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Bayesian inference under a set of priors, called robust Bayesian analysis, allows for 
estimation of parameters within a model and quantification of epistemic uncertainty in 
quantities of interest by bounded (or imprecise) probability. Iterative importance sampling 
can be used to estimate bounds on the quantity of interest by optimizing over the set of 
priors. A method for iterative importance sampling when the robust Bayesian inference 
relies on Markov chain Monte Carlo (MCMC) sampling is proposed. To accommodate the 
MCMC sampling in iterative importance sampling, a new expression for the effective 
sample size of the importance sampling is derived, which accounts for the correlation 
in the MCMC samples. To illustrate the proposed method for robust Bayesian analysis, 
iterative importance sampling with MCMC sampling is applied to estimate the lower bound 
of the overall effect in a previously published meta-analysis with a random effects model. 
The performance of the method compared to a grid search method and under different 
degrees of prior-data conflict is also explored.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bayesian analysis quantifies uncertainty by precise probability derived from a prior (subjective) distribution for param-
eters and a likelihood for data given parameters (Gelman et al., 2013). Whereas statistical Bayesian inference usually uses 
non-informative priors as default, there are exceptions motivating the use of informative priors to reduce complexity (Simp-
son et al., 2017). In a decision context where one wants to use the best possible knowledge, informative priors are useful, or 
even needed, to integrate data with expert knowledge. Specifying a precise informative prior may be difficult, in particular 
for a model with many parameters or when experts disagree (Rinderknecht et al., 2012; Insua et al., 2000).

Robust Bayesian analysis is a way to consider the impact of the choice of prior on uncertainty in relevant quantities. 
The impact of different priors in Bayesian inference is important to evaluate for two reasons. First, it is common that more 
than one prior probability distribution could reasonably be chosen for the problem at hand. Second, when information in 
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data is weak (e.g. for small sample sizes), the choice of prior could matter a lot for the final outcome of an analysis. Robust 
Bayesian analysis has been used for sensitivity analysis towards the choice of prior (Berger, 1990).

A type of robust Bayesian analysis is to use sets of prior distributions or sets of likelihoods resulting in sets of posterior 
distributions. This can be seen as an extension of Bayesian inference which quantifies uncertainty by bounded (imprecise) 
probability instead of precise probability (Walley, 1991). In robust Bayesian analysis, one is often interested in estimating 
bounds on expectation. For instance, the lower bound on expectation of a function f with respect to a set of posterior 
distributions, M, is expressed as

E( f ) := inf
p∈M

∫
f (x)p(x)dx. (1)

Note that a set of posterior distributions is derived from a set of prior distributions.
Robust Bayesian analysis using sets of priors has been developed in a closed analytic form for conjugate models (Bernard, 

2005; Quaeghebeur and de Cooman, 2005; Walley et al., 1996). In (Wei and Jiang, 2017), a range of posterior expectations 
are computed using a Monte Carlo method when considering uncertainty regarding the prior or likelihood.

Importance sampling has also been used to estimate bounds on expectations using independent samples drawn from 
arbitrary (e.g. not necessarily conjugate) models, as long as the posterior can be analytically evaluated up to a normalization 
constant (Fetz, 2017; Troffaes, 2017, 2018; Troffaes et al., 2018). In an iterative version of importance sampling, it has been 
suggested to iteratively change the sampling (also called proposal) distribution of importance sampling, in order to get an 
effective sample size (i.e. a measure of efficiency) as close as possible to the actual sample size (Troffaes, 2017, 2018). A 
small effective sample size means that the weights of importance sampling are too imbalanced and thus might be unreliable.

In (Troffaes, 2018), it is also suggested to use the posterior distribution directly as a sampling distribution where possible. 
The use of the posterior allows, in theory, for the effective sample size to be maximized across iterations. For this reason, the 
effective sample size of the importance sampling estimator is used as the stopping criterion of iterative importance sampling 
in (Troffaes, 2018). However, the effective sample size can be very poor if the sampling distribution is not carefully chosen, 
i.e. if the initial choice of posterior is far from the posterior that, say, minimizes the expectation of the quantity of interest. 
Further, the method can have issues with convergence across iterations as a result. The required number of samples for 
accurate estimation using importance sampling has also been discussed in (Agapiou et al., 2017; Chatterjee and Diaconis, 
2018; Sanz-Alonso, 2018) by means of the Kullback Leibler divergence.

Markov chain Monte Carlo (MCMC) sampling is a method for Bayesian inference which does not require a closed form of 
the posterior (Brooks et al., 2011; Gelman et al., 2013). MCMC sampling allows for inference of simple as well as complex 
models. So far, few robust Bayesian analyses have used MCMC sampling (see (Vernon and Gosling, 2017) for an example). 
This is mainly due to limitations in existing methods, such as requirements on knowing the analytical form of the posteriors. 
The inability to use MCMC sampling severely restricts the use of robust Bayesian analysis on more complex models.

To use iterative importance sampling with MCMC samples there is a need to modify the effective sample size that is 
used in the stopping criterion in iterative importance sampling. In this paper, we combine iterative importance sampling 
with MCMC sampling by extending the method from (Troffaes, 2017, 2018) to a wider range of models, specifically those 
requiring MCMC sampling. To accomplish this, we derive an expression for the effective sample size which accounts for 
correlated MCMC samples.

