
J
H
E
P
0
4
(
2
0
2
2
)
1
1
2

Published for SISSA by Springer

Received: December 27, 2021
Accepted: March 31, 2022
Published: April 20, 2022

Implementation of angularly ordered electroweak
parton shower in Herwig 7

M.R. Masouminiaa and P. Richardsona,b
aInstitute for Particle Physics Phenomenology, Durham University,
Durham, U.K.
bTheoretical Physics Department, CERN,
Geneva, Switzerland
E-mail: mohammad.r.masouminia@durham.ac.uk,
peter.richardson@durham.ac.uk

Abstract: We discuss the necessary steps for implementing an angularly ordered (AO)
electroweak (EW) parton shower in Herwig 7 multi-purpose event generator. This includes
calculating the helicity-dependent quasi-collinear EW branching functions that correspond
to the full range of final-state EW parton shower, in addition to the initial-state EW
gauge vector boson radiations. The results are successfully embedded in the AO Herwig 7
shower algorithm and have undergone a set of comprehensive and conclusive performance
tests. Furthermore, we have used this EW parton shower algorithm, alongside the existing
QCD+QED AO shower, to predict the angular distributions of W± bosons in LHC events
with high transverse momentum jets. These results are compared against the explicitly
generated underlying events as well as the existing ATLAS data to show the effectiveness
of the newly implemented QCD +QED + EW AO parton shower scheme.

Keywords: Phenomenological Models, QCD Phenomenology

ArXiv ePrint: 2108.10817

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2022)112

mailto:mohammad.r.masouminia@durham.ac.uk
mailto:peter.richardson@durham.ac.uk
https://arxiv.org/abs/2108.10817
https://doi.org/10.1007/JHEP04(2022)112


J
H
E
P
0
4
(
2
0
2
2
)
1
1
2

Contents

1 Introduction 1

2 Parton shower kinematics 3

3 Splitting functions 4
3.1 q → q′V splitting functions 5
3.2 q → qH splitting function 8
3.3 V → V ′V ′′ splitting functions 9
3.4 V → V H splitting functions 11

4 Results and discussions 13

5 Conclusion 24

A EW shower in Herwig interface 25

1 Introduction

Since the introduction of the main ideas behind process-independent parton showers [1–3],
they have been amongst the key components of all multi-purpose event generators for par-
ticle physics [5–8]. Nowadays, with the extensive development of their algorithms [9–27],
the use of computer-generated collinear parton showers has become inseparable from the
study of particle physics in high-energy collisions and decays. Although the details of these
parton shower implementations significantly differ between different showering programs,
all existing general-purpose event generators use QED and QCD initial- and/or final-state
parton showers, where an evolution scale parameter controls the flow of particles along all
branches of the shower. In the Herwig 7 default parton shower algorithm [4–6], this evolu-
tion scale parameter, q̃, is regulated by the angular ordering (AO) of successive radiations.

Whilst the current QCD+QED schemes for generating collinear parton showers pro-
duce satisfactory results for describing the exiting experimental data up to the current
LHC energies (e.g. [28–31]), with the upcoming and inevitable push in the probe energies
of the existing and future colliders, one expects to observe non-negligible contributions from
the pure electroweak (EW) radiations. This is since, at these very high energies, heavy
particles like EW gauge bosons, Higgs bosons and top quarks may appear as constituents
of jets and contribute to radiative corrections, corresponding to the fact that these heavy
particles will behave as massless partons as q̃ grows much larger than their masses. In fact,
such an expectation is supported by the LHC observations of Higgs boson production via
vector-boson fission [33, 34], and has been extensively scrutinized in the recent years [35–
39]. Furthermore, it has been hinted that excluding EW real emissions from high-energy
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processes would cause an imbalance since the corresponding virtual corrections are large
and have negative signs [40]. This suggests that the Standard Model (SM) can be consid-
ered as an unbroken gauge theory at high energies and one has to treat the real emissions
of the EW bosons on equal footing as massless gauge bosons.

The above argument clearly justifies making an effort for introducing a process-
independent EW parton shower to correspond to EW splittings at high-energy processes.
This would ultimately introduce a well-defined EW enhancement to the production rate
of a given underlying event and upgrade the conventional parton shower picture to a
QCD+QED+EW scheme. A number of theoretical studies have already addressed dif-
ferent parts of EW parton shower [41–44] while more complete studies of the details of EW
splitting functions for both unbroken and broken SM can be found in [45]. Furthermore,
some attempts have been made to incorporate EW parton shower in multi-purpose event
generators [46–50], and most recently in [51, 52]. Nevertheless, none of the conventional
multi-purpose event generators have yet employed a complete and process-independent EW
parton shower to realize a QCD+QED+EW level enhancement and treat the full scope of
high-energy collinear electroweak physics.

In this paper, we aim to discuss the necessary steps for the implementation of an AO
initial-state (IS) and final-state (FS) EW parton shower in Herwig 7.1 To this end, we intro-
duce and derive all viable quasi-collinear EW splittings of the SM in their spin-unaveraged
forms. This is done for both massless and massive cases, including quark splittings,

q → q′W±, q → qZ0, q → qH, (1.1a)

and gauge boson splittings,

W± →W±Z0, W± →W±γ, Z0 →W+W−, γ →W+W−,

W± →W±H, Z0 → Z0H. (1.1b)

These newly introduced splitting functions, alongside the H → qq̄/WW/ZZ and
W/Z → qq̄ decay modes that already exist in the Herwig 7 decay libraries, would create a
satisfactory picture for IS and FS EW radiations in the simulated events. In order to obtain
the above splitting functions and to make correct approximations in the quasi-collinear
limit, and for numerical efficiency, we present these results in explicit analytic forms.
This is followed by extensive performance tests and an assessment of the effectiveness of
employing QCD+QED+EW scheme in predicting some high-energy milestone processes.

