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We analyse JUNE: a detailed model of Covid-19
transmission with high spatial and demographic
resolution, developed as part of the RAMP initiative.
JUNE requires substantial computational resources
to evaluate, making model calibration and general
uncertainty analysis extremely challenging. We describe
and employ the Uncertainty Quantification approaches
of Bayes linear emulation and history matching, to
mimic JUNE and to perform a global parameter
search, hence identifying regions of parameter space
that produce acceptable matches to observed data,
and demonstrating the capability of such methods.

1. Introduction: Bayesian Emulation
and Uncertainty Quantification

The Covid-19 pandemic disrupted healthcare systems
and caused substantial fatalities around the globe.
Various models have been developed to aid decision
makers in the assessment of policy options, from
simple analytic models up to complex agent-based
models (ABMs). JUNE, introduced in [1], is of the latter
type, and its high level of demographic and spatial
resolution demands substantial computational resources
to evaluate. A critical component in the uncertainty
analysis, and subsequent use for decision support of a
complex epidemiological model such as JUNE, is the
process of model calibration: the matching of the model
to observed data from the real system.
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This process can be extremely challenging and in many cases its intractability precludes the
full exploitation of sophisticated models, that may otherwise contain nuanced insights into the
system of interest. The problem of calibrating a complex and computationally demanding model
is not unique to epidemiology, and occurs in a wide range of scientific disciplines including
cosmology, climate, systems biology, geology, energy systems [2–5]. To solve this problem, an
area of Bayesian statistics arose, sometimes referred to as the uncertainty analyses of complex
computer models, or to use its more recent (and slightly more general name): the area of
Uncertainty Quantification (UQ) [5–7]. UQ provides a statistical methodology combining a large
number of efficient techniques with a set of overarching principles that address how to analyse
complex models rigorously, transparently and robustly, for use in scientific investigations, for
making real world predictions and for subsequent decision support. A core goal of this work is
to demonstrate the capability of such methods for use with complex epidemiological models. A
full analysis of the behaviour of models with a large number of input parameters and possibly
several outputs, and their subsequent calibration encounters the following three major issues:

(i) For complex models, the evaluation time of the model is often so long that an exhaustive
exploration of the model’s behaviour over its full input parameter space is infeasible.

(ii) When comparing models to observed real world data, an adequate statistical description
of the link between model and reality, covering all major uncertainties and allowing for
the rigorous use of an imperfect model, is required.

(iii) When calibrating, the appropriate scientific goal should be to identify all locations in
input parameter space that lead to acceptable fits between model and observed data,
and not just to find the location of a single good match.

We summarise in the next section three UQ methods: (a) Bayes linear emulation, (b) linking
models to reality and (c) Bayesian history matching, that address the above three problems. We
then apply these UQ methods to the JUNE model in Sec. 3.

2. Bayesian Emulation and History Matching

(a) Bayes Linear Emulation
Complex models typically have runtimes that can vary from seconds to days or even weeks,
greatly inhibiting full model exploration, calibration, forecasting etc.. Many of the techniques
in UQ therefore revolve around the construction of Bayesian emulators: statistical constructs
that mimic the scientific model in question, providing predictions of the model outputs with
associated uncertainty, at as yet unevaluated input parameter settings [8]. The emulators provide
insight into the model’s core structure and, unlike the models they mimic, are extremely fast
to evaluate, typically being several orders of magnitude faster. Hence they facilitate previously
infeasible model exploration and global parameter searches. As an emulator makes predictions
that have an associated (input dependent) uncertainty statement, they naturally fit within an
overarching Bayesian uncertainty analysis, in which the impact of using an emulator instead of
the model, can be understood and quantified. Emulators can be built for deterministic models,
stochastic models, multilevel models (composed of models of increasing fidelity) and networks
of models, providing a flexible and powerful set of tools to deal with a large class of scientific
scenarios. Here we outline the construction of Bayes Linear emulators, a robust form of emulator,
based on a partial specification, that has been successfully employed in several settings [2,5].

We represent a general scientific model as the function f(x). Here x= (x1, . . . , xd) is a vector
composed of all the input parameters. For example, x1 may represent an infectivity parameter,
x2 a social distancing parameter etc.. f(x) = (f1(x), . . . , fq(x)) is the vector of all model outputs
of interest, so for example f1(x) may represent the number of people hospitalised in England on
a particular day, f2(x) the number of deaths on that day, all as a function of the inputs x. We
denote the general component of f(x) as fi(x) where the index i will cycle through the full list
of outputs of interest, for example, in the application to JUNE in section 3, i cycles through the
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set i∈ {type, region, time}. We anticipate that, due to limited computational resources, we will
only be able to evaluate the model at a finite (and possibly small) number of input parameter
locations x(1), x(2), . . . , x(n) giving rise to model outputs Di = (fi(x

(1)), fi(x
(2)), . . . , fi(x

(n)))T ,
where i= 1, . . . , q, and "T " denotes the transpose. Therefore, at a new unevaluated input location,
x, even say for a deterministic (i.e., repeatable) model, we will still be uncertain about the output
value of f(x), as we will be for the vast majority of the input space. We take a subjective Bayesian
view and treat the unknown f(x) as a random quantity, and construct an emulator that represents
our beliefs about possible reasonable forms that this function f(x) could take. A popular emulator
form for each output fi(x) is as follows [2]:

fi(x) =
∑
j

bijgij(xAi
) + ui(xAi

) + wi(x), (2.1)

where we have selected a subset of the inputs, x, known as the active variables, xAi
, that are

most influential for output fi(x). The first term on the right hand side of the Eq. (2.1) is a
regression term, where gij are appropriately selected known deterministic functions of xAi

