
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Exact Bayesian Inference for Discretely Observed
Markov Jump Processes Using Finite Rate Matrices

Chris Sherlock & Andrew Golightly

To cite this article: Chris Sherlock & Andrew Golightly (2023) Exact Bayesian Inference
for Discretely Observed Markov Jump Processes Using Finite Rate Matrices, Journal of
Computational and Graphical Statistics, 32:1, 36-48, DOI: 10.1080/10618600.2022.2093886

To link to this article: https://doi.org/10.1080/10618600.2022.2093886

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material

Published online: 09 Aug 2022.

Submit your article to this journal

Article views: 394

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2022.2093886
https://doi.org/10.1080/10618600.2022.2093886
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2022.2093886
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2022.2093886
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2022.2093886
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2022.2093886
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2093886&domain=pdf&date_stamp=2022-08-09
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2093886&domain=pdf&date_stamp=2022-08-09

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2023, VOL. 32, NO. 1, 36–48
https://doi.org/10.1080/10618600.2022.2093886

Exact Bayesian Inference for Discretely Observed Markov Jump Processes Using Finite
Rate Matrices

Chris Sherlocka and Andrew Golightlyb

aDepartment of Mathematics and Statistics, Lancaster University, Lancaster, UK; bDepartment of Mathematical Sciences, Durham University, Durham,
UK

ABSTRACT
We present new methodologies for Bayesian inference on the rate parameters of a discretely observed
continuous-time Markov jump process with a countably infinite statespace. The usual method of choice for
inference, particle Markov chain Monte Carlo (particle MCMC), struggles when the observation noise is small.
We consider the most challenging regime of exact observations and provide two new methodologies for
inference in this case: the minimal extended statespace algorithm (MESA) and the nearly minimal extended
statespace algorithm (nMESA). By extending the Markov chain Monte Carlo statespace, both MESA and
nMESA use the exponentiation of finite rate matrices to perform exact Bayesian inference on the Markov
jump process even though its statespace is countably infinite. Numerical experiments show improvements
over particle MCMC of between a factor of three and several orders of magnitude. Supplementary materials
for this article are available online.

ARTICLE HISTORY
Received December 2019
Accepted June 2022

KEYWORDS
Coffin state; Continuous-time
Markov chain; Correlated
pseudo-marginal; MCMC

1. Introduction

We consider exact inference for Markov jump processes
(MJPs), continuous-time Markov chains which arise from
reaction networks: stochastic models for the joint evolution
of one or more populations of species. These species may
be biological species (e.g., Wilkinson 2018), animal species
(e.g., Drovandi and McCutchan 2016), interacting groups of
individuals at various stages of a disease (e.g., Andersson and
Britton 2000), or counts of subpopulations of alleles (Moran
1958), for example. The state of the system is encapsulated by
the number of each species that is present, and in many cases
this number is unbounded and, consequently, the statespace
is countably infinite. The system evolves via a set of reactions
whose rates depend on the current state. Section 1.1 describes
three examples of reaction networks. The number of possible
“next” states given the current state is bounded by the number
of reactions, which is typically small; thus, the infinitesimal
generator of the process, which can be viewed as a countably
infinite “matrix,” is sparse. The methods which we develop in
this article can be applied to any MJP, but they are particularly
effective when the generator of the MJP is sparse.

The usual method of choice for inference on discretely
observed MJPs with a countably infinite statespace is par-
ticle Markov chain Monte Carlo (particle MCMC, Andrieu,
Doucet, and Holenstein 2010) using a bootstrap particle filter
(e.g., Andrieu, Doucet, and Holenstein 2009; Golightly and
Wilkinson 2011; McKinley et al. 2014; Owen, Wilkinson, and
Gillespie 2015; Koblents and Miguez 2015; Wilkinson 2018).
Paths from the prior distribution of the process are simulated

CONTACT Chris Sherlock c.sherlock@lancaster.ac.uk Department of Mathematics and Statistics, Lancaster University, Lancaster, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

and then resampled according to weights that depend on the
likelihood of the next observation given the simulated path.
Typically, as the precision of an observation increases, its
compatibility with most of the paths plummets, leading to
low weights; consequently, the efficiency of bootstrap particle
MCMC decreases substantially. We consider the situation that is
most challenging of all for a particle filter: when the observations
are exact. Recently, paths proposed from alternative stochastic
processes which take the next observation into account have
successfully mitigated against this issue within particle MCMC
(Golightly and Wilkinson 2015; Golightly and Sherlock 2019),
albeit at an increased computational cost. The first of these
provides the primary particle-filter comparator for the very
different inference methodology, inspired by Georgoulas,
Hillston, and Sanguinetti (2017), that we will introduce.

