
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 980 (2022) 115798
www.elsevier.com/locate/nuclphysb

Effective Lagrangian for non-Abelian two-dimensional 

topological field theory

Pongwit Srisangyingcharoen a,b, Paul Mansfield a,∗

a Centre for Particle Theory, University of Durham, Durham, DH1 3LE, United Kingdom
b The Institute for Fundamental Study, Naresuan University, Phitsanulok, 65000, Thailand

Received 7 October 2021; accepted 19 April 2022
Available online 21 April 2022

Editor: Hubert Saleur

Abstract

We develop a systematic approach to obtain an effective Lagrangian for 2D non-Abelian topological BF 
theory. A general expression is presented in a diagrammatic representation containing solely scalar fields. 
Expressions for the SU(2) and SU(3) effective actions are explicitly stated. In the case of SU(2), we 
show that the effective action can be interpreted as a winding number. By using the SU(2) effective action, 
the partition function on a sphere for SU(2) Yang-Mills theory is calculated. Moreover, we generalise the 
theory to include a source term for the gauge field as well as calculate the vacuum expectation value of the 
Wilson loop based on the effective theory.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Over the past few decades, the study of topological field theories has been important for both 
mathematics and physics. The key feature of the theories is that observables depend only on 
the global structure of the space where the theories are defined. Among the field theory models 
of topological type, the BF theory is of particular interest in many area in physics. It plays an 
important role as an alternative theory of gravity [1–7] and quite recently, it has gained much 
attention for its topological effects in condensed matter physics [8–14].

In this paper, we will obtain the effective Lagrangian purely in terms of the scalar field φ for 
the BF theory resulting in a theory that is both gauge and Weyl invariant. Our motivation for 
constructing this model is to be able to generalise the results of [15], [16], and [17] in which 
it was shown that the Wilson loop for D-dimensional Abelian gauge theories could be obtained 
from a spinning string theory in which the physical degrees of freedom described by the string are 
electric lines of force. The interaction in this model is not the usual splitting/joining interaction 
of fundamental string theory but rather (the supersymmetrisation of) a contact interaction that is 
supported on self-intersections of the string. If the string target space co-ordinates are denoted by 
Xμ(ξ1, ξ2) where ξ i are world-sheet parameters for an open string with fixed boundary curve C
then d�μν(ξ) = d2ξ ′ εij ∂iX

μ(ξ) ∂jX
μ(ξ) is an element of area in target space and the contact 

interaction takes the form∫
d�μν(ξ) δD

(
X(ξ) − X(ξ ′)

)
d�μν(ξ

′) (1)

with a coefficient proportional to the square of the electric charge. Averaging this over fluctuating 
world-sheets results in the gauge-field propagator connecting points X(ξ) and X(ξ ′) when they 
are on the boundary C. We would like to generalise this to non-Abelian gauge theory so at the 
very least we need to introduce Lie algebra-valued world-sheet degrees of freedom φ(ξ) to try 
to reproduce the Lie algebra structure of Yang-Mills propagators∫

d�μν(ξ) δD
(
X(ξ) − X(ξ ′)

)
d�μν(ξ

′) tr
(
φ(ξ)φ(ξ ′)

)
. (2)

As a consequence of the δ-function this interaction is invariant under gauge transformations 
which are functions on target-space if φ transforms as φ(ξ) → g (X(ξ)) φ(ξ) g−1 (X(ξ)). To 
construct a string theory describing non-Abelian lines of force we need a Lagrangian to describe 
the dynamics of φ. This has to be gauge-invariant to preserve the space-time gauge invariance 
of the contact interaction and Weyl invariant to satisfy the usual organising principle of string 
theories. It also has to generate the extra interactions of non-Abelian gauge theories which are 
absent from Abelian ones. A candidate for the dynamics of φ is the effective Lagrangian for 
the BF theory we will calculate in this paper. We shall not address here the issue of whether 
2
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the resulting theory does indeed generate the self-interactions of Yang-Mills theory but simply 
concentrate on deriving the model and addressing the examples of gauge groups SU(2) and 
SU(3) relevant to the Standard Model.

A BF theory is a diffeomorphism-invariant gauge theory. On a D-dimensional manifold M
(D ≥ 2) with structure group, a Lie group G, the classical action of the non-Abelian BF theory 
takes the form

S = 2
∫
M

tr(B ∧ F) (3)

where B is a (D − 2)-form in the fundamental representation of G. F is a curvature 2-form of 
a connection 1-form A defined by F = dA + g[A, A]. The trace implies a scalar product in the 
algebra. Notice that the action is topologically invariant because it is independent of the metric. 
The equations of motion with respect to B and A are

F = 0 and dAB = 0 (4)

where dA is a covariant derivative defined as dA = d + g[A, ]. The action is invariant under 
local gauge transformation with gauge parameter ω as

δA = dAω and δB = [B,ω] + dAη. (5)

The field η is a (D − 1)-form corresponding to the non-Abelian symmetry of the B field, namely 
B symmetry which only appears when D ≥ 3.

In the case D = 2, one can express (3) as

S = 2
∫
M

d2ξ εij tr(φFij ) (6)

or equivalently,

S[φ,A] =
∫
M

d2ξ

(
igAiAAjBf ABCφC − 2∂iφAAA

j

)
εij (7)

where Fij = ∂iAj − ∂jAi + g[Ai , Aj ] is the field-strength of the gauge field A. Both fields φ
and A are elements of a non-Abelian group and so can be written in terms of a set of generators 
{T R} as φ = φRT R and A = ART R .1 To obtain (7), the boundary term, i.e. 

∫
d2ξ∂i(φ ·Aj )ε

ij , 
is assumed to vanish. Notice that in two dimensions, the B field is a 0-form, thus, it is natural to 
replace it with the scalar field φ.

The action (6) has a close connection to the Yang-Mills action in two dimensions as they 
are equivalent in the zero coupling constant limit [18,19]. This can be seen by adding a quadratic 
term with coupling constant e to the action and then integrating out the field φ in the path integral 
below using Gaussian integration∫

DADφ exp

(
2
∫
M

d2ξ

(
εij tr(φFij ) + e2√gtr(φφ)

))

=
∫

DA exp

(
1

2e2

∫
M

d2ξ
√

gtr(FijF ij )

)
. (8)

1 tr(T AT B )= 1 ηAB and [T A, T B ] = if AB
CT C .
2

3
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The outline of this paper is as follows. In section two, an explicit calculation for the SU(2)

effective BF theory is shown. In section three we use the result to give a new derivation of 
the known expression for the partition function on a sphere of SU(2) Yang-Mills theory. The 
calculation for obtaining the effective theory is generalised for arbitrary Lie algebras in section 
four. In section five, we construct a set of diagrams to represent the ingredients appearing in the 
effective Lagrangian in order to aid our calculation. Using the result found in section five we 
present the explicit form for the SU(3) effective Lagrangian in section six. Finally, in section 
seven, we investigate the BF model with a source term for a gauge field A as well as calculate 
the expectation value of the Wilson loop in the effective theory.

2. SU(2) effective BF theory

We begin our calculation with the simplest model for the non-Abelian two-dimensional topo-
logical field theory, i.e. the BF theory for SU(2). The partition function for this theory is defined 
as

Z = 1

Vol

∫
DφDA e−S[φ,A] (9)

where S[φ, A] is expressed in (7). The functional integral is divided by the volume of the gauge 
symmetry which is denoted by Vol.

