulators, a robust form of emulator,
based on a partial specification, which has been successfully employed in several settings [2,5].

We represent a general scientific model as the function f (x). Here, x = (x1, . . . , xd) is a vector
composed of all the input parameters. For example, x1 may represent an infectivity parameter,
x2 a social distancing parameter, etc. f (x) = (f1(x), . . . , fq(x)) is the vector of all model outputs of
interest, so, for example, f1(x) may represent the number of people hospitalized in England on a
particular day, f2(x) may represent the number of deaths on that day, all as a function of the inputs
x. We denote the general component of f (x) as fi(x), where the index i will cycle through the full
list of outputs of interest, for example, in the application to JUNE in §3, i cycles through the set
i ∈ {type, region, time}. We anticipate that, due to limited computational resources, we will only
be able to evaluate the model at a finite (and possibly small) number of input parameter locations
x(1), x(2), . . . , x(n) giving rise to model outputs Di = (fi(x(1)), fi(x(2)), . . . , fi(x(n)))T, where i = 1, . . . , q,
and ‘T’ denotes the transpose. Therefore, at a new unevaluated input location, x, even say for a
deterministic (i.e. repeatable) model, we will still be uncertain about the output value of f (x), as
we will be for the majority of the input space. We take a subjective Bayesian view and treat the
unknown f (x) as a random quantity and construct an emulator that represents our beliefs about
possible reasonable forms that this function f (x) could take. A popular emulator form for each
output fi(x) is as follows [2]:

fi(x) =
∑

j

bijgij(xAi ) + ui(xAi ) + wi(x), (2.1)

where we have selected a subset of the inputs, x, known as the active variables, xAi , that are most
influential for output fi(x). The first term on the right-hand side of equation (2.1) is a regression
term, where gij are appropriately selected known deterministic functions of xAi , a common choice
being low-order polynomials, and bij are unknown scalar regression coefficients. The second term,
ui(xAi ), is a weakly second-order stationary process over xAi , for which we only need to specify its
second-order structure, choosing E[ui(xAi )] = 0 and utilizing an appropriate covariance function:
a classic example suitable for smooth functions is the squared exponential:

Cov(ui(xAi ), ui(x
′
Ai

)) = σ 2
ui

exp

{
−

||xAi − x′
Ai

||2
θ2

i

}
, (2.2)

where σ 2
ui

and θi are the variance and correlation length of ui(xAi ), respectively, which may be
specified a priori [2], or fitted using, e.g. MLE or MAP [4]. This simple covariance function may
be enough, especially if the emulators regression term captures much of the model’s behaviour;

however, if not, various extensions are available, e.g. individual correlation lengths θ j
i for each

input xj
Ai

[9]. The third term, wi(x), is a white noise process uncorrelated with bij, ui(xAi ), and itself
such that

Cov(wi(x), wi(x
′)) =

{
σ 2

wi
if x = x′

0 otherwise
, (2.3)

with expectation zero, and Var(wi(x)) = σ 2
wi

. wi(x) represents the effects of the remaining inactive
inputs not included in the list of xAi and formally facilitates a type of dimensional reduction [2].

The emulator form, as represented by equation (2.1), has various desirable features and
exploits our beliefs about the general anticipated behaviour of physically realistic models. The
regression term,

∑
j bijgij(xAi ), attempts to mimic the large-scale global behaviour of the function

fi(x): often substantial in physical models. The second term, ui(xAi ), the weakly stationary process,
mimics the local behaviour of fi(x), again exploiting concepts of smoothness of either fi(x) or
attributes of fi(x) (if, say, fi(x) is stochastic). Such terms are highly versatile and can fit a large class
of models; however, they require a sufficient density of runs to be suitably informed (regulated
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by the correlation length parameters θi). In the literature, there is sometimes an over-reliance on
similar Gaussian process style terms and a neglect of the regression terms, which may be unwise,
as GPs of this form are typically capable of capturing the broad global behaviour, or the more
complex local behaviour, but rarely both. We deliberately use the regression terms for the global
structure and utilize the ui(xAi ) to capture the local behaviour.

We can select the list of active inputs, xAi , using various statistical techniques. For example,
these could consist of classical linear model fitting criteria such as AIC or BIC, which have
the benefit of speed and reasonable accuracy when applied to appropriate (nonlinear) sets of
regression functions gij [2], or approaches such as automatic relevance determination [9], which
can give increased accuracy provided the assumed form of the covariance function is suitable.
In addition, we would also seek to incorporate expert knowledge of the model into the active
input selection process, either by directly incorporating ’known’ active inputs or by using a more
nuanced Bayesian approach, of particular importance for expensive models. A list of p active
inputs for a particular physical output, fi(x), means that we have notably reduced the input
dimensionality from d to p, which can result in large efficiency gains in subsequent calculations.
The small remaining effect of the inactive inputs is not ignored, but is captured by the third
term wi(x) in equation (2.1), whose variance σ 2

wi
represents the added uncertainty induced by

the dimensional reduction.