The likelihood for a discretely observed continuous-time
Markov chain with a large but finite statespace and a rate matrix
(or infinitesimal generator) Q is the product of a set of tran-
sition probabilities, each of which requires the evaluation of
v�eQt for an inter-observation time t and a nonnegative vec-
tor v representing the state at an observation time. Fast algo-
rithms for exactly this calculation, some specifically designed
for sparse Q, are available (e.g., Sidje 1998; Sidje and Stewart
1999; Moler and Van Loan 2003; Al-Mohy and Higham 2011)
and some are applicable even when the number of possible
states, d, is in the tens of thousands; however, many processes
of interest have a countably infinite number of states, and an
exact, matrix-exponential approach might appear impossible
for such systems. Refuting this conjecture, Georgoulas, Hillston,
and Sanguinetti (2017) describes an ingenious pseudo-marginal

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

https://doi.org/10.1080/10618600.2022.2093886
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2093886&domain=pdf&date_stamp=2023-02-10
http://orcid.org/0000-0002-2429-3157
http://orcid.org/0000-0001-6730-1279
mailto:c.sherlock@lancaster.ac.uk
http://www.tandfonline.com/r/JCGS
http://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 37

MCMC algorithm (Andrieu and Roberts 2009) that uses ran-
dom truncations (e.g., McLeish 2011; Glynn and Rhee 2014) and
coffin states to explore the parameter posteriors for MJPs with
infinite statespaces using exponentials of finite rate matrices.
Unlike other pseudo-marginal algorithms which use random
truncation (e.g., Lyne et al. 2015), the algorithm of Georgoulas,
Hillston, and Sanguinetti (2017) is guaranteed to produce unbi-
ased estimates of the likelihood which are nonnegative. The
algorithm, however, suffers from several issues: the most impor-
tant arises from the need to use a proposal distribution for the
truncation level (see Section 2.2). As a result, in some examples
the algorithm is less efficient than the most appropriate particle
MCMC algorithm (see Section 4).

We describe the minimal extended statespace algorithm
(MESA) and the nearly minimal extended statespace algorithm
(nMESA), inspired by the key novel idea in Georgoulas,
Hillston, and Sanguinetti (2017). These are fast and efficient
algorithms for exact inference on Markov jump processes
with infinite statespaces through exponentiation of finite-
dimensional rate matrices. Essentially, a sequence of nested
regions is defined, ∅ = R0 ⊂ R1 ⊆ R2 ⊆ . . . , with
limr→∞ Rr = X , the statespace of the MJP. The statespace
of the MCMC Markov chain is then extended to include r̃,
the index of the smallest region that contains the MJP, and
the corresponding extended posterior can be calculated using
only finite rate matrices. In the examples we investigate we find
that MESA and nMESA are anything from a factor of three
to several orders of magnitude more efficient than the most
efficient particle MCMC algorithm.

We conclude this section with three motivating examples of
reaction networks; these three examples will be used to bench-
mark our algorithms, the algorithm of Georgoulas, Hillston,
and Sanguinetti (2017) and particle MCMC in Section 4. In
Section 2 we describe the algorithm of Georgoulas, Hillston, and
Sanguinetti (2017), separating out the key idea of nested regions
which is shared by our algorithms. Section 3 describes MESA
and nMESA themselves, and the article concludes in Section 5
with a discussion.