, a
common choice being low order polynomials, and bij are unknown scalar regression coefficients.
The second term, ui(xAi

), is a weakly second-order stationary process over xAi
, for which we

only need specify its second order structure, choosing E[ui(xAi
)] = 0, and utilising an appropriate

covariance function: a classic example suitable for smooth functions is the squared exponential

Cov(ui(xAi
), ui(x

′
Ai

)) = σ2ui
exp

{
−
‖xAi

− x′Ai
‖2

θ2i

}
, (2.2)

where σ2ui
and θi are the variance and correlation length of ui(xAi

) which may be specified a
priori [2], or fitted using e.g. MLE or MAP [4]. This simple covariance function may be enough,
especially if the emulators regression term captures much of the model’s behaviour, however, if
not, various extensions are available e.g. individual correlation lengths θji for each input xjAi

[9].
The third term, wi(x), is a white noise process uncorrelated with bij , ui(xAi

), and itself such that

Cov(wi(x), wi(x
′)) =

{
σ2wi

if x= x′

0 otherwise
, (2.3)

with expectation zero and Var(wi(x)) = σ2wi
.wi(x) represents the effects of the remaining inactive

inputs not included in the list of xAi
, and formally facilitates a type of dimensional reduction [2].

The emulator form, as represented by Eq. (2.1), has various desirable features, and exploits our
beliefs about the general anticipated behaviour of physically realistic models. The regression term,∑
j bijgij(xAi

), attempts to mimic the large scale global behaviour of the function fi(x): often
substantial in physical models. The second term, ui(xAi

), the weakly stationary process, mimics
the local behaviour of fi(x), again exploiting concepts of smoothness of either fi(x) or attributes
of fi(x) (if, say, fi(x) is stochastic). Such terms are highly versatile and can fit a large class of
models, however, they require a sufficient density of runs to be suitably informed (regulated
by the correlation length parameters θi). In the literature there is sometimes an over-reliance on
similar Gaussian Process (GP) style terms and a neglect of the regression terms, which may be
unwise, as GPs of this form are typically capable of capturing the broad global behaviour, or the
more complex local behaviour, but rarely both. We deliberately use the regression terms for the
global structure, and utilise the ui(xAi

) to capture the local behaviour.
We can select the list of active inputs, xAi

, using various statistical techniques. For example,
these could consist of classical linear model fitting criteria such as AIC or BIC which have
the benefit of speed and reasonable accuracy when applied to appropriate (non-linear) sets of
regression functions gij [2], or approaches such as automatic relevance determination [9] which
can give increased accuracy provided the assumed form of the covariance function is suitable.
In addition we would also seek to incorporate expert knowledge of the model into the active
input selection process, either by directly incorporating "known" active inputs, or by using a more
nuanced Bayesian approach, of particular importance for expensive models. A list of p active
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inputs for a particular physical output, fi(x), means that we have notably reduced the input
dimensionality from d to p, which can result in large efficiency gains in subsequent calculations.
The small remaining effect of the inactive inputs is not ignored, but is captured by the third
term wi(x) in Eq. (2.1), whose variance σ2wi

represents the added uncertainty induced by the
dimensional reduction.

What to Emulate: A major issue when emulating complex models, is the choice of the set of
attributes/outputs of the model to emulate. For example, often an objective function describing
the mismatch between model and data has been emulated (e.g., a simple chi-squared metric,
or a more complex likelihood function). However, despite being deceptively simple having just a
single output, the objective function typically has a complex form, as it depends upon the union of
all active inputs, and possesses numerous local maxima/minima [2], rendering this an inefficient
strategy. Instead, we prefer to emulate the physical outputs of the model directly, as these tend to
have a) a smaller list of active inputs per output allowing a nuanced and sometimes substantial
dimensional reduction tailored to each individual output, and b) a simpler functional dependence
on the input parameters that is often well represented by the regression terms in the emulator.
Further choices are required when emulating stochastic models, where we can choose to emulate
summaries of outputs of interest such as the mean, the variance, or quantiles if required, possibly
conditioning on key events such as epidemic take-off, and extend for example to covariance
structures between groups of outputs if needed. In these cases the role ofwi(x) is extended to also
incorporate the uncertainties induced by using estimates from finite samples [10] or to employ full
variance emulation as in [11].

Designing batches of model evaluations: We begin by specifying the region of input space

of interest, typically a d-dimensional hypercube, and denote this X0 ⊂Rd. We then design a set
of ‘space filling’ runs over X0, constructed to be well spread out, without any large holes. For
example we may use a maximin Latin hypercube design, an approximately orthogonal design,
also desirable for emulator construction [12,13].