(i) What to emulate

A major issue when emulating complex models is the choice of the set of attributes/outputs of
the model to emulate. For example, often an objective function describing the mismatch between
model and data has been emulated (e.g. a simple chi-squared metric, or a more complex likelihood
function). However, despite being deceptively simple having just a single output, the objective
function typically has a complex form, as it depends on the union of all active inputs and
possesses numerous local maxima/minima [2], rendering this an inefficient strategy. Instead, we
prefer to emulate the physical outputs of the model directly, as these tend to have (a) a smaller
list of active inputs per output allowing a nuanced and sometimes substantial dimensional
reduction tailored to each individual output, and (b) a simpler functional dependence on the input
parameters that is often well represented by the regression terms in the emulator. Further choices
are required when emulating stochastic models, where we can choose to emulate summaries of
outputs of interest such as the mean, the variance or quantiles if required, possibly conditioning
on key events such as epidemic take-off, and extend for example to covariance structures between
groups of outputs if needed. In these cases, the role of wi(x) is extended to also incorporate
the uncertainties induced by using estimates from finite samples [10] or to employ full variance
emulation as in ref. [11].

(ii) Designing batches of model evaluations

We begin by specifying the region of input space of interest, typically a d-dimensional hypercube,
and denote this X0 ⊂ R

d. We then design a set of ‘space filling’ runs over X0, constructed to be
well spread out, without any large holes. For example, we may use a maximin Latin hypercube
design, an approximately orthogonal design, also desirable for emulator construction [12,13].

(iii) Updating the emulator

We then update our prior emulator structure given by equation (2.1) with the information from
the set of model runs using our favourite statistical tools. Specifically, we would prefer a fully
probabilistic Bayesian approach if we required full probability distributions on all emulated
outputs, fi(x) [14], and were we prepared to specify full joint probabilistic priors.

However, in most cases, our preferred choice is to use Bayes Linear methods, a more tractable
version of Bayesian statistics, which requires a far simpler prior specification and analysis [15,16].
It deals purely with expectations, variances and covariances of all uncertain quantities of interest,
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Figure 1. An emulator of a one-dimensional toymodel,where f (x)= sin(2π (x − 0.1)/0.4), for the firstwave/iteration, using
just six runs (left panel), and for the second wave, using two additional runs (right panel). The emulator’s expectation ED[f (x)]
and credible intervals ED[f (x)] ± 3

√
VarDi (fi(x)) are given by the blue and red lines, respectively, with the observed data z that

we wish to match to as the black horizontal line (with errors). The implausibility I(x) is represented by the coloured bar along
the x-axis, with dark blue implying I(x)> 3, light blue 2.5< I(x)< 3 and yellow (I(x)< 1). (Online version in colour.)

and uses the following Bayes linear update equations, derived from foundational arguments
[16], to adjust our beliefs in the light of new data. When emulating the ith output fi(x) of a
complex model, where we had performed an initial batch of n runs giving a vector of model
output values Di = (fi(x(1)), fi(x(2)), . . . , fi(x(n)))T, we obtain the adjusted expectation, EDi (fi(x)), and
adjusted variance, VarDi (fi(x)), for fi(x) at new input point x using:

EDi (fi(x)) = E(fi(x)) + Cov(fi(x), Di)Var(Di)
−1(Di − E(Di)) (2.4)

and
VarDi (fi(x)) = Var(fi(x)) − Cov(fi(x), Di)Var(Di)

−1Cov(Di, fi(x)). (2.5)

All quantities on the right-hand side of equations (2.4) and (2.5) can be calculated from equations
(2.1) and (2.2) combined with prior specifications for E(bij), Var(bij), σ 2

ui
, σ 2

wi
and θi. EDi (fi(x)) and

VarDi (fi(x)) provide a prediction for fi(x) with associated uncertainty and are used directly in
the implausibility measures used for the global parameter searches described in §2c. Note that
multivariate versions of equations (2.4) and (2.5) are available. In addition, we may make certain
pragmatic choices in the emulator construction process, for example, while we typically keep the
regression coefficients bij uncertain, we may directly specify σ 2

ui
, σ 2

wi
and θi a priori, or use suitable

plugin estimates as described in ref. [2]. We can test the emulators using a series of diagnostics,
for example checking their prediction accuracy over a new batch of runs [17]. An example of a
one-dimensional emulator is given in figure 1, cf. ref. [8] for an introduction and refs. [2,14,18]
for details. The above Bayes linear emulation framework is fully implemented in the ‘hmer’ R
package [19].

(b) Assessing uncertainties: linking the model to the real world
Most epidemiology models are developed to help explain, understand and predict the behaviour
of the corresponding real world system of interest, typically in terms of the progression through
a population of an infectious disease. An essential part of determining whether such a model
is adequate for this task is the comparison of the model with data formed from observations of
the real system. However, this comparison involves several uncertainties that must be accounted
for to provide a meaningful definition of an ‘acceptable’ match between a model run and the
observed data. Hence, it is vital to define a clear statistical model describing the difference
between the epidemiological model, f (x), and the observed data denoted as the vector z. While

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 S

ep
te

m
be

r 
20

22
 



6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20220039

...............................................................

more complex statistical models are available [20], here, we describe a simple but powerful
version that has been successfully used in a variety of scientific disciplines, for example climate,
cosmology, oil reservoirs, epidemiology and systems biology [2–5,10,21].