1.1. Reaction Network Examples

In a reaction network, the state vector, X, consists of the
(nonnegative) counts of one or more physical, chemical or
biological species. The state vector is piecewise constant over
time, and updates only when a reaction occurs. For a given
system, let there be R possible reactions. The state update
is deterministic given the current state and the particular
reaction. Reaction r (r = 1, . . . , R) occurs according to a
Poisson process with a rate of hr(X; θr) for some function hr
and unknown parameter θr ; that is, for some small time interval
δt,P(reaction r occurs in (t, t+δt]|X = x) = hr(x; θr)δt+o(δt).
For example, the Lotka-Volterra model, below, has R = 3
reactions, the first of which changes the state vector x = (x1, x2)
to (x1 − 1, x2) and occurs with a rate of h1(x; θ1) = θ1x1.

To motivate the importance of inference on reaction net-
works we now present: the Lotka-Volterra predator–prey model,
the Schlögel model, which is one of the simplest bistable net-
works, and a simple model of gene auto-regulation in prokary-
otes. We will perform inference on these reaction networks in
our simulation study in Section 4.

Examples 1. The Lotka-Volterra predator-prey model (e.g., Boys,
Wilkinson, and Kirkwood 2008). Two species, predators, pred,
and prey, prey, with counts of X1 and X2, respectively, evolve and
interact through the following three reactions (with associated
rates):

Pred
θ1X1−→ ∅

Prey
θ2X2−→ 2Prey

Pred + Prey
θ3X1X2−→ 2Pred.

Examples 2. The Schlögel model (e.g., Vellela and Qian 2009)
has two stable meta states, and the frequency of transitions
between the meta states is much lower than the frequency
of transitions between states within a single meta state. The
interactions between the single species, whose frequency is X,
and two chemical “pools,” A and B are:

A + 2X
θ1X(X−1)/2−→ 3X , B

θ3−→ X

3X
θ2X(X−1)(X−2)/6−→ 2X + A , X

θ4X−→ B.

Examples 3. The autoregulatory gene network of Golightly and
Wilkinson (2005) models the production of RNA from DNA
and of a protein P from RNA, as well as the extinction of both
RNA and P, the reversible dimerization of P and the reversible
binding of the dimer, P2 to DNA, where the binding inhibits
production of RNA. The total number of copies of DNA, G, is
fixed, and the reactions are:

DNA + P2
θ1(G−X4)X3−→ DNA · P2,

DNA
θ3(G−X3)−→ DNA + RNA,

DNA · P2
θ2X4−→ DNA + P2,

RNA
θ4X1−→ RNA + P,

2P
θ5X2(X2−1)/2−→ P2,

RNA
θ7X1−→ ∅,

P2
θ6X3−→ 2P,

P
θ8X2−→ ∅,

where X1, . . . , X4 denote the counts of RNA, P, P2, and DNA·P2,
respectively.

The potentially countably infinite set of possible states of a
reaction network can be placed in one-to-one correspondence
with the nonnegative integers. The i, jth entry of the correspond-
ing rate “matrix” Q (i �= j) is the rate for moving from state i to
state j.

1.2. Notation

Throughout this article, a scalar operation applied to a vector
means that the operation is applied to each element of the vector
in turn, leading to a new vector, for example, for the d-vector θ ,
log θ ≡ (log θ1, . . . , log θd)

�. We denote the vector of 1s by 1.
The symbol 0 denotes the scalar 0 or the vector or matrix of 0s
as dictated by the context.

There is a one-to-one correspondence between any vector
state x, such as numbers of predators and prey in Example 1,

38 C. SHERLOCK AND A. GOLIGHTLY

and the associated nonnegative integer state, which we denote
by k(x). Throughout this article, for simplicity of presentation,
we abuse notation by abbreviating the (k(x), k(x′)) element of a
matrix M, strictly [M]k(x),k(x′), to [M]x,x′ .

2. Inference for MJPs with Infinite Statespaces using
the Rate Matrix

For simplicity of presentation we assume a known initial condi-
tion, x0, though the methodology is trivially generalizable to an
initial distribution. As in Georgoulas, Hillston, and Sanguinetti
(2017), we then consider the observation regime where particle
filters typically struggle most: exact counts of all species are
observed at discrete points in time, t1, t2, . . . , tn; for simplicity
we present the case where ti = it for some inter-observation
interval t.

Throughout this article, θ denotes the vector of positive
reaction-rate parameters, and Bayesian inference is performed
on ψ := log θ , to which a prior density π0(ψ) is assigned.