One should, however, note that the implemented IS EW parton shower will be limited
to (1.1a) splittings, even though the required EW splitting functions for the full spectrum
of the IS EW shower would be the same as the FS case, i.e. (1.1a) and (1.1b). This is
because implementing an IS shower follows a backward branching evolution [5] where the
appropriated Sudakov form factors depend on the parton distribution functions (PDFs) of
the relevant particles. Such involvement, however being relatively straightforward in the
QCD and QED IS showers, would be problematic for the case of EW IS shower, since it

1These modifications will be available to the public with the Herwig 7.3 release.
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requires incorporating EW PDFs [53, 54] and folding QCD and EW effects into a unified
set of evolution equations [43, 45], which is only relevant in the massless EW theory. On
the other hand, the required calculations are numerically expensive while being physically
insignificant for the case of IS radiations. Furthermore, the available EW PDFs are not
reliable nor accurate enough to be introduced in a general-purpose event generator.

The outline of this paper is as follows. In section 2, we review the branching kine-
matics and the parametrizations used in Herwig 7. In section 3, all the required splitting
functions for the implementation of the EW parton shower have been derived. We partic-
ularly separate the transverse and longitudinal components of these splittings and present
their massless limits and massive correction terms in the simplest spin-unaveraged forms.
The required performance tests and physical analysis for this new shower scheme will be
presented in section 4, followed by our summary and conclusions in section 5. Finally, in
appendix A we describe the required interface commands for using EW shower in Herwig 7.

2 Parton shower kinematics

In this section, we will introduce the fundamental shower kinematics and dynamics of
Herwig 7 in the quasi-collinear limit [4, 55]. Generally speaking, the branchings kinematics
for all cases relevant to the EW parton shower would be the same. We consider the
branching of a particle with mass m0 (the parent particle) to two particles with masses m1
and m2 (the children). Then, in the lab frame, the momentum of the branching particle
before the emission is

plab = (
√

p2 +m2
0; p sin θ cosφ,p sin θ sinφ,p cos θ), (2.1)

where p is the magnitude of the particle’s 3-momentum. This could be either the on-shell
momentum from a previous branching in the shower or a parton from the hard matrix
element (ME). For simplicity, we will calculate the branchings in a frame in which the
particle is moving along the z-axis. Hence, by applying a rotation R,

R =


cos θ + (1− cos θ) sin2 φ −(1− cos θ) sinφ cosφ − sin θ cosφ
−(1− cos θ) sinφ cosφ cos θ + (1− cos θ) cos2 φ − sin θ sinφ

sin θ cosφ sin θ sinφ cos θ

 , (2.2)

the momentum of the branching particle becomes

p = (
√

p2 +m2
0; 0, 0,p). (2.3)

Herwig 7 uses the Sudakov basis to parametrize the momentum the shower particles,

qi = αip+ βin+ q⊥i, (2.4)

where the reference vector n is taken to be

n = (1, 0, 0,−1). (2.5)
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In this parametrization scheme, the momenta of the children particles are

q1 = zp+ β1n+ q⊥, (2.6a)
q2 = (1− z)p+ β2n− q⊥, (2.6b)

with z being the light-cone momentum fraction of the first parton and

q⊥ = (0; p⊥ cosφ, p⊥ sinφ, 0), (2.6c)

β1 = 1
2zp · n

(
p2
⊥ +m2

1 − z2m2
0

)
, (2.6d)

β2 = 1
2(1− z)p · n

(
p2
⊥ +m2

2 − (1− z)2m2
0

)
. (2.6e)

Also, the momentum of the off-shell parent particle is

q0 = p+ β0n, (2.6f)

where
β0 = β1 + β2 = 1

2p · n

(
p2
⊥

z(1− z) + m2
1
z

+ m2
2

1− z −m
2
0

)
, (2.6g)

such that the virtuality of the branching parton is

q2
0 = p2

⊥
z(1− z) + m2

1
z

+ m2
2

1− z . (2.6h)

We need to evaluate the branchings in the quasi-collinear limit in which we take the
masses and transverse momentum to zero while keeping the ratio of the masses to the
transverse momentum fixed. Practically this is most easily achieved by rescaling the masses
and transverse momentum by a parameter λ and expanding in λ, i.e.

mi → λmi, p⊥ → λp⊥. (2.7)

Using the above kinematics, we can calculate the spinors and the polarization vectors of
the incoming and outgoing particles, which are in turn used to derive explicit forms of the
EW splitting functions that correspond to the splittings (1.1a) and (1.1b).

3 Splitting functions

Assuming a generic splitting ĩj → i+ j, one can write the differential cross-section of the
production of the children particles i and j in the quasi-collinear limit as

dσi+j '
αint(q̃2)

2π
dq̃2

q̃2 dz Pĩj→i+j(z, q̃) dσĩj , (3.1)

with αint as the relevant running coupling constant and P
ĩj→i+j(z, q̃) being the splitting

function of ĩj → i+ j branching that dependends on the light-cone momentum fraction z
and the evolution scale q̃. In Herwig 7, these parameters are defined as [4]

z = αi
α
ĩj

= n · qi
n · q

ĩj

, q̃2 =
q2
ĩj
−m2

ĩj

z(1− z)

∣∣∣∣∣∣
q2

i =m2
i , q

2
j =m2

j

. (3.2)
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Henceforth, the problem of calculating the rates of successive branchings in a parton shower
is reduced to finding all relevant splitting functions. So, in the following subsections, we will
derive the required EW splitting functions for the implementation of EW parton shower
in Herwig 7.

3.1 q → q′V splitting functions

The majority of QED branchings can be obtained from the equivalent QCD splitting by
replacing αS → αEM and the color factor with the charge squared of the fermion (or the
scalar boson) in the branching. This is however not true in the case of EW branchings.
There are a number of issues for either radiation from electroweak bosons or in the case
of the radiation of electroweak bosons, which is more complicated due to the mass of the
gauge boson and in particular, the presence of the additional longitudinal polarization
states. Also, in this case, all engaged particles have non-zero masses.

In a q → q′V branching with V = W±, Z0, the transverse polarization vectors (i.e.
λ2 = ±1) of the vector boson are the same as for the gluonic radiation from a quark
splitting, i.e.

εµλ2=±1(q2) =
[
0;− λ2√

2

(
1− p2

⊥λ
2eiλ2φ cosφ

2p2 (1− z)2

)
,− i√

2
+ λ2p

2
⊥λ

2eiφ sinφ
2
√

2p2 (1− z)2 ,−
λ2p⊥λeiλ2φ

√
2 (1− z) p

]
.