In (Liesenfeld and Richard, 2008), an efficient importance sampling is proposed for improving a MCMC algorithm. The 
efficient importance sampling consists of selecting a proposal distribution (given a density kernel) using a least squares 
problem and then using the proposed distribution in an independent Metropolis Hasting sampling. Moreover, in (Llorente et 
al., 2021), a layered adaptive importance sampling algorithm is presented which combined MCMC algorithms with impor-
tance sampling and different strategies to re-use generated samples. The layered adaptive importance sampling algorithm 
generates samples using two layers. The upper layer generates samples using a MCMC algorithm which are later used in 
a multiple importance sampling scheme (lower layer) (Llorente et al., 2021). A recycling layered adaptive importance sam-
pling scheme is presented which re-uses the samples from the upper layer in the lower layer (Llorente et al., 2021). This 
scheme is similar to the method proposed in this paper. However, a key difference between the (Liesenfeld and Richard, 
2008) and (Llorente et al., 2021) papers and this paper is that we re-use the MCMC samples from one run by weighting 
with a different prior, and that we use an efficient sample size for determining when to re-run the MCMC sampler, which 
leads to fewer MCMC runs to cover the hyperparameter space.

A robust Bayesian analysis allows for a quantification of uncertainty in quantities of interest which is robust to the 
choice of prior. It can also be useful for Bayesian inference when priors are given as sets. To demonstrate the proposed 
method, iterative importance sampling with MCMC sampling is applied to estimate the lower bound of the overall effect of 
biomanipulation of freshwater lakes in an already published meta-analysis (Bernes et al., 2015).

2. Importance sampling

Recall that the expectation of a function f with respect to a target distribution, p is given by

μ := Ep

(
f (x)

)
=

∫
f (x)p(x)dx, (2)
2
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which can be approximated by the standard Monte Carlo estimator of Ep

(
f (x)

)
as

μ := 1

N

N∑
i=1

f (Xi), (3)

where Xi ∼ p are independent and identically distributed (i.i.d.) samples.
Sometimes, it is difficult to draw samples directly from p or there is a mismatch between f (x) and p(x) (Owen, 2013). 

In this case, importance sampling could be applied to estimate the expectation by weighting samples drawn from a sampling 
distribution, q, from which it is easier to generate samples (Egloff and Leippold, 2010). This technique has been applied in 
Bayesian inference (Gelman et al., 2013) and in numerical integration (Liu, 2008; Owen, 2013).

The sampling density function q must be such that q(x) > 0 whenever p(x) f (x) �= 0. Sometimes p is only known up to a 
normalization constant, say only pu = cp is known, where c > 0 is an unknown constant. The expectation of f with respect 
to p can be written as

μ := Ep

(
f (x)

)
=

∫
f (x)pu(x)dx∫

pu(x)dx
=

∫
f (x)w p(x)q(x)dx∫

w p(x)q(x)dx
=

Eq

(
f (x)w p(x)

)
Eq

(
w p(x)

) , (4)

where w p(x) := pu(x)
q(x) .

This expectation can be estimated by self-normalized importance sampling, which is defined as

μ̃ :=
∑N

i=1 f (Xi)w p(Xi)∑N
i=1 w p(Xi)

where Xi ∼ q (i.i.d). (5)

In the following, we shall relax the assumption of independence. At this point, it suffices to point out that eq. (5) is still 
a valid estimator of Ep

(
f (x)

)
even if the Xi are dependent.

A measure to assess the quality of the importance sampling estimator is the effective sample size, ESS. It is defined by 
(Kong, 1992), as the ratio of the variances of μ and μ̃ estimators, in eq. (3) and eq. (5), scaled to N:

ESS := NVarp(μ)

Varq(μ̃)
. (6)

The effective sample size represents the number of standard Monte Carlo samples that are needed for both estimators to 
have the same variance.

If the samples Xi from q are i.i.d. then ESS can be estimated by

ESSIS := (
∑N

i=1 w p(Xi))
2∑N

i=1 w2
p(Xi)

, (7)

see (Owen, 2013). However, this formula is not applicable for correlated samples, as would be the case if the Xi are sampled 
from q using an MCMC algorithm.

3. Effective sample size of importance sampling using MCMC

Here, we want to derive an estimate of the effective sample size as defined in eq. (6) when the Xi are sampled from q
through MCMC. First, we derive an approximation of Varq(μ̃).

Importance sampling with MCMC was introduced by (Hastings, 1970) for variance reduction (Bhattacharya, 2008). Hast-
ings (Hastings, 1970) suggested the following approximate of the denominator in eq. (6):

Varq (μ̃) = Varq

(
Y

Z

)
≈ Varq(Y − μZ)(

Eq(Z)
)2

, (8)

where

Y := 1

N

N∑
i=1

f (Xi)w p(Xi), (9)

Z := 1

N

N∑
i=1

w p(Xi), (10)
3
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and μ := Ep

(
f (x)

)
as defined earlier.