To obtain an effective theory for the scalar field φ, the gauge field A needs to be integrated 
out. For that purpose, we express all fields in terms of a set of orthonormal bases, i.e. φ̂, Ê+, and 
Ê−, as

φA = ϕφ̂A and AA
i = χiφ̂

A + a+
i ÊA+ + a−

i ÊA−. (10)

Note that these bases are ξ -dependent. They are defined throughout the manifold point by point. 
Obviously, we have chosen a unit vector φ̂ to align in the direction of φ at each point. In terms 
of the usual cross products, the ξ -dependent bases give the following relations:

φ̂ × Ê+ = Ê+, Ê+ × Ê− = φ̂, Ê− × φ̂ = Ê−. (11)

Substituting (10) into (7), the action takes the form

S[φ,A] =
∫
M

d2ξ

(
2igϕ a+

i a−
j − 2∂iφAχj φ̂

A − 2∂iφAa+
j ÊA+ − 2∂iφAa−

j ÊA−

)
εij . (12)

To obtain the first term, the relations (11) were utilised. Note that the structure constant f ABC is 
equal to εABC for SU(2).

Rewriting all the fields using (10), the measure DA now turns into DχDa+Da−. Integrating 
out χ would generate a constraint via the Dirac delta function as∫

Dχi exp

(∫
M

d2ξ 2φ̂A∂iφAχj ε
ij

)
= N

∏
∀ξ∈M

ϕ2δ(2)(∂ϕ2) = N
∏

∀ξ∈M
δ(2)(∂ϕ). (13)

This means ϕ2 (equivalently |φ|2) is constant throughout the space M.
To proceed with the path integration with respect to the field aα

i with α = ±, it is better to 
change the spacetime coordinates ξ1 and ξ2 into complex coordinates which are defined by

z = ξ1 + iξ2 and z̄ = ξ1 − iξ2. (14)
4
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In these new coordinates, the field aα
i becomes complex fields bα where

bα = 1

2
(aα

1 − iaα
2 ) and b̄α = 1

2
(aα

1 + iaα
2 ). (15)

Therefore, the path integral (9) takes the form

Z = 1

Vol

∫
DφDbDb̄

∏
∀ξ∈M

δ(2)(∂ϕ) e−S[φ,b,b̄] (16)

where

S[φ,b, b̄] =
∫
M

d2z

(
− b̄α2igϕεαβbβ + 2∂̄φAÊA

α bα − 2∂φAÊA
α b̄α

)
. (17)

We can then use the Gaussian integration formula to integrate out the complex field b,∫
DbDb̄ e− ∫

d2z(−b̄αMαβbβ+J̄αbα+Jαb̄α) = N0
e− ∫

d2z(J̄α(M−1)αβJβ∏
∀ξ

det(M)
. (18)

According to (17), it is not hard to see that

Mαβ = 2igϕεαβ, Jα = −2∂φAÊA
α , and J̄α = 2∂̄φAÊA

α . (19)

Using the fact that εij εij = 2, the inverse and the determinant of the matrix M are

(M−1)αβ = −i

4gϕ
εαβ, and det(M) = −4g2ϕ2. (20)

Consequently, we can express the path integral as

Z ∼
∫

Dφ
∏

∀ξ∈M

−i

(gϕ)2 δ(2)(∂ϕ) exp

[
−

∫
M

d2z
i

gϕ
∂̄φA∂φB(ÊA

α εαβÊB
β )

]
. (21)

We can rewrite the term ÊA
α εαβÊB

β as

ÊA
α εαβÊB

β = ÊA+ÊB− − ÊB+ÊA− = (Ê+ × Ê−)CεABC (22)

which can be evaluated using (11). As a result, the cross product on the right-hand side is simply 
the unit vector φ̂. Thus, the effective action for two-dimensional SU(2) BF theory can be written 
as ∫

M

d2z
i

g|φ|2 ∂̄φA∂φBφCεABC (23)

or equivalently in the (ξ1, ξ2) coordinates as∫
M

d2ξ
i

2g|φ|2 ∂iφA∂jφBεijφCεABC. (24)

Now, let us give an interpretation of the effective action (24). The effective action can be seen 
as a winding number (up to a constant). To see this, it needs to be noted that the unit vector φ̂(ξ)
5
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maps a point on the manifold M into a point on S2, i.e. φ̂ : M → S2. Furthermore, the integrand 
of the action (24),

1

2
∂i φ̂A∂j φ̂Bεij φ̂CεABC, (25)

is the area element on the target space S2. This can be seen as follows: the variations of the mani-
fold coordinates δξ1 and δξ2 correspond to two infinitesimal tangent vectors δξ1∂1φ̂ and δξ2∂2φ̂

on S2. The cross product of these two vectors has direction φ̂ and magnitude δA. Consequently, 
the triple product, δξ1δξ2(∂1φ̂ × ∂2φ̂) · φ̂, is basically an infinitesimal area on the target space S2

as claimed.
The integration over all manifold coordinates ξ of the integrand (25) yields the total area of 

the unit sphere times an integer corresponding to the winding number n as

1

2

∫
S2

d2ξ∂i φ̂A∂j φ̂Bεij φ̂CεABC = 4πn. (26)

Note that the above term is proportional to the effective action (24) as the magnitude of the field 
φ, |φ|, is constant due to the constraint (13).

3. Partition function for SU(2) Yang-Mills theory on sphere

It is well known that a general expression for partition function for SU(N) Yang-Mills theory 
on a sphere is

ZYM(A) =
∑
R

(dR)2 exp
(− e2AC2(R)

)
(27)

where A is an area of the sphere and R is an irreducible representation of SU(N). dR and C2(R)

are the dimension and the quadratic Casimir of the representation R respectively [20]. For SU(2), 
the representation R is characterised by a positive half-integer l. This yields

dR = 2l + 1 and C2(R) = l(l + 1). (28)

Therefore, the partition function takes the form

ZYM(A) =
∞∑

m=0

(m + 1)2 exp
(− e2

4
A((m + 1)2 − 1)

)
(29)

where l = m/2.
Our purpose in this section is to check whether our approach agrees to the known result by 

re-obtaining the partition function (29) using our effective SU(2) BF theory. To do this, we need 
to be more careful in integrating out the complex b field in (16) as one may notice that ϕ2 in the 
determinant (20) will apparently get cancelled out by the Jacobian of the measure Dφ = ϕ2dϕd�

with � denoting a direction of the scalar field. If the previous statement were true, we would not 
get the prefactor in the formula (29). This implies that the cancellation needs to be partial. It is 
due to the difference in the degrees of freedom between the scalar field and the vector field.

To put it into clearer perspective, let us evaluate the SU(2) partition function, i.e.