(3.3)
On the other hand, the spinors for the incoming fermion are given by

u 1
2
(p) =



m0√
2pλ

0
√

2p
(
1 + m2

0λ
2

8p2

)
0

 u− 1
2
(p) =


0

√
2p
(
1 + m2

0λ
2

8p2

)
0

m0√
2pλ

 , (3.4)

and the spinors for the outgoing fermion are

ū 1
2
(q1) =

[√
2zp

(
1 + m2

0λ
2

8p2

)
,
e−iφp⊥λ√

2zp ,
m1√
2zpλ,

e−iφp⊥m1λ
2

[2zp]3/2

]
,

ū− 1
2
(q1) =

[
−eiφp⊥m1λ

2

[2zp]3/2
,
m1√
2zpλ,−

eiφp⊥λ√
2zp ,

√
2zp

(
1 + m2

0λ
2

8zp

)]
. (3.5)

In this case, we write the vertex for the interaction of the fermions with the gauge boson as

− ig (gLPL + gRPR) γµ, (3.6)

with an arbitrary overall coupling and separate couplings to the left- and right-handed he-
licities. In this notation, the vertex for the interactions of the quarks and gluons would have
g = gs and gL = gR = 1. The helicity amplitudes for the splitting can then be written as

Hq→q′V (z, q̃;λ0, λ1, λ2) = g

√
2

q̃2
0 −m2

0
F q→q

′V
λ0,λ1,λ2

, (3.7)
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F q→q
′V

λ0,λ1,λ2

λ0 λ1 λ2 = + λ2 =− λ2 = 0 λ2 = 0∗

+ + gRp⊥

(1−z)
√
z(q̃2−m2

0)
− gRp⊥

√
z

(1−z)
√

(q̃2−m2
0)

gLm0m1(1−z)2+gR(p2
⊥−m

2
2z)

(1−z)
√

2z(q̃2−m2
0)m2

− gRm2
1−z

√
2z

(q̃2−m2
0)

+ - − (gLm0z−gRm1)√
z(q̃2−m2

0)
0 − (gLm0−gRm1)p⊥√

2z(q̃2−m2
0)m2

0

- + 0 (−gRm0z+gLm1)√
z(q̃2−m2

0)
− (gLm1−gRm0)p⊥√

2z(q̃2−m2
0)m2

0

- - gLp⊥
√
z

(1−z)
√

(q̃2−m2
0)

− gLp⊥

(1−z)
√
z(q̃2−m2

0)
(gRm0m1(1−z)2+gL(p2

⊥−m
2
2z))

(1−z)
√

2z(q̃2−m2
0)m2

− gLm2
1−z

√
2z

(q̃2−m2
0)

Table 1. Spin-unaveraged splitting functions for q → q′V . In addition to the factors given above,
each term has a phase ei(λ0−λ1−λ2)φ′ , where λ2 = ±1 and λ0,1 = ± 1

2 represent the helicity states
of the outgoing EW guage vector boson and the quarks respectivey. The longitudinal polarization
states, which are marked as λ2 = 0∗, give the relevant components in Dawson’s approach [54] and
can be used to eliminate singularities that appear in the p⊥ � m2 limit.

where the vertex function takes on the form

F q→q
′V

λ0,λ1,λ2
=
√

1
2(q̃2

0 −m2
0)
ūλ1(q1) (gLPL + gRPR) /ελ2

uλ0(q0). (3.8)

These functions are given explicitly in table 1.
Now, we can sum over the transverse parts of the q → q′V helicity amplitudes and

write the spin-averaged transverse splitting function as

PT
q→q′V (z, q̃) =

∑
λ0,λ1=± 1

2 ;λ2=±1

∣∣Hq→q′V (z, q̃;λ0, λ1, λ2)
∣∣2

= 1
1− z

((
gL

2 + gR
2)

2

[
1 + z2 +

(
1− z2) (m0

2 −m1
2)− (1 + z2)m2

2

z (1− z)2 q̃2

]

− 2gLgR
m0m1
zq̃2

)
, (3.9)

which reduces to the q → qg splitting function for gL = gR = 1, m0 = m1 = m and
m2 = 0. Obviously, the spin-averaged transverse splitting functions cannot be used alone
to generate the EW shower since the branching probability will depend on the helicity of
the particle. For example, only the left-handed helicity will couple to the W± bosons,

PT
q→q′V (z, q̃) = 1

1−z

[(
gL

2ρ−1,−1 +gR
2ρ1,1

){
(1+z2)

(
1+m2

0(1−z)−m2
2

z (1−z)2 q̃2

)
(3.10)

−m1
2 (z+1)

z (1−z) q̃2

}
+m2

0
q̃2

(
g2
Lρ1,1 +g2

Rρ−1,−1
)
− 2m0m1gLgR

zq̃2 (ρ1,1 +ρ−1,−1)
]
,

where ρ is the spin density matrix of the W± boson.
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On the other hand, the longitudinal polarization vector of a massive EW gauge boson
(i.e. λ2 = 0) is

εµ0 (q2) =
[
p (1− z)
λm2

+ p2
⊥ +m2

0(1− z)2 −m2
2

4p (1− z)m2
λ; cosφ

(
p⊥
m2
− m2p⊥λ

2

2p2 (1− z)2

)
, (3.11)

− sinφ
(
p⊥
m2
− m2p⊥λ

2

2p2 (1− z)2

)
,
p (1− z)
λm2

− p2
⊥ −m2

0(1− z)2 −m2
2

4p (1− z)m2
λ,

]
.

If we compute the splitting function using this polarization vector, taking m0 = m1 = m

for simplicity, we obtain

PL
q→q′V (z, q̃) =

∑
λ0,λ1=± 1

2 ;λ2=0

∣∣Hq→q′V (z, q̃;λ0, λ1, λ2)
∣∣2

= 1
2
(
g2
Lρ−1,−1 + g2

Rρ1,1
) (q̃2z (1− z)2 − 2m2

2
)2

m22 (1− z)3 q̃2
. (3.12)

This form, while perfectly valid in the quasi-collinear limit, presents a problem as it has
terms which grow for p⊥ � m2, i.e.