The most familiar source of uncertainty is observational or experimental. We represent the
features of interest of the real system as a vector of uncertain quantities, y, which will be measured
imperfectly involving a vector of errors e, to give the vector of observations, z, as follows:

z = y + e. (2.6)

We represent the errors as additive here, but could use a more complex form if necessary.
Depending on the scientific context, we then make judgements about the relationship between
y and e, e.g. a common specification [2] is to judge the errors e to be independent from y, with
expectation, E(e) =μe and Var(e) =Σe, a q × q covariance matrix. Setting μe = 0 corresponds to
the judgement that the observations were unbiased, and setting Σe = diag(σ 2

e,1, . . . , σ 2
e,q), that is a

diagonal matrix, corresponds to uncorrelated observation errors, etc.
A critical feature that we must incorporate is the difference between the epidemiological

model, f (x), of the system and the real system, y, itself. We represent this difference between
model and reality using a structural model discrepancy term. First, we note that even were we to
evaluate the model, f (x), at its best possible choice of input, x∗, the output, f (x∗), would still not be
in agreement with the real epidemiological system value y, due to the many simplifications and
approximations inherent to the model; therefore,

y = f (x∗) + ε, (2.7)

where ε is the structural model discrepancy: a vector of uncertain quantities that directly
represents the difference between the model and the real system. Note that we are still treating
y, f , x∗ and ε as vectors of random quantities. Now we have to make judgements about their
relationships: a simple and popular specification [2,5] would be to judge that ε is independent of
f (x∗), x∗ and e, with E(ε) = 0. In the case of a single output, we would then specify Var(ε) = σ 2

ε .
However, for the full case of q outputs, we may specify Var(ε) =Σε , a q × q covariance matrix.
Σε may have intricate structure possessing non-zero covariances between components of ε, to
capture the heavily correlated deficiencies of the model outputs. Various structures for Σε of
increasing complexity are available [2,5,14], along with methods for their specification [2,22]. Note
that typically the form of Σε is very different from Σe.

While the inclusion of the structural model discrepancy is unfamiliar to most modellers, it
is now of standard practice in the UQ literature for analyzing complex but imperfect models
[14,18,23,24]. It facilitates a richer analysis whereby we can incorporate our necessarily uncertain
knowledge of the model’s deficiencies to improve our modelling of reality y. Its inclusion can
prevent over-fitting when calibrating and also reduces both bias and overconfidence when
predicting. It is also vital when combining the results of several models.

(c) Bayesian history matching
Due to their fast evaluation speed, emulators can be used in a variety of UQ calculations that
would be otherwise infeasible. One of the most important is the problem of performing global
parameter searches. Here, we outline a powerful iterative emulator-based global search method
known as history matching (HM), which has been successfully employed in a variety of scientific
disciplines [2,3,5,10]. HM is designed to answer the questions:

(i) Are there any input parameter settings that lead to acceptable matches between the model
output and observed data?

(ii) If so, what is the full set X that contains all such input parameter settings?

Note the emphasis on finding all such acceptable matches: optimizing to find a single good fit is
not adequate for assessing the impact of parametric uncertainty, nor for making predictions.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 S

ep
te

m
be

r 
20

22
 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20220039

...............................................................

HM proceeds iteratively by ruling out regions of input parameter space that can be discarded
from further investigation based on implausibility measures [5]. For an unexplored input parameter,
x, we can ask how far would the emulator’s expected value for the individual function output,
fi(x), be from the corresponding observed value, zi, before we would deem it highly unlikely for
fi(x) to give an acceptable match were we to actually evaluate the function at x. The implausibility
measure, Ii(x), captures this concept, and for an individual, output is given by the distance
EDi (fi(x)) − zi between emulator expectation and observed data, standardized by all relevant
uncertainties,

I2
i (x) = (EDi (fi(x)) − zi)2

VarDi (fi(x)) + Var(εi) + Var(ei)
. (2.8)

Here, VarDi (fi(x)) is the emulator variance, Var(εi) is the variance of the model discrepancy and
Var(ei) is the variance of the observational error, a direct consequence of equations (2.6) and (2.7).
See also figure 1 (the x-axis) for a depiction of I(x).

A large value of Ii(x) for a particular x implies that we would be unlikely to obtain an
acceptable match between fi(x) and zi were we to run the model at x. Hence, we can discard
the input, x, from the parameter search if Ii(x)> c, for some cutoff, c, which is often chosen by
appealing to Pukelsheim’s 3-sigma rule [25], a very general and powerful result, which states that
for any continuous, unimodal distribution, 95% of its probability must lie within ±3σ , regardless
of asymmetry or skew, suggesting that a choice of c = 3 may be reasonable [2]. This is the simplest
univariate form, but we can combine implausibility measures from several outputs using say
IM(x) = maxi∈Q Ii(x) for some set Q, or employ more complex multivariate forms [2].

Before performing the kth HM iteration, we define the current set of non-implausible input
points as Xk and the set of outputs that we considered for emulation in the previous wave as
Qk−1. We proceed as follows [4]:

(1) Design and evaluate a well chosen set of runs over the current non-implausible space
Xk, e.g. using a maximin Latin hypercube with rejection [2]. Combine these with any
non-implausible runs surviving from previous waves.

(2) Check if there are new, informative outputs that can now be emulated accurately (that
were difficult to emulate in previous waves) and add them to the previous set Qk−1, to
define Qk.

(3) Use the runs to construct new, more accurate emulators defined only over the region Xk
for each output in Qk.

