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This paper presents an efficient hybrid continuum-discrete macro-modelling strategy with an enhanced
multiscale calibration procedure for realistic simulations of brick/block-masonry bridges. The response of
these structures is affected by the intrinsic nonlinearity of the masonry material, which in turn depends
upon the mechanical properties of units and mortar joints and the bond characteristics. Finite element
approaches based upon homogenised representations are widely employed to assess the nonlinear beha-
viour up to collapse, as they are generally associated with a limited computational demand. However,
such models require an accurate calibration of model material parameters to properly allow for masonry
bond. According to the proposed approach, the macroscale material parameters are determined by an
advanced multi-objective strategy with genetic algorithms from the results of mesoscale ‘‘virtual” tests
through the minimisation of appropriate functionals of the scale transition error. The developed
continuum-discrete finite element macroscale description and the calibration procedure are applied to
simulate the nonlinear behaviour up to collapse of multi-ring arch-bridge specimens focusing on the
2D planar response. The results obtained are compared to those achieved using detailed mesoscale mod-
els confirming the effectiveness and accuracy of the proposed approach for realistic nonlinear simulations
of masonry arch bridges.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Old masonry arch bridges belong to the cultural and architec-
tural heritage and still play a critical role within railway and road-
way networks in Europe and worldwide. These structures were
built following empirical rules and were not designed to resist cur-
rent traffic loading and the loads induced by extreme events, such
as earthquakes. An accurate assessment of the ultimate perfor-
mance of these complex structural systems represents a crucial
step to prevent future failures and preserve such historical struc-
tures for the next generations.

Masonry arch barrels are the key structural components of
masonry arch bridges. Their nonlinear behaviour is strongly influ-
enced by the mechanical properties of the two constituents,
masonry units and mortar joints, and their arrangement to form
the brick/blockwork of the arch (i.e. masonry bond). Two main cat-
egories of masonry arch bridges can be identified: stone masonry
and brick masonry bridges [1]. In the first group, the arches are
built from large voussoirs organised in a single arch ring. Con-
versely, in the case of brick masonry bridges, a multi-ring arrange-
ment is usually utilised, where the number of rings depends on the
span length of the arch. The rings are typically bonded together
using the stretcher method, where the connection between adjoin-
ing rings is guaranteed by continuous mortar joints. To date,
numerous laboratory and in-situ tests have been performed to
investigate the failure mechanisms of masonry arches and bridges,
considering also the influence of backfill, under monotonic and
cyclic loading conditions [2]. Specific studies on multi-ring arches
showed how ring separation and shear sliding generally affect
the ultimate strength and failure mode [3–6], where weak circum-
ferential mortar joints have been found to lead to an ultimate
strength reduction of about 30% for short spans and up to 70% in
the case of longer span arches.

In previous research, different numerical strategies have been
proposed to simulate the nonlinear behaviour of masonry arches
and bridges [2]. Generally, approaches based on limit analysis prin-
ciples can be effectively used to estimate the ultimate load capacity
[7–9]. However, such strategies do not provide information about
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the nonlinear response before collapse, and they are often based
upon crude assumptions, e.g. the representation of masonry as a
no-tension material, which may lead to underestimating the ulti-
mate resistance of masonry arches. Previous studies also com-
prised simplified 2D finite element (FE) limit-analysis
descriptions to simulate the arch-backfill interaction [10,11] and
3D nonlinear FE strategies with elasto-plastic solid elements [12–
14], where masonry is assumed as a homogeneous isotropic mate-
rial disregarding its anisotropic nature. Isotropic modelling
approaches are widely employed in engineering practice due to
their computational efficiency, especially for the analysis of large
bridges. However, they may lead to an unrealistic representations
of typical failure modes not directly associated with longitudinal
bending. Also, their application to masonry may require complex
calibration procedures to account even in a simplified way for its
anisotropic nature, as shown in [15] with reference to masonry
walls. Furthermore, the use of more complex damage/plasticity
orthotropic models [16–20], based on damage and/or plasticity for-
mulations where tensile, shear and compressive failure mecha-
nisms are described, are still largely applied for research and not
yet considered for the practical assessment of realistic structures.

More recent numerical models for masonry arched structures
and bridges include the micro-model strategy proposed by Milani
et al. [21] using triangular rigid elements and nonlinear links, the
discrete macro-element method (DMEM) [22–24] and the distinct
element method (DEM) [25,26]. A detailed 3Dmesoscale modelling
strategy for masonry arch bridges has been developed at Imperial
College London [27,28], which is used as the reference solution
for the calibration of the proposed macroscale approach here-
inafter. According to this strategy, the masonry parts of the bridge
are simulated by using linear solid elements and 2D nonlinear
interface elements to explicitly allow for the masonry bond [29].
The backfill is modelled by elasto-plastic solid elements, and the
connection between the masonry components and the backfill is
represented through nonlinear interfaces allowing for the actual
frictional interaction. This approach generally leads to accurate
response predictions, including under extreme loading, but it is
associated with significant computational cost which can hinder
its use for the practical assessment of real large structures.

With the aim of achieving a suitable compromise between
accuracy and efficiency, this paper proposes a hybrid continuum-
discrete macroscale description for multi-ring masonry arches
and masonry arches bridges. Elasto-plastic-damage continuum
solid elements interacting with 2D nonlinear interfaces are
employed to model a masonry arch, although, unlike the mesoscale
strategy, mesh discretisation is not directly related to the
dimensions of units and mortar joints. The damage-plasticity
model proposed in [32] and a multi-surface cohesive-frictional
model [15,30,32] are employed for solid and interface elements,
respectively. Furthermore, an innovative multi-objective optimisa-
tion procedure, based on virtual tests developed adopting detailed
mesoscale descriptions, is put forward and applied to evaluate the
mechanical parameters of the hybrid model.

The proposed modelling strategy with the advanced calibration
procedure is validated against mesoscale simulations considering
multi-ring arches and masonry arch-backfill specimens with dif-
ferent geometrical and mechanical properties. The numerical
results confirm the accuracy and high efficiency of the developed
hybrid approach, which can be used for practical and accurate
assessment of realistic masonry arch bridges.

2. The hybrid macro-modelling approach

In the proposed FE modelling strategy, the arch is discretised
using a regular mesh of nonlinear continuum 20-noded solid ele-
2

ments. In addition, 2D nonlinear zero-thickness interface elements
are arranged along the circumferential mid-thickness surface of
the arch to simulate damage associated with potential ring sliding
and separation. In the simplest case where only one circumferen-
tial layer of interfaces is considered (Fig. 1), each interface lumps
the linear deformability and non-linear behaviour of n-1 ring
joints, with n being the number of rings of the physical arch.
Importantly, the characteristics of the FE mesh with solid elements
are not directly linked to the masonry bond. Thus, an arbitrary
number of solid elements can be employed along the length of
the arch, according to the desired level of response detail, but at
least two solid elements should be arranged along the thickness
of the arch to accommodate the mid-thickness nonlinear inter-
faces. The accuracy due to different discretisation along the cir-
cumferential direction is explored in the numerical applications
described in the following sections.

2.1. The 3D damage-plasticity model

In the macroscale representation implemented in ADAPTIC [31],
the isotropic plastic-damage material model presented in [15] is
used for the 20-noded solid elements. A standard decomposition
of total strains (e) in elastic (ee) and plastic (ep) components is con-
sidered, and the stress tensor (r) is obtained from the effective
stress tensor (�r) and a scalar damage variable dð�r;jt ;jcÞ. The lat-
ter variable depends on the stress state and two historical variables
(jt , jc) representing the evolution of plastic strains in tension and
in compression. The material relationship is expressed analytically
by:

r ¼ 1� dð Þ �r ¼ 1� dð Þ E0 e� ep
� � ð1Þ

where E0 is the initial fourth-order isotropic elastic tensor.
The local plastic problem is solved at each integration point of

the domain to evaluate the effective stress, adopting a non-
associated elasto-plastic constitutive law with Drucker-Prager-
like plastic flow potential, according to the approach proposed in
[32].

The plastic behaviour is governed by the evolution of the yield
surface:

F �r;jð Þ ¼ 1
1� a

� aI1 þ
ffiffiffiffiffiffiffi
3J2

p
þ b jð Þh�rmaxi � ch��rmaxi

� �
þ �f cðjcÞ ð2Þ

where

– b jð Þ ¼ � �f c jcð Þ
�f t jtð Þ 1� að Þ � 1þ að Þ;

– a ¼ f b0�1
2f b0�1

;

– c ¼ 3 1�Kcð Þ
2Kc�1 ;

– �rmax ¼ max �r1; �r2; �r3ð Þ with �ri principal effective stress;
– hxi ¼ xþ xj j

2 .