Z = 1
∫

DφDχDχ̄DbDb̄ exp
(− S[φ,χ, χ̄ ] − S[φ,b, b̄]) (30)
Vol

6
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where

S[φ,χ, χ̄ ] = 2
∫
M

d2zφ̂A(∂φAχ̄ − ∂̄φAχ) (31)

and S[φ, b, b̄] is expressed as (17). We then expand all the fields in terms of eigenfunctions of 
the scalar Laplacian,

∇2uλ = λuλ. (32)

Therefore, the expression for the real scalar field ϕ is

ϕ =
∑
λ
=0

cλuλ + ϕ0 (33)

where the zero mode term ϕ0 = c0u0 and those for the complex vector fields are

bα =
∑
λ
=0

eα
λ∂uλ, b̄α =

∑
λ
=0

ēα
λ ∂̄uλ (34)

χ =
∑
λ
=0

fλ∂uλ, χ̄ =
∑
λ
=0

f̄λ∂̄uλ. (35)

Note that there is no zero mode expansion for the vector fields as ∂u0 = 0 and uλ forms a 
complete set of orthonormal basis satisfying∫

d2ξ
√

guλ(ξ)uλ′(ξ) = δλλ′ and
√

g
∑
λ

uλ(ξ)uλ(ξ
′) = δ(2)(ξ − ξ ′). (36)

Now, let first take a look at the integral∫
DχDχ̄ exp

(− S[φ,χ, χ̄ ]). (37)

By using the basis expansions, the integral (37) takes the form∫
|J1|

∏
λ

dfλdf̄λ exp

(
2
∫

d2z
∑
λ,λ′

cλ(∂uλ∂̄uλ′ f̄λ′ − ∂̄uλ∂uλ′fλ′)

)
(38)

where J1 is the Jacobian determinant when changing variables from χ and χ̄ to fλ and f̄λ. 
Therefore, it can be computed by

J1 = det

(
δ(χ, χ̄)

δ(fλ, f̄λ)

)
≡ det(M) (39)

The determinant of the matrix can be evaluated from the relation

det(M) =
√

det(M†M). (40)

According to (35), δχ(z)
δfλ

= ∂uλ(z) and δχ̄(z)
δfλ

= ∂̄uλ(z). Therefore,

J1 =
√

det

(∫
d2z∂̄uλ∂uλ′ 0

0
∫

d2z∂̄uλ∂uλ′

)
=

∏
λ

λ, (41)

where (36) was utilised to obtain the last expression and the product is over the non-zero eigen-
values.
7
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When applying the completeness relation (36) to the exponent of (38), it is not hard to see that 
the integral becomes∫ ∏

λ

(−2iλ)d(Re(fλ))d(Im(fλ)) exp
(
4icλλIm(fλ)

)
=

∫ ∏
λ

d(Re(fλ))(−4πiλ)δ(4cλλ)

=
∏
λ

Vol(Re(fλ))(−πiδ(cλ)). (42)

Similar to the expression (13), the above term provides a constraint on the theory via the Dirac 
delta function δ(cλ) requiring the modulus of the scalar field ϕ to be constant, i.e. ϕ = ϕ0, 
throughout the space.

The volume of the real number, Vol(Re(fλ)), can be cancelled with the volume of the gauge 
symmetry in (30). To see this, let us apply a particular choice of gauge-fixing to our calculation. 
We consider a gauge condition that makes the direction of the scalar field, φ̂, constant everywhere 
except for an infinitesimal region. After this gauge has been applied, there is left the residual 
gauge symmetry which does not alter the direction φ̂.

Expanding an infinitesimal gauge transformation parameter ω as

ω = ωφφ̂ + ω+Ê+ + ω−Ê− (43)

where all components are real, the gauge transformation of the scalar field (5) implies that the 
residual symmetry has ω± = 0. Now, let us investigate the effect of this residual symmetry on 
the gauge field A where A takes the form

A = χφ̂ + b+Ê+ + b−Ê−. (44)

According to (5), a variation of the gauge field with respect to the residual gauge transformation 
is

δωA = ∂ω + g[A,ω]
= −i∂ωφR̂ − iωφ∂R̂ + gωφ

(
1√
2
(b+ − b−)B̂1 + i√

2
(b+ + b−)B̂2

)
(45)

where we have re-defined the bases to be

R̂ = iφ̂, B̂1 = 1√
2
(Ê+ + Ê−), B̂2 = −i√

2
(Ê+ − Ê−). (46)

Note that these bases resemble a set of ordinary unit vectors in three-dimensional sphere in which 
they obey the following algebras;

[R̂, B̂1] = B̂2, [B̂2, R̂] = B̂1, [B̂1, B̂2] = R̂. (47)

As a result, if the sphere is characterised by the usual polar angle α and azimuthal angle θ , the 
variation (45) becomes

δωA = − i∂ωφR̂ + ωφ

(
i
∂α

∂z
sin θ + g√

2
(b+ − b−)

)
B̂1

− iωφ

(
∂θ

∂z
− g√

2
(b+ + b−)

)
B̂2. (48)
8
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Comparing the result to the actual variation of the gauge field (44), it implies that a variation of 
the field χ is in the residual gauge orbit when it is real. Remember that the variation of the field 
χ is equivalent to that of the function fλ according to (35)). Consequently, Vol(Re(fλ)) is the 
residual gauge volume as claimed.

Moving on to the next integral to consider, the Gaussian functional integral of the vector fields 
bα in the partition function (30) can be written in terms of scalar functions eλ and ēλ according 
to the Laplacian eigenfunction expansion (34) as

|J2|
∫ ∏

λ

deλdēλe
−S[e,ē] (49)

where J2 is the Jacobian determinant resulted from the change of variables from b and b̄ into e
and ē. The action S[e, ē] is defined as

S[e, ē] =
∫
M

d2z

(
− 2igϕ0

∑
λ,λ′

ēα
λεαβe

β

λ′ ∂̄uλ∂uλ′

+ 2ϕ0∂̄ φ̂AÊA
α

∑
λ

eα
λ∂uλ − 2ϕ0∂φ̂AÊA

α

∑
λ

ēα
λ ∂̄uλ

)
. (50)

To obtain the above action, the constraint (42) is applied making the length of φ constant. The 
first term of the action (50) vanishes when λ 
= λ′ due to the completeness relation (36) which 
yields

S[e, ē] =2igϕ0

∑
λ

λēα
λεαβe

β
λ

+ 2ϕ0

∫
d2z

(
∂̄ φ̂AÊA

α

∑
λ

eα
λ∂uλ − ∂φ̂AÊA

α

∑
λ

ēα
λ ∂̄uλ

)
. (51)

The Jacobian determinant J2 is

J2 = det

(
δ(b(z), b̄(z))

δ(eλ, ēλ)

)
. (52)

By using the relation (40) and fact that δb
α(z)

δe
β
λ

= δα
β∂uλ(z) and δb̄

α(z)

δē
β
λ

= δα
β ∂̄uλ(z), one can obtain

J2 =
√

det

(∫
d2z∂̄uλ∂uλ′δαβ 0

0
∫

d2z∂̄uλ∂uλ′δαβ

)
=

∏
λ

λ2, (53)

where (36) was utilised and again the product is over non-zero eigenvalues.
We can then calculate the Gaussian integral (49) over the complex field eλ and ēλ using (18). 

It becomes∫ ∏
λ

λ2deλdēλe
−S[e,ē] = exp(−Seff[ϕ0.n])∏

λ −(2gϕ0)2 (54)

where

Seff[ϕ0, n] = i
ϕ0

∫
d2z∂̄φ̂A∂φ̂Bφ̂CεABC = 4πni

ϕ0
. (55)
g g

9
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Note that the effective action is related to the winding number n as shown in (26).
The last element to consider is the decomposition of the measure Dφ. This can be obtained 

by considering a small variation of the field φ as

δφ = δϕφ̂ + ϕδφ̂ (56)

with

δφ̂ = δω+Ê+ + δω−Ê− (57)

where δω± are small variations in the tangent directions. The variations δϕ and δω± can be 
expanded in terms of the eigenfunction uλ as

δϕ(ξ) =
∑
m

δcmum(ξ) (58)

δω±(ξ) =
∑
m

δμ±
mum(ξ) (59)

Consequently, we can rewrite the measure as

Dφ = |J3|
∏
m

dcmdμ+
mdμ−

m ≡ |J3|
∏
m

dcmd� (60)

where the Jacobian determinant can be computed by

J3 = det

(
δφA(ξ)

δ(cm,μ+
p ,μ−

q )

)
≡ det(MIJ ). (61)

MIJ is the Jacobian matrix where the row index I ≡ A, ξ and the column index J ≡ m, p, q . 
Again, the relation (40) is used to determine the Jacobian determinant.