PL
q→q′V (z, q̃) p⊥�m2−→ 1

2
(
gL

2ρ−1,−1 + gR
2ρ1,1

) q̃2z2 (1− z)
m22 . (3.13)

We therefore adopt Dawson’s approach [54], where the piece of the longitudinal polarization
vector proportional to its momentum is subtracted, giving

εµ0∗(q2) = λm2
2p (1− z)

[
−1; λ cosφp⊥

p (1− z) ,
λ sinφp⊥
p (1− z) , 1

]
, (3.14)

which vanishes for m2 → 0. Using this approach, we can derive the longitudinal
polarization as

PL
q→q′V (z, q̃) =

∑
λ0,λ1=± 1

2 ;λ2=0∗

∣∣Hq→q′V (z, q̃;λ0, λ1, λ2)
∣∣2

=
(
g2
Lρ−1,−1 + g2

Rρ1,1
) 2m2

2
q̃2 (1− z)3 . (3.15)

Now, putting all the pieces together, the splitting function of the q → q′V branching takes
on the following form

Pq→q′V (z, q̃) = PT
q→q′V (z, q̃) + PL

q→q′V (z, q̃) (3.16)

= 1
1− z

[(
gL

2ρ−1,−1 + gR
2ρ1,1

){(
1 + z2

)(
1 + m2

0
q̃2z (1− z)

)
− m2

1 (1 + z)
zq̃2 (1− z)

−m
2
2

zq̃2

}
+ m0

2

q̃2

(
gL

2ρ1,1 + gR
2ρ−1,−1

)
− 2m0m1

zq̃2 gLgR (ρ1,1 + ρ−1,−1)
]
,
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that can be decomposed into massless and massive expressions as

Pmassless
q→q′V (z, q̃) =

(
gL

2ρ−1,−1 +gR
2ρ1,1

) 1+z2

1−z , (3.17a)

Pmassive
q→q′V (z, q̃) = 1

1−z

[(
gL

2ρ−1,−1 +gR
2ρ1,1

){m2
0(1+z2)

q̃2z (1−z) −
m2

1 (1+z)
zq̃2 (1−z)−

m2
2

zq̃2

}

+m0
2

q̃2

(
gL

2ρ1,1 +gR
2ρ−1,−1

)
− 2m0m1gLgR

zq̃2 (ρ1,1 +ρ−1,−1)
]
. (3.17b)

From the eq. (3.17a), it can be readily seen that in the massless limit, Pq→q′V reduces to
its QCD counterpart for gL, gR → 1.

3.2 q → qH splitting function

The case of Higgs boson radiation from a parent quark is arguably the simplest case in the
study of EW branchings. Here, the spinors of the incoming and the outgoing quarks are
the same as in the q → q′V case, i.e. the eqs. (3.4) and (3.5) respectively. Furthermore,
the vertex coupling for a q → qH splitting is

− ig m0
mW

, (3.18)

with g = e/(2sinθW ) and mW being the mass of W gauge boson. This suggests that
q → qH splitting would be suppressed by a factor of (m0/mW )2 for the light-quarks where
m0 � mW . Therefore, it would be safe to consider only heavy quarks as parent particles
of q → qH splittings.

Once more, the corresponding helicity amplitudes can be written as

Hq→qH(z, q̃;λ0, λ1) = g
m0
mW

√
2

q̃2
0 −m2

0
F q→qHλ0,λ1

, (3.19)

with

F q→qHλ0,λ1
=
√

1
2(q̃2

0 −m2
0)
ūλ1(q1)uλ0(q0). (3.20)

The explicit forms of F q→qHλ0,λ1
functions are given in table 2.

Putting the above parts together, we can write the splitting function for the q → qH

splitting as

Pq→qH(z, q̃) =
∑

λ0,λ1=± 1
2

|Hq→qH(z, q̃;λ0, λ1)|2

= g2
(
m0
mW

)2
[
(1− z) + 4m2

0 −m2
2

q̃2(1− z)z

]
, (3.21)

where we take m0 and m2 to be the running masses of the parent heavy quark and the
child Higgs boson, respectively.
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λ0 λ1 F q→qHλ0,λ1

+ + m0(1+z)√
2z(q̃2−m2

0)

+ - − p⊥√
2z(q̃2−m2

0)

- + p⊥√
2z(q̃2−m2

0)

- - m0(1+z)√
2z(q̃2−m2

0)

Table 2. Spin-unaveraged splitting functions for q → qH. In addition to the factors given above,
each term has a phase ei(λ0−λ1)φ′ , where λ0,1 = ± 1

2 represent the helicity states of the quarks.

3.3 V → V ′V ′′ splitting functions

Each of the relevant particles in this case, the parent or any of the children, could be either
a massive or a massless gauge vector boson and may have the corresponding transverse
and/or longitudinal polarization vectors. For the parent gauge boson we can write

εµλ0=±1(p) =
[
0,− λ0√

2
,− i√

2
, 0
]
, (3.22)

εµ0 (p) =

 p

λm0
, 0, 0,

√
λ2m2

0 + p2

λm0

 . (3.23)

Again, to avoid the m0 → 0 singularities that would emerge from the longitudinal polar-
ization vector, we employ Dawson’s approach and rewrite this vector as

εµ0∗(p) =

− λm0

p+
√
λ2m2

0 + p2
, 0, 0, λm0

p+
√
λ2m2

0 + p2

 . (3.24)

Furthermore, we can use the polarization vectors (3.3) and (3.14) for the second child of
a V → V ′V ′′ splitting, while applying the transformations z → (1− z) will reproduce the
polarization vectors of the first child.

With the above information, we can derive the helicity amplitudes for a V → V ′V ′′

splitting as

HV→V ′V ′′(z, q̃;λ0, λ1, λ2) = ig

√
2

q̃2
0 −m2

0
F V→V

′V ′′
λ0,λ1,λ2 , (3.25)

where g = e tan θW when V ′, V ′′ = W±, Z0 and g = e tan when either V or V ′′ is a photon.
For these splittings, the vertex functions take on the form

F V→V
′V ′′

λ0,λ1,λ2 =
√

1
2(q̃2

0 −m2
0)
[
(q1 · ε∗λ2)(ελ0 · ε∗λ1) + (q2 · ε∗λ0)(ελ1 · ε∗λ2)− (q2 · ε∗λ1)(ελ0 · ε∗λ2)