– �f c jcð Þ, �f t jtð Þ effective strength in compression and tension,
respectively;

– Kc ratio of the second stress invariant on the tensile meridian to
that on the compressive meridian at initial yield;

– f b0 ratio between biaxial and uniaxial compressive strength.

To improve the computational robustness, both tensile and
compressive strengths, �f v jv

� �
with v ¼ t; c, allow for hardening

behaviour, while the softening response is obtained for the nomi-
nal strength f v jv

� �
by introducing an appropriate damage law

dv jv
� � ¼ 1� f v jvð Þ

�f v jvð Þ, as shown in Fig. 2.



(a)                                                                                (b) 

Fig. 1. 2D view of (a) a generic multi-ring arch and (b) its 3D macro-modelling description.

Fig. 2. Uniaxial constitutive relationships in tension and compression.
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The global damage variable is obtained as:

d �r;jð Þ ¼ 1� 1� st �rð Þdc jcð Þ½ � 1� sc �rð Þdt jtð Þ½ � ð3Þ
where

– st �rð Þ ¼ 1�wtr �rð Þ;
– sc �rð Þ ¼ 1�wc 1� r �rð Þð Þ;

– r �rð Þ ¼
0 if �r1 ¼ �r2 ¼ �r3 ¼ 0P3

i¼1
h�riiP3

i¼1
�rij j

otherwise

8<
: , scalar parameter rang-

ing from 0 (all principal stresses are negative) to 1 (all principal
stresses are positive) expressing the state stress;

– wt;wc are parameters governing the stiffness recovery from
compression to tension and vice versa.

Since softening behaviour may lead to mesh sensitivity, a
fracture-energy approach has been adopted to maintain objectivity
in the results. In particular, the stress–strain constitutive relation-
ship is defined at element level starting from a stress-crack open-
ing curve based on fracture energy, assumed as material parameter
and a characteristic length evaluated as a function of the element
volume.

The model has been extensively used to simulate the mechani-
cal behaviour of concrete [32,33] and masonry [34–36]. Some
inherent model characteristics, however, hinder its use to repre-
sent specific shear failure modes typical of multi-ring masonry
arches. More specifically, the adopted damage-plasticity contin-
uum description does not enable the definition of the shear
strength independently from the tension and compression
strengths. It can be seen by applying Eq. (2) assuming a pure shear
2D stress state (�rx ¼ �ry ¼ �rz ¼ �sxy ¼ �syz ¼ 0, �sxz ¼ �s) which leads
to the yield function:
3

F �s;jð Þ ¼ 1
1� a

�
ffiffiffi
3

p
�sþ b jð Þ�s

� �
þ �f c jcð Þ ð4Þ

Imposing F �s;jð Þ ¼ 0 in Eq. (4), the effective shear strength �f v jð Þ
can be evaluated as:

�f v jð Þ ¼ 1� affiffiffi
3

p
þ b jð Þ

�f c jcð Þ�� �� ð5Þ

and, since r �rð Þ ¼ 0:5 for pure shear, the damage parameter
becomes:

d jð Þ ¼ 1� 1� 1� 0:5wtð Þdc jcð Þ½ � 1� 1� 0:5wcð Þdt jtð Þ½ � ð6Þ
Assuming that damage in compression has not developed,

dc jcð Þ ¼ 0, the equivalent damage parameter becomes:

d jð Þ ¼ 1� 0:5wcð Þdt jtð Þ ð7Þ
and

f v jð Þ ¼ 1� d jð Þð Þ�f v jð Þ

¼ 1� 1� 0:5wcð Þdt jtð Þ½ � 1� affiffiffi
3

p
þ b jð Þ

�f c jcð Þ�� �� ð8Þ

From Eq. (8), some considerations can be made on the shear
behaviour of the model. Firstly, the initial shear strength (Eq. (5)
with j ¼ 0) is governed by the initial compression and tension

strengths and the parameter f b0, which in practice is always in
the range 1.12–1.16. This confirms that it is not possible to define
a specific shear strength independent from tension and compres-
sion strengths, as for instance a shear strength relating to the slid-
ing of mortar joints, which is a typical shear failure mode for multi-
ring masonry arches. A workaround to have some freedom in the
definition of initial shear strength could be to calibrate �f c 0ð Þ ¼ f c0
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appropriately and independently from the observed compressive
behaviour, while both f t0 and f c;max would still be determined based
on their specific failure modes.

The second consideration is that the evolution of nominal shear
strength depends on the parameter wc (see Eq. (8)) which is
defined based on the expected cyclic response (stiffness recovery).
A typical value, leading to complete stiffness recovery from tension
to compression, is wc ¼ 1:0 [37,38]. Inserting this in Eq. (7), the
expression for damage in pure shear in the absence of compression
damage is obtained d jtð Þ ¼ 0:5dt jtð Þ. The conclusion is that the
evolution of nominal shear strength is completely governed by
damage in tension, without the possibility for specifying an alter-
native more realistic constitutive relationship.

Finally, it is worth mentioning that the macroscale damage-
plasticity continuum representation is not capable of distinguish-
ing failure due to shear parallel to the mortar bed joint szx from
that due to shear orthogonal to the mortar bed joint sxz, as in the
Cauchy solid these two stresses are equal, and the yield surface
cannot consider separate contributions. In reality, while the former
failure mode is governed by sliding of the units on the weak planes
represented by the mortar joints, the latter is governed by the
internal rotation of bricks depending on their geometric shape
ratio and brick interlocking, as schematically shown in (Fig. 3)
[39]. To allow for these different phenomena enriched continuum
representations, e.g. Cosserat continuum [39], would need to be
employed.

To overcome these intrinsic limitations of typical continuum
damage-plasticity constitutive models, an alternative hybrid
macroscale representation is proposed, in which, as outlined
before, shear sliding along the continuous circumferential mortar
joints of multi-ring arches is described by introducing nonlinear
interfaces whose material characteristics are defined based on
the calibration strategy described in Section 3.
2.2. Constitutive model for nonlinear interface elements

2D 16-noded interface elements [29] are employed for the mid-
thickness circumferential interfaces using the plasticity-damage
constitutive model proposed in [30]. According to this description,
interface tractions and relative displacements describing the static
and kinematics of the element, are composed of a normal compo-
nent in the direction orthogonal to the interface and two shear
components on the plane of the interface. The effective stresses
are evaluated at each Gauss point by solving a linear hardening
elasto-plastic problem considering multi-surface plasticity. Then,
the nominal stresses are obtained by multiplying the effective
stresses by the damage matrix D, containing the damage index in
tension, shear and compression ranging from 0 (no-damage) to 1
(complete damage).

Similarly to the solid elements, a standard decomposition
between elastic and plastic deformations is considered and the
concept of effective stress �s ¼ K0 e� ep

� �
is introduced, where
Fig. 3. Shear stress and failure mode of a brick/block masonry sample under (a)
pure shear parallel and (b) orthogonal to the bed joints.

4

K0 ¼ diag kn kt ktf g is the diagonal initial stiffness matrix with
kn and kt the normal and shear stiffness, �s ¼ ½ �r �s1 �s2�, e ¼ ½e c1 c2�
and ep ¼ ½ep cp1 cp2� the effective stress, the total strains and the
plastic strains, respectively. The nominal stresses are evaluated
from the effective stress according to:

s ¼ ðI3 �DÞ�s ¼ ðI3 � DÞK0 e� ep
� � ð9Þ

where D represents an anisotropic damage tensor, containing dis-
tinct variables for the normal (Dn) and the tangential (Dt) directions.
A tri-linear plastic yield domain is considered to simulate the ten-
sile (Mode I), shear (Mode II) and crushing (Mode III) failure modes.
Three distinct plastic works, corresponding to each fracture mode
rule the evolution of the damage variables.