As δφ
A(ξ)

δcm
= φ̂A(ξ)um(ξ) and δφ

A(ξ)

δμ±
m

= ÊA±(ξ)ϕum(ξ), It is not hard to see that M†M is⎛⎜⎝
(∫

ξ
um(ξ)um′(ξ)

)
mm′ 0 0

0 0
( ∫

ξ
ϕ2um(ξ)um′(ξ)

)
mm′

0
( ∫

ξ
ϕ2um(ξ)um′(ξ)

)
mm′ 0

⎞⎟⎠ (62)

where 
∫
ξ

is a shorthand for 
∫ √

gd2ξ . Note that the objects in the parentheses are the matrix 
elements in row m and column m′. We can then utilise the fact that the value of ϕ is the constant 
ϕ0 throughout the space due to the constraint (42). This allows us to obtain the absolute value of 
the Jacobian determinant as

|J3| =
∏
m

(ϕ0)
2. (63)

It is clear that the product of (ϕ0)
2 in (63) cannot be completely cancelled by the one in (54)

as mentioned. The cancellation leaves a single factor of (ϕ0)
2 behind. This remaining factor 

accounts for the pre-factor of the partition function as we shall see later.
In consequence, when substituting (42), (54), (60), and (63) into (16), the gauge-fixed partition 

function takes the form

Z = N
∫

dc0

(∏
dcλδ(cλ)

)
ϕ2

0

∞∑
exp(−Seff[ϕ0, n]) (64)
λ n=−∞

10
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where Seff[ϕ0, n] is expressed in (55).
According to (8), we can relate the BF theory to two-dimensional Yang-Mills theory by adding 

a quadratic term in the scalar field. Consequently, the partition function for 2D Yang-Mills is

Z = Ñ
∞∫

0

ϕ2
0dϕ0

∞∑
n=−∞

exp(−Seff[ϕ0, n] − e2
∫
S2

d2ξ
√

gϕ2)

= Ñ
∞∫

0

ϕ2
0dϕ0

∞∑
n=−∞

exp
(− 4πi

g
nϕ0 − e2ϕ2

0A
)
, (65)

where A is the area of the sphere. The infinite sum of the Euler exponential provides a Dirac 
delta function. This discretises the possible values of ϕ0 in the theory as

∞∑
n=−∞

exp
(− 4πi

g
nϕ0

) = g

2
δ
(
ϕ0mod

g

2

)
. (66)

Therefore, it is not hard to see that the expression (65) turns into

Z ∼
∞∑

m=1

m2 exp
(− (eg)2

4
Am2). (67)

The result (67) is in agreement with the expression (29). They differ by the factor −1 in the 
exponent which can be adjusted by a local counter term.

4. Generalisation to an arbitrary Lie algebra

In this section, we would like to generalise the approach we used in section two to an arbitrary 
Lie algebra. As seen in the earlier section, one of the key elements in our calculation is to expand 
the fields in terms of a set of suitable Lie bases. For a general Lie algebra, we will work in the 
Cartan-Weyl basis.

We will denote the Cartan generator Ha and Weyl generator Eα where a = 1, . . . , N − 1 and 
α is a root of eigenvalue equation, adHa (Eα) = αaEα . The roots α forms a vector space �. The 
generators Ha and Eα satisfy the following algebra:

[Ha,Hb] = 0, [Ha,Eα] = α(a)Eα,

and [Eα,Eβ ] =
{

NαβEα+β if α + β ∈ �

Hα if α + β = 0
(68)

where Hα is defined as Hα = αaH
a . The Cartan generators Ha are diagonal traceless matrices 

in the adjoint representation.
Again, we start the calculation with the action (7) with the path integral defined by (9). The 

calculation proceeds by expanding the fields φ and Ai in the Cartan-Weyl basis as

φ = φaH
a and Ai = χiaH

a + aiαEα. (69)

Similar to the SU(2) case, these bases are ξ -dependent. The Cartan generators were chosen such 
that the field φ lies within their subalgebra.
11
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To relate Lie indices A with the Cartan and Weyl indices a and α, we introduce unit vectors 
Ĥ a

A and Êα
A in Lie vector space which are defined as δa

A and δα
A respectively. As a result, the inner 

products among the vectors are

Ĥ a
AĤAb = ηab, Êα

AÊAβ = ηαβ, Ĥ a
AÊAα = 0 (70)

and the completeness relation is

ĤA
a Ĥ a

B + ÊA
α Êα

B = δA
B . (71)

It is not hard to write the field φ and Ai in terms of the unit vectors as

φA = φaĤA
a and AA

i = χa
i ĤA

a + aα
i ÊA

α . (72)

Using the relations (72), one can find the topological field theory action (7) as

S[φ,χ,a] =
∫
M

d2ξ

(
igf ABCφCaα

i a
β
j ÊαAÊβB − 2(∂iφA)aα

j ÊA
α − 2(∂iφA)χa

j ĤA
a

)
εij .

(73)

Notice that there is no contribution from diagonal components of AA
i to the first term as the 

Cartan subalgebra is commutative.
To obtain the effective Lagrangian of the field φ, we need to integrate out the variables χa

i and 
aα
i . According to the action (73), integrating out χa

i would provide a constraint via the Dirac-
delta function as∫

Dχja exp(2
∫

d2ξ(∂iφ
A)χjaĤ

a
Aεij ) = N

N−1∏
a=1

δ(2)((∂φA)Ĥ a
A)

= N
N−1∏
a=1

δ(2)(2tr((∂φ)Ha)). (74)

This implies that the derivative of the field φ, i.e. ∂iφ, has no Ha component. This provides a 
constraint on the theory as tr(φ∂iφ) = 0.

This constraint (74) also implies that the square of the field φ, i.e. φAφA ≡ |φ|2, is constant 
throughout the space which is similar to what we found earlier in the SU(2) theory. Apart from 
that, it also implies the existence of the new invariant quantity,

dABCφAφBφC (75)

where dABC is a totally symmetric third rank tensor defined by

dABC = 2tr({T A,T B}T C). (76)

Up to this point we have ignored a boundary in (7). We will now consider the effect of includ-
ing this term 2 

∫
d2ξ∂i(φAAA

j )ε
ij . It affects the constraints. To see this, let consider the case 

when the manifold M has the topology of a disk. This manifold can be mapped to the upper-half 
plane parameterised by Cartesian coordinates. Therefore, the boundary term takes the form

−2
∫

d2xδ(y)φAAA
x. (77)

By expanding the gauge field A as (72), this turns the theory constraints (74) into
12
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∏
a

δ(2tr(∂xφ)Ha)δ(2tr(∂yφ − δ(y)φ)Ha). (78)

This implies that the squared of the field φ is no longer constant throughout the manifold M. 
There is a discontinuity of |φ|2 at the boundary in the y direction as

|φ|2(x, ε) = 3|φ|2(x,0). (79)

To perform the path integration with respect to the field aα
i , we apply the same trick we used 

in the previous section. We change the spacetime coordinates ξ1 and ξ2 into the complex coor-
dinates z and z̄ which were previously defined in (14). Of course, this coordinate transformation 
modifies the field aα

i into the complex field bα as stated in (15).
As a result, the partition function now takes form

Z = 1

Vol

∫
DφADbαDb̄α

N−1∏
a=1

δ(2)(2tr((∂φ)Ha))exp(−S[φ,b, b̄]) (80)

where the action is expressed in the complex coordinates as

S[φ,b, b̄] = 2
∫
D

d2z

(
igf ABCφCbαb̄βÊαAÊβB − (∂φAb̄α − ∂̄φAbα)ÊA

α

)
. (81)