]
,

(3.26)
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F V→V
′V ′′

λ0,λ1,λ2

λ0 λ1 λ2 = + λ2 = − λ2 = 0∗

+ + − p⊥√
q̃2(1−z)3z3

p⊥
√

(1−z)z
q̃(1−z)2

√
2m2
√

(1−z)z
q̃(1−z)2

+ - p⊥
√

1−z
q̃z3 0 0

- + 0 −p⊥
√

1−z
q̃z3 0

- - p⊥z√
q̃2(1−z)3z

p⊥
q̃
√

(1−z)3z3

√
2m2
√

(1−z)z
q̃(1−z)2

+ 0∗ −
√

2m1
√

1−z
q̃
√
z3 0 0

0∗ + 0
√

2m0(z−1)
q̃
√

(1−z)z
0

- 0∗ 0 −
√

2m1
√

1−z
q̃
√
z3 0

0∗ -
√

2m0(z−1)
q̃
√

(1−z)z
0 0

0∗ 0∗ 0 0 0

Table 3. Spin-unaveraged splitting functions for V → V ′V ′′. In addition to the factors given
above, each term has a phase ei(λ0−λ1−λ2)φ′ , where λ0,1,2 = ±, 0∗ represent the helicity states of
the incoming. The longitudinal polarization states which are marked as λ2 = 0∗ give the relevant
components in Dawson’s approach [54] and can be used to eliminate singularities that appear in
the p⊥ � mi, i = 0, 1, 2 limit.

with their explicit forms given in table 3. Note that in this table, we have left out the λi = 0
terms since most of them produce large and complicated vertex functions that depend on
powers of 1/mi. In these cases, we have replaced the longitudinal polarization vectors with
their counterparts in Dawson’s approach and carried on the calculation.

Having the explicit forms of the F V→V ′V ′′λ0,λ1,λ2
functions, we can identify different helicity

configurations of the splitting function as follows

PTTT
V→V ′V ′′(z, q̃) = 2(ρ−1,−1 + ρ1,1)

(1− z(1− z)
z(1− z)

)2 [
m2

0,t(1− z)z −m2
1,t(1− z)

−m2
2,tz + (1− z)z

]
, (3.27)

PTTL
V→V ′V ′′(z, q̃) = 2(ρ−1,−1 + ρ1,1)

(
z

1− z

)2
m2

2,t, (3.28)

PTLT
V→V ′V ′′(z, q̃) = 2(ρ−1,−1 + ρ1,1)

(1− z
z

)2
m2

1,t, (3.29)

PLTT
V→V ′V ′′(z, q̃) = 4ρ0,0(1− z)2m2

0,t, (3.30)

PLLL
V→V ′V ′′(z, q̃) = 2ρ0,0

(
z

1− z

)2 m2
0,tm

2
2,t

m2
1,t

, (3.31)
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with m2
i,t = m2

i /(q̃2z(1 − z)). The TLL, LTL, LLT and LLL parts vanish at Dawson’s
approach. Having derived all helicity parts, we can simply extract the final forms of the
corresponding V → V ′V ′′ splitting functions as:

PV→V ′V ′′(z, q̃) = PTTT + PTTL + PTLT + PTLL + PLTT + PLTL + PLLT + PLLL, (3.32)

which can be separated in massless and massive terms as

Pmassless
V→V ′V ′′(z, q̃) = 2(ρ−1,−1 + ρ1,1)(1− (1− z)z)2

(1− z)z , (3.33)

Pmassive
V→V ′V ′′(z, q̃) = 1

(1− z)z (ρ−1,−1 + ρ1,1)
[
2m2

0,t(1− (1− z)z)2 − 2m2
1,t

(
1− (1− z)z2

)
−2m2

2,t

(
1− (1− z)2z

)
+ 4ρ0,0 m

2
0,t z(1− z)3

]
. (3.34)

3.4 V → V H splitting functions

The last EW branchings that we need to consider is the case where a Higgs boson radiates
from a massive gauge boson. The helicity amplitudes that correspond to these branchings
would be

HV→V H(z, q̃;λ0, λ1) = g m0

√
2

q̃2
0 −m2

0
F V→V Hλ0,λ1 , (3.35)

with g = e/ sin θW for V = W± and g = e/(sin θW cos θW ) for V = Z0. Knowing the
polarization vectors of the parent vector bosons, eqs. (3.22) and (3.24) and the child vector
boson, eqs. (3.4) and (3.14), we can readily calculate the vertex functions,

F V→V Hλ0,λ1 =
√

1
2(q̃2

0 −m2
0)
(
ελ0 · ε∗λ1

)
. (3.36)

The explicit forms of F V→V Hλ0,λ1
functions are given in table 4. We can derive different helicity

configurations of the V → V H splitting function as

PTT
V→V H(z, q̃) =

∑
λ0,λ1=±1

|HV→V H(z, q̃;λ0, λ1)|2

= 1
2 m2

0,t (ρ−1,−1 + ρ1,1), (3.37)

PTL
V→V H(z, q̃) =

∑
λ0=±1,λ1=0

|HV→V H(z, q̃;λ0, λ1)|2

= 1
4
[
(1− z)z −m2

0,t(1− z)2 − zm2
H,t

]
(ρ−1,−1 + ρ1,1), (3.38)

PLT
V→V H(z, q̃) =

∑
λ0=0,λ1=±1

|HV→V H(z, q̃;λ0, λ1)|2

= 1
2z2

[
(1− z)z −m2

0,t(1− z)2 − zm2
H,t

]
ρ0,0, (3.39)

PLL
V→V H(z, q̃) = 0. (3.40)

Once more, we have used Dawson’s approach in the calculation of the LL part to avoid
1/mi terms in massive vector boson splittings. Putting above parts together, the V → V H
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λ0 λ1 F V→V Hλ0,λ1

+ + −m0,t√
2

+ - 0

+ 0 p⊥
2
√
q̃2(1−z)z

- + 0

- - −m0,t√
2

- 0 − p⊥
2
√
q̃2(1−z)z

0 + − p⊥
2z
√
q̃2(1−z)z

0 - p⊥
2z
√
q̃2(1−z)z

0∗ 0∗ 0

Table 4. Spin-unaveraged splitting functions for V → V H. In addition to the factors given above,
each term has a phase ei(λ0−λ1−λ2)φ′ , where λ0,1 = ±, 0 represent the helicity states of the incoming
and the outgoing guage vector bosons. The longitudinal polarization states which are marked as
λ2 = 0∗ give the relevant components in Dawson’s approach [54] and can be used to eliminate
singularities that appear in the p⊥ � mi, i = 0, 2 limit.

splitting function will take the form

PV→V H(z, q̃) = PMassless
V→V H (z, q̃) + PMassive

V→V H (z, q̃), (3.41)

with

PMassless
V→V H (z, q̃) = 1− z

4z
[
z2(ρ−1,−1 + ρ1,1) + 2ρ0,0

]
,

PMassive
V→V H (z, q̃) = −

m2
H,t

4z
[
z2(ρ−1,−1 + ρ1,1) + 2ρ0,0

]
(3.42)

−
m2

0,t
4z2

[(
2z2 − 4z + 2

)
ρ0,0 +

(
z4 − 2z3 − z2

)
(ρ−1,−1 + ρ1,1)

]
.