The plastic yield domain (Fig. 4) is composed of three surfaces,
Ft, Fc, and Fs respectively, associated with the tensile (mode I),
compression and shear (mode II) failure modes, as defined by:

Fs �s; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s21 þ �s22

q
þ �rtan /ð Þ � c0 ð10aÞ
Ft �s; qð Þ ¼ �r� f t � qð Þ ð10bÞ
Fc �sð Þ ¼ � �rþ f c ð10cÞ

where f t and f c are the tensile and compression material strengths,
/ the friction angle and q a linear hardening variable, ranging from
0 (initial value) to the limit value qlim ¼ c

tan /ð Þ � f t . Moreover, c0 ¼ c if

q � qlim and c0 ¼ c þ q� qlimð Þtan /ð Þ if q > qlim. With the increase of
q the surface Ftreduces until becoming a point when q reaches the
value qlim. On the other hand, Fs increases with the increase of q
(Fig. 4). Two associated plastic flows are related to Ft and Fc , while
a plastic potential Gs in shear, obtained from Fs substituting / to /g ,
is considered to take into account the effects of masonry dilatancy.

Following the solution of the plastic problem, the damage evo-
lution is evaluated as a function of the three ratios rc ¼ Wpc=Gc ,
rt ¼ Wpt=Gt and rs ¼ Wps=Gs whereWpc;Wpt and Wps are the plastic
works in compression, tension and shear, respectively, and
Gc;Gt;Gs the corresponding fracture energies. Finally, the nominal
stresses are given by Eq. (9). More details on the model formulation
can be found in [30].
3. Calibration procedure

The mechanical calibration of the proposed model requires the
determination of several material parameters defining the linear
and nonlinear behaviour of the 3D solid elements and the 2D inter-
faces, as described Sections 2.1 and 2.2, and reported in [15,29,30]
For this reason, an objective and robust calibration procedure rep-
resents a fundamental step to guarantee the model accuracy and
applicability.
Fig. 4. Yield surface of the material model for nonlinear interfaces.
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This work presents an original multi-objective calibration pro-
cedure based on the multiscale approach proposed in [15] which
considers the representation of a structure under suitable bound-
ary conditions according to two scales: mesoscale, indicated here-
inafter by the superscript m, and macroscale, with the superscript
M. The considered setup is called virtual test, and it is assumed
there exists a mapping M : Xm ! XM between the mesoscale and
the macroscale domains. As elaborated subsequently, different to
the procedure proposed in [15] which consisted of a single-
objective optimisation algorithm, the newly proposed procedure
leads to a multi-objective optimisation problem allowing for a
set of optimum solutions (Pareto Front) which improves the
robustness and accuracy of the model calibration procedure.

According to the original formulation put forward in [15], stress
power equivalence between the two scales is approximately
enforced on the entire domain of the virtual test. The stress power
equivalence reads:Z
XM

rM : _eMdXM ¼
Z
Xm

rm : _emdXm þ _� ð11Þ

where _� represents the error rate due to the approximations
induced by the specific macromodel utilised. Considering pseudo-
static stress states, the equality between internal and external work
implies:Z
CM

tM � _uMdCM þ
Z
XM

bM � _uMdXM

¼
Z
Cm

tm � _umdCm þ
Z
Xm

bm � _umdXm þ _� ð12Þ

where t are the surface forces on the boundary C, while b are vol-
ume forces. Neglecting the contribution of these latter and consid-
ering the chain rule of differentiation, Eq. (12) finally reads:

_� ¼
Z
CM

tM � _uM � tm � _um @Cm
i

@CM
i

 !
dCM

i ð13Þ

Eq. (13) represents the error rate at time t due to the scale tran-
sition. In [15], a global non-negative monotonically increasing
error function was defined:

� tð Þ ¼
Zt
0

_� sð Þ½ �2ds ¼
Zt
0

Z
CM

tM sð Þ � _uM sð Þ � tm sð Þ � _um sð Þ @C
m
i

@CM
i

 !
dCM

i

" #2
ds

ð14Þ
The extension of the original procedure, proposed in this paper,

consists of partitioning the error defined as in Eq. (11) or in Eq. (13)
as:

_� ¼ _�1 þ _�2 þ � � � ¼
Z
XM
1

rM : _eM � rm : _em
� �

dXM
1

þ
Z
XM
2

rM : _eM � rm : _em
� �

dXM
2 þ � � � ð15Þ

_� ¼ _�1 þ _�2 þ � � � ¼
Z
CM
1

tM � _uM � tm � _um
� �

dCM
1

þ
Z
CM
2

tM � _uM � tm � _um� �
dCM

2 þ � � � ð16Þ

The contributions _�1, _�2, . . . respectively refer to a volume par-

titioning in Eq. (15), with XMjm
1 þXMjm

2 þ � � � ¼ XMjm, or load-based
partitioning in Eq. (16). For the sake of simplicity, in Eq. (15) and
(16) it is assumed that there is not any modification of volumes
and surfaces in the scale transition, i.e., @Cm

i =@C
M
i ¼ @Xm

i =@X
M
i ¼ 1.

In this case several error functions can be defined as:
5

xi ¼
ZT
0

_ei sð Þ½ �2ds with i ¼ 1;2; � � � ð17Þ

The solution of the calibration procedure is given by the solu-
tion of the multi-objective minimisation problem:

p ¼ argmin
p

x1;x2; � � �½ � ð18Þ

The error partitioning defined in Eqs. (15) or (16) has two con-
sequences. The first consequence is that it allows defining the
granularity of the homogenisation, avoiding the possible error
compensations given by different parts of the structure. For
instance, if the nonlinearities in the mesoscale model are concen-
trated in one small region of the domain, it is possible to use vol-
ume partitioning in Eq. (15) to focus the calibration of the
parameters governing the nonlinear behaviour of the macroscale
representation in that region, while controlling the elastic param-
eters by matching the response in the remaining domain. The sec-
ond consequence is that the calibration problem is turned into a
multi-objective optimisation problem, in contrast to the original
formulation [15] which was a single-objective optimisation proce-
dure. As shown in [40,41], using multiple objectives in a calibration
problem may strongly increase the robustness of the procedure. In
the numerical applications reported in Sections 4 and 5, two parti-
tions of the global error are considered to simplify the interpreta-
tion of the optimisation results. However, the use of a larger
number of partitions may be considered.

The multi-objective optimisation problem is solved by means of
a Non-Dominated Sorting Genetic Algorithm [42], implemented in
TOSCA-TS software [43]. The optimum is given by the Pareto Front
(PF), which represents the set of non-dominated solutions. A care-
ful investigation on the features of the Pareto Front may highlight
possible inconsistencies of the model to calibrate [40] and repre-
sents a key part of the calibration procedure towards the definition
of the most representative solutions and a significant improvement
of the original procedure presented in [15].

Finally, it is worth noting that the calibration strategy considers
the evolution of the stress power over time, and thus it cannot
properly allow for the additional work contribution due to initial
loading. Thus, it is preferable to avoid initial loading in the virtual
test. However, this does not limit the applicability of the proce-
dure, as multiple loads with independent loading paths can be
introduced without any modifications in the methodology.

The proposed strategy enables an objective evaluation of the
macroscale model parameters given the masonry mesoscale prop-
erties which can be obtained directly from simple in-situ or labo-
ratory tests performed on masonry units and mortar (or tests
performed on small assemblages of units such as triplets), follow-
ing consolidated methodologies already reported in the literature
[44].
4. Numerical simulations of medium span masonry arches and
bridges

Two medium-span masonry arch specimens, one interacting
with backfill as found in typical masonry arch bridges, are analysed
by means of detailed mesoscale models [29]. The results of the
mesoscale analyses are then used as reference solutions to high-
light some limits of a typical continuum macroscale description,
and to investigate the improved accuracy guaranteed by the pro-
posed continuum-discrete hybrid representation for multi-ring
masonry arches.



Table 1
Mechanical parameters of the bricks adopted in the analyses.