Updating the Emulator: We then update our prior emulator structure given by Eq. (2.1) with
the information from the set of model runs using our favourite statistical tools. Specifically, we
would prefer a fully probabilistic Bayesian approach if we required full probability distributions
on all emulated outputs, fi(x) [14], and were we prepared to specify full joint probabilistic priors.
However, in most cases our preferred choice is to use Bayes Linear methods, a more tractable
version of Bayesian statistics which requires a far simpler prior specification and analysis [15,16].
It deals purely with expectations, variances and covariances of all uncertain quantities of interest,
and uses the following Bayes linear update equations, derived from foundational arguments [16],
to adjust our beliefs in the light of new data. When emulating the ith output fi(x) of a complex
model, where we had performed an initial batch of n runs giving a vector of model output
values Di = (fi(x

(1)), fi(x
(2)), . . . , fi(x

(n)))T , we obtain the adjusted expectation, EDi
(fi(x)),

and adjusted variance, VarDi
(fi(x)), for fi(x) at new input point x using:

EDi
(fi(x)) = E(fi(x)) + Cov(fi(x), Di)Var(Di)

−1(Di − E(Di)), (2.4)

VarDi
(fi(x)) = Var(fi(x))− Cov(fi(x), Di)Var(Di)

−1Cov(Di, fi(x)). (2.5)

All quantities on the right hand side of Eqs. (2.4) and (2.5) can be calculated from Eqs. (2.1) and
(2.2) combined with prior specifications for E(bij), Var(bij), σ2ui

, σ2wi
and θi. EDi

(fi(x)) and
VarDi

(fi(x)) provide a prediction for fi(x) with associated uncertainty, and are used directly
in the implausibility measures used for the global parameter searches described in Sec. 2(c). Note
that multivariate versions of Eqs. 2.4 and 2.5 are available. In addition, we may make certain
pragmatic choices in the emulator construction process, for example, while we typically keep
the regression coefficients bij uncertain, we may directly specify σ2ui

, σ2wi
and θi a priori, or

use suitable plugin estimates as described in [2]. We can test the emulators using a series of
diagnostics, for example checking their prediction accuracy over a new batch of runs [17]. An
example of a 1D emulator is given in Fig. 1, cf. [8] for an introduction and [2,14,18] for details. The
above Bayes linear emulation framework is fully implemented in the "hmer" R package [19].
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Figure 1. An emulator of a 1-dimensional toy model where f(x) = sin(2π(x− 0.1)/0.4), for the 1st wave/iteration,

using just 6 runs (left panel), and for the 2nd wave, using 2 additional runs (right panel). The emulator’s expectation

ED[f(x)] and credible intervals ED[f(x)]± 3
√

VarDi
(fi(x)) are given by the blue and red lines respectively, with the

observed data z that we wish to match to as the black horizontal line (with errors). The implausibility I(x) is represented

by the coloured bar along the x-axis, with dark blue implying I(x)> 3, light blue 2.5< I(x)< 3 and yellow (I(x)< 1).

(b) Assessing Uncertainties: Linking the Model to the Real World
Most epidemiology models are developed to help explain, understand and predict the behaviour
of the corresponding real world system of interest, typically in terms of the progression through
a population of an infectious disease. An essential part of determining whether such a model
is adequate for this task is the comparison of the model with data formed from observations of
the real system. However, this comparison involves several uncertainties that must be accounted
for to provide a meaningful definition of an ‘acceptable’ match between a model run and the
observed data. Hence it is vital to define a clear statistical model describing the difference between
the epidemiological model, f(x), and the observed data denoted as the vector z. While more
complex statistical models are available [20], here we describe a simple but powerful version that
has been successfully used in a variety of scientific disciplines, for example climate, cosmology,
oil reservoirs, epidemiology and systems biology [2–5,10,21].

The most familiar source of uncertainty is observational or experimental. We represent the
features of interest of the real system as a vector of uncertain quantities, y, which will be measured
imperfectly involving a vector of errors e, to give the vector of observations, z, as

z = y + e. (2.6)

We represent the errors as additive here, but could use a more complex form if necessary.
Depending on the scientific context, we then make judgements about the relationship between
y and e, for example, a common specification [2] is to judge the errors e to be independent
from y, with expectation, E(e) = µe and Var(e) =Σe, a q × q covariance matrix. Setting
µe = 0 corresponds to the judgement that the observations were unbiased, setting Σe =

diag(σ2e,1, . . . , σ
2
e,q), that is a diagonal matrix, corresponds to uncorrelated observation errors etc.

A critical feature that we must incorporate is the difference between the epidemiological
model, f(x), of the system, and the real system, y, itself. We represent this difference between
model and reality using a structural model discrepancy term. First we note that even were we to
evaluate the model, f(x), at its best possible choice of input, x∗, the output, f(x∗), would still not
be in agreement with the real epidemiological system value y, due to the many simplifications
and approximations inherent to the model, therefore:

y = f(x∗) + ε, (2.7)

where ε is the structural model discrepancy: a vector of uncertain quantities that directly
represents the difference between the model and the real system. Note that we are still treating
y, f , x∗ and ε as vectors of random quantities. Now we have to make judgements about their
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relationships: a simple and popular specification [2,5] would be to judge that ε is independent of
f(x∗), x∗ and e, with E(ε) = 0. In the case of a single output we would then specify Var(ε) = σ2ε .
However, for the full case of q outputs, we may specify Var(ε) =Σε, a q × q covariance matrix.Σε
may have intricate structure possessing non-zero covariances between components of ε, in order
to capture the heavily correlated deficiencies of the model outputs. Various structures for Σε of
increasing complexity are available [2,5,14], along with methods for their specification [2,22]. Note
that typically the form of Σε is very different from Σe.

While the inclusion of the structural model discrepancy is unfamiliar to most modellers, it
is now of standard practice in the Uncertainty Quantification literature for analysing complex
but imperfect models [14,18,23,24]. It facilitates a richer analysis whereby we can incorporate
our necessarily uncertain knowledge of the model’s deficiencies to improve our modelling of
reality y. Its inclusion can prevent over-fitting when calibrating and also reduces both bias and
over-confidence when predicting. It is also vital when combining the results of several models.