(4) The implausibility measures Ii(x), i ∈ Qk, are then recalculated over Xk, using the new
emulators.

(5) Cutoffs are imposed on the implausibility measures Ii(x)< c and this defines a new,
smaller non-implausible volume Xk+1, which should satisfy X ⊂Xk+1 ⊂Xk.

(6) Unless (a) the emulator variances for all outputs of interest are now small in comparison
to the other sources of uncertainty due to the model discrepancy and observation errors,
or (b) the entire input space has been deemed implausible, and return to step 1.

(7) If 6 (a) is true, generate as large a number as possible of acceptable runs from the final
non-implausible volume X , sampled depending on scientific goal.

The history matching approach is powerful for several reasons: (a) while reducing the volume
of the non-implausible region, we expect the function f (x) to become smoother, and hence to be
more accurately approximated by the regression part of the emulator, bijgij(xAi ). (b) At each new
HM iteration, we will have a higher density of points and hence the second term, ui(xAi ), in the
emulator should be more effective, as it depends on proximity to the nearest runs. (c) In later
iterations, the previously strongly dominant active inputs from early waves will have their effects
curtailed, and hence, it will be easier to select additional active inputs, unnoticed before. (d) There
may be several outputs that may be difficult to emulate in early iterations (perhaps because of
their erratic behaviour in uninteresting parts of the input space) but simple to emulate in later
waves once we have restricted the input space to a much smaller and more epidemiologically

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 S

ep
te

m
be

r 
20

22
 



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20220039

...............................................................

realistic region. See ref. [4] for further discussions comparing HM with Bayesian MCMC and ABC,
ref. [26] for a direct comparison with ABC and the R package ‘hmer’ [19] for full implementation
of the HM algorithm. We now apply these methods to the JUNE model.

3. Application of emulation and history matching toJUNE

(a) TheJUNEmodel
JUNE [1] is an ABM that describes the spread of an infectious disease through large synthetic
populations. Originally designed to simulate the circulation of COVID-19 through the English
population, JUNE has also been adapted to capture the populations of Cox’s Bazaar [27], a refugee
camp in Bangladesh, and of Rhineland-Palatinate [28], one of Germany’s federal states. JUNE’s
description of the epidemic spread rests on four areas:

— the construction of a realistic synthetic population that reflects, as accurately as
possible, the population demographic and their geographic distribution;

— the simulation of the population sociology, i.e. how the individuals behave: how they
spend their time, whom they get into contact with and in which social environment;

— the parameterization of the infection, how it is transmitted from infected to susceptible
individuals and impact it has on the health of infected individuals;

— the mitigation of spread and impact of the infection through pharmaceutical and
non-pharmaceutical interventions (NPIs) such as social distancing and vaccinations,
respectively.

They are discussed in more detail below.

(i) Population

JUNE builds its synthetic population based on real or parameterized census data—in the case
relevant for this contribution, JUNE constructs the about 55 million residents of England based
on the 2011 census data accessible through the NOMIS database provided by the ONS. The data
are organized hierarchically, with Output Areas (OAs) the smallest relevant unit, comprising on
average about 250 residents with relatively similar socio-economic characteristics. The OAs have
a specified geographic location, and their data contain information about age, sex and ethnicity
of the area’s residents [29–31] and the composition of the households they live in [32], in about 20
categories.1 JUNE uses national averages to correlate age, sex and ethnicity of individuals, which
are presented as uncorrelated distributions in the data. In a similar way, information such as the
national distributions of age differences of partners [33], and of parents and their children [34],
are used to assign the individuals to their households.

As additional static properties of the population, JUNE assigns school-aged children to the
nearest age-appropriate school; information about school locations and the age ranges for their
students is taken from ref. [35]. Within the schools, the students are grouped into class units of
20–30 individuals and have teachers assigned to them. In a similar way, universities are filled with
students—the young adults—and they are grouped into year groups of about 200 students.

The OAs are part of Middle Super Output Areas (MSOAs) with about 12 500 residents and 50
OAs constituting one MSOA. The census data provide information about the sectors of companies
within MSOAs and about the distribution of the working population over these sectors, using
the Standard Industrial Classification (SIC) scheme [36]. The parameterization of company sizes
with national sector-dependent averages allows JUNE to construct an origin-destination matrix
for the employees at the level of MSOAs [37]. Information concerning the commuting habits of

1The English and Welsh census distinguishes between children, young (dependent) and adults, such as university students,
independent adults and old adults, and classifies households according to the respective numbers in them.
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individuals contained in the census data [38] underpins the construction of simplified virtual
public transport networks within JUNE.

(ii) Interactions

Having defined the static properties of the synthetic population—where people live, work and
study—their daily lives outside work and education are filled with various activities. These
activities include shopping, visiting friends and relatives in their homes, frequenting pubs and
restaurants, going to the gym or cinema, to name a few. In the absence of any of these leisure
activities, people are supposed to stay at home. Surveys performed, e.g. by the Office for National
Statistics [39], define the average proportion of time spent with various activities, in dependence
on age and sex. These averages are translated into a probabilistic treatment thereby creating a
highly flexible and varied daily schedule for JUNE’s virtual individuals.