Masonry Eb ½MPa� m ½�� w ½kN=m3�
Weak 6000 0.15 16
Strong 16,000 0.15 22
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4.1. Masonry arch and bridge specimens

The first specimen (Fig. 5a) consists of a 5 m span three-ring
brick-masonry arch. The arch is characterised by 1250 mm rise,
330 mm thickness and 675 mm width. Adjacent rings with
215 � 102.5 � 65 mm3 bricks are connected according to the
stretcher method by continuous circumferential 10 mm thick
mortar joints [45]. The second specimen (confined arch) com-
prises a brick-masonry arch with the same geometrical character-
istics of the bare arch interacting with backfill material, which,
extends 2460 mm horizontally from the two supports of the arch
and 300 mm vertically above the crown, according to the exper-
imental layout considered in [4], (Fig. 5b). Full supports are
assumed at the base of the arch and the backfill, while simple
supports against the horizontal longitudinal displacements are
applied on the two vertical sides of the backfill. Moreover, the
horizontal transverse displacements on the two lateral faces of
the arch and backfill are restrained to represent a plane strain
condition (Fig. 5b).
4.2. Mesoscale simulations

In the numerical mesoscale description, 20-noded elastic
solid elements are used to simulate the brick units and
16-noded interfaces [29] are employed to represent both the
radial and the circumferential mortar joints. As the focus is
on the 2D response, a mesh with only one element along the
representative 1 m width of the arch specimens is considered.
The mesoscale description of the arch requires 240 3D solid ele-
ments, 403 2D interface elements and 6453 nodes to which
correspond 19,359 DOFs. The backfill is modelled adopting a
FE mesh with 15-noded tetrahedral elements. Finally, nonlinear
interface elements are utilised to model the physical interface
connecting the arch to the backfill where the generally non-
matching meshes of the two domains are coupled using a mesh
tying method [50].

Two masonry types have been considered in the analyses: a
strong masonry to represent modern good quality brickwork, and
a weak masonry to represent historical masonry [46]. The mesos-
cale mechanical parameters are reported in Tables 1 and 2. These
parameters have been selected based on previous numerical stud-
ies where the adopted mesoscale description for masonry arches
and bridges was validated against experimental tests. In particular,
Fig. 5. Geometrical characteristics and loading condition
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the parameters of the strong masonry have been adopted in
[27,28] to reproduce the response of a two-ring 3 m span arch,
while the parameters for weak masonry were adopted in [47] in
further validations against physical experiments.

Following [28], an elasto-plastic material model with a modi-
fied Drucker-Prager yield criterion is employed for the backfill,
assuming a Young’s modulus Eb ¼ 500 MPa, a cohesion cb = 0.001-
MPa, a friction and a dilatancy coefficient tan/b ¼ 0:95 and
tanwb ¼ 0:45. The nonlinear interfaces simulating the interaction
between the arch and the backfill at the extrados of the arch have
tensile strength f fi ¼ 0:002 MPa, cohesion cfi ¼ 0:0029 MPa, fric-
tion coefficient tan/fi ¼ 0:6 and zero dilatancy.

In the numerical simulations of the bare arch, two initial verti-
cal forces F0 = 22.5 kN are applied at the quarter and three-quarter
span and then maintained constant during the subsequent loading
stage, when a vertical force F is applied at quarter span and mono-
tonically increased up to collapse. Both forces F0 and F are uni-
formly distributed on a patch area of 210 � 675 mm2.

When the arch interacts with the backfill, the initial load corre-
sponds to the weight of the arch and the backfill both with a speci-
fic weight of 22 kN/m3, while the force F is applied on the top
surface of the backfill on a patch area of 400 � 675 mm2 centred
at the quarter span of the arch (Fig. 5b). To improve the numerical
stability, nonlinear dynamic analysis is performed by imposing an
initial velocity of 0.1 mm/s at the loaded nodes, which is main-
tained constant during the simulation up to collapse. Zero viscous
damping is considered in the analyses.

Fig. 6 shows the load–displacement curves of the bare arch
(Fig. 6a) and the arch interacting with backfill (Fig. 6b), where
the force F is plotted against the vertical deflection at the quarter
span of the arch. In Fig. 6a, the ultimate load estimated by limit
analysis, based on the classic Heyman’s hypotheses [48], is
reported for comparison.

A significant influence of the masonry typology on the global
response is observed both in the case of the bare arch, where the
ultimate load ranges from 31kN to 66kN, and for the arch with
backfill, where the peak force varies from 74kN to 137kN. As
s for the (a) bare and (b) confined arch specimens.



Table 2
Interface mechanical parameters adopted in the analyses.

Masonry kn � kt ½N=mm3� f t � f c � c ½MPa� Gt � Gs � Gc ½N=mm� tg/� tg/g ½��
Weak 60.0–30.0 0.05–9.1–0.085 0.02–0.125–5.0 0.5–0.0
Strong 90.0–40.0 0.26–24.5–0.40 0.12–0.125–5.0 0.5–0.0
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Fig. 6. Load-deflection curves for the (a) bare arch and (a) the arch interacting with backfill.
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expected, the initial stiffness of the bare arch is significantly
affected by the masonry characteristics. Conversely, the confined
arch shows almost the same initial stiffness for weak and strong
masonry. Considering the specific weight of the strong masonry
(Table 1), standard limit analysis provides a prediction of the
peak-load (39.43 kN) significantly lower compared to the strong-
masonry model due to the hypothesis of no-tension material. At
the same time, it provides an overestimated peak-load compared
to the weak-masonry model because it neglects the sliding
between the rings.

The failure mechanisms and the equivalent von-Mises stress
contours of the two specimens, with both masonry typologies,
)a(

)c(

          MPa

>1.00 1.00 0.833 

Fig. 7. Ultimate deformed shape and von-Mises stress contours for the bare arch with (
with (b) weak masonry and (d) strong masonry.
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are reported in Fig. 7. Finally, Fig. 8 shows the tensile damage
contours at the last step of the analysis obtained by the different
models. The failure mechanism of the models with weak masonry
is characterised by shear sliding along the circumferential
interfaces, mainly concentrated in the zone between the left
support of the arch and the loading area at quarter span, and
close to the three-quarter span of the arch. This mechanism
prevents the activation of flexural plastic hinges. In the case of
strong masonry, flexural failure is observed with the opening of
four radial cracks in both the bare arch (Fig. 7) and the arch with
backfill (Fig. 7d). In the models with weak masonry, significant
damage in the radial joints is observed close to the load. In the
)d(

0.677 0.500 0.333 0.167 

(b)

a) weak masonry and (c) strong masonry, and for the arch interacting with backfill



Fig. 8. Interface tensile damage contours for the bare arch with (a) weak masonry and (c) strong masonry, and for the arch interacting with backfill with (b) weak masonry
and (d) strong masonry.
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models with backfill, large portions at the extrados of the arch are
affected by shear-sliding damage, both at the radial and
circumferential interfaces. This damage develops also at the
frame-backfill interfaces.

In the following, the mesoscale solutions are assumed as the
baseline results for the assessment of more efficient macroscale
models and the proposed hybrid continuum-discrete descriptions
for multi-ring arches.

4.3. Macroscale simulations

The two specimens presented in Section 4.1 have been analysed
by a continuum macroscale description for masonry, using the iso-
tropic damage-plasticity constitutive law described before. Since
the model is developed employing quadratic elements, a relatively
coarsemesh can be used to improve computational efficiency.More
specifically, a mesh with two elements along the thickness of the
arch with a length in the circumferential direction approximately
equal to half the thickness of the arch has been considered in the
numerical simulations. Moreover, as for the mesoscale model, only
one solid element is arranged along the 1 m width of the arch. As a
result of this, the masonry arch is represented by 80 3D solid ele-
ments, 40 2D interface elements and 981 nodes corresponding to
2943DOFs. It can be observed that themacro-modelling description
allows a reduction of 85% of DOFs compared to the mesoscale
description demonstrating the potential for considerable reduction
in computational demands with the proposed model.

The aim of this investigation is to explore the accuracy and
potential limitations of a standard continuum isotropic macroscale
approach to predict the response of multi-ring masonry arches,
where the model material parameters are calibrated according to
two alternative simplified and advanced procedures.

4.3.1. Simplified calibration procedure
In initial macroscale simulations, the material model parame-

ters for masonry have been evaluated through a simplified calibra-
tion procedure considering the mesoscale material properties
8

reported in Tables 1 and 2. The macroscopic Young’s modulus for
the masonry material E has been determined by combining in ser-
ies the stiffness of brick units with that of the mortar interfaces
along the direction of the arch. The tensile strength and fracture
energy f t ;Gt and the compressive strength f c are assumed coinci-
dent to the corresponding values of the mesoscale interfaces. The
remaining parameters for the damage plasticity model are
assumed equal to standard values used in previous studies for
modelling masonry materials.