(c) Bayesian History Matching
Due to their fast evaluation speed, emulators can be used in a variety of UQ calculations that
would be otherwise infeasible. One of the most important is the problem of performing global
parameter searches. Here we outline a powerful iterative emulator based global search method
known as History Matching (HM), which has been successfully employed in a variety of scientific
disciplines [2,3,5,10]. HM is designed to answer the questions:

(i) Are there any input parameter settings that lead to acceptable matches between the model
output and observed data?

(ii) If so, what is the full set X that contains all such input parameter settings?

Note the emphasis on finding all such acceptable matches: optimising to find a single good fit is
not adequate for assessing the impact of parametric uncertainty, nor for making predictions.

HM proceeds iteratively by ruling out regions of input parameter space that can be discarded
from further investigation based on implausibility measures [5]. For an unexplored input parameter,
x, we can ask how far would the emulator’s expected value for the individual function output,
fi(x), be from the corresponding observed value, zi, before we would deem it highly unlikely
for fi(x) to give an acceptable match were we to actually evaluate the function at x. The
implausibility measure, Ii(x), captures this concept, and for an individual output is given by
the distance EDi

(fi(x))− zi between emulator expectation and observed data, standardised by
all relevant uncertainties,

I2i (x) =
(EDi

(fi(x))− zi)2

VarDi
(fi(x)) + Var(εi) + Var(ei)

. (2.8)

Here, VarDi
(fi(x)) is the emulator variance, Var(εi) the variance of the model discrepancy and

Var(ei) the variance of the observational error, a direct consequence of Eqs. (2.6) and (2.7). See
also Fig. 1 (the x-axis) for a depiction of I(x).

A large value of Ii(x) for a particular x implies that we would be unlikely to obtain an
acceptable match between fi(x) and zi were we to run the model at x. Hence we can discard
the input, x, from the parameter search if Ii(x)> c, for some cutoff, c, which is often chosen by
appealing to Pukelsheim’s 3-sigma rule [25], a very general and powerful result which states that
for any continuous, unimodal distribution, 95% of its probability must lie within ±3σ, regardless
of asymmetry or skew, suggesting that a choice of c= 3 may be reasonable [2]. This is the simplest
univariate form, but we can combine implausibility measures from several outputs using say
IM (x) =maxi∈Q Ii(x) for some set Q, or employ more complex multivariate forms [2].

Prior to performing the kth HM iteration, we define the current set of non-implausible input
points as Xk and the set of outputs that we considered for emulation in the previous wave
as Qk−1. We proceed as follows [4]:
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1. Design and evaluate a well chosen set of runs over the current non-implausible space Xk. e.g.
using a maximin Latin hypercube with rejection [2]. Combine these with any non-implausible
runs surviving from previous waves.

2. Check if there are new, informative outputs that can now be emulated accurately (that were
difficult to emulate in previous waves) and add them to the previous set Qk−1, to define Qk.

3. Use the runs to construct new, more accurate emulators defined only over the region Xk for
each output in Qk.

4. The implausibility measures Ii(x), i∈Qk, are then recalculated over Xk, using the new
emulators.

5. Cutoffs are imposed on the implausibility measures Ii(x)< c and this defines a new, smaller
non-implausible volume Xk+1 which should satisfy X ⊂Xk+1 ⊂Xk.

6. Unless a) the emulator variances for all outputs of interest are now small in comparison to the
other sources of uncertainty due to the model discrepancy and observation errors, or b) the
entire input space has been deemed implausible, return to step 1.

7. If 6 a) is true, generate as large a number as possible of acceptable runs from the final non-
implausible volume X , sampled depending on scientific goal.

The history matching approach is powerful for several reasons: (a) While reducing the volume
of the non-implausible region, we expect the function f(x) to become smoother, and hence to
be more accurately approximated by the regression part of the emulator, bijgij(xAi

). (b) At each
new HM iteration we will have a higher density of points and hence the second term, ui(xAi

), in
the emulator should be more effective, as it depends on proximity to the nearest runs. (c) In later
iterations the previously strongly dominant active inputs from early waves will have their effects
curtailed, and hence it will be easier to select additional active inputs, unnoticed before. (d) There
may be several outputs that may be difficult to emulate in early iterations (perhaps because of
their erratic behaviour in uninteresting parts of the input space) but simple to emulate in later
waves once we have restricted the input space to a much smaller and more epidemiologically
realistic region. See [4] for further discussions comparing HM with Bayesian MCMC and ABC,
[26] for a direct comparison with ABC and the R package "hmer" [19] for full implementation of
the HM algorithm. We now apply these methods to the JUNE model.

3. Application of Emulation and History Matching to JUNE

(a) The JUNE model
JUNE [1] is an ABM that describes the spread of an infectious disease through large synthetic
populations. Originally designed to simulate the circulation of Covid-19 through the English
population, JUNE has been also adapted to capture the populations of Cox’s Bazaar [27], a refugee
camp in Bangladesh, and of Rhineland-Palatinate [28], one of Germany’s federal states. JUNE’s
description of the epidemic spread rests on four areas:

• the construction of a realistic synthetic population that reflects, as accurately as possible,
the population demographic and their geographic distribution;
• the simulation of the population sociology, i.e. how the individuals behave: how they

spend their time, whom they get into contact with and in which social environment;
• the parameterisation of the infection, how it is transmitted from infected to susceptible

individuals and which impact it has on the health of infected individuals;
• the mitigation of spread and impact of the infection through pharmaceutical and non-

pharmaceutical interventions (PIs and NPIs) such as social distancing and vaccinations,
respectively.