For a finite-statespace Markov chain, whilst the rate matrix,
Q, is the natural descriptor of the process, the likelihood for
typical observation regimes involves the transition matrix, eQt ,
the (i, j)th element of which is exactly P

(
Xt = j|X0 = i

)
. By

the Markov property, the likelihood for the exact observations
x1, . . . , xn is then

L(ψ ; x1:n) =
n∏

i=1
[eQ(ψ)t]xi−1,xi . (1)

The above likelihood is used within the algorithm of Geor-
goulas, Hillston, and Sanguinetti (2017), and within MESA and
nMESA. All three algorithms share the same construction of
nested regions which enables the use of (1) and which we now
describe.

2.1. Set Up for Countably Infinite Statespaces

Let the MJP, {Xs}s≥0, have a statespace of X , start from X0 = x
and be observed precisely at time t: Xt = x′. Consider
an infinite sequence of regions, {Rr}∞r=0 with R0 = ∅ ⊂
R1 ⊆ R2 ⊆ R3 . . . and limr→∞ Rr = X ; we permit
equality so that the description also applies to MJPs with
finite statespaces. Furthermore, R1 should be chosen such that
P

({Xs}0≤s≤t ∈ R1 | X0 = x, Xt = x′) > 0. Let dr = |Rr| be the
number of states in Rr .

Let Q(ψ) be the infinitesimal generator for the MJP on X .
For finite A, B ⊆ X , let Q(A, B) be the submatrix of Q that
involves transitions from A to B, and let Qr be the be the rate
matrix for transitions inside Rr except that it has an additional
coffin state, C, which receives all transitions that, under Q, would
exit Rr . Specifically

Qr :=
[

Q(Rr ,Rr) c
0 0

]
,

where, here and henceforth, c denotes the scalar or column
vector (as appropriate) such that

∑dr+1
j=1 Qi,j = 0 for each i.

We will, in fact, have a different sequence of regions defined for
each inter-observation interval. We will denote the rth region

for the ith inter-observation interval by R(i)
r and the associated

transition matrix by Q(i)
r . For clarity of exposition, we will often

suppress the superscript (i).
For each region Rr ⊆ X , there is a one-to-one map kr :

Rr → {1, . . . , dr} and we add that kr : C → dr + 1. Using
the shorthand of X for {Xs}t

s=0, for 0 ≤ t1 < t2 ≤ t we define:

B(X; t1, t2,R) := 1{Xs ∈ R ∀s ∈ [t1, t2]} (r ≥ 0).

We set r̃(X; t1, t2) to be the unique index where Xs ∈
Rr̃(X;t1,t2) ∀s ∈ [t1, t2] and ∃ s ∈ [t1, t2] such that Xs /∈
Rr̃(X;t1,t2)−1; that is, the smallest index r such that B(x; t1, t2,Rr)
= 1.

2.2. The Method of Georgoulas, Hillston, and Sanguinetti
(2017)

In Georgoulas, Hillston, and Sanguinetti (2017), henceforth
abbreviated to GHS17, the random-truncation method of
McLeish (2011) and Glynn and Rhee (2014) leads to an unbiased
estimator of the likelihood of a set of observations, which
feeds into a pseudo-marginal MCMC algorithm (Andrieu and
Roberts 2009) targetting the posterior π(ψ) ∝ π0(ψ)L(ψ).
Unlike other uses of random truncation within MCMC (e.g.,
Lyne et al. (2015); see also Jacob and Thiery 2015), however, the
unbiased estimator of GHS17 can never be negative. We first
briefly describe the random truncation method, before detailing
the algorithm of GHS17.

Let z0, z1, . . . be a sequence, with z := limi→∞ zi < ∞. Let
R ∈ {1, 2, . . . , } be sampled from some mass function. Then

Ẑ := z0 +
R∑

j=1

zj − zj−1

P
(
R ≥ j

)
is an unbiased estimator of z. This is because, subject to the
condition of Fubini’s Theorem, the order of sum and expectation
can be exchanged, so

E

[
Ẑ
]

= z0 +
∞∑

j=1

(zj − zj−1)

P
(
R ≥ j

) E
[
I(R ≥ j)