The path integral of the complex fields bα and b̄α resembles a Gaussian integral which can be 
performed using (18). By comparing (81) with (18), one obtains

Mαβ = 2gif ABCφBÊαAÊβC, Jα = −2ÊA
α ∂φA, J̄α = 2ÊA

α ∂̄φA. (82)

Consequently, it is not hard to find that the effective Lagrangian with respect to the scalar field φ
is

Leff(φ) = −i

2g
J̄α(M̃−1)αβJ β = 2i

g
∂φA∂̄φB

(
ÊA

α (M̃−1)αβÊB
β

)
(83)

where we used Mα
β = 2giM̃α

β .
A general expression for an inverse matrix M̃α

β is

(M̃−1)αβ = adj(M̃)αβ

det(M̃)
(84)

where

adj(M̃)αβ = δ
αj2...jn

βi2...in
M̃i2

j2M̃
i3

j3 . . . M̃in
jn ,

det(M̃) = δ
j1j2...jn

i1i2...in
M̃i1

j1M̃
i2

j2 . . . M̃in
jn . (85)

δ
j1j2...jn

i1i2...in
is a generalised Kronecker delta which is related to an anti-symmetrisation of ordinary 

Kronecker deltas as

δ
j1j2...jn

i1i2...in
= n!δj1

[i1δ
j2
i2

. . . δ
jn

in]. (86)

The integer n is the number of Weyl generators. In the case of SU(N), n is equal to N2 − N .
To obtain the adjugate matrix and the matrix determinant expressed in (85), the matrices 

M̃i
j are contracted with each other depending on the permutations implicit by (86). For the ad-

jugate matrix adj(M̃)αβ , the contractions lead to two types of terms. First, the matrices M̃i
j

13
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ji ≡ M̃i
j = Êi

A
(f ABCφB)ÊjC

i j ≡ δi
j

.

Fig. 1. Diagrammatic representation for matrix element M̃ and Kronecker delta.

are contracted in such a way that they form a new matrix with indices α and β . This contrac-
tion generates a chain of matrix multiplications, for instance, M̃α

j2M̃
j2

j3M̃
j4

j4M̃
j4

β . In this 
example, the matrices M̃i2

j2M̃
i3

j3M̃
i4

j4M̃
i5

j5 are contracted with δα
i2
δ
j2
i3

δ
j3
i4

δ
j4
i5

δ
j5
β . Second, the 

contraction forms a trace of matrix products, i.e. tr(M̃ · M̃ . . . M̃). For example, when the same 
matrices M̃i2

j2M̃
i3

j3M̃
i4

j4M̃
i5

j5 are contracted with δj2
i3

δ
j3
i4

δ
j4
i5

δ
j5
i2

. However, only the latter case 
contributes to the matrix determinant det(M̃).

In addition, the trace term vanishes when the number of matrices M̃ inside is odd. This can 
be seen explicitly by considering

tr(M̃ · M̃ . . . M̃) = M̃α
i1M̃

i1
i2 . . . M̃ik−2

ik−1M̃
ik−1

α

= f A1B1C1φB1ηC1A2f
A2B2C2φB2ηC2A3 · . . . · f AkBkCkφBk

ηCkA1 . (87)

We used the completeness relation (71) to obtain the last line. When we swap the first and the 
third indices of each structure constant f ABC , it gives an extra (−1) to the last line so the whole 
expression vanishes.

The calculation of the inverse matrix (84) involves a lot of contractions corresponding to 
chains of matrix multiplications. To facilitate the calculation, it is sensible to develop a set of 
diagrams to represent them. These diagrams are presented in the next section.

5. Diagrammatic representation of the inverse matrix ˜M

According to the previous section, the inverse of the matrix M̃ is an essential ingredient of 
the SU(N) effective Lagrangian (83). To compute this object, the relation (84) is used. However, 
this is complicated by the large number of terms.

For this reason, we would like to develop a set of diagrams to capture the contractions between 
matrix elements M̃α

β and Kronecker deltas δi
j . We represent these two objects as the vertices 

and lines shown in Fig. 1.
Based on this diagrammatic representation, matrix multiplication is represented by vertices 

connecting by a line. Note that no more than two lines are allowed to be connected to each vertex. 
This fact implies that a diagram involved in the calculation is either a strand or a loop which 
corresponds to a chain of matrix multiplications and its trace respectively. Just for clarification, 
we show some examples for a loop diagram and a strand diagram as well as their corresponding 
matrix representations in Fig. 2.

According to (85), the adjugate matrix, adj(M̃)αβ , can be expressed diagrammatically as a 
summation of all possible products between a strand diagram and loop diagrams. The diagram 
includes n − 1 vertices in total where n = N2 − N for SU(N) (n is always even for N ≥ 2). 
In order to obtain all possible combinations of a strand and loops without overcounting, we can 
start by listing all possible strand diagrams which simply are the strand with different numbers 
of vertices ranging from 1 to n − 1. Then, for each strand, loop diagrams can be created using 
the remaining vertices. Therefore, we can expand the adjugate matrix as
14
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βα = M̃α
iM̃

i
j M̃j

β =Êα
A(f ABCφBηCDf DEF φE

× ηFGf GHI φH )ÊβI

= M̃i
j M̃j

kM̃k
lM̃

l
i = f ABCφBηCDf DEF φEηFG

× f GHI φH ηIJ f JKLφKηLA

Fig. 2. Examples for a strand and loop diagram representing certain matrix multiplications.

adj(M̃)αβ = (−1)n−1

{
(n − 1)!

α
. . .

β

(n − 1) terms

− (n − 3)!
α

. . .
β

(n − 3) terms

×
(

n − 1

2

)

− (n − 5)!
α

. . .
β

(n − 5) terms

×
(

n − 1

4

)[
3! −

(4
2

)(2
2

)
2!

]

− . . . − 1! α β

×
(

n − 1

n − 2

)[
(n − 3)!

. . .

. . .

(n − 2) terms

+ . . . + (−1)
n−2

2 −1
. . .

(n − 2)/2 loops

]}
.

(88)

There is no contribution from loops with odd vertices as they are zero as discussed previously. 
The minus sign factor comes from an antisymmetric permutation of the generalised Kronecker 
delta. Each time the diagram collapses to form smaller loops, an extra (-1) appears which corre-
sponds to an odd permutation of the lower indices of the Kronecker delta in (86). The numbers 
in front of the diagrams count the multiplicities.

One can also see that the indices α and β from the adj(M̃)αβ are embedded at the ends of the 
strands corresponding to the basis ÊAα . Consequently, we can always factor out these bases to 
write the adjugate matrix as

adj(M̃)αβ = Êα�ABÊβB (89)
A

15
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or equivalently �AB = ÊA
α (adj(M̃)αβ)ÊβB . Due to the above relation, it is not hard to see that 

the effective Lagrangian takes the form

Leff(φ) = 2i

g

1

det(M̃)
∂φA�AB∂̄φB. (90)

Unlike the adjugate matrix, only loop diagrams contribute to the matrix determinant det(M̃). 
There are n vertices involve in the expression of the matrix determinant. Det(M̃) is expressed as 
the sum over all product of loops. To obtain these, we can start with the biggest loop of n vertices 
and then cut it down to form smaller loops. The expression for det(M̃) is shown in the equation 
(91). To avoid overcounting, all diagrams in the squared brackets contain the same number for 
fewer vertices than the loop in front of the bracket. Therefore, the general expression for the 
determinant is

det(M̃) = (−1)n−1

{
(n − 1)!

. . .