They are discussed in more detail below.

(i) Population

JUNE builds its synthetic population based on real or parameterised census data – in the case
relevant for this contribution, JUNE constructs the about 55 million residents of England based on
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the 2011 census data accessible through the NOMIS data base provided by the ONS. The data are
organised hierarchically, with Output Areas (OAs) the smallest relevant unit, comprising on
average about 250 residents with relatively similar socio-economic characteristics. The OAs have
a specified geographic location and their data contain information about age, sex, and ethnicity
of the area’s residents [29–31] and the composition of the households they live in [32], in about 20
categories1. JUNE uses national averages to correlate age, sex, and ethnicity of individuals, which
are presented as uncorrelated distributions in the data. In a similar way, information such as the
national distributions of age differences of partners [33], and of parents and their children [34] are
used to assign the individuals to their households.

As additional static properties of the population, JUNE assigns school-age children to the
nearest age-appropriate school; information about school locations and the age ranges for their
students is taken from [35]. Within the schools, the students are grouped into class units of 20-
30 individuals and have teachers assigned to them. In a similar way, Universities are filled with
students – the young adults – and they are grouped into year groups of about 200 students.

The OAs are part of Middle Super Output Areas (MSOAs) with about 12500 residents,
and 50 OAs constituting one MSOA. The census data provides information about the sectors
of companies within MSOAs and about the distribution of the working population over these
sectors, using the Standard Industrial Classification (SIC) scheme [36]. The parameterisation of
company sizes with national sector-dependent averages allows JUNE to construct an origin-
destination matrix for the employees at the level of MSOAs [37]. Information concerning the
commuting habits of individuals contained in the census data [38] underpins the construction
of simplified virtual public transport networks within JUNE.

(ii) Interactions

Having defined the static properties of the synthetic population – where people live, work and
study – their daily lives outside work and education are filled with various activities. These
activities include for example shopping, visiting friends and relatives in their homes, frequenting
pubs and restaurants, going to the gym or cinema, to name a few, in the absence of any of these
leisure activities, people are supposed to stay at home. Surveys performed e.g. by the Office for
National Statistics [39] define the average proportion of time spent with various activities, in
dependence on age and sex. These averages are translated into a probabilistic treatment thereby
creating a highly flexible and varied daily schedule for JUNE’s virtual individuals.

These schedules are supplemented with contact matrices from PolyMod [40] and the BBC
Pandemic Project [41], which indicate the average number of daily contacts – communication
or physical – of individuals of age i with individuals of age j in different social settings L, for
example home (H), school (S), and work (W ). As the contact numbers are presented as population
averages, suitable for example for their deployment in compartment models, they need to be
renormalized for the socially more granular IBMs2, resulting in the renormalized overall contact
matrices χ(L)ij and the corresponding fraction of physical contacts, φ(L)ij , where L∈ {S,H,W}.
While this introduces some uncertainty into the modelling of social interactions, the interplay of
the synthetic population model with the contact matrices provides a welcome closure test for the
self-consistency of the overall model.

For the purpose of fitting to data and the quantification of uncertainties in the model we
assume that the construction of the synthetic population and its interactions is well understood
and robustly and well parameterised as it is driven by data of relatively high quality,

1The English and Welsh census distinguishes between children, young (dependent) adults, such as University students,
independent adults and old adults and classifies households according to the respective numbers in them.
2As an example consider the number of contact children have with adults in schools. Clearly the number of contacts of average
adults with children in schools is much less than the number of contacts adult teachers have with the children, necessitating
a renormalization of the number of contacts by the proportion of teachers in the overall adult population.
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(iii) Infection

The description of the infection consists of two separate parts. First of all, the transmission from an
infected person i to a susceptible person s needs to be simulated. In JUNE as in many other models
this is described as a probabilistic process. The infection probability for a susceptible person swith
susceptibility ψs during a time interval from t to t+∆t, spent with a group of individuals g in
social context L is given as

Psi(t, t+∆t) = 1− exp

−ψs∑
i∈g

t+∆t∫
t

dt′ β
(L,g)
si Ii(t′)

 ≈ 1− exp

−ψs∆t∑
i∈g

β
(L,g)
si Ii(t)

 .
(3.1)

In the equation above, Ii(t) denotes the time-dependent infectiousness of the infected individual
i in the group g. In JUNE it follows a profile given by

Ii(τ) = Iimax
τa−1e−τ

Γ (a)
, (3.2)

with τ = t− t0 − tinc, and t0 the time of infection of the individual, tinc the incubation period
and Γ the gamma function. tinc is sampled from a normal distribution. The maximal or peak
value of infectiousness for individual i is sampled from a log-normal distribution with median
exp(µ) = 1 and shape parameter σ= 0.25, which allows for a long but small tail of highly
infectious individuals which can be connected to super-spreader events. The β(L,g)si in Eq. (3.1)
is the contact intensity between s and i,

β
(L,g)
si = βL

χ
(L)
si

Ng

[
1 + φ

(L)
si (α− 1)

]
, (3.3)

where the β are the social location-dependent baseline intensities,Ng is the number of individuals
in the group setting, normalising the contact number χsi, and α parameterises the relative
increase in infection probability for the proportion of physical contacts φsi. These parameters, the
social-environment dependent β and the universal α, cannot be derived from first principles and
must be obtained from fits to available data; they constitute a significant portion of the parameter
space in the model and, correspondingly, a significant source of uncertainty.