First, let us evaluate the denominator in eq. (8). Note that

Eq

(
w p(Xi)

)
=

∫
w p(x)q(x)dx =

∫
cp(x)

q(x)
q(x)dx = c, (11)

so Eq(Z) = c, and we can approximate the denominator via

(
Eq(Z)

)2 ≈
(

1

N

N∑
i=1

w p(Xi)

)2

. (12)

The numerator in eq. (8) is more tricky. Let

g(Xi) := ( f (Xi) − μ)w p(Xi). (13)

With this notation, we get

Varq(Y − μZ) = 1

N2

⎛⎝ N∑
i=1

Varq

(
g(Xi)

)
+ 2

∑
i< j

Covq

(
g(Xi), g(X j)

)⎞⎠ . (14)

If the variables Xi form a stationary stochastic process, as in a converged MCMC algorithm, then Varq

(
g(Xi)

)
and 

Covq

(
g(Xi), g(Xi+k)

)
depend only on k and not i. Hence, with X := X1,

Varq(Y − μZ) = Varq

(
g(X)

)(
1 + 2

∑N−k
k=1 ρg(k)

N

)
, (15)

where ρg is the autocorrelation function of the stationary process. According to (Geyer, 1992), for large N , the variance is 
approximately

Varq(Y − μZ) ≈ Varq

(
g(X)

)(
1 + 2

∑∞
k=1 ρg(k)

N

)
. (16)

If 
∑∞

k=1 ρg(k) converges, then a standard approximation is (Geyer, 1992; Givens and Hoeting, 2012)

∞∑
k=1

ρg(k) ≈
�∑

k=1

ρ̂g(k), (17)

where � is the first index for which ρ̂g(� + 1) < 0, and where ρ̂g is the empirical autocorrelation function of the sample 
g(X1), . . . , g(XN). Note that evaluating g requires knowledge of μ which is precisely the quantity we wish to estimate. So, 
instead we will use

g̃(Xi) := ( f (Xi) − μ̃)w p(Xi), (18)

as an approximation for g(Xi), and therefore use

∞∑
k=1

ρg(k) ≈
�∑

k=1

ρ̂g̃(k). (19)

We now estimate Varq

(
g(X)

)
in eq. (16). Using eq. (13), we also get that

Varq

(
g(X)

)
= Varq

(
f (X)w p(X)

)
− 2μCovq

(
f (X)w p(X), w p(X)

)
+ μ2Varq

(
w p(X)

)
. (20)

Now, following the same ideas as in (Elvira et al., 2018)[p. 5-6] (see Appendix A for details) we get

Varq

(
g(X)

)
≈ NVarp(μ)

(
1

N

N∑
i=1

w2
p(Xi)

)
. (21)

Putting everything together, we get
4
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Varq(μ̃) ≈ NVarp(μ)

1
N

∑N
i=1 w2

p(Xi)(
1
N

∑N
i=1 w p(Xi)

)2

(
1 + 2

∑�
k=1 ρ̂g̃(k)

N

)
, (22)

= N2Varp(μ)

ESSIS · ESSMCMC
, (23)

where ESSIS is the standard estimate of the effective sample size for importance sampling with independent samples, eq. (7), 
and ESSMCMC is the MCMC effective sample size (for g̃),

ESSMCMC := N

1 + 2
∑�

k=1 ρ̂g̃(k)
.

Substituting eq. (23) into eq. (6), we finally obtain the following estimate for the combined ESS

ESS ≈ ESSMCMC

N
· ESSIS. (24)

So, what is new in eq. (24) with respect to eq. (7) is the factor ESSMCMC
N which accounts for a reduction in effective sample 

size due to the correlation of the MCMC samples (a reduction since it is very unlikely that the correlation will be negative).

4. Importance sampling over a set of probability distributions

Let M ⊂ Rd be a compact set and pt(·) = {p(·|t)|t ∈ M} be a probability density function parameterized by t (i.e. 
hyperparameters). The lower expectation of a function f with respect to pt for all t ∈ M is assumed to exist and is 
estimated by

E( f ) := min
t∈M

∫
f (x)pt(x)dx. (25)

In practice, one can search for the minimum using numerical methods. For instance, an iterative version of standard 
importance sampling has been used to estimate bounds on expectations in robust Bayesian analysis (Fetz, 2017; Troffaes, 
2017, 2018; Troffaes et al., 2018).

Using importance sampling, the lower expectation is estimated by

Ê( f ) ≈ min
t∈M

∑N
i=1 f (Xi)wt(Xi)∑N

i=1 wt(Xi)
, (26)

where wt(x) := cpt (x)
q(x) .

Iterative importance sampling estimates the lower expectation of a function f by moving the sampling distribution, 
q, towards the optimal distribution (Fetz, 2017; Troffaes, 2017). The stopping criterion is that the effective sample size 
of importance sampling should be close enough to the desired independent sample size (denoted by ESStarget) that is 
fixed in advance. In this paper, we adapt iterative importance sampling introduced in (Fetz, 2017; Troffaes, 2017, 2018). 
Our contribution is the effective sample size of importance sampling with correlated MCMC samples which allows us to 
combine iterative importance sampling with MCMC sampling, thus allowing for robust analysis of more complex models. It 
is important to highlight that how large the sample size for MCMC samples should be and ESStarget in step 2 and step 4 
respectively, are values fixed in advance (i.e. they are inputs to the procedure). The method goes as follows:

Step 1 Set t = t0 where t0 is an initial value in the feasible region.
Step 2 Generate samples from q(x) = pt(x) using MCMC sampling until the effective sample size for the MCMC sample is 

large enough (i.e. exceed a specified threshold).