These schedules are supplemented with contact matrices from PolyMod [40] and the BBC
Pandemic Project [41], which indicate the average number of daily contacts—communication
or physical—of individuals of age i with individuals of age j in different social settings L,
for example home (H), school (S) and work (W). As the contact numbers are presented as
population averages, suitable for their deployment in compartment models, they need to be
renormalized for the socially more granular IBMs,2 resulting in the renormalized overall contact
matrices χ (L)

ij and the corresponding fraction of physical contacts, φ(L)
ij , where L ∈ {S, H, W}. While

this introduces some uncertainty into the modelling of social interactions, the interplay of the
synthetic population model with the contact matrices provides a welcome closure test for the
self-consistency of the overall model.

For the purpose of fitting to data and the quantification of uncertainties in the model, we
assume that the construction of the synthetic population and its interactions is well understood
and robustly and well parameterized as it is driven by data of relatively high quality.

(iii) Infection

The description of the infection consists of two separate parts. First, the transmission from an
infected person i to a susceptible person s needs to be simulated. In JUNE, as in many other
models, this is described as a probabilistic process. The infection probability for a susceptible
person s with susceptibility ψs during a time interval from t to t +
t, spent with a group of
individuals g in social context L is given as follows:

Psi(t, t +
t) = 1 − exp

⎡
⎣−ψs

∑
i∈g

∫ t+
t

t
dt′ β(L,g)

si Ii(t
′)

⎤
⎦

≈ 1 − exp

⎡
⎣−ψs
t

∑
i∈g

β
(L,g)
si Ii(t)

⎤
⎦ . (3.1)

In the aforementioned equation, Ii(t) denotes the time-dependent infectiousness of the infected
individual i in group g. In JUNE, it follows a profile given by

Ii(τ ) = Iimax
τ a−1 e−τ

Γ (a)
, (3.2)

with τ = t − t0 − tinc, and t0 is the time of infection of the individual, tinc is the incubation
period and Γ is the gamma function. tinc is sampled from a normal distribution. The maximal
or peak value of infectiousness for individual i is sampled from a log-normal distribution with
median exp(μ) = 1 and shape parameter σ = 0.25, which allows for a long but small tail of highly

2As an example consider the number of contact children have with adults in schools. Clearly the number of contacts of average
adults with children in schools is much less than the number of contacts adult teachers have with the children, necessitating
a renormalization of the number of contacts by the proportion of teachers in the overall adult population.
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infectious individuals, which can be connected to super-spreader events. The β(L,g)
si in equation

(3.1) is the contact intensity between s and i,

β
(L,g)
si = βL

χ
(L)
si

Ng
[1 + φ

(L)
si (α − 1)], (3.3)

where β are the social location-dependent baseline intensities, Ng is the number of individuals in
the group setting, normalizing the contact number χsi and α parameterizes the relative increase
in infection probability for the proportion of physical contacts φsi. These parameters, the social-
environment dependent β and the universal α, cannot be derived from first principles and must
be obtained from fits to available data; they constitute a significant portion of the parameter space
in the model and, correspondingly, a significant source of uncertainty.

Once an individual is infected, it takes some time—the incubation period—before they can
infect others and some additional time before the onset of symptoms. A large range of input data
has been used to derive various symptom trajectories for infected individuals, which in the case
of high-income western countries in the global North depends mainly on their age and sex.3 In
the original formulation of the JUNE model, significant efforts have gone into the quantification
of probabilities for different health outcomes in the population, with some emphasis to also
capture the health impact of COVID-19 on the highly vulnerable care home residents; we refer
the reader to ref. [1] for more details. Here, it should suffice to state that in JUNE asymptomatic
and symptomatic trajectories with varying severity have been identified, the latter ranging from
mild, flu-like symptoms over admission to regular or intensive-care wards to death in hospital or
at residence. Although there are some uncertainties related to this treatment, we usually do not
consider them and treat the health outcomes as fixed by data. We seed initial infections based on
the number of fatalities 2–3 weeks afterwards, by using the infection-fatality rates obtained from
data and encoded in JUNE. The parameter αseedstrength is an additional factor that modifies the
resulting number of initial infections.

(iv) Interventions

Since the beginning of the COVID-19 epidemic, the UK government—like many other
governments around the world—has employed a wide range of mitigation strategies. At the
beginning of the pandemic, these interventions were mainly non-pharmaceutical, and these
NPIs ranged from relatively simple strategies at the level of individuals, such as mask wearing
and other social distancing measures, to more involved and global strategies such as partial or
complete lockdowns, involving school closures and the furloughing of parts of the work force. In
JUNE, these measures can easily be modelled: social distancing measures and mask wearing can
be described by modifying the β’s in the corresponding social settings by a factor, ML, capturing
the reduced, but non-zero, transmission probability, while the closure of schools or furloughing
of the work force is easily described, based on data [42–45], by keeping the impacted population
at home instead of sending them to schools or work. For a more detailed description of the
translation of NPIs to the JUNE simulation, we refer the reader to ref. [1].