Once an individual is infected, it takes some time – the incubation period – before they can
infect others and some additional time before the onset of symptoms. A large range of input data
has been used to derive various symptom trajectories for infected individuals, which in the case
of high-income western countries in the global North depends mainly on their age and sex3. In
the original formulation of the JUNE model, significant efforts have gone into the quantification
of probabilities for different health outcomes in the population, with some emphasis to also
capture the health impact of Covid-19 on the highly vulnerable care home residents; we refer
the reader to [1] for more details. Here, it should suffice to state that in JUNE asymptomatic and
symptomatic trajectories with varying severity have been identified, the latter ranging from mild,
flu-like symptoms over admission to regular or intensive-care wards to death in hospital or at
residence. Although there are some uncertainties related to this treatment we usually do not
consider them and treat the health outcomes as fixed by data. We seed initial infections based
on the number of fatalities 2-3 weeks afterwards, by using the infection-fatality rates obtained
from data and encoded in JUNE. The parameter αseedstrength is an additional factor that modifies
the resulting number of initial infections.

(iv) Interventions

Since the beginning of the Covid-19 epidemic, the UK government – like many other governments
around the world – has employed a wide range of mitigation strategies. At the beginning of
the pandemic, these interventions were mainly non-pharmaceutical, and these NPIs ranged from
3In other population settings, for example in refugee camps, age and sex do not constitute good proxies for the overall health
of an individual, and co-morbidities need to be explicitly factored in, giving rise to significant additional assumptions and
uncertainties.
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Input Parameter (xi) Type Range

βpub location-dependent contact intensity [0.02,0.6]
βgrocery . [0.02,0.6]
βcinema . [0.02,0.6]
βuniversity . [0.02,0.6]
βcity transport . [0.08,0.77]
βinter city transport . [0.08,1.2]
βhospital . [0.08,1.2]
βcare home . [0.08,1.2]
βcompany . [0.08,1.2]
βschool . [0.08,1.2]
βhousehold . [0.08,1.2]
βcare visits . [0.1,10]
βhousehold visits . [0.1,10]
αphysical physical contact factor [1.8,3]
αseedstrength modifies initial/seeding infections [0.1,2]
Mquarantine household compliance quarantine compliance [0.034,0.26]
Msocial distancing β factor social dist. (1 week prior to lockdown) [0.65,0.95]
Msd3 random factor all enhanced social dist. (full lockdown) [0.1,0.5]
Msd4 random factor all social dist. (post lockdown, non-leisure) [0.25,1]
Msd4 random factor leisure social dist. (post lockdown, leisure) [0.25,1]

Table 1. The input parameters explored in the global parameter search, their type and their ranges that define the search

region X0.

relatively simple strategies at the level of individuals, such as mask wearing and other social
distance measures, to more involved and global strategies such as partial or complete lock-
downs, involving school closures and the furloughing of parts of the work force. In JUNE these
measures can easily be modelled: social distancing measures and mask wearing can be described
by modifying the β’s in the corresponding social settings by a factor, ML, capturing the reduced,
but non-zero, transmission probability, while the closure of schools or furloughing of the work
force is easily described, based on data [42–45], by keeping the impacted population at home
instead of sending them to schools or work. For a more detailed description of the translation of
NPIs to the JUNE simulation we refer the reader to [1].

(b) Inputs, Outputs and Initial Emulation
Our primary goal is to test if the JUNE model can produce acceptable matches to observed
data at the national and regional level, from the first wave of the Covid-19 pandemic and the
subsequent summer period. We wish to identify the region of parameter space, X , leading to
such acceptable fits, if it exists. We identify a large set of input parameters, x, of interest to
search over, primarily composed of interaction intensity parameters at the group level, seeding
and quarantine compliance parameters, and social distancing parameters (see [1] for details),
and specify ranges for each, given in Table 1, which define the initial search space, X0. These
ranges were chosen to be conservative, informed in part by earlier exploratory runs while also
respecting the role each parameter plays in the model, including the time period over which
they operate (see [1] for details). A typical full England run of JUNE would take approximately
10 hours to complete on 64 cores (Intel Xeon Skylake) and 128 GB of memory. This substantial
computational expense combined with a relatively high dimensional input parameter space
makes a global parameter search extremely challenging and necessitates the use of emulation.
While there are several types of data available for the early pandemic, many of these had
questions regarding reliability. For example, case data was substantially affected by the limited
and evolving availability of Covid-19 tests, while hospital admission data was, especially during
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Figure 2. Daily deaths in hospital wards and ICU in 2020, by region. The smoothed version used in the HM is also shown.

the peak of the first wave, collected with understandably varying levels of diligence across trusts.
While it would in principle be possible to incorporate such data sets using a detailed statistical
model for the measurement errors, e, in Eq. (2.6) that incorporated under-counting etc, we instead
focus on hospital and total death data [46–49], which although still uncertain due to the precise
definition of death with Covid, suffers from far fewer issues.