. . .

n terms

−
(

n

2

)
(n − 3)!

. . .

. . .

(n − 2) terms

×
[ ]

−
(

n

4

)
(n − 5)!

. . .

. . .

(n − 5) terms

×
[

3! −
(4

2

)(2
2

)
2!

]

− . . . −
(

n

n − 2

)
×

[
(−1)

n−2
n

−1

(
n−2
n

)(
n−4
n

) · . . . · (2
2

)
( n

2 )!
. . .

(n − 2)/2 loops

]}
.

(91)

6. Explicit expressions for effective SU(2) and SU(3) Lagrangians

In this section, we show the explicit calculation to obtain the effective Lagrangians for 2D 
topological field theory for SU(2) and SU(3) using the expression (90) together with the dia-
grammatic representation for adjugate matrix and matrix determinant expressed in (88) and (91)
respectively.

For SU(2), the adjugate matrix is

adj(M̃)αβ = (−1)
α β

= −Êα
AεACBφCÊβB (92)

where f ABC = εABC for SU(2). Therefore, �AB = −εACBφC . The matrix determinant is

det(M̃) = (−1) = −εABCφBηCDεDEF φEηAF

= 2ηBDφBφD = 2|φ|2. (93)
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Thus, when substituting the above relations into (90), we obtain

Leff(φ) = −i

g|φ|2 ∂φAεABCφB∂̄φC (94)

which is identical to what we found earlier in the equation (23).
For SU(3), the diagrammatic expressions for the adjugate matrix and matrix determinant are

adj(M̃)αβ =(−1)

{
5! α β

− 3! α β

×
(

5

2

)

− 1! α β

×
[

3! −
(4

2

)(2
2

)
2!

]}
(95)

and

det(M̃) = (−1)

{
5! − 3! ×

(
6

2

)

−
(6

2

)(4
2

)
3!

}
(96)

According to the above expressions, one can write the effective Lagrangian in the form (90)
with

�AB = − 5!(FA
CFC

DFD
EFE

FFFB) + 3! · 10 · (FA
CFC

DFDB)(FE
FFF

E)

+FAB
[
3!(FC

DFD
EFE

FFE
C) − 3(FC

DFD
C)(FE

FFF
E)

]
(97)

and

det(M̃) = − 5!(FA
BFB

CFC
DFE

FFF
GFG

A) + 3! · 15 · (FA
BFB

CFC
DFD

A)(FE
FFF

E)

+ 15(FA
BFB

A)(FC
DFD

C)(FE
FFF

E) (98)

where we used the notation FAB = f ACBφC .
We can further simplify the above terms by expanding them explicitly in the Cartan-Weyl 

basis for SU(3). The generators are

I+ =
⎛⎝0 1 0

0 0 0
0 0 0

⎞⎠ , I− =
⎛⎝0 0 0

1 0 0
0 0 0

⎞⎠ , I 3 = 1

2

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠ ,

U+ =
⎛⎝0 0 0

0 0 1
0 0 0

⎞⎠ , U− =
⎛⎝0 0 0

0 0 0
0 1 0

⎞⎠ ,

V + = 1

2

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ , V − =
⎛⎝0 0 0

0 0 0
1 0 0

⎞⎠ , Y = 1

3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠ . (99)
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We can determine the structure constants by considering all matrix commutators between the 
elements. The generators I 3 and Y are the Cartan subalgebra elements satisfying

[I 3, Y ] = 0. (100)

The plus and minus superscripts of the generators denote the raising and lowering operators 
within the three su(2) subalgebras given by

[I+, I−] = 2I 3, [U+,U−] = 3

2
Y − I 3, [V +,V −] = 3

2
Y + I 3. (101)

Note that the Hermitian conjugation of generators switches the plus and minus superscripts of 
the generators within each SU(2) subgroup, i.e. (I±)† = I∓, (U±)† = U∓, (V ±)† = V ∓.

Apart from (101), the remaining non-zero commutators are

[I 3, I±] = ±I±, [I 3,U±] = ∓1

2
U±,

[I 3,V ±] = ±1

2
U±, [Y,U±] = ±U±,

[Y,V ±] = ±V ±, [I±,U±] = ±V ±,

[I±,V ∓] = ∓U∓, [U±,V ∓] = ±I∓. (102)

For convenience, we denote {I 3, Y, I+, I−, U+, U−, V +, V −} by {T 1, T 2, . . . , T 8} respec-
tively. In this notation, the metric tensor ηAB can be written as

ηAB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 4

3 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(103)

which is directly from ηAB = 2 tr(T AT B).
The field φ is an element of the Cartan subalgebra, i.e. φ = φ1T

1 + φ2T
2. Consequently, one 

can find the adjoint representation of the field φ as

ad(φ) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −2φ1 0 0 0 0
0 0 2φ1 0 0 0 0 0
0 0 0 0 0 φ1 − 2φ2 0 0
0 0 0 0 −φ1 + 2φ2 0 0 0
0 0 0 0 0 0 0 −φ1 − 2φ2
0 0 0 0 0 0 φ1 + 2φ2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(104)
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where ad(φ) = if ABCφB = iFAC . With this matrix (104), one can compute all loop and strand 
diagrams appearing in the equations (97) and (98). Chains of matrix multiplications of the matrix 
F are shown in the Appendix.

From the calculation, we can further simplify the loop terms. The loop diagram with two 
vertices FA

BFB
C can be replaced by the absolute square of the field φ as

FA
BFB

A = −2(φ1)
2 − 1

2
(φ1 − 2φ2)

2 − 1

2
(φ1 + 2φ2)

2

= −3((φ1)
2 + 4

3
(φ2)

2) = −3|φ|2. (105)

A similar pattern appears in the four-vertex loop as it is proportional to |φ|4:

FA
BFB

CFC
DFD

A = 2(φ1)
4 + 1

8
(φ1 − 2φ2)

4 + 1

8
(φ1 + 2φ2)

4

= 9

4
((φ1)

2 + 4

3
(φ2)

2)2 = 9

4
|φ|4. (106)

The six-vertex loop can be expressed in terms of two invariant objects, |φ|6 and dABCφAφBφC

as

FA
BFB

CFC
DFD

EFE
FFF

A = −2(φ1)
6 − 1

32
(φ1 − 2φ2)

6 − 1

32
(φ1 + 2φ2)

6

= −33

16
|φ|6 + 9

8

(
2(φ1)

2(φ3) − 8

9
(φ2)

3
)2

(107)

where the quantity inside the parenthesis is dABCφAφBφC where dABC is the totally symmetric 
third rank tensor defined in (76).

In consequence, we can rewrite the terms (97) and (98) as

�AB = − 120(FA
CFC

DFD
EFE

FFFB) − 180(FA
CFC

DFDB)|φ|2 − 27

2
FAB |φ|4

(108)

and

det(M̃) = − 765|φ|6 − 135(dABCφAφBφC). (109)

7. The topological field action with a source term and the expectation value of the Wilson 
loop

In this section we would like to generalise the action (6) further by adding a source term for 
the gauge field A. Consider the action given by

S[J ] = 2
∫
M

d2ξ εij tr(φFij +JiAj ). (110)

To obtain the effective Lagrangian for the field φ, we will integrate out the gauge field A as 
before. By doing so, we expand the field A in terms of the unit basis defined by (72). This gives 
the partition function as

Z[J ] = 1
∫

DφADaα
i Dχja exp(−S̃[J ]). (111)
Vol
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with

S̃[J ] =
∫
M

d2ξ
(
igf ABCφCaα

i a
β
j ÊαAÊβB − (2∂iφA −JiA)aα

j ÊA
α

− (2∂iφA −JiA)χjaĤ
Aa

)
εij . (112)

It is not hard to see that the path integration of the last line leads to a constraint on the theory. 
This appears in the form of a Dirac delta function

N−1∏
a=1

2∏
i=1

δ(tr(2∂iφ −Ji )H
a). (113)

The constraint implies that the difference between 2∂φ and J does not lie in the Cartan subal-
gebra.