Step 3 Find t∗ = arg mint∈M
∑N

i=1 f (Xi)wt (Xi)∑N
i=1 wt (Xi)

using an optimization algorithm.

Step 4 If ESS > ESStarget, or maximum number of iterations reached, then stop.
Step 5 Set t = t∗ and go to Step 2.

The convergence of the method depends on the distributions and the parameter space. We have set a maximum number 
of iterations (i.e. in our case, 10 000) to stop the algorithm when it does not converge.

The condition of a large enough sample size is added in Step 2 to ensure that the optimization in Step 3 is based on a 
reliable sample. For example, in the application below, we first specify the ESStarget and then we require the effective sample 
size for the MCMC samples to be 20% greater than the ESStarget. The stopping criterion in Step 4 uses the effective sample 
size for importance sampling with correlated samples eq. (24), controlling for both convergence of the MCMC and quality 
of importance sampling. The reason for this stopping criterion is that MCMC sampling might require different numbers of 
iteration to produce a reasonable number of efficient samples.
5



I. Raices Cruz, J. Lindström, M.C.M. Troffaes et al. Computational Statistics and Data Analysis 176 (2022) 107558
Thinning chains in MCMC has been used in several papers; see for instance (Croll, 2006; Endo et al., 2019; Kopylev et 
al., 2009). Thinning consists of taking every k-th sample instead of all of them in order to reduce autocorrelation. In (Link 
and Eaton, 2012) it is shown that although thinning chains in MCMC reduces autocorrelation between MCMC samples, it 
also reduces the precision of the estimates (i.e. the average over a thinned sample set has greater variance than the average 
over the unthinned sample) (Geyer, 1992). Therefore, thinning is not advisable unless it is needed due to computer memory 
limitations (Link and Eaton, 2012).

5. An application

To illustrate the proposed method for robust Bayesian analysis, iterative importance sampling with MCMC sampling is 
applied on a previously published meta-analysis investigating the effect of biomanipulation (the intervention) on water 
quality in freshwater lakes (Bernes et al., 2015). We selected the random effects model (described below) for the meta-
analysis of the change in the level of Chlorophyll a before and during biomanipulation (Bernes et al., 2015). Available data are 
estimated mean differences and estimation errors from 75 studies. The estimated effects range from −24.17 to 332.50 μg/l
with a sample mean of 28.46 μg/l. The 5th and 95th percentile of the data are −11.10 and 76.29 μg/l respectively. Here, a 
positive value corresponds to an improvement in water quality by biomanipulation (since we have turned the sign of the 
data). In addition, we investigate what happens with the performance of the suggested method when the set of priors is 
changed from a set with low to high prior-data conflict.

5.1. A Bayesian linear random effects model

The overall effect of the intervention μ is estimated by a linear random effects model (Fig. 1) according to

yi|δi ∼ N(δi,σ
2
i ), (27)

δi |μ,k, τμ ∼ N(μ,k2 τ 2
μ), (28)

where yi is the observed intervention effect in study i (i = 1, . . . , N) with known within-study variance σ 2
i , δi is the specific 

intervention effect in study i, and k2 τ 2
μ is the between-study variance. This model can be expressed in its marginal form 

(Gelman et al., 2013; Röver, 2017) as

yi|μ,k, τμ ∼ N(μ,σ 2
i + k2 τ 2

μ). (29)

To implement this model in a Bayesian framework, we select the following prior distributions for the parameters

μ|τμ ∼ N(μ0, τ
2
μ), (30)

τμ ∼ U (τl, τ0), (31)

k ∼ U (kl,ku), (32)

where μ0 is the mean of the overall intervention effect, τμ is the standard deviation of the overall intervention effect which 
ranges between τl and τ0, k is a proportionality constant which ranges between kl and ku . We let τl = 1, kl = 1 and ku = 5.

The linear random effects model is implemented using MCMC sampling in Stan through the rstan package, the R interface 
to Stan (Stan Development Team, 2018) (see code availability for Stan code).

5.2. Selecting a set of priors

To expand the linear random effects model into a robust Bayesian framework, we consider a set of prior distributions for 
μ and τμ .

There are several methods to elicit priors from experts (O’Hagan et al., 2006; Hanea et al., 2021; Hartmann et al., 2020; 
Gosling, 2018), but there is no obvious alternative to specify a set of priors. The approach that we use to specify a set 
of priors for multiple parameters is chosen to illustrate robust Bayesian analysis with IIS and MCMC sampling, and other 
approaches could have been used as well. The prior distributions for each parameter are assumed to belong to the same 
family of probability distributions (eq. (30) and eq. (31)), but with different hyperparameters. In order to consider interaction 
between parameters, the specification of priors is made using an approach similar to prior predictive check (Daimon, 2008; 
Schad et al., 2019). A compact set of hyperparameters is selected by comparing the distribution of the intervention effect 
for a random study conditional on the hyperparameters δ∗|μ, τμ to an elicited range R .