(b) Inputs, outputs and initial emulation
Our primary goal is to test if the JUNE model can produce acceptable matches to observed
data at the national and regional level, from the first wave of the COVID-19 pandemic and
the subsequent summer period. We wish to identify the region of parameter space, X , leading
to such acceptable fits, if it exists. We identify a large set of input parameters, x, of interest to
search over, primarily composed of interaction intensity parameters at the group level, seeding
and quarantine compliance parameters, and social distancing parameters (see [1] for details), and

3In other population settings, for example in refugee camps, age and sex do not constitute good proxies for the overall health
of an individual, and comorbidities need to be explicitly factored in, giving rise to significant additional assumptions and
uncertainties.
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Table 1. The input parameters explored in the global parameter search, their type and their ranges that define the search
regionX0.

input parameter (xi) type range

βpub location-dependent contact intensity [0.02,0.6]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βgrocery — [0.02,0.6]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βcinema — [0.02,0.6]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βuniversity — [0.02,0.6]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βcity transport — [0.08,0.77]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βinter city transport — [0.08,1.2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βhospital — [0.08,1.2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βcare home — [0.08,1.2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βcompany — [0.08,1.2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βschool — [0.08,1.2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βhousehold — [0.08,1.2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βcarevisits — [0.1,10]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βhouseholdvisits — [0.1,10]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αphysical physical contact factor [1.8,3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αseed strength modifies initial/seeding infections [0.1,2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mquarantine household compliance quarantine compliance [0.034,0.26]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Msocialdistancing βfactor social distance (1 week prior to lockdown) [0.65,0.95]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Msd3 random factor all enhanced social distance (full lockdown) [0.1,0.5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Msd4 random factor all social distance (post lockdown, non-leisure) [0.25,1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Msd4 random factor leisure social distance (post lockdown, leisure) [0.25,1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

specify ranges for each, given in table 1, which define the initial search space, X0. These ranges
were chosen to be conservative, informed in part by earlier exploratory runs while also respecting
the role each parameter plays in the model, including the time period over which they operate
(see [1] for details). A typical full England run of JUNE would take approximately 10 hours to
complete on 64 cores (Intel Xeon Skylake) and 128 GB of memory. This substantial computational
expense combined with a relatively high-dimensional input parameter space makes a global
parameter search extremely challenging and necessitates the use of emulation. While there are
several types of data available for the early pandemic, many of these had questions regarding
reliability. For example, case data were substantially affected by the limited and evolving
availability of COVID-19 tests, while hospital admission data were, especially during the peak
of the first wave, collected with understandably varying levels of diligence across trusts. While
it would in principle be possible to incorporate such data sets using a detailed statistical model
for the measurement errors, e, in equation (2.6) that incorporated under-counting, we instead
focus on hospital and total death data [46–49], which although still uncertain due to the precise
definition of death with COVID-19, suffers from far fewer issues.

We define the primary JUNE outputs of interest to be the hospital deaths and total deaths from
19 March to the end of August 2020, for England and its seven regions: East of England, London,
Midlands, North East and Yorkshire, North West, South East and South West. We choose a subset
of dates {t1, t2, . . . }, shown as the vertical dashed lines in figure 4, to emulate. The observed
data and JUNE output is noisy, so we smooth them both using a standard kernel smoother
(Gaussian kernel, bandwidth 7 days) as we wish to compare the underlying trends, and define the
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Figure 2. Daily deaths in hospital wards and ICU in 2020, by region. The smoothed version used in the HM is also shown. (Online
version in colour.)

smoothed versions to be the target observed data points zi (shown in figure 2), and the primary
JUNE outputs, fi(x). Therefore, i index cycles through elements of the set i ∈ {type, region, time},
where type labels hospital or total deaths, region labels each of the seven regions of England or
England itself and time labels the time points {t1, t2, . . . } of interest, given as the dashed lines in
figure 4. We specify conservative observation error and model discrepancy variances σ 2

ei
and σ 2

εi

for each output as described in ref. [1], by decomposing each into multiplicative and additive
components to represent possible systematic biases, in addition to a scaled

√
n component for the

observation error only, to model the noisy count process.
We design and evaluate a first iteration/wave of 150 runs over the input space, X0, using a

maximin Latin hypercube design. The outputs of these runs are shown as the purple lines in
figure 4. We construct emulators for each output, fi(x), as detailed in §2a (using full quadratic
regression terms selected using BIC, and MAP estimates for θi [2]). The emulators provide insight
into the behaviour of the JUNE model. For example, we can examine the coefficients bij of the

linear terms gij(xAi ) = xj
Ai

for the inputs featuring in equation (2.1), to gain insight into the effect
each input has on each individual output. Estimates of these are shown in figure 3 for the total
deaths in England outputs, where i index therefore cycles through just the various time points:
i ∈ {‘Total Deaths’, ‘England’, t′1, t′2, . . .} with each time point, labelled on the x-axis, giving rise to
a single vertical strip in the plot corresponding to a single emulator (note that a finer temporal
resolution {t′1, t′2, . . .} is used here for added detail, while far fewer time points are used in the

HM). Conversely, j labels the active input xj
Ai

in question as given on the y-axis. Here, red/blue
represents positive/negative dependencies bij, respectively, standardized as proportions of the
largest coefficient of that output. We see strong anticipated contributions from βcompany, βschool
and βhousehold in the first wave of the pandemic from March to May, and more modest effects from
Msocial distancingbeta factor and βgrocery throughout the summer period. The sensitivities of βschool
and βhousehold change to negative (blue) by May, as in many of these uncalibrated runs, herd
immunity has been reached, and hence increasing βschool will decrease deaths (as they will be
brought forward in time). Note that the parameters βhouseholdvisits and βcare visits are not included
in figure 3 as they were only implemented prior to the second iteration of runs, but were included