Having calculated all relevant EW splitting functions, we are now in a position to implement
our EW parton shower in Herwig 7. A brief note on the changes in Herwig 7 interface can be
found in appendix A, which includes the newly introduced commands. In the next section,
we will present our results for testing this implementation against fixed-order (FO) EW
radiations. We will also test the performance of this EW parton shower in the prediction
of high-energy scattering events.
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Figure 1. Fixed order equivalent channels for showering a e−e+ → Z0/γ → qq̄ process with a
single-step q → q′V branching.

4 Results and discussions

To test the performance of our EW parton shower, we choose a number of events that
can be meaningfully showered with specific EW branching classes in Herwig 7. Then,
firstly, we generate and shower these events using an EW-only parton shower scheme while
limiting the parton shower to just one FS emission. This would allow us to collect the
corresponding single-step EW resummation data. Secondly, we calculate the equivalent
FO contributions, using the relevant hard MEs and without EW shower. Comparing these
results would produce a good performance test for the implemented parton shower.

Hence, for the case of q → q′V splittings, we choose the e−e+ → Z0/γ → qq̄ process
to be the source of resummed contributions from the EW shower. The equivalent FO
calculation can be carried out using the e−e+ → Z0 → qq̄′V channels, shown in figure 1.
The corresponding MEs for the FO calculations are generated by MadGraph5 [56] while
for the resummed computations we use a Herwig 7 internal ME, MEee2gZ2qq [27, 57]. The
produced events are analysed by Rivet [58].

Figures 2 and 3 show the results of this analysis, respectively for the q → q′W± and
q → qZ0 splitting functions in

√
s = 1TeV center-of-mass energy. The panels (a) and

(b) of these figures demonstrate the differential rates of the EW gauge boson emissions as
functions of the mass of the quark-antiquark systems, mqq̄, and the transverse momenta
of the radiated gauge bosons in the Sudakov parametrization, p⊥, defined in eq. (2.6h).
The red solid histograms show the kinematics of the gauge bosons that have been emitted
as the results of the implemented EW parton shower, up to a single emission, and hence
labelled EW Resummed. These are compared against their FO counterparts, presented
as blue dashed histograms. Furthermore, the Dalitz plots in (c) panels of these figures
show the normalized weights of the gauge boson PS radiations as functions of the light-
cone momentum fractions of the final-state quarks. These results can be compared against
similar FO plots in panels (d).

One can immediately recognize that the single-step EW radiations from the q → qZ0

splittings have a relatively good agreement with their FO counterparts and the observed
discrepancies in the small mass region of the qq̄-pair system, or in the high-p⊥ tail of the ra-
diated gauge bosons, are mainly the remnants of the collinear factorisation approximation,
the eq. (3.1). This conclusion is particularly emphasized by observing the same pattern
in figure 4, where a similar calculation has been made with

√
s = 10TeV. In this latter

case, the agreement between the EW resummed and the FO results has been expectedly im-
proved, since the collinear factorisation theorem produces better results with increasing the
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Figure 2. Performance test for q → q′W± EW branching in Herwig 7 for
√
s = 1TeV. (a)

and (b) show the differential rate of W± emissions respectively as functions of the mass of the
quark-antiquark system, mqq̄ and the transverse momenta of radiated gauge bosons in the Sudakov
parametrization, p⊥. (c) and (d) illustrate the differential rate of W± emissions as functions of the
light-cone fraction of the momentum of the quark-antiquark pairs, x1 and x2, in resummed EW
and FO calculations, respectively.
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Figure 3. Performance test for q → qZ0 EW branching in Herwig 7 for
√
s = 1TeV. The notation

of the figure is the same as in figure 2.

factorisation scale. Moreover, the performance test for the q → q′W± EW branching in fig-
ure 2, although producing comparable results, shows slightly different behaviours compared
to the FO calculations. This is due to the difference between the treatment of MadGraph5
towards the longitudinal components of the q → q′W± splitting, and our use of Dawson’s
approach. These differences may become significant for high-energy FO results but would
be of no consequence for successive radiations in an EW parton shower scheme. Addition-
ally, the wing shapes of the Dalitz plots are produced by symmetric radiations of the gauge
bosons from the quark-antiquark pairs, showing the statical balance of the EW radiations.

We can also perform a very similar test for q → qH breaching, using the same e−e+ →
Z0/γ → qq̄ process. This time, we collect the appropriate EW resummation data for
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Figure 4. Performance test for q → qZ0 EW branching in Herwig 7 for
√
s = 10TeV. The notation

of the figure is the same as in figure 3.

√
s = 100TeV, ensuring that the energy scale can go high enough to allow for high-energy

splittings i.e. t → tH and b → bH. Furthermore, the equivalent FO calculations can be
done in similar channels as shown in figure 1, by replacing the final state gauge bosons
with Higgs bosons. Again, the corresponding FO MEs are produced by MadGraph5 while
the internal MEee2gZ2qq scattering amplitude is showered by EW radiations, resulting in
the single-step resummed EW data. These results are plotted and compared in figure 5,
with the same general layout as in figure 2. It can be seen that the resummed calculations
produce a relatively good description of the FO data.