More specifically:

� The ratio between initial and maximum compressive strength

f y ¼ f c0
f c;max

is assumed equal to 0.3 according to [32,33,51];

� The dilatancy angle w is taken equal to 35� which is consistent
with the value adopted for modelling quasi-brittle material as
concrete [32,33] and corresponds approximately to the median
of the values (ranging from 10� to 50�) typically used for
masonry [34–36];

� The eccentricity of the plastic flow potential is taken as � ¼ 0:1
to improve computational robustness as suggested in [37];

� l governing the relative influence of damage and plasticity in
tension (l ¼ 0 for fully damage material) is assumed equal to
0.2;

� The plastic strain at maximum compression stress kc;fc is taken
as 0.002 following [51];

� The ratio between the plastic strain at damage onset in com-
pression and the plastic strain at maximum compression qc is
considered equal to 1.0, as damage is assumed to develop in
the softening branch of the stress–strain response.

As noted in Section 2.1, preliminary numerical simulations
showed a significant influence of the parameter governing the stiff-
ness recovery in compressionwc on the global response of the arch.
Thus, two limit values (0, 1) are considered, while parameter wt

determining the stiffness recovery in tension is assumed as zero.
The complete set of mechanical properties for the continuum
macro-modelling description are reported in Table 3.



Table 3
Macroscopic mechanical parameters resulting from the simplified calibration procedure.

E [MPa] m [–] f b0 [–] f y [–] w [o] � [–] Kc [–] f mt [MPa] f mc [MPa] Gmt [N/mm] l [–] kc;fc [–] qc [–] wc [–] wt [–]

Weak masonry
2571 0.15 1.16 0.3 35 0.1 0.66 0.05 9.1 0.02 0.2 2E�3 1.0 0.0

1.0
0.0

Strong masonry
4747 0.15 1.16 0.3 35 0.1 0.66 0.26 24.0 0.12 0.2 2E�3 1.0 0.0

1.0
0.0
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Fig. 9. Load-displacement curves for the (a) bare arch and (b) the confined arch with weak masonry and (c) the bare arch and (d) confined arch with strong masonry.

Fig. 10. Influence of dilatancy angle on the global response.
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Fig. 9 shows the load–displacement responses predicted by the
macroscale descriptions which are compared against the reference
mesoscale curves. In the main, the macromodels predict the initial
stiffness of the masonry arches accurately, yet significantly overes-
timating the peak strengths without providing a realistic represen-
tation of the post-peak behaviour as given by the reference
mesoscale models. Furthermore, very different macromodel curves
are obtained depending on the adopted value for wc . In particular,
the largest differences between the mesoscale models and the cor-
responding macromodels are achieved when wc = 1. It should be
noted that this value is recommended by most software imple-
mentations [38,39] to model the cyclic response of quasi-brittle
materials.

In Fig. 10, the influence of the dilatancy angle on the global
response of the weak masonry bare arch is shown. Since this
parameter governs the normal plastic deformation due to shear,
it is expected that by increasing w the global behaviour becomes
more ductile due to the confinement effects exerted by the sur-
rounding elements. Given its high influence on the global beha-
9
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Fig. 11. Deformed shape and damage in tension contours at failure for weak masonry (a) bare and (b) confined arches, and for the strong masonry (c) bare and (d) confined
arch specimens.
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viour, it is apparent that more accurate calibration is needed for
such critical parameter.

The deformed shapes at failure (at the last step of the analysis)
with the tensile damage contour distributions are depicted in
Fig. 11. The models with strong masonry exhibit flexural failure
(Fig. 11c, d) which is in agreement with the failure mode predicted
by the mesoscale models (Fig. 7c, d) and mostly characterised by
damage in tension concentrated at the intrados and extrados of
the arch corresponding to the opening of plastic hinges. The mod-
els with weak masonry show featuring a local shear failure devel-
oping underneath the area where the external load is applied and
flexural damage at the extrados of the arch at the side opposite to
the loaded area (Fig. 11a, b). This is not predicted by the mesoscale
model, which shows ring separation at failure (Fig. 7a, b). This
main difference confirms the inability of the continuum isotropic
damage-plasticity model to represent shear sliding between adja-
cent rings, which is a characteristic failure mechanism of multi-
ring arches well captured by detailed mesoscale models. Moreover
for the arches with strong masonry, the use of the macroscale con-
tinuum isotropic model leads to a significant overestimation of the
ultimate strength and ductility, where the numerical predictions
are affected significantly by some model parameters (e.g. wc and
w) which cannot be determined via simplified calibrations.
4.3.2. Advanced calibration procedure
To improve the accuracy of the macroscale predictions, the

advanced calibration procedure described in Section 3 has been
applied to determine the macromodel material parameters, focus-
ing first on the specimens with weak masonry where the initial
macroscale predictions, based on a simplified calibration of the
model material parameters, were not in good agreement with
the mesoscale results.

The bare arch in Fig. 5a, subjected to two constant initial forces
at the quarter span (L/4) and three-quarter span (3/4L), both equal
to 16 kN, and to a patch load applied at L/4 and increased up to col-
lapse, is used as the virtual test for the calibration of the model
parameters. The specific loading condition ignoring the self-
weight contribution of masonry has been chosen to activate both
flexural damage and shear sliding between adjacent the rings, thus
providing suitable information to the optimisation algorithm.
10
It should be pointed out that the selection of appropriate virtual
tests which should activate the most critical failure modes of the
investigated masonry specimens is the critical step for a successful
application of the proposed calibration strategy. For instance, in
the case of multi-ring arches, the failure mechanism of the virtual
test should be characterised by flexural damage, namely the acti-
vation of one or more plastic hinges and shear sliding along the
rings. However, if it is not possible to identify a virtual test with
these characteristics, multiple virtual tests may be utilised, and
the multi-objective optimisation procedure should consider error
functions for each of these.

Some parametric analyses, not included in the paper for the
sake of brevity, have been performed to identify the parameters
that affect most significantly the arch response. As a result of these
parametric analyses, and to limit the computing time associated
with the model calibration, six model parameters are considered
as unknowns in the optimisation procedure: the Young modulus

(E), the tensile strength (ft) and fracture energy (Gt), the ratio (f y)
between the yielding and ultimate compression strength, the
parameter governing stiffness recovery from tension to
compression (wc) and the angle of dilatancy (w). The range for each
parameter is reported in the Table 4. The remaining parameters of
the solid elements are assumed equal to the default values in
Table 3.

A load-based partitioning strategy is used for the solution of the
calibration problem based on two objectives as defined in Eqs (16),
(18) withx1,x2 the errors due to the loads at L/4 (F1) and 3/4L (F2),
normalised with respect to a reference value with the same units
(final squared strain energy, divided by the time interval of the vir-
tual test, [J2/s]).

The evaluated PF (Fig. 12) appears discontinuous; the minimum
of x2 (4 � 10�3) is reached for x1 ¼ 0:10. Conversely, the minimum
of x1 (6 � 10�4) corresponds to a much larger value x2 ¼ 1:19. This
implies that calibrating the response on the force–displacement
curve of the variable load at L/4 (minimum x1) may entail signif-
icant error in the total energy.

In Fig. 12a, the solutions on the PF are shown using the nor-
malised errors x�

1 ¼ ðx1 �xmin
1 Þ=ðxmax

1 �xmin
1 Þ and

x�
2 ¼ ðx2 �xmin

2 Þ=ðxmax
2 �xmin

2 Þ ranging from 0 to 1. In the follow-
ing, the solution corresponding to the minimum global error



Table 4
Input parameters and results of the calibration procedure for the continuum model (weak masonry)

Parameter Unit Initial range Solutions with x� � 2:5x�
min Minimum error solution

Lower bound Upper bound Lower bound Upper bound

E MPa 1000 6000 2050 2550 2500
w O 0 90 18 26 25
f t MPa 1.0 0.024 0.041 0.025
Gt N/mm 0.001 0.5 0.021 0.028 0.022

f y – 0.01 1.0 0.40 0.83 0.72

wc – 0.0 1.0 0.00 0.16 0.02

Fig. 12. Calibration of the continuum weak model: (a) Pareto Front solutions; load–displacement curve at (b) quarter span and (c) three quarter span; (d) failure mechanisms
of the minimum error and PF solutions.
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x�
min ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2

1 þx�2
2

qn o
¼ 0:078, highlighted in the graph, is

considered as the reference solution.
Fig. 12b shows the displacement d1 at L/4 against the load F1

associated with all the solutions of the PF compared to the
response of the mesoscale model. Three families of curves can be
observed: the curves that minimise the error related to F1, which
fit very well the response of the mesoscale response; the curves
that minimise x2, i.e., the error related to F2, which provide a sig-
11
nificant overestimation of the peak-strength of the arch (from
35 kN to 45 kN) and the curves that minimise the global dimen-
sionless error allowing for the two objectives of the optimisation
procedure. These solutions and in particular the solution associ-
ated with the minimum error provide a good prediction in terms
of initial stiffness and peak load, but they show some differences
regarding the post-peak stage. In Fig. 12c, the vertical displacement
at three-quarter d2 span is plotted against the load F1. It is possible
to see that in no case the final uplift shown by the mesoscale model



Fig. 13. Load-displacement curves for the bare arch loaded at (a) mid-span, (b) one eight span, (c) quarter span, and (d) for the confined arch.
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Fig. 14. Failure mechanism and damage in tension contours predicted by the calibrated continuum model for (a) the bare arch and (b) the confined arch.
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is attained by the macroscale models of the PF. However, the
dashed line, identifying the compromise solution of the multi-
objective optimisation, shows a general good agreement with the
mesoscale curve.