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 S

ep
te

m
be

r 
20

22
 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20220039

...............................................................T
hu

 1
9 

M
ar

Tu
e 

24
 M

ar

Su
n 

29
 M

ar

Fr
i 3

 A
pr

W
ed

 8
 A

pr

M
on

 1
3 

A
pr

Sa
t 1

8 
A

pr

T
hu

 2
3 

A
pr

Tu
e 

28
 A

pr

Su
n 

3 
M

ay

Fr
i 8

 M
ay

W
ed

 1
3 

M
ay

M
on

 1
8 

M
ay

Sa
t 2

3 
M

ay

T
hu

 2
8 

M
ay

Tu
e 

2 
Ju

ne

Su
n 

7 
Ju

ne

Fr
i 1

2 
Ju

ne

W
ed

 1
7 

Ju
ne

M
on

 2
2 

Ju
ne

Sa
t 2

7 
Ju

ne

T
hu

 2
 J

ul
y

Tu
e 

7 
Ju

ly

Su
n 

12
 J

ul
y

Fr
i 1

7 
Ju

ly

W
ed

 2
2 

Ju
ly

M
on

 2
7 

Ju
ly

Sa
t 1

 A
ug

T
hu

 6
 A

ug

Tu
e 

11
 A

ug

Su
n 

16
 A

ug

Fr
i 2

1 
A

ug

W
ed

 2
6 

A
ug

M
on

 3
1 

A
ug

bpub

bgrocery

bcinema

buniversity

bcity_trans.

bic_trans.

bhospital

bcare_home

bcompany

bschool

bhousehold

aphysical

aseedstren.

Msd_b_fac.

Mquar_house_comp

Msd3_rf_all

Msd4_rf_all

Msd4_rf_lesi.

run_number
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in the subsequent full history match by suitable inflation of the iteration 1 emulator uncertainties
[20]. More insight can be gained from full emulator sensitivity analysis [50].

(c) Iterative history matching
We now employ the history matching framework from §2c, iteratively removing parameter space
based on current implausibility measures, and performing batches/iterations of further runs.
Initially, in iterations 1 and 2, only the hospital and total deaths for England up to the end of May
2020 were included in the HM, to rule out the more exotic regions of parameter space, while for
iterations 3–5, all the seven regions of England were also included and the time period extended
to the end of August 2020. Figure 4 shows the outputs from iterations 1, 3 and 5 for total deaths in
England as the purple, yellow and red lines, respectively. As the iterations proceed, the emulators
become more accurate, we learn more about the global parameter space, and hence, the runs
approach the observed data, yielding reasonable matches across the first COVID-19 wave. By
iteration 5, the majority of emulators attained the accuracy required for the stopping criteria in
the HM algorithm. The region X5 of 20-dimensional parameter space deemed non-implausible
at iteration 5 is shown in figure 5 as a collection of two-dimensional optical depth plots, which
simply show the depth in the remaining 18 dimensions of the non-implausible region (see [4]).
The optical depth ρ(x′) is defined for each point x′ in the two-dimensional space shown in each
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Figure 4. TheJUNE output for total daily deaths in England in 2020, for several iterations of the HM process. The smoothed
and noisy data, along with the combined uncertainties due toσe andσε , are shown in black. (Online version in colour.)

individual plot panel as follows:

ρ(x′) = V18{x ∈X5 | x′ fixed}
V18{x ∈X0 | x′ fixed} , (3.4)

where V18{.} denotes the 18-dimensional volume of the remaining space. ρ(x′) can therefore
show where large or small amounts of non-implausible points can be found, conditioned on x′,
providing further insight into the structure of X5. Figure 5 gives insights into the constraints
imposed on the parameters by the death data and corresponding uncertainty specification. For
example, we see that we learn a lot about certain influential parameters such as βschool, which
are fairly well constrained, while others such as βcare home can take a wider range of values.
Provisional investigations suggest we can further constrain βcare home by adding deaths in care
home settings to the calibration outputs. We also see interesting relationships between pairs of
parameters, e.g. the reciprocal relations between βcompany vs. βhousehold, suggesting one or other
can be high, but not both. We see similar relations between βcompany vs. Msocial distancing β factor.
However, one should be aware that the actual constraints imposed are higher dimensional in
nature and cannot be fully represented by such two-dimensional plots, but that they can be
explored further e.g. by examining the eigenstructure of X5, as done in ref. [51]. Note that in
using HM in this way, we do not seek to probabilize the non-implausible region as in a full
Bayesian calibration, but we could go on to do this (e.g. by routing the emulators through an
MCMC algorithm) if desired, but the additional information gained may be in part an artefact of
the particular additional distributional choices that such an analysis requires, which may impact
robustness and predictive accuracy.