The selection of a set of priors can be summarized as:

1. Specify a range R where the effect size of a randomly selected study is expected to fall with a probability of at least h% 
(i.e. target coverage).

2. Specify a regular grid of hyperparameters (μ0, τ0).
6
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Fig. 1. Linear random effects graphical model. Unknown quantities (parameters) are represented by ellipses, known quantities (priors) by circles and ob-
served data by filled squares. The plate indicates repeated cases.

Fig. 2. Prior check. Selection of priors, a curve fitted to the area where more than 90% of the generated specific intervention effect fell inside of the elicited 
range.

3. For each combination of hyperparameters (μ0, τ0), generate a random sample δ∗
1 , . . . , δ∗

M from eq. (28).
4. Identify hyperparameters where the proportion of generated samples falling inside R exceeds the target coverage h.
5. Find a function that discriminates hyperparameters complying with the target coverage and use the function to select a 

compact set of hyperparameters.

Here, we select two sets of priors that represent situations with a low and high prior-data conflict, respectively. In actual 
applications, priors should be elicited by structured expert judgement (O’Hagan et al., 2006).

A set of priors that represents a situation with low prior-data conflict is derived using an elicited range of specific 
intervention effect of R = [−20, 80], a target coverage of 90%, and a regular grid of 200 × 200 of hyperparameters (−100 ≤
μ0 ≤ 100 and 5 ≤ τ0 ≤ 50). Following the procedure described above yields to the set

M =
⎧⎨⎩ −8 ≤ μ0 ≤ 68

5 ≤ τ0 ≤ 16
r(μ0, τ0) − 0.9 ≥ 0

⎫⎬⎭ ,

where r(μ0, τ0) = τ0 − (−0.01μ2
0 + 0.46μ0 + 9.56) is a function used to capture hyperparameters fulfilling the target cov-

erage (Fig. 2).

5.3. Setting up the iterative importance sampling

The quantity of interest is the expected value of the overall intervention effect (μ) on the linear random effects model 
given in section 5.1. Iterative importance sampling is applied to estimate the lower bound of the quantity of interest over 
7
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Fig. 3. From left, effective sample sizes ESS, ESSIS and ESSMCMC given MCMC samples using hyperparameters μ0 = 5 and τ0 = 7 (the dot). Here, ESStarget is 
5 000 and if the optimization in Step 3 moves the hyperparameters into a region with a lower ESS we need to re-run the MCMC in Step 2, using the ‘new’ 
hyperparameters.

the compact domain of priors M (see Appendix C for the proof of the existence of the minimum in our example). The 
lower bound of μ is

Ê(μ|y,μ0, τ0) ≈ min
(μ0,τ0)∈M

∑N
i=1 μ(i)w(X (i);μ0, τ0)∑N

i=1 w(X (i);μ0, τ0)
, (33)

where X (i) =
{
μ(i),k(i), τ

(i)
μ

}
and μ(i) are samples drawn from a sampling distribution using MCMC based on hyperparam-

eters μ′
0 and τ ′

0. The weights are given by

w(X (i);μ0, τ0) = p(μ(i),k(i), τ
(i)
μ |y,μ0, τ0)

p(μ(i),k(i), τ
(i)
μ |y,μ′

0, τ
′
0)

, (34)

where p(μ, k, τμ|y, μ0, τ0) is the posterior distribution of the target distribution corresponding to hyperparameters μ0 and 
τ0.

Using eq. (34) as weights in eq. (24) gives the effective sample size of importance sampling with MCMC samples. The 
search for the lower bound in Step 3 will stop when the optimal prior is close to the prior used in the MCMC (Fig. 3). 
How close is determined by the assigned ESStarget in Step 4, which in our example is set to 5 000 and 10 000 samples. The 
effective sample size for the MCMC samples in Step 2 is set to exceed ESStarget by at least 20%, i.e. MCMC sampling in Step 
2 will be run until an effective sample size of 6 000 and 12 000 samples has been reached.

The optimization in Step 3 is performed by simulated annealing, (Du and Swamy, 2016; Henderson et al., 2003), using 
the optim function from the optimx package (Nash and Varadhan, 2011) in R.

5.4. The lower bound of the expected overall effect

We illustrate the method using two different ESStarget and two choices of initial values (μ′
0 = −7, τ ′

0 = 6) and (μ′
0 = 10, 

τ ′
0 = 10). The number of iterations of iterative importance sampling ranges between 2 and 3 with an effective sample size 

between 11 640 and 14 305, see (Table 1, 2 and 3). Note that the effective samples size for the MCMC sample is derived 
based on the hyperparameters in the previous iteration.

The estimated lower bound on the expected overall effect over M is 12.1 μg/l (Table 1, 2 and 3). We also run the 
method using different random seeds which gives an estimated lower bound on the expected overall effect between 12.07 
and 12.24 μg/l. The bound is lower than 19.9 which is the estimated effect in a standard Bayesian analysis using a flat prior 
centered at zero (μ0 = 0 and τ0 = 1 000). The lower bound is obtained at the corner of the prior region (i.e. μ0 = −8 and 
8
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Table 1
Summary of iterative importance sampling (IIS) of the lower expected value over the set M, ESStarget = 5 000 and initial 
values (μ0; τ0) = (−7; 6).