It is important to point out that even when the minimum error
solution provides a satisfactory approximation of the load–dis-
placement curves, it may lead to a failure mechanism inconsistent
with that predicted by the virtual test. Therefore, a comparison in
terms of failure mechanism is crucial to choose the best solution
from the PF.

The ultimate deformed shapes corresponding to the minimum
error solution and the two ends of the PF, each providing the min-
imum of one error function, are reported in Fig. 12d. It can be
12
noticed that the solution corresponding to x*2,min (best fit of the
load–displacement at the loaded point) does not indicate shear
failure of the arch, leading to a wrong failure mode prediction.

Conversely, the two other solutions predict different shear fail-
ure mechanisms. In particular, the minimum error solution (x*min)
represents well the failure mode of the virtual test by predicting
circumferential shear deformations, in accordance with the shear
sliding among adjacent rings determined by the mesoscale model.

In Table 4, the calibrated parameters for the minimum error
solution are shown, together with the range identified by the solu-
tions in its surroundings (x� < 2:5x�

min). These latter values allow
investigating the sensitivity of the calibrated response to each
parameter, compared to the initial variation range. Analysing the



Table 5
Input parameters and results of the calibration procedures for the hybrid model.

Parameter Unit Initial range Minimum error solution weak masonry Minimum error solutions
strong masonry

Lower bound Upper bound Solution A Solution B

E MPa 1000 6000 2350 4700 4200
w O 0 90 63 23 59
f t MPa 0.01 1.0 0.083 0.164 0.137
Gt N/mm 0.001 0.5 0.089 0.042 0.03

f y – 0.01 1.0 0.79 0.71 0.68

wc – 0.0 1.0 0.10 0.48 0.00
k� – 0.01 1.5 0.01 0.01 0.04
c� – 0.0 2.0 0.62 0.69 1.44

GM
t

N/mm 0.01 0.25 0.096 0.167 0.213

Fig. 15. Calibration for the weak masonry model: (a) Pareto Front solutions; load-displacement curves at (b) one quarter and (c) three quarter span (c); (d) failure
mechanisms of the minimum error solution and the frontier solutions of the Pareto Front.
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results, all parameters seem rather univocally determined as a sig-
nificant reduction of the ranges is observed, with the only excep-

tion of f y. It is interesting to see that the calibrated wc is close to
zero, unlikely the typical assumption considered in the simplified
calibration.

The results of the model calibration are validated by analys-
ing the confined and bare arches subjected to the loading condi-
tion described in the initial mesoscale simulation in Section 4.2.
13
Moreover, two additional load conditions for the bare arch are
investigated in which the arch is subjected to a patch load alter-
natively applied at the mid span and at one eight span without
initial symmetric forces. The load–displacement curves for the
weak masonry models are shown in Fig. 13, where the contin-
uum calibrated model is compared against the mesoscale model
and the continuum model with simplified calibration procedure
for wc = 0.



Fig. 16. Calibration for the strong masonry model: Pareto Front solutions (a); load-displacement curves at one quarter (b) and three quarter span (c); failure mechanisms of
the two selected solutions A and B (d).
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Generally, the model calibrated by the advanced procedure
exhibits a much-improved agreement with the mesoscale model.
However, in the case of the bare arch loaded at the quarter span,
the continuummodel shows a premature shear failure which leads
to a significant underestimation of the maximum load and dis-
placement capacity of the arch (Fig. 13c). In the case of bare arch
loaded at the mid span (Fig. 13a), the macromodel calibrated by
the advanced procedure underestimates the peak-load value. It
provides, however, an adequate prediction of the residual strength
and pre/post peak response. Finally, a satisfactory comparison can
be observed in the cases of bare arch loaded at one eighth span and
the confined arch specimen (Fig. 13b and d).

The failure mechanism of the bare arch loaded at quarter span,
displayed in Fig. 14a, is characterised by an evident punching effect
due to the shear failure of the element of the arch underneath the
load, which is not observed in Fig. 7a. On the contrary, the failure
mechanism of the confined arch (Fig. 14b) is rather consistent with
the mechanism obtained by the mesoscale model (Fig. 7b). The
sliding between adjacent rings is represented by shear failure of
the solid elements; however, unlikely the continuum model cali-
brated by means of the simplified procedure (Fig. 11b), the punch-
ing effect is not observed.

In conclusion, it can be affirmed that the rigorous calibration
procedure allows for a substantial improvement of the continuum
14
model predictions in representing the confined arch specimen.
However, the calibrated continuum model still shows evident lim-
its in simulating the bare arch response, as it provides an unrealis-
tic failure mode underestimating both the strength and ductility of
the arch.

It is worth pointing out that despite the fact that the adopted
calibration strategy is based on the use of the entire arch specimen
for the virtual test, its applicability is still computationally efficient
as it applied on a simple 2D strip model neglecting the backfill and
its interaction with the arch.

4.4. Hybrid model simulations

In this section, the proposed hybridmodel described in Section 2
is employed to simulate the bare and the confined arch of Fig. 5.
The same mesh with quadratic solid elements considered in the
previous macroscale continuum simulations has been employed,
but circumferential nonlinear interfaces (Section 2) have also been
introduced to connect each pair of adjacent solid elements along
the thickness of the arch according to the proposed hybrid macro-
scale representation (Fig. 1b). The model material parameters of
the solid elements and the circumferential interfaces are calibrated
through the rigorous procedure described in Section 3 and applied
before to determine the material properties for the continuum



Fig. 17. Weak masonry model: load–displacement capacity curve for the bare arch loaded with a concentrated force at (a) mid-span, (b) at one eight span and (c) at one
quarter span with initial forces, and (d) for the arch interacting with backfill loaded at one quarter span.
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macroscale model. Nine model parameters are calibrated by the
optimisation procedure. Namely, the same six parameters for the
solid elements, already considered in Section 4.3.2 with the addi-
tion of three parameters characterising the interfaces: the shear

stiffness (kMt ), the cohesion (cM) and the shear fracture energy

(GM
s ) which have been identified as the most significant interface

parameters affecting the response of multi-ring arches [49]. The
remaining interface parameters are assumed either coincident to
the parameters of the mesoscale model (f c;Gc; tg/; tg/g) or propor-
tional to the parameters assumed as unknown in the optimisation

(kMn ; f
M
t ;G

M
t ) as indicated below:

kMn ¼ kMt � kmn
kmt

f Mt ¼ cM � fmtcm
GM

t ¼ GM
s � Gm

t
Gm
s

ð19Þ

where the superscripts M and m refer to the macroscale and mesos-
cale representation, respectively.

In the following, the interface stiffness and cohesion parameters
are represented by the non-dimensional coefficients:

– k� ¼ 2kMt tð1þ mÞ=E, where E and m are the Young modulus and
the Poisson’s coefficient of the solid elements and t a fictitious
thickness equal to 1 mm.
15
– c� ¼ cM/f vo, where f vo is the initial shear strength of the solid
elements evaluated through Eq. (5) with j ¼ 0).

The variation ranges of the unknown parameters are reported in
Table 5. The calibration was performed for both weak and strong
masonry by using the same procedures and objective functions
as for the continuum model.

Fig. 15a displays the solutions belonging to the PF (x�
1 �x�

2) for
the calibration of the weak masonry model, while the correspond-
ing load–displacement curves are reported in Fig. 15b, c. Compar-
ing these results to the solutions of the optimisation for the
continuum model in Section 4.3.2, it can be observed that:

– The solutions of the PF are uniformly distributed in the space
x1-x2 and are associated with much lower errors.