We define the primary JUNE outputs of interest to be the hospital deaths and total deaths from
19th March to the end of August 2020, for England and its seven regions: East of England, London,
Midlands, North East and Yorkshire, North West, South East, South West. We choose a subset of
dates {t1, t2, . . . }, shown as the vertical dashed lines in Fig. 4, to emulate. The observed data
and JUNE output is noisy, so we smooth them both using a standard kernel smoother (Gaussian
kernel, bandwidth 7 days) as we wish to compare the underlying trends, and define the smoothed
versions to be the target observed data points zi (shown in Fig. 2), and the primary JUNE outputs,
fi(x). Therefore the i index cycles through elements of the set i∈ {type, region, time}where type
labels hospital or total deaths, region labels each of the seven regions of England or England
itself, and time labels the time points {t1, t2, . . . } of interest, given as the dashed lines in Fig. 4.
We specify conservative observation error and model discrepancy variances σ2ei and σ2εi for each
output as described in [1], by decomposing each into multiplicative and additive components to
represent possible systematic biases, in addition to a scaled

√
n component for the observation

error only, to model the noisy count process.
We design and evaluate a first iteration/wave of 150 runs over the input space, X0, using a

maximin Latin hypercube design. The outputs of these runs are shown as the purple lines in
Fig. 4. We construct emulators for each output, fi(x), as detailed in Sec. 2(a) (using full quadratic
regression terms selected using BIC, and MAP estimates for θi [2]). The emulators provide insight
into the behaviour of the JUNE model. For example, we can examine the coefficients bij of the
linear terms gij(xAi

) = xjAi
for the inputs featuring in Eq. 2.1, to gain insight into the effect each

input has on each individual output. Estimates of these are shown in Fig. 3 for the total deaths
in England outputs, where the i index therefore cycles through just the various time points: i∈
{“Total Deaths”, “England”, t′1, t′2, . . . } with each time point, labelled on the x-axis, giving rise
to a single vertical strip in the plot corresponding to a single emulator (note that a finer temporal
resolution {t′1, t′2, . . . } is used here for added detail, while far fewer time points are used in the
HM). Conversely j labels the active input xjAi

in question as given on the y-axis. Here red/blue
represents positive/negative dependencies bij respectively, standardised as proportions of the
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largest coefficient of that output. We see strong anticipated contributions from βcompany, βschool
and βhousehold in the first wave of the pandemic from March to May, and more modest effects
from Msocial distancing β factor and βgrocery throughout the summer period. The sensitivities of
βschool and βhousehold change to negative (blue) by May, as in many of these uncalibrated runs,
herd immunity has been reached, and hence increasing βschool will decrease deaths (as they will
be brought forward in time). Note that the parameters βhousehold visits and βcare visits are not
included in Fig. 3 as they were only implemented prior to the second iteration of runs, but were
included in the subsequent full history match by suitable inflation of the iteration 1 emulator
uncertainties [20]. More insight can be gained from full emulator sensitivity analysis [50].

(c) Iterative History Matching
We now employ the History Matching framework from Sec. 2(c), iteratively removing parameter
space based on current implausibility measures, and performing batches/iterations of further
runs. Initially, in iterations 1 and 2, only the hospital and total deaths for England up to the
end of May 2020 were included in the HM, to rule out the more exotic regions of parameter
space, while for iterations 3 to 5 all the seven regions of England were also included and the time
period extended to the end of August 2020. Fig. 4 shows the outputs from iterations 1, 3 and
5 for total deaths in England as the purple, yellow and red lines. As the iterations proceed the
emulators become more accurate, we learn more about the global parameter space, and hence the
runs approach the observed data, yielding reasonable matches across the first Covid-19 wave. By
iteration 5, the majority of emulators attained the accuracy required for the stopping criteria in
the HM algorithm. The region X5 of 20-dimensional parameter space deemed non-implausible at
iteration 5 is shown in Fig. 5 as a collection of 2-dimensional optical depth plots which simply show
the depth in the remaining 18 dimensions of the non-implausible region (see [4]). The optical
depth ρ(x′) is defined for each point x′ in the 2-dimensional space shown in each individual plot
panel as,

ρ(x′) =
V18{x∈X5 | x′ fixed}
V18{x∈X0 | x′ fixed} , (3.4)

where V18{.} denotes the 18-dimensional volume of the remaining space. ρ(x′) can therefore
show where large or small amounts of non-implausible points can be found, conditioned on x′,
providing further insight into the structure ofX5. Fig. 5 gives insights into the constraints imposed
on the parameters by the death data and corresponding uncertainty specification. For example
we see that we learn a lot about certain influential parameters such as βschool which are fairly
well constrained while others such as βcare home can take a wider range of values. Provisional
investigations suggest we can further constrain βcare home by adding deaths in care home settings
to the calibration outputs. We also see interesting relationships between pairs of parameters e.g.
the reciprocal relations between βcompany vs. βhousehold suggesting one or other can be high, but
not both. We see similar relations between βcompany vs. Msocial distancing β factor. However, one
should be aware that the actual constraints imposed are higher-dimensional in nature and cannot
be fully represented by such 2-dimensional plots, but that they can be explored further e.g. by
examining the eigenstructure of X5, as done in [51]. Note that in using HM in this way, we do
not seek to probabilize the non-implausible region as in a full Bayesian calibration, but we could
go on to do this (e.g. by routing the emulators through an MCMC algorithm) if desired, but the
additional information gained may be in part an artefact of the particular additional distributional
choices that such an analysis requires, which may impact robustness and predictive accuracy.