We can proceed with the calculation as in previous sections by changing from spacetime 
coordinates (ξ1, ξ2) to the complex coordinates (z, ̄z). The partition function now resembles a 
Gaussian path integral with respect to the complex fields b and b̄ expressed in (15) which is

Z[J ] = N
Vol

∫
DφADbαDb̄α

2∏
i=1

δ(N−1)(tr((2∂iφ −Ji )φ̂))exp(−S[φ,b, b̄,J ]), (114)

where

S[φ,b, b̄,J ] =
∫
M

d2z
(

2igf ABCφCbαb̄βÊαAÊβB

− ((2∂φA −JA)b̄α − (2∂̄φA − J̄A)bα)ÊA
α

)
. (115)

Integrating out the b and b̄ using (18) yields

Z[J ] = N
Vol

∫
DφA

2∏
i=1

δ(N−1)(tr((2∂iφ −Ji )φ̂))exp
(

− Seff(φ,J )
)

(116)

with

Seff(φ,J ) =
∫

d2z
i

2g

1

det(M̃)
(2∂φA −JA)�AB(2∂̄φB − J̄B). (117)

Turning back to the (ξ1, ξ2) coordinates, the effective action takes the form

Seff(φ,J ) =
∫

d2ξ
i

4g

1

det(M̃)
(2∂iφA −JiA)�AB(2∂jφB −JjB)εij . (118)

It is known that one can relate a BF theory to 2D Yang-Mills theory by introducing the 
quadratic term for the field φ which is

Sqd = e2
∫

d2ξ
√

g|φ|2. (119)

As a result, the partition function for the 2D gauge theory with the gauge field source J can be 
expressed as
20
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D C

M

Fig. 3. Two-dimensional manifold M with a region D and a closed loop C.

Z[J ] = N
Vol

∫
DφA

2∏
i=1

δ(N−1)(tr((2∂iφ −Ji )φ̂))exp
(

− (Seff + Sqd)
)
. (120)

With a suitable choice of the source term J , in principle we are able to compute the expecta-
tion value of a Wilson loop in 2D Yang-Mills theory based on our effective BF theory. However, 
we have to deal with the issue of path-ordering.

The non-Abelian Wilson loop can be expressed as the trace of the path-ordered exponential 
of a line integral of the gauge field A along a closed loop C,

W [C] = tr
(
P
(
e−g

∮
C A·dξ

))
. (121)

The trace together with the path-ordering operator can be replaced by a functional integral over 
a complex anti-commuting field ψ [21,22] as

W [C] =
∫

Dψ†Dψ exp
(∫

dτψ†ψ̇ − gAiRξ̇ iψ†T Rψ
)

(122)

where the loop C is now parametrised by τ . Therefore, the expectation value of the Wilson loop 
takes the form

〈W [C]〉 = 1

Z′

∫
DφDψ†Dψ

2∏
i=1

δ(N−1)(tr((2∂iφ −Ji )φ̂))

× exp
(−(Seff + Sqd) +

∫
dτψ†ψ̇

)
(123)

with

J A
i(ξ) = −g

∮
C

ψ†(ξ̃ )T Aψ(ξ̃ )δ(2)(ξ − ξ̃ )εij dξ̃ j (124)

and the action Seff and Sqd are expressed in (118) and (119) respectively. The term Z′ in the 
denominator is a normalisation factor such that 〈1〉 = 1.

However, it turns out that the solution for the equation 2∂iφ −Ji = 0 with the source term ex-
pressed above is not consistent as the line integral of Ji is not path independent which contradicts 
to the equation itself. To deal with this, we will exploit gauge symmetry.

For simplicity, we will proceed with the calculation in the context of SU(2) theory. In this 
setting, we choose the gauge fixing such that the unit vector φ̂ is constant everywhere outside a 
region D. Therefore, the manifold M now consists of the region D where the value of φ̂ varies 
21
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and the rest of the manifold where the φ̂ is constant. We can further choose that the region D
does not intercept the loop C as depicted in the Fig. 3.

According to this gauge choice, the effective action term (118) becomes

Seff(φ,J ) =
∫
D

d2ξ
i|φ|
2g

∂iφ̂A∂j φ̂Bφ̂CεABCεij

+
∫

M/D

d2ξ
i

8g|φ|2 (2∂iφA −JiA)(2∂jφB −JjB)φCεABCεij . (125)

If we consider the case when the manifold M has a topology of unit sphere S2, the first term can 
be related to a winding number as discussed in the earlier section. Note that |φ| is constant due 
to the absence of the source in D. Moreover, since the φ̂ is constant in M/D, the non-vanishing 
contribution to the second line is∫

M/D

d2ξ
i

8g|φ|2JiAJjBφCεABCεij

= ig

8

∮
C

∮
C

dξ̃ idξ ′ j
(

ψ†T Aψ

∣∣∣∣
ξ̃

)(
ψ†T Bψ

∣∣∣∣
ξ ′

)
δ(2)(ξ̃ − ξ ′)εij

φC

|φ|2 εABC. (126)

The term 
∮
C

∮
C

dξ̃ idξ ′ j δ(2)(ξ̃ − ξ ′)εij counts the number of times the loop C intersects itself. 
Therefore, the above term can be set to zero provided that the loop C does not have a self-
intersection. Subsequently, the effective action (125) turns into

Seff(φ) = i

g
|φ|(4πn) (127)

where n is the winding number of the map φ̂.
At this point, the appearance of the fermionic field ψ in the effective action Seff has been 

removed due to the gauge choice. Therefore, according to (123), the only term that is subject to 
the path-ordering operation is the source term J in the constraint. This allows us to rewrite (123)
as

〈W [C]〉 = 1

Z

∫
DφDχ tr

[
P
(

exp

(
g

2

∮
C

φ̂χidξ i

))]

× exp

(
− (Seff + Sqd) +

∫
d2ξ(∂iφA)φ̂Aχj ε

ij

)
(128)

where the Dirac delta function is replaced by the functional integral over the field χ . Since the 
field φ̂ is constant and commutes with itself throughout the loop, the path-ordering operator P
can be dropped. Denoting the eigenvalue of φ̂ by λ, the trace of the exponential in the first line 
takes the form∑

λ

exp

(
gλ

2

∫
d2ξ

∮
C

δ(2)(ξ − ξ̃ )χi(ξ)dξ̃ i

)
. (129)

We then proceed with the calculation by integrating out the field χ . This generates a constraint 
via a Dirac delta function as
22
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〈W [C]〉 = 1

Z

∫
Dφ

∑
λ

2∏
i=1

δ

(
∂i |φ| + gλ

2

∮
C

δ(2)(ξ − ξ̃ )εij dξ̃ j

)
e−(Seff+Sqd ). (130)

It is not hard to see that the solution for the constraint,

∂i |φ| + gλ

2

∮
C

δ(2)(ξ − ξ̃ )εij dξ̃ j = 0, (131)

takes the form

ϕλ − ϕ0 = −gλ

2

( ξ∫
O

∮
C

δ(2)(ξ ′ − ξ̃ )εij dξ̃ idξ ′ j
)

, (132)

where ϕλ and ϕ0 are the scalar fields at arbitrary point ξ and a reference point O respectively. 
The object in the parenthesis counts the number of oriented intersections between two curves 
[23]. The solution above is independent of path, hence, it depends only on the reference point O . 
If we set the point O to be outside the loop C,