To check the performances of the remaining splitting classes, i.e. V → V ′V ′′ and
V → V H, we choose a qq̄ → V g underlying event with q = u, d at

√
s = 13TeV energy
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Figure 5. Performance test for q → q′Z0 EW branching in Herwig 7 for
√
s = 10TeV. The notation

of the figure is the same as in figure 2.

scale and shower it with EW radiations to produce the EW resummation data. The
corresponding FO calculations can also be done, using a set of production channels that
are given in figure 6. One should note that in the case of a V → V H branching, only
the diagrams (a) and (b) of figure 6 (with replacing one of the FS gauge bosons with
a Higgs boson) are needed in the FO calculations. For the V → V ′V ′′ cases, diagrams
(c), (d) and (e), although being irrelevant to the EW radiations, must be included in the
FO calculations to preserve the gauge invariance. This would also mean that we cannot
directly separate Z0 →W+W− and γ →W+W− radiations from each other and from the
contributions of the (c), (d) and (e) channels. We will, however, include angular separation
cuts in our FS analysis to suppress the unwanted contributions. Additionally, to ensure a
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Figure 6. Diagrams (a) and (b) are the Fixed order equivalent channels for showering a qq̄ →
V + Jet process with a single-step V → V ′V ′′ branching. For the cases involving W+W− pairs
in the final-state, diagrams (c), (d) and (e) must also be included to preserve gauge invariance.
However, the contributions of these channels can be suppressed by introducing angular separation
cuts ∆RW+,W− > 1.0 and ∆RW±,Jet < 1.0. Additionally, to ensure a clean branching signature,
we impose a kjet

⊥ > 1TeV cut on the transverse momentum of the produced jets.
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Figure 7. Performance test for W± → W±Z0 EW branching in Herwig 7 for
√
s = 13TeV. The

panel (a) shows the differential rate of Z0 emissions as functions of its transverse momentum while
the panel (b) demonstrates the distribution of the light-cone momentum fraction of the parent
bosons, W±. The red histograms are obtained from showering a q+ q̄ →W±+Jet event with EW
radiations, limited to a sngle radiation. The blue dashed histograms correspond to the equivalent
fixed order events depicted at figure 6. In order to suppressing the contributions that come from the
channels described in diagrams (c), (d) and (e) of figure 6 we have imposed the angular separation
cuts (4.1) and plotted the results with green dash-dotted and orange dotted histograms for the EW
single-step resmmation and FO calculations, respectively.
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Figure 8. Performance test for W± → W±γ EW branching in Herwig 7 for
√
s = 13TeV. The

notation of the plot is the same as in figure 7.
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Figure 9. Performance test for Z0 → W+W− EW branching in Herwig 7 for
√
s = 13TeV. The

panel (a) shows the differential rate of Z0 emissions as functions of its transverse momentum while
the panel (b) demonstrates the distribution of the light-cone momentum fraction of the parent
bosons, W±. The red histograms are obtained from showering a q+ q̄ →W±+Jet event with EW
radiations, limited to a sngle radiation. The blue dashed histograms correspond to the equivalent
fixed order events depicted at figure 6. In both cases, to suppress the contributions that come
from the channels described in diagrams (c), (d) and (e) of figure 6 we have imposed the angular
separation cuts (4.1) and the invariant mass cut (4.2).

clean EW branching signature, we impose a kjet
⊥ > 1TeV cut on the transverse momentum

of the produced jets on both the EW resummed and the FO calculations.
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Figure 10. Performance test for γ →W+W− EW branching in Herwig 7 for
√
s = 3TeV. A lower

energy scale is used to suppress the Z0 → W+W− events in the FO calculations. The notation of
the plot is the same as in figure 9.
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Figure 11. Performance test for W± → W±H EW branching in Herwig 7 for
√
s = 13TeV. The

notation of the plot is the same as in figure 7.
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Figure 12. Performance test for Z0 → Z0H EW branching in Herwig 7 for
√
s = 13TeV. The

notation of the plot is the same as in figure 7.

Therefore, to test the performance of the W± → W±V EW branchings, with V =
Z0, γ, we use a qq̄ → W±g underlying event that is showered with the corresponding
EW radiations. The results are presented in figures 7 and 8, respectively. In each of
these figures, panel (a) shows the differential production rate of the emitted gauge boson
as a function of its transverse momentum while panel (b) demonstrates the distribution
of the light-cone momentum fraction of the parent gauge boson. In both cases, the EW
resummed results are plotted as red solid histograms while the FO calculations are the blue
dashed histograms. It can be observed that the EW resummed results behave similarly
to the FO calculations and seem able to produce a reasonably sound description of the
latter. Meanwhile, the discrepancy in the large-p⊥ tail is a direct consequence of the
extra contributions, coming from the channels that are shown in diagrams (c), (d) and
(e) of figure 6. One way of suppressing these contributions is to impose a set of angular
separation cuts between the FS particles and the gluon-tagged jet, say

∆RW±,V > 1, ∆RW±,jet < 1, ∆RV,jet < 1. (4.1)

We have included these cuts on our analysis and plotted the corresponding results with
green dash-dotted and orange dotted histograms for the EW single-step resummation and
FO calculations, respectively. It is immediately apparent that with the inclusion of the
above constraints, the resummed calculations have a much better agreement with the FO
results. One should also note that the closeness of the EW resummed and the FO results
in the panels (b) show that the kinematic variables of the parent gauge bosons (in the EW
shower) and the exchanged gauge boson (in the FO events) are nearly identical.

In the cases of the Z0 → W+W− and the γ → W+W− branchings, we use a qq̄ →
Z0/γ + g underlying Born process in a similar fashion as in the previous cases and show
the results in figures 9 and 10. A particular issue on this analysis is that since these EW
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splittings produce a similar FS, one cannot separate these splittings in the corresponding
FO calculation. To reduce this interference, we make use of an invariant mass cut,

M̂ =
[
(EW+ + EW− + Ejet)2 − |pW+ + pW− + pjet|2

]1/2
> 2 TeV. (4.2)

Nevertheless, the existence of the above-mentioned interference is clearly reflected in the
distributions of the light-cone momentum fraction of the parent bosons for each splitting
(see panels (b) of figures 9 and 10), where there is a clear gap between the kinematics of
the parent gauge bosons in the EW resummed and the FO results. Furthermore, since
the contributions coming from the Z0 → W+W− vertex would be dominant in higher
energy scales, the performance test of the γ → W+W− EW branching has been done for√
s = 3TeV. With all these considerations in place, we can observe that the implemented

EW shower algorithm does a decent job of reproducing the FO results.
The last set of tests that we present here, are designed to check the performances of

the W± → W∓H and Z0 → Z0H EW branchings, using a qq̄ → V + g underlying Born
process. We also use the channels shown in figure 6, replacing one of the FS gauge bosons
with a Higgs boson. One should note that in these cases, diagrams (c), (d) and (f) are
strongly suppressed, since we are limiting the incoming quark flavors to up and down. The
results are shown in figures 11 and 12.