Iter Samples μ0∗ τ0∗ ESS ESSMCMC ESSIS μ̂(μ0∗ ,τ0∗ ) Time

Grid Search – 20 000 −8 5 – – – 12.091 11.45 h

IIS 0 – −7 6 – – – – –
1 20 000 −7.706 5.051 27 18 005 30 10.988 –
2 20 000 −7.999 5.045 11 640 12 307 18 916 12.166 11.78 mins

Table 2
Summary of iterative importance sampling (IIS) of the lower expected value over the set M and ESStarget = 10 000 and 
initial values (μ0; τ0) = (−7; 6).

Iter Samples μ0∗ τ0∗ ESS ESSMCMC ESSIS μ̂(μ0∗ ,τ0∗ ) Time

Grid Search – 20 000 −8 5 – – – 12.091 11.45 h

IIS 0 – −7 6 – – – – –
1 40 000 −7.900 5.035 59 31 579 75 12.006 –
2 20 000 −7.998 5.136 13 899 13 901 19 997 12.135 18.73 mins

Table 3
Summary of iterative importance sampling (IIS) of the lower expected value over the set M and ESStarget = 10 000 and 
initial values (μ0; τ0) = (10; 10).

Iter Samples μ0∗ τ0∗ ESS ESSMCMC ESSIS μ̂(μ0∗ ,τ0∗ ) Time

Grid Search – 20 000 −8 5 – – – 12.091 11.45 h

IIS 0 – 10 10 – – – – –
1 40 000 −6.734 5.148 5 40 000 5 12.762 –
2 20 000 −7.993 5.008 3 995 13 907 5 746 12.145 –
3 20 000 −7.995 5.221 14 305 14 305 20 000 12.103 23.72 mins

τ0 = 5). The bound obtained by iterative importance sampling is compared to one estimated by a grid search method across 
a regular grid of hyperparameters (which yields a total of 4 773 hyperparameter values). The grid search method gives a 
lower expected bound of 12.09 μg/l which is close to the one found using iterative importance sampling. It takes much 
longer time to run a grid search method, over 10 hours, compared to the iterative importance sampling taking roughly 15 
to 25 minutes (Table 1, 2 and 3).

Moreover, we run the optimization algorithm (simulated annealing) over the set M, but without the resampling step, 
(e.g. just re-run the MCMC for each parameter that is evaluated). The method gives a lower bound of 12.13 μg/l and it takes 
much longer time to run, over 20 hours.

The iterative importance sampling converges with fewer iterations when the initial values are relative close to the hy-
perparameters corresponding to the lower bound.

5.5. The influence of prior data conflict

In order to illustrate what happens when the set of prior has a high conflict with data, we specify a new set M′ using 
the procedure described in subsection 5.2, but with R = [30, 100]. This range does not include the median (14.6 μg/l) of 
the observed effects in the 75 studies or the posterior mean from a standard Bayesian analysis with a flat prior. This gives 
the set

M′ =
⎧⎨⎩ 42 ≤ μ0 ≤ 88

5 ≤ τ0 ≤ 11
r′(μ0, τ0) − 0.90 ≥ 0

⎫⎬⎭ ,

where r′(μ0, τ0) = τ0 − (−0.011μ2
0 + 1.427μ0 − 35.104).

Shifting the prior region from M to M′ , (i.e. towards higher values of μ), increases the lower bound of the expected 
overall effect from 12.1 to 26.8 μg/l, (Table 4). The lower bound is in this case obtained for a less precise prior τ0 = 10.5.

We also compare the bound obtained by iterative importance sampling to the one estimated by a grid search method 
across a regular grid of hyperparameters (which yields a total of 1 649 hyperparameter values). The grid search method 
gives a slightly lower expected bound of 26.7 μg/l, but takes much longer time, 4 hours, compared to 13 minutes for the 
iterative importance sampling (Table 4).
9
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Table 4
Summary of iterative importance sampling of the lower expected values over the set M′ and ESStarget = 10 000 and initial 
values (μ0; τ0) = (60; 11).

Iter Samples μ0∗ τ0∗ ESS ESSMCMC ESSIS μ̂(μ0∗ ,τ0∗ ) Time

Grid Search – 20 000 57 10.5 – – – 26.754 3.70 h

IIS 0 – 60 11 – – – – –
1 40 000 59.064 10.859 15 371 17 533 35 067 26.811 12.5 mins

6. Conclusions

Robust Bayesian analysis (i.e. Bayesian inference under a set of priors) offers a way to quantify epistemic uncertainty by 
bounded instead of precise probability. This type of analysis is useful for evaluating sensitivity to the choice of prior. It is 
also a solution for Bayesian inference when prior information is upfront given as a set of distributions.

We have derived an expression for the effective sample size of importance sampling with correlated MCMC samples, 
which ensures reliable samples from both MCMC and importance sampling procedures when combining them. The com-
bination of iterative importance sampling with MCMC sampling was used for robust Bayesian analysis on an existing 
meta-analysis based on a random effects model (Bernes et al., 2015). The estimated lower bound on the expected over-
all effect of the intervention in the meta-analysis is a conservative estimate compared to what would have been the result 
from selecting one prior in the set and using a standard Bayesian analysis.