– The load–displacement curves are less dispersed and much clo-
ser to the mesoscale predictions.

These remarks confirm that the further free parameters
included in the optimisation algorithm (k�; c�;GM

t ) effectively
improve the quality of the results. In this case, the absolute mini-
mum of x2 (4:88 � 10�3) is reached for a value of x1 ¼ 4:97 � 10�3

while the minimum of x1 (4:66 � 10�5) corresponds to
x2 ¼ 7:57 � 10�3. Following the procedure in Section 4.3.2, the
two errors are normalised leading to a minimum solution error
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Fig. 18. Weak masonry model: deformed shape at collapse for (a) the bare arch and (b) the arch interacting with backfill loaded at quarter span showing (a1, b1) von Mises
stresses, (a2, b2) damage in tension contours for the solid elements and (a3, b3) the interface elements.
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x�
min ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2

1 þx�2
2

q� �
¼ 0:2284 which corresponds to the set

of model parameters reported in Table 5.
Contrary to what is observed in the case of the continuum

model (Fig. 12d), here the minimum and PF solutions provide the
same failure mechanism (Fig. 15d), confirming the ability of the
hybrid model to represent the sliding mechanism among adjacent
rings.

The PF for the model with strong masonry is shown in Fig. 16a.
The minimum error of x2 ¼ 0:011 is reached for x1 ¼ 0:0056,
while the minimum error x1 ¼ 0:0012 is associated with
x2 ¼ 0:337. The minimum solution error corresponds to
x�

min ¼ 0:3207, (A in Fig. 16a) and the matching set of parameters
are indicated in Table 5. It can be noticed that the latter solution
is characterised by a low value of the dimensionless cohesion
(c*=0.69). This circumstance may potentially lead to a response
characterised by sliding between the ring which is in disagreement
with the mesoscale results. For this reason, another solution (B in
Fig. 16a), corresponding to x�

B ¼ 0:4673, is also considered. This
solution has been chosen as the solution with minimum error
among those characterised by c� > 1.

The response curves of the PF solutions are shown in Fig. 16b
and c with the two reference solutions reported with dashed lines.
Two families of curves, which tend to minimise the two objectives
separately are visible. Although the PF is less regular than the pre-
vious case, the selected solutions confirm a good match with the
mesoscale curves. Finally, Fig. 16d depicts the failure mechanisms
corresponding to the two selected solutions, A and B. It is observed
that the two failure mechanisms are relatively consistent with
16
each other. However, the failure mechanism associated with solu-
tion A comprises sliding along the circumferential interface, evi-
dencing ring separation not observed in the virtual test. On the
contrary, Solution B provides a better approximation of the flexural
failure mechanism of the virtual test, thus is corresponds to the
best solution to calibrate the macroscale hybrid description for
the strong-masonry arch.

Analogously to the procedure for the continuum model in Sec-
tion 4.3.2, the results of the calibration are validated considering
the bare and confined specimens, plus two further models repre-
senting the bare arch subjected to a concentrated force at mid span
and at one eighth span. The load–displacement curves of the
hybrid model are displayed in Fig. 17, where they are compared
against the mesoscale curves and the predictions of the continuum
macroscale model calibrated by the advanced procedure in
Section 4.3.2.

The results of the hybrid macromodel are in a good agreement
with those obtained by the mesoscale model confirming a gener-
ally improved prediction compared to the results provided by the
continuum macromodel. The only exception is represented by
the load condition with the force at one eight span, where the con-
tinuummodel provides a better prediction of the peak loads. How-
ever, the curve of the hybrid model, also in this case, is more
consistent to the mesoscale response in the pre- and post-peak
stages. It appears that the presence of the backfill reduces the dif-
ferences between the results, with mesoscale and hybrid model
predictions almost coincident.

The failure modes of the bare arch and the arch interacting with
backfill are displayed in Fig. 18, where the von-Mises equivalent



Fig. 19. Load-displacement curves for the strong masonry bare arch loaded at (a) mid-span, (b) one eight span, (c) one quarter span and (d) for the arch interacting with
backfill loaded at quarter span.

B. Pantò, C. Chisari, L. Macorini et al. Computers and Structures 265 (2022) 106769
stress distribution in the solid elements and the damage contours
on the interface elements are also shown. A good agreement
between the failure modes of the hybrid model and those obtained
by the mesoscale model, both in terms of stress distribution (Fig. 7)
and damage index distribution along the ring-to-ring and arch-to-
backfill interfaces (Fig. 8). Importantly, the ring sliding mechanism,
which could not be predicted by the continuum model, is well
described by the proposed hybrid macroscale representation.

The results of the calibration analyses in term of load–displace-
ment curves and failure mechanisms for the strong masonry model
are shown in Figs. 19 and in 20, respectively. The curves obtained
using the solution B parameters indicate a good agreement with
the mesoscale results for all the considered models and loading
conditions. Conversely, solution A leads to a significant underesti-
mation of the ultimate strength of the structure in the cases of the
bare arch loaded at mid-span (Fig. 19a) and the arch interacting
with backfill (Fig. 19d). The failure mechanisms obtained by the
macromodel calibrated with the solution B (Fig. 20) result in a good
agreement with those obtained by the mesoscale model (Fig. 7). In
conclusion, it can be stated that the advanced calibration proce-
dure leads to a realistic set of mechanical parameters to describe
the global response of weak and strong masonry arches, under a
17
wide range of boundary and loading conditions. The adopted
approach to select the reference solution from the results of the
multi-objective optimisation procedure, based on the analysis of
the Pareto Front, appears to be sufficiently accurate and robust.
However, the circumstance by which the minimum error solution
(A) provided less satisfactory results compared to those obtained
by another solution belonging to the PF solution (solution B)
denotes that further improvements to the selection strategy from
the PF and/or the definition of the multi-objective optimisation
problem may be needed. This open issue will be investigated by
the authors in future studies.
5. Numerical simulations of long span masonry arches and
bridges

In this section, the hybrid model and the advanced calibration
procedure are employed to analyse a masonry arch with seven
rings and a 16 m span. The numerical results, obtained using
ADAPTIC [31], enable investigating the computational efficiency
of the proposed macroscale strategy and the improved accuracy
due to the use of various nonlinear circumferential interface layers
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Fig. 20. Strong masonry model: deformed shape at collapse for (a) the bare arch and (b) the arch interacting with backfill loaded at quarter span showing (a1, b1) von Mises
stresses, (a2, b2) damage in tension contours for the solid elements and (a3, b3) the interface elements.

Fig. 21. Large-span arch bridge specimen.
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for modelling large masonry arches typical of realistic masonry
bridges. Similar to the discussion in Section 4, the performance
of the macroscale hybrid description is assessed based on load-
displacements curves and predicted failure mechanisms which
are compared against computationally expensive mesoscale
simulations.

The considered masonry arch specimen with stretcher bond is
characterised by a 770 mm thickness and a span-to-rise ratio of
18
4.0. The considered material properties for the masonry con-
stituents are those for the weak masonry material reported in
Tables 1 and 2. Fig. 21 shows the geometrical layout of the mesos-
cale model for the specimen with a representative 1 m width. The
vertical loads are applied at the top of the backfill at quarter span
of the arch, assuming the same boundary conditions described in
Section 4, where the bases of the arch and the backfill are fixed,
and the vertical ends of the backfill are restrained against horizon-



Table 6
Characteristics of the three macroscale hybrid meshes.

1’Interface Nodes 1244
Solid FE 204
Interfaces 102
DoFs 3624

2-Interface Nodes 2804
Solid FE 231
Interfaces 154
DoFs 8244

3-Interface Nodes 3740
Solid FE 308
Interfaces 231
DoFs 10,992

Table 7
Input parameters and results of the calibration procedures for the hybrid model.

Parameter Unit 1-Interface 2-Interface 3-Interface

x�
1;min x�

min x�
2;min x�

min x�
min

E MPa 2500 2500 2500 2600 2450
w O 53 54 54 56 55
f t MPa 0.053 0.036 0.053 0.051 0.049
Gt N/mm 0.046 0.036 0.036 0.029 0.076

f y – 0.11 0.17 0.18 0.93 0.43

wc – 0.92 0.94 0.94 0.88 0.93
k� – 0.01 0.02 0.02 0.01 0.01
c� – 1.65 1.64 1.63 1.52 1.71

GM
t

N/mm 0.221 0.250 0.217 0.166 0.168
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Fig. 22. Load-displacement capacity curves for the (a) bare arch (a) and (b) arch with backfill.
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tal displacement. The mesoscale mesh for the arch with only one
element along the width comprises 35,672 nodes with a total of
106,680 DOFs.