While performing a full global exploration of the input parameter space is of course preferable,
it is sometimes useful to perform a fast ‘look-ahead’ stage to check if such an expensive model
is capable of fitting the next period of observed data, or whether model improvements are
required. Figure 4 also shows the results of such an exercise, where we took eight runs with
acceptable matches to the death data up to the end of August, and performed small 30-point
five-dimensional Latin hypercube designs for each of the eight cases up until December 2020,
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Figure 5. The optical depth ρ(x′) of various two-dimensional projections of the full 20-dimensional non-implausible region
X5 found after the 5th iteration. The 12most constrained inputs are show, labelled on the diagonal (the remaining eight inputs
were relatively unconstrained). The colour scales are standardized and linear in depth, with yellow showing maximum depth
for that projection and purple/black showing minimum/zero depth. This region corresponds to the red runs in figure 4. (Online
version in colour.)

now varying only five additional parameters relevant to the second COVID-19 wave (social
distancing for schools, leisure, and non-leisure activities, November lockdown and B.1.1.7 variant
infectiousness), the output of which is given by the green lines. One iteration of HM was
performed to reduce the five-dimensional parameter space in each case, and a new set of runs
designed, which are shown as blue lines in figure 4. We see reasonable matches to the first part
of the second COVID-19 wave, with perhaps a late take-off in early September, and a partial
overshoot in November to December, suggesting that JUNE may well provide acceptable matches
after a full HM.

To give more detail, figure 6 shows a single unsmoothed run (red lines), from this final batch,
but now for hospital deaths and total deaths for England and all seven regions, and shows the
sort of quality of matches we are seeing so far. The black points give the (unsmoothed) death
data and the combined uncertainties due to σe and σε shown as the blue lines. The fact that
JUNE matches several regions simultaneously, at least over the first wave, without resorting to
any region specific parameters, suggests that geographical variations in the relative importance
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in different types of interaction drove/affected the different epidemic curves in those regions.
Further, more detailed investigation to confirm this is of course required. We leave the extension
to 2021 and beyond to the future work, as this requires the complex behavioural and partial
restrictions (on travel, visiting relatives, etc.) imposed over the December 2020 Christmas period
(the ‘cancelled Christmas’) and the January to April 2021 lockdown and subsequent staggered
release to be implemented and tested, possibly requiring additional time-dependent parameters,
which is the ongoing work (although we note that vaccines and multiple variants have already
been implemented in JUNE). We also note that the process of using complex models combined
with emulators and appropriate uncertainties to make realistic predictions over such periods is a
substantive UQ topic in its own right, which deserves separate treatment [52].

(d) Discussion
Models such as JUNE, with its high level of demographic and spatial granularity, may become
important tools to aid local and national decision makers. However, to fully exploit the nuances
of such complex and expensive ABMs, efficient and comprehensive calibration methods are
required. We demonstrated the emulation of JUNE, providing insight into the model structure,
and employed HM to identify the region of parameter space yielding reasonable matches to
national and regional level hospital and total death data for the first COVID-19 wave. Such
techniques form an essential tool for the future use of complex epidemiological ABMs, expanding
our capabilities to combine detailed models with rigorous UQ. The ability to perform global
exploration of the parameter spaces of expensive models of this form and to embed this within a
broader UQ framework is vital for making predictions with realistic uncertainty statements and
hence vital for subsequent decision support.

4. Outlook/future directions
Our work represents an important step towards the full exploitation of highly granular and
detailed ABMs in health settings and elsewhere, harnessing the full depth of their simulations
in providing high-quality understanding of critical dynamics and robust quantitative projections
for improved decision support.

The next steps in this project are to include further outputs of interest within the HM for JUNE,
(hospitalizations, case rates, age categories, etc.) and to examine smaller geographic regions, in
which the stochasticity of JUNE will become more pronounced, compared to the national/regional
level where it is somewhat subdominant. This will require more sophisticated emulator strategies
[11], and if we are interested in detailed spatial predictions, will require the updating of the JUNE

state vector using UQ style data-augmentation techniques [53]. Beyond this, these UQ methods
are currently being incorporated wherever JUNE is being employed e.g. by the UN for Cox’s
Bazaar [27], a refugee camp in Bangladesh, and for Rhineland-Palatinate [28], one of Germany’s
federal states.

In addition, we plan to use the model to investigate in more detail social imbalances in
COVID-19 attack rates and infection-fatality ratios, which are relatively easy to trace in a
model such as JUNE. Supplementing the model with the elaborate UQ techniques will allow
us to identify, in more detail and with increased certainty, important correlations between
socio-economic markers of the population and the infection dynamics and outcomes.

Data accessibility. A full open source code base and implementation examples are available through github:
https://github.com/IDAS-Durham/JUNE; pypi: https://pypi.org/project/june/. The history matching and
emulation methods are available in the ‘hmer’; R package v1.0 (available from CRAN). The version of JUNE

used for this work was v1.0 [54].
Authors’ contributions. I.V.: formal analysis, funding acquisition, investigation, methodology, visualization,
writing—original draft, writing—review and editing; J.O.: investigation, methodology, writing—review and
editing; J.A.: conceptualization, data curation, methodology, software, writing—review and editing; C.C.:
conceptualization, data curation, methodology, software, writing—review and editing; J.F.: investigation,
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Figure6. A singleJUNE run (red lines), from the second exploratory iteration (i.e. one of the blue lines in figure 4). The panels
show hospital deaths (rows 1 and 2, viewed in landscape) and total deaths (rows 3 and 4, viewed in landscape) for England and
the seven regions, as given in the plot titles. The black points give the (unsmoothed) death data, and the combined uncertainties
due toσe andσε are shown as the blue lines. (Online version in colour.)
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