While performing a full global exploration of the input parameter space is of course preferable,
it is sometimes useful to perform a fast "look-ahead" stage to check if such an expensive model is
capable of fitting the next period of observed data, or whether model improvements are required.
Fig. 4 also shows the results of such an exercise, where we took 8 runs with acceptable matches
to the death data up to the end of August, and performed small 30-point 5-dimensional Latin
hypercube designs for each of the 8 cases up until Dec 2020, now varying only 5 additional
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Sensitivity for England, daily_deaths, age = total
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Figure 3. Estimates for the coefficients bij of the linear terms gij(xAi
) = xjAi

that are found to feature in the emulators

for total deaths in England for the first iteration/wave of runs, where i labels the time point (x-axis) and j labels the

inputs (y-axis). Red/blue represents positive/negative dependencies of fi(x) on that input respectively, standardised as

proportions of the largest coefficient for that time point. A finer temporal resolution is used here for added clarity. Note that

this plot shows the time-dependent sensitivity of the model to the inputs, but that the actual inputs x do not vary over time.

parameters relevant to the second Covid-19 wave (social distancing for schools, leisure, and non-
leisure activities, Nov lockdown and B.1.1.7 variant infectiousness), the output of which is given
by the green lines. One iteration of HM was performed to reduce the 5-dimensional parameter
space in each case, and a new set of runs designed which are shown as the blue lines in Fig. 4. We
see reasonable matches to the first part of the second Covid-19 wave, with perhaps a late take-off
in early September, and a partial overshoot in Nov-Dec, suggesting that JUNE may well provide
acceptable matches after a full HM.

To give more detail, Fig. 6 shows a single unsmoothed run (red lines), from this final batch,
but now for hospital deaths and total deaths for England and all seven regions, and shows
the sort of quality of matches we are seeing so far. The black points give the (unsmoothed)
death data and the combined uncertainties due to σe and σε shown as the blue lines. The
fact that JUNE matches several regions simultaneously, at least over the first wave, without
resorting to any region specific parameters, suggests that geographical variations in the relative
importance in different types of interaction drove/affected the different epidemic curves in those
regions. Further, more detailed investigation to confirm this is of course required. We leave the
extension to 2021 and beyond to future work, as this requires the complex behavioural and
partial restrictions (on travel, visiting relatives etc.) imposed over the December 2020 Christmas
period (the "cancelled Christmas") and the Jan-April 2021 lockdown and subsequent staggered
release to be implemented and tested, possibly requiring additional time dependent parameters,
which is ongoing work (although we note that vaccines and multiple variants have already
been implemented in JUNE). We also note that the process of using complex models combined
with emulators and appropriate uncertainties to make realistic predictions over such periods is a
substantive UQ topic in its own right, that deserves separate treatment [52].
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Figure 4. The JUNE output for total daily deaths in England in 2020, for several iterations of the HM process. The

smoothed and noisy data, along with the combined uncertainties due to σe and σε are shown in black.

(d) Discussion
Models such as JUNE, with its high level of demographic and spatial granularity may become
important tools to aid local and national decision makers. However, to fully exploit the nuances
of such complex and expensive ABMs, efficient and comprehensive calibration methods are
required. We demonstrated the emulation of JUNE, providing insight into the model structure,
and employed HM to identify the region of parameter space yielding reasonable matches to
national and regional level hospital and total death data for the first Covid-19 wave. Such
techniques form an essential tool for the future use of complex epidemiological ABMs, expanding
our capabilities to combine detailed models with rigorous UQ. The ability to perform global
exploration of the parameter spaces of expensive models of this form and to embed this within a
broader UQ framework, is vital for making predictions with realistic uncertainty statements, and
hence vital for subsequent decision support.

4. Outlook/Future Directions
Our work represents an important step towards the full exploitation of highly granular and
detailed ABMs in health settings and elsewhere, harnessing the full depth of their simulations
in providing high-quality understanding of critical dynamics and robust quantitative projections
for improved decision support.

The next steps in this project are to include further outputs of interest within the HM
for JUNE, (hospitalisations, case rates, age categories etc.) and to examine smaller geographic
regions, in which the stochasticity of JUNE will become more pronounced, as compared to the
national/regional level where it is somewhat subdominant. This will require more sophisticated
emulator strategies [11], and if we are interested in detailed spatial predictions, will require the
updating of the JUNE state vector using UQ style data-augmentation techniques [53]. Beyond this,
these UQ methods are currently being incorporated wherever JUNE is being employed e.g. by the
UN for Cox’s Bazaar [27], a refugee camp in Bangladesh, and for Rhineland-Palatinate [28], one
of Germany’s federal states.
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Figure 5. The optical depth ρ(x′) of various 2-dimensional projections of the full 20-dimensional non-implausible region

X5 found after the 5th iteration. The 12 most constrained inputs are show, labelled on the diagonal (the remaining 8 inputs

were relatively unconstrained). The colour scales are standardised and linear in depth, with yellow showing maximum

depth for that projection, and purple/black showing minimum/zero depth. This region corresponds to the red runs in Fig. 4.

In addition we plan to use the model to investigate in more detail social imbalances in COVID
attack rates and infection-fatality ratios, which are relatively easy to trace in a model such as
JUNE. Supplementing the model with the elaborate UQ techniques will allow us to identify, in
more detail and with increased certainty, important correlations between socio-economic markers
of the population and the infection dynamics and outcomes.
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Figure 6. A single JUNE run (red lines), from the second exploratory iteration (i.e. one of the blue lines in Fig. 4). The

panels show hospital deaths (rows 1 and 2, viewed in landscape) and total deaths (rows 3 and 4, viewed in landscape)

for England and the seven regions, as given in the plot titles. The black points give the (unsmoothed) death data, and the

combined uncertainties due to σe and σε are shown as the blue lines.
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