ϕλ − ϕ0 =
{

− gλ
2 , if ξ is inside the loop C

0, otherwise.
(133)

This allow us to compute the expectation value of the Wilson loop in 2D Yang-Mills theory 
(130) as

〈W [C]〉 = 1

Z

∑
λ

∞∫
0

dϕ0

∞∑
n=−∞

exp

[−i

g
(4πn)ϕ0 − e2

∫
M

d2ξ
√

gϕ2
λ

]
(134)

The infinite m limit of the Dirichlet kernel, Dm(x), represents the Dirac delta function as

lim
m→∞Dm(x) = lim

m→∞

m∑
k=−m

eimx = 2πδ(x) (135)

where x ∈ [0, 2π]. Therefore, (134) becomes

〈W [C]〉 = 1

Z

∑
λ

∞∫
0

dϕ0
g

2
δ(ϕ0 mod

g

2
)

× exp

[
− e2

(∫
�

d2ξ
√

gϕ2
λ +

∫
M/�

d2ξ
√

gϕ2
λ

)]
(136)

In the above expression, we separate the region M into � and M/� where � is all the region 
inside the loop C with the boundary ∂� = C. Denoting the surface area of the region � and M/�

by A1 and A2 subsequently together with (133), the relation (136) takes the form

〈W [C]〉 = g

2Z

∑
λ

∞∑
N=0

exp

[
−

(
eg

2

)2(
A1(N − λ)2 + A2N

2
)]

. (137)

In the case of SU(2), if we consider the eigenvalues of φ̂ in the fundamental representation, 
λ = ±1/2. This turns the expression (137) into
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〈W [C]〉 = g

2Z

( ∞∑
N=−∞

exp

[
− e2

YM

(
A1(N + 1/2)2 + A2N

2
)]

+ exp

[
− e2

YM

4
A1

])
= g

2Z

(
ϑ

(
ie2A1

2π
; ie2A

π

)
+ 1

)
exp

[
− e2

YM

4
A1

]
(138)

where we re-define the Yang-Mills coupling constant eYM as eg2 and ϑ(z; τ) is the Jacobi’s third 
theta function defined as

ϑ(z; τ) =
∞∑

N=−∞
exp(2πiNz + πiN2τ). (139)

In the case that M is an infinitely large sphere, i.e. A2 → ∞, the vacuum expectation value 
of the Wilson loop (137) turns into

〈W [C]〉 = g

Z
exp

[
− e2

YM

4
A1

]
(140)

as the theta function becomes unity at this limit.
The result (140) shows that the expectation value of the Wilson loop for 2D Yang-Mills theory 

obtained by the effective topological BF theory satisfies the area law. This agrees with known 
results [24–26] as far as the exponent is concerned, which is the dominant piece. To compute 
the prefactor would require the computing the determinants arising from the Gaussian integrals 
generalising the argument given above for the SU(2) partition function.

8. Conclusions

To conclude, we constructed a gauge and Weyl invariant theory of a two-dimensional scalar 
field by integrating out the gauge fields in BF theory. This model is a candidate for generalising a 
string theory contact interaction that describes Abelian gauge theory to the non-Abelian case. The 
calculation was implemented by expanding the fields in the Cartan-Weyl basis. By performing 
a Gaussian functional integration, we obtained the effective theory with the Lagrangian (90)
together with the constraint addressed in (74). The constraint implies that the magnitude of a 
scalar field, |φ|, as well as the quantity dABCφAφBφC are constant throughout the space.

The adjugate and the determinant of the matrix M̃ play an important part in (90) where 
M̃ is defined as (82). We developed a diagrammatic approach to represent these objects. The 
diagrams are constructed from vertices connected to each other by lines. No more than two line 
are allowed to connect with one vertex. There are two type of diagrams, i.e. a strand and a loop. 
The adjugate matrix and the matrix determinant were expressed as summations over products of 
these diagrams as in (88) and (91) respectively.

For the case of SU(2) and the manifold having the topology of a unit sphere, the effective 
action (24) contains the winding number of the field φ̂ which maps a point on the manifold into 
a point on S2. By using the SU(2) effective action and summing over this winding number, we 
re-formulated the partition function on a sphere of SU(2) Yang-Mills theory.

Finally, we investigated the BF theory coupled to a source term for the gauge field. The ef-
fective generating functional of the gauge field was formulated. The result was checked via a 
computation of the expectation value of the Wilson loop. We exploited the gauge symmetry to 
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deal with the path-ordering of the Wilson loop. The result showed that the vacuum expectation 
exhibits the area law agreeing with the well-known results [24–26].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Acknowledgement

We are pleased to acknowledge Development and Promotion of Science and Technology Tal-
ents Project (Royal Thai Government Scholarship) for support.

Appendix A. Expressions for matrix multiplications of the matrix F

The expressions for matrix multiplication of the matrix F are given as follows:

FA
BFBC =⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −2(φ1)

2 0 0 0 0
0 0 −2(φ1)

2 0 0 0 0 0
0 0 0 0 0 −1

2 (φ1 − 2φ2)
2 0 0

0 0 0 0 −1
2 (φ1 − 2φ2)

2 0 0 0
0 0 0 0 0 0 0 −1

2 (φ1 + 2φ2)
2

0 0 0 0 0 0 −1
2 (φ1 + 2φ2)

2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(141)

FA
BFB

CFCD =⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −2i(φ1)

3 0 0 0 0
0 0 2i(φ1)

3 0 0 0 0 0
0 0 0 0 0 i

4 (φ1 − 2φ2)
3 0 0

0 0 0 0 −i
4 (φ1 − 2φ2)

3 0 0 0
0 0 0 0 0 0 0 −i

4 (φ1 + 2φ2)
3

0 0 0 0 0 0 i
4 (φ1 + 2φ2)

3 0

⎞⎟⎟⎟⎟⎟⎟⎠
(142)

FA
BFB

CFC
DFDE =⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2(φ1)

4 0 0 0 0
0 0 2(φ1)

4 0 0 0 0 0
0 0 0 0 0 1

8 (φ1 − 2φ2)
4 0 0

0 0 0 0 1
8 (φ1 − 2φ2)

4 0 0 0
0 0 0 0 0 0 0 1

8 (φ1 + 2φ2)
4

0 0 0 0 0 0 1
8 (φ1 + 2φ2)

4 0

⎞⎟⎟⎟⎟⎟⎟⎠
(143)

FA
BFB

CFC
DFD

EFEF =
25
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⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2i(φ1)

5 0 0 0 0
0 0 −2i(φ1)

5 0 0 0 0 0
0 0 0 0 0 −i

16 (φ1 − 2φ2)
5 0 0

0 0 0 0 i
16 (φ1 − 2φ2)

5 0 0 0
0 0 0 0 0 0 0 i

16 (φ1 + 2φ2)
5

0 0 0 0 0 0 −i
16 (φ1 + 2φ2)

5 0

⎞⎟⎟⎟⎟⎟⎟⎠
(144)

FA
BFB

CFC
DFD

EFE
FFFG =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −2(φ1)

6 0 0 0 0
0 0 −2(φ1)

6 0 0 0 0 0
0 0 0 0 0 −1

32 (φ1 − 2φ2)
6 0 0

0 0 0 0 −1
32 (φ1 − 2φ2)

6 0 0 0
0 0 0 0 0 0 0 −1

32 (φ1 + 2φ2)
6

0 0 0 0 0 0 −1
32 (φ1 + 2φ2)

6 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(145)
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