Iterative importance sampling with MCMC sampling allows for robust Bayesian analysis on a wider range of models 
not limited to conjugate models. The flexibility in the choice of model may allow for more applications of robust Bayesian 
analysis. The method was demonstrated on a relatively simple model with two different choices of prior sets. It would be 
useful to evaluate the proposed method on more complex models to further explore the theoretical and practical challenges 
associated with robust Bayesian analysis; as well as to investigate how other discrepancy measures such as those proposed 
by (Martino et al., 2017) and the Kullback-Leibler (KL) divergence measure could be used.
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Appendix A. Calculations

Explicit calculations for eq. (20) are given here. Recall eq. (20)

Varq

(
g(X)

)
= Varq

(
( f (X) − μ)w p(X)

)
We will use that, for any random variable h(X),

Eq

(
h(X)w p(X)

)
=

∫
h(x)w p(x)q(x)dx =

∫
h(x)

cp(x)

q(x)
q(x)dx

= c

∫
h(x)p(x)dx = cEp

(
h(X)

)
,

which gives

Varq

(
h(X)w p(X)

)
= cEp

(
h2(X)w p(X)

)
− c2Ep

(
h(X)

)2
(A.1)

Taking h(X) = f (X) − μ and noting that Ep

(
h(X)

)
= 0, the expression in eq. (20) expands as follows
10
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Varq

(
g(X)

)
= Varq

(
( f (X) − μ)w p(X)

)
= cEp

(
( f (X) − μ)2 w p(X)

)
Applying a second order delta method to the last expectation at Ep

(
w p(X)

)
and Ep

(
h(X)

)
, gives (see appendix B for 

details)

Varq

(
g(X)

)
≈ c

(
Ep

(
h(X)

)2
Ep

(
w p(X)

)
+ Ep

(
h(X)

)
Covp

(
w p(X),h(X)

)
+ Ep

(
w p(X)

)
Varp

(
h(X)

))
(A.2)

= cEp

(
w p(X)

)
Ep

(
h2(X)

)
(A.3)

= cEp

(
( f (X) − μ)2

)
Ep

(
w p(X)

)
(A.4)

= cVarp

(
f (X)

)
Ep

(
w p(X)

)
. (A.5)

Using eq. (A.5) and the equality Varp( f (X)) = NVarp(μ) we obtain

Varq(g(X)) ≈ NVarp(μ)cEp

(
w p(X)

)
(A.6)

= NVarp(μ)Eq

(
w2

p(X)
)

(A.7)

= NVarp(μ)

(
1

N

N∑
i=1

w2
p(Xi)

)
. (A.8)

Here we have used that eq. (A.1) with h(X) = w p(X) gives the equality cEp(w p(X)) = Eq(w2
p(X)).

Appendix B. Delta method

Let g(u, v) be a function twice differentiable at (u, v) = (a1, a2). Then, the second order Taylor polynomial for g(u, v)

near the point (u, v) = (a1, a2) is:

g(u, v)(a1,a2) = g(a1,a2) + ∂ g

∂u
(a1,a2)(u − a1) + ∂ g

∂v
(a1,a2)(v − a2)

+ 1

2

∂2 g

∂u2
(a1,a2)(u − a1)

2 + 1

2

∂2 g

∂u∂v
(a1,a2)(u − a1)(v − a2)

+ 1

2

∂2 g

∂v2
(a1,a2)(v − a2)

2. (B.1)

Now, we can use the second order Taylor polynomial approximation to estimate the mean (this is also known as second 
order delta method).

Let U and V be random variables with mean θ1 = Ep(U ) and θ2 = Ep(V ) respectively.

Ep

(
g(U , V )

)
(θ1,θ2)

≈ g(θ1, θ2) + ∂ g

∂u
(θ1, θ2)Ep(U − θ1) + ∂ g

∂v
(θ1, θ2)Ep(V − θ2)

+ 1

2

∂2 g

∂u2
(θ1, θ2)Ep

(
(U − θ1)

2
)

+ 1

2

∂2 g

∂u∂v
(θ1, θ2)Ep

(
(U − θ1)(V − θ2)

)
+ 1

2

∂2 g

∂v2
(θ1, θ2)Ep

(
(V − θ2)

2
)
. (B.2)

Note that Ep(U − θ1) = 0 and Ep(V − θ2) = 0. Taking g(u, v) := v2u where V = h(X) and U = w p(X) (to match notation 
in eq. (A.2))

Ep

(
g(U , V )

)
(θ1,θ2)

≈ g(θ1, θ2) + θ2Covp(U , V ) + θ1Varp(V )

≈
(

Ep(V )
)2

Ep(U ) + Ep(V )Covp(U , V ) + Ep(U )Varp(V ) (B.3)

≈
(

Ep

(
h(X)

))2
Ep

(
w p(X)

)
+ Ep

(
h(X)

)
Covp

(
w p(X),h(X)

)

11
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+ Ep(w p(X))Varp

(
h(X)

)
. (B.4)

Appendix C. Proof of existence of minimum

To guarantee the minimum exist in our example, it is enough to prove that the expectation is continuous as a function 
of (μ0, τ0) on [−8, 68] × [5, 16].