The virtual test requires loading the bare arch by the masonry
self-weight and two constant symmetric forces of 22 kN applied
at one quarter and three quarter span, after which an increasing
force is applied at one quarter span until the failure of the arch.
Three hybrid macroscale models are adopted, utilising one, two
and three circumferential interface layers equally spaced along
19
the thickness of the arch. Table 6 reports the number of elements
and DOFs for the three arch macromodels (1-Interface, 2-Interface
and 3-Interface), which require 3.3%, 7.7% and 10.3% of the total
DOFs of the detailed mesoscale model.

The macroscale mechanical parameters resulting from the cali-
bration procedure are summarised in Table 7. The minimum error
solution is considered for each model, while the parameters corre-
sponding to the two ends of the Pareto Front are also reported only
for the basic mesh with one circumferential interface layer (1-
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Fig. 23. Ultimate deformed shapes of the bar arch (amplificated 50 times) predicted by the (a, b) mesoscale model and (c, d) the macroscale model with (a,c) von-Mises
stresses in the solid elements and (b,d) damage in tension contours on the nonlinear interfaces.
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Fig. 24. Ultimate deformed shape (amplificated 30 times) of the arch interacting with backfill with von-Mises stresses in the solid elements of the (a) mesoscale model and
(b) the macroscale model; and damage in tension contours at the (c) mesoscale interfaces and (d) the nonlinear interfaces of the macroscale hybrid model.
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Interface). It can be observed that the model parameters for the
three solutions of the 1-Interface model are very close highlighting
the robustness of the calibration algorithm.

The load–displacement capacity curves and the deformed shape
at failure predicted by macroscale 1-Interface model are shown in
Fig. 22a–b, where these are compared against the mesoscale
results. Fig. 22a presents the response curves of the virtual test
used for model calibration, whereas Fig. 22b shows the results
for the arch confined by backfill (bridge specimen) which have
been considered for model validation. In the graphs, the response
curves of the continuum model without circumferential interface
layers and calibrated by the practical/empirical procedure
described in Section 4.3.1 are also reported for comparison.

In the case of the bare arch, the response obtained using the
proposed macroscale hybrid model is very close to the mesoscale
20
results confirming the effectiveness of the developed calibration
procedure. Conversely, the continuum model leads to a significant
overestimation of the arch load-bearing capacity. The failure mech-
anisms of the macroscale and mesoscale descriptions for the bare
arch are shown in Fig. 23, where a good agreement can be
observed. Both models predict a mixed failure mechanism charac-
terised by the activation of three flexural plastic hinges and ring
sliding in the two portions of the arch close to the skewbacks
(Figs. 23a and c). The damage contours at the mesoscale interfaces
and those at the circumferential interface layer of the macroscale
1-Interface model are shown in Figs. 23b and d, respectively. Com-
paring the load–displacement curves of the arch interacting with
backfill (Fig. 22b), it is observed that the hybrid model predicts
well the response of the system until about 10 mm. For larger ver-
tical displacements, the mesoscale model shows softening beha-
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Fig. 26. Deformed shape at collapse with von-Mises stresses in the solid elements and damage in tension contours on the interface elements for the bare arch (a, b) 2-Interface
and (c, d) 3-Interface models, and for the (e, f) 2-Interface and (g, h) the 3-Interface models for the arch bridge specimen.
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Fig. 27. Computing time for the simulation of the (a) bare arch and (b) the arch interacting with backfill.
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viour, though the response predicted by the macroscale 1-Interface
models with selected calibrated material properties exhibits slight
hardening. Such discrepancy translates to some differences in the
characteristics of the failure mode shown by the deformed shapes
and stress contours in Fig. 24. More specifically, the mesoscale
model predicts distributed ring sliding leading to local shear failure
associated with a drastic reduction of the arch resistance. On the
other hand, the macroscale model shows sliding and flexural plas-
tic deformations on the two continuum portions of the FE mesh
separated by the single damaged circumferential interface layer
which is not associated with sudden degradation of the load-
bearing capacity of the arch.

Fig. 25 shows the load–displacement mesoscale and macroscale
curves for the bare arch and the bridge specimen. It can be seen
that each calibrated macroscale model reproduces very well the
arch response as determined by the baseline mesoscale model
(Fig. 25a). Furthermore, the models with two or three circumferen-
tial interface layers (2-Interface and 3-Interface models) lead to
improved predictions in terms of ultimate load and post-peak
response compared to the model with a single interface layer.

The failure mechanisms depicted in Fig. 26 confirm that the use
of multiple interface layers allows a more realistic representation
of the distributed shear sliding failure mode, where no notable dif-
ferences between 2-Interface and 3-Interface models can be
observed.

Finally, the efficiency of the proposed hybrid modelling strategy
is evaluated against the mesoscale results. In the case of the bare
arch, the computing times required by the macroscale 1-Interface,
2-Interface and 3-Interface models are respectively 0.55%, 0.17%
and 0.22% of the wall clock time required by the mesoscale model
(Fig. 27a). In the case of the arch bridge specimen, the correspond-
ing computing times of the hybrid models are respectively 3.4%,
9.8% and 10.0% of the mesoscale time. These results confirm the
much enhanced efficiency guaranteed by the proposed modelling
strategy for realistic simulations of large arch bridges, where the
use of the mesoscale modelling approach may become computa-
tionally prohibitive. In the main, the introduction of multiple inter-
face layers does not lead to a significant increase of the computing
time which is, for the analysed cases, always less than 10% of that
required by the mesoscale model.
6. Conclusions

In this study, a hybrid continuum-discrete macro-modelling
description for brick-masonry multi-ring arches and arch bridges
is proposed. According to this modelling approach, the arch and
backfill domain are modelled by 3D continuum solid elements,
while layers of 2D zero-thickness nonlinear interfaces arranged
along the circumferential direction of the arch simulate potential
ring separation and the interaction between the arch and
backfill.

Two advanced damage-plasticity constitutive models are
employed for the 3D solid and interface elements. An effective
and robust multi-level calibration procedure, based on minimisa-
tion of stress power error solved by means of Genetic Algorithms
is developed to evaluate the model mechanical parameters
employing the results from detailed mesoscale models on virtual
experiments. These parameters can be easily calibrated from
non-destructive or low-destructive in-situ tests on masonry units
and mortar joints, which renders the proposed calibration proce-
dure suitable also for practical assessment of historical bridges.

The accuracy and potential of the proposed modelling strategy
and calibration procedure is demonstrated by analysing 2D-strip
medium and long span masonry arch specimens, also interacting
22
with backfill and characterised by different failure mechanisms.
The results of the hybrid model are compared to those obtained
by detailed mesoscale and continuum finite element macroscale
descriptions. It has been found that the proposed modelling strat-
egy provides accurate predictions of the ultimate strength and dis-
placement capacity of multi-ring masonry arches and the
corresponding failure mechanisms. It allows for potential shear
sliding between adjacent rings, where the use of only one circum-
ferential interface layer is suitable for medium span arches but at
least two layers are required for long span arches and bridges.
Additionally, the proposed modelling strategy guarantees superior
computational efficiency especially for the analysis of long span
arches and bridges, where the use of detailed mesoscale modelling
can become infeasible.

Importantly, the numerical results identified some drawbacks
associated with the use of conventional isotropic finite element
macromodels, which can be summarised as following:

– The use of continuum finite element macromodels, without a
rigorous calibration of the mechanical parameters, can lead to
an inaccurate and non-objective prediction of the arch
response.

– Continuum finite element macromodels, even when calibrated
by means of rigorous procedures, can fail in simulating the ulti-
mate arch behaviour when it is driven by sliding between adja-
cent rings.

Both these limitations may significantly affect the results of
safety assessments of masonry arch bridges, leading to a crudely
approximated or completely misleading prediction of the effective
safety level of the bridge and its mode of failure. In this regard, the
proposed hybrid modelling strategy offers the possibility to signif-
icantly improve the accuracy of the numerical predictions without
requiring a significant increase in the computational effort associ-
ated with the nonlinear analysis.
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