Finally, after conforming that the implemented EW parton shower in Herwig 7 can
soundly describe the corresponding FO events, we can move on and use this EW shower
in some physics tests. To this end, we calculate the angular distribution of W± bosons
accompanied with high-transverse-momentum jets at

√
s = 8TeV. Such a measurement

has been done by the ATLAS collaboration [32], reporting the angular separations of
the observed muons and the closest jet with pleading jet

t > 500GeV. Henceforth, we have
separately generated W± + jet and W± + 2jets MEs by MadGraph5 and showered
them with the QCD+QED parton shower scheme in Herwig 7.2 These results are
presented in figures 13, 14 and 15, respectively corresponding to pleading jet

t > 500GeV,
500 GeV > pleading jet

t > 560GeV and pleading jet
t > 650GeV, where the W± + jet

and W± + 2jets calculations are plotted separately and their total values (labelled as
Inc.W+jet(s) ⊗ QCD⊕QED PS) are compared against the relevant ATLAS data.

On the other hand, to get a sense of how effective the implemented EW parton shower
is, we use Herwig’s internal ME, MEQCD2to2, to produce a pure QCD dijet event and set the
minimum transverse momenta of these jets to be 500GeV. These events can be showered
with Herwig’s new QCD + QED + EW scheme. The results are plotted with red solid
histograms in figures 13, 14 and 15, labelled as Dijet ⊗ QCD⊕QED⊕EW PS. Expectedly,
since the corresponding events do not include explicit prompt W± emissions, they fall
short of the W±+dijet ⊗ QCD⊕QED PS contributions. It is, nevertheless, encouraging to
observe that our QCD dijet plus EW parton shower framework can describe the data in
the low ∆R region.

2One should note that this is not the best way for doing such calculations as the use of a multi-jet
merging algorithm might have non-negligible effects on these results. Also, some contributions are missing
from W± ⊗ QCD⊕QED simulations. However, the existence of these predictions is only to prived a point of
reference for the reader as to how relevant the effects of our EW parton shower is.
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Figure 13. The angular distribution of W± bosons accompanied with high transverse momentum
jets at

√
s = 8TeV. The data is from ATLAS [32], showing the angular distribution of the muon and

the closest jet with pt > 500GeV. The blue dashed and green dotted histograms are produced using
W± + jet and W± + 2jets MEs, respectively, while the orange dash-dotted histogram represents
their sum. The corresponding MEs have been generated via MadGraph and showered in Herwig with
its QCD +QED scheme. On the other hand, the red solid histogram is calculated by showering a
pure QCD dijet event with Herwig’s new QCD +QED + EW scheme.

b

b

b
b b

b

b

b
b

b

b b

b

b

b

b

b
b

b

b ATLAS - 8TeV
Dijet ⊗ QCD⊕QED⊕EW PS
W+dijet ⊗ QCD⊕QED PS
W+jet ⊗ QCD⊕QED PS
Inc. W+jet(s) ⊗ QCD⊕QED PS

0

20

40

60

80

100
∆R between lepton and closest jet, 500GeV < pleadT < 600GeV

d
σ
/d

∆
R
[f
b]

b b b b b b b b b b b b b b b b b b b

0.5 1 1.5 2 2.5 3 3.5 4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

∆R(µ, j)

M
C
/D

at
a

Figure 14. The angular distribution of W bosons accompanied with high transverse momentum
jets at

√
s = 8TeV. The data is from ATLAS [32], showing the angular distribution of the muon and

the closest jet with 500 GeV < pt < 650 GeV. The notation of the plot is the same as in figure 13.
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Figure 15. The angular distribution of W bosons accompanied with high transverse momentum
jets at

√
s = 8TeV. The data is from ATLAS [32], showing the angular distribution of the muon

and the closest jet with pt > 650 GeV. The notation of the plot is the same as in figure 13.

5 Conclusion

In the present work, we have outlined the necessary steps that are required for imple-
menting an AO EW parton shower scheme in Herwig 7 that includes IS EW radiations
and an all-inclusive FS EW parton shower. We have systematically introduced all relevant
quasi-collinear EW splitting functions and derived their explicit helicity dependant forms.
Afterward, these functions have been implemented in the Herwig 7 AO shower algorithm,
upgrading its existing QCD+QED scheme to a new QCD+QED+EW scheme. In the next
step, we have run a comprehensive performance test, checking the implemented EW par-
ton shower against the corresponding FO analysis by showering some relevantly suitable
underlying events. This step has shown that our EW shower soundly describes successive
EW radiations within the confinements of the collinear factorisation approximation.

Furthermore, we have used our EW parton shower, as a part of Herwig’s
QCD+QED+EW parton shower scheme, to simulate an LHC high-energy event, i.e. the
calculation of the angular distribution of W± bosons accompanied with high-transverse-
momentum jets at

√
s = 8TeV. To do so, we have showered a purely QCD dijet produc-

tion event with the QCD+QED+EW shower and compared the results against inclusive
W± + jet(s) events and the existing experimental data from ATLAS. It has been shown
that our simplistic framework, although being deprived of hard W± radiations, can predict
the behaviour of the targeted events.

The developed EW parton shower scheme would be available to the public, with the
Herwig 7.3 public release.
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A EW shower in Herwig interface

After Herwig-7.3 public release, the EW AO shower would be switched on in all input files
by default. If not provided by default, or in a case where a change in the shower setting
is needed, a shower switch option can be explicitly used by setting up the ShowerHandler
interface as:

set /Herwig/Shower/ShowerHandler:Interactions ALL

Here, the option ALL corresponds to the QCD+QED+EW shower scheme. The other
available options are QEDQCD, QCD, QED and EWOnly. One should note that, technically
speaking, the γ → W+W− EW branching is implemented a part of the QED parton
shower and is accessible through either ALL or QED options.

Besides the above options, all other accepts of the newly implemented parton shower
is similar to the previous AO shower and can be found in [4] or on the Herwig project
webpage.3

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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