By Fubini’s theorem in our example, we have

E(μ0,τ0)(μ) :=
τ0∫

1

5∫
1

+∞∫
−∞

μ · p(μ0,τ0)(μ, τμ,k)dμdk dτμ, (C.1)

where

p(μ0,τ0)(μ, τμ,k) = 1

c(μ0, τ0)
·
(

N∏
i=1

1√
σ 2

i + k2τ 2
μ

)
exp

{
−1

2

N∑
i=1

(yi − μ)2

σ 2
i + k2τ 2

μ

}
·

· 1

τμ
exp

{
−1

2

(μ − μ0)
2

τ 2
μ

}
is the posterior probability distribution. The proportionality constant c(μ0, τ0) is given by

c(μ0, τ0) =
τ0∫

1

5∫
1

(
N∏

i=1

1√
σ 2

i + k2τ 2
μ

)
1

τμ
(C.2)

[ +∞∫
−∞

exp
{
−1

2

N∑
i=1

(yi − μ)2

σ 2
i + k2τ 2

μ

}
· exp

{
−1

2

(μ − μ0)
2

τ 2
μ

}
dμ

]
dk dτμ

=
τ0∫

1

5∫
1

(
N∏

i=1

1√
σ 2

i + k2τ 2
μ

)
1

τμ
(C.3)

[ +∞∫
−∞

exp

{
−1

2

(
a(τμ,k,μ0)μ

2 − 2b(τμ,k,μ0)μ + c(τμ,k,μ0)

)}
dμ

]
dk dτμ

where

a(τμ,k,μ0) =
N∑

i=1

1

σ 2
i + k2τ 2

μ

+ 1

τ 2
μ

, (C.4)

b(τμ,k,μ0) =
N∑

i=1

yi

σ 2
i + k2τ 2

μ

+ μ0

τ 2
μ

, (C.5)

c(τμ,k,μ0) =
N∑

i=1

y2
i

σ 2
i + k2τ 2

μ

+ μ2
0

τ 2
μ

. (C.6)

Since a(τμ, k, μ0) > 0, then by Lemma Appendix D.1 in (C.2), we get that the integral with respect to μ is

√
2π · a(τμ,k,μ0)

−1
2 · exp

{
−1

2

(
c(τμ,k,μ0) − b(τμ,k,μ0)

2

a(τμ,k,μ0)

)}
. (C.7)

Note that a(τμ, k, μ0), b(τμ, k, μ0) and c(τμ, k, μ0) are continuously differentiable and τμ ∈ [1, τ0] and k ∈ [1, 5]. Thus, 
by Leibniz integral rule it follows that c(μ0, τ0) is continuously differentiable on [−8, 68] × [5, 16].

Analogously, applying Lemma Appendix D.2 to eq. (C.1), we get that the integral with respect to μ is

√
2π · a(τμ,k,μ0)

−3
2 · b(τμ,k,μ0) · exp

{
−1

2

(
c(τμ,k,μ0) − b(τμ,k,μ0)

2

a(τμ,k,μ0)

)}
. (C.8)

Furthermore, by Leibniz integral rule it yields that E(μ0,τ0)(μ) is continuously differentiable on [−8, 68] × [5, 16].
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Appendix D. Lemmas

Lemma Appendix D.1. Let a > 0, b ∈R and c ∈R. It holds that:

+∞∫
−∞

exp

{
−1

2
(ax2 − 2bx + c)

}
dx (D.1)

= √
2π · a− 1

2 · exp

{
−1

2

(
c − b2

a

)}
. (D.2)

Proof. By completing the square, we obtain

+∞∫
−∞

exp

{
−1

2

(
x − b

a

a− 1
2

)2}
· exp

{
−1

2

(
c − b2

a

)}
dx (D.3)

= √
2π · a− 1

2 · exp

{
−1

2

(
c − b2

a

)}
·

+∞∫
−∞

1√
2π · a− 1

2

exp

{
−1

2

(
x − b

a

a− 1
2

)2}
dx. (D.4)

Note that the integrand is the probability density function of a normally distributed random variable with mean b
a and 

variance 1
a , (i.e. N

(
b
a , 1a

)
). Thus, the desired result immediately follows. �

Lemma Appendix D.2. Let a > 0, b ∈R and c ∈R. It holds that:

+∞∫
−∞

x exp

{
−1

2
(ax2 − 2bx + c)

}
dx (D.5)

= √
2π · a− 3

2 · b · exp

{
−1

2

(
c − b2

a

)}
. (D.6)

Proof. By completing the square, we obtain

+∞∫
−∞

x · exp

{
−1

2

(
x − b

a

a− 1
2

)2}
· exp

{
−1

2

(
c − b2

a

)}
dx (D.7)

= √
2π · a− 1

2 · exp

{
−1

2

(
c − b2

a

)}
·

+∞∫
−∞

1√
2π · a− 1

2

x exp

{
−1

2

(
x − b

a

a− 1
2

)2}
dx. (D.8)

Note that the previous integral is the expected value of a normally distributed random variable with mean b
a and variance 

1
a , (i.e. N

(
b
a , 1a

)
). Thus, the desired result immediately follows. �
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