]
,

and the result follows from the telescoping sum.
At each iteration of the algorithm of GHS17, a value for

r is sampled at random from some discrete probability mass
function {p(r)}∞r=1. In GHS17, P (R > r | R ≥ r) := qr = aqr−1
for some a < 1 and with q0 = 1. Consequently,

P (R > r) = ar(r+1)/2. (2)

Since [eQr(ψ)t]x,x′ = P
(
Xt = x′, B(X; 0, t,Rr) = 1|X0 = x

)
,

limr→∞[eQr(ψ)t]x,x′ = L(ψ ; x, x′). Thus, if X0 = x and Xt = x′
are consecutive observations,

L̂(ψ ; x, x′, r) =
r∑

j=1

1
P

(
R ≥ j

) {
[eQj(ψ)t]x,x′ − [eQj−1(ψ)t]x,x′

}
,

(3)
is a realization from an unbiased estimator for the likelihood
contribution L(ψ ; x, x′) = [eQt]x,x′ (here [eQ0t]x,x′ = 0).

One estimator of the form (3), with its own independently
sampled r, is created for each inter-observation interval, and

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 39

L̂(ψ ; r1:n) := ∏n
i=1 L̂(ψ ; xi−1, xi, ri) then provides a realization

from an unbiased estimator for the full likelihood.
Given a current position ψ = log θ and a set of region

indices r1:n we have a realization of an unbiased likelihood
estimator, L̂(ψ ; r1:n). One iteration of the pseudo-marginal
algorithm of GHS17 proceeds as follows: first, propose a new
position from some density q(ψ ′|ψ) then sample r′

1, . . . , r′
n

independently from the mass function p(r) to obtain a
realization, L̂(ψ ′; r′

1:n) of an unbiased estimator for L(ψ ′).
The pseudo-marginal Metropolis-Hastings acceptance prob-
ability for the proposal (ψ ′, r′

1:n) is then α(ψ , ψ ′) = 1 ∧
[π0(ψ ′)L̂(ψ ′; r′

1:n)q(ψ |ψ ′)]/[π0(ψ)L̂(ψ ; r1:n)q(ψ ′|ψ)]. The
pseudo-marginal algorithm can be viewed as a Metropolis–
Hastings Markov chain on ψ and r1:n with a target distribution
proportional to

π0(ψ)L̂(ψ ; r1:n)
n∏

i=1
p(ri),

and a proposal of q(ψ ′|ψ)
∏n

i=1 p(r′
i). Because L̂(ψ ; R1:n) is

unbiased, integrating out all of the auxiliary variables from the
target leaves π(ψ) ∝ π0(ψ)L(ψ), as desired.

Typically, because they arise from a sequence of differences,
likelihood estimates obtained via random-truncation might be
negative and hence unusable (e.g., Lyne et al. 2015; Jacob and
Thiery 2015). However, for observations X0 = x and Xt = x′,

[eQr(ψ)t]x,x′ − [eQr−1(ψ)t]x,x′

= P
(
X1 = x′, B(X; 0, t,Rr) = 1|X0 = x, ψ

)
− P

(
X1 = x′, B(X; 0, t,Rr−1) = 1|X0 = x, ψ

)
(4)

= P
(
X1 = x′, r̃(X; 0, t) = r|X0 = x, ψ

)
, (5)

which is nonnegative; so, by construction, a negative likelihood
estimate is impossible.

Although it can never be negative, the random truncation
algorithm in (3) suffers from several related problems. The
proposal p(ri) should reflect the patterns in the terms in the
sum in (3): if

{[eQj(ψ)t]x,x′ − [eQj−1(ψ)t]x,x′
}
/P

(
R ≥ j

) → ∞
as j → ∞ then the unbiased estimate will be unstable and have
a high, or even infinite, variance; if, on the other hand the ratio
goes to zero then unnecessarily large regions will frequently be
used, resulting in the exponentiation of unnecessarily large rate
matrices with unnecessarily high rates, increasing the computa-
tional expense.

GHS17 states that the distributional form of p(r), was chosen
partly since it describes the steady state of many simple queuing
systems. However, the M/M/1 queue, for example, has a geomet-
ric stationary distribution (e.g., Grimmett and Stirzaker 2001,
chap. 11). From (2) the tails of p(r) are very light compared
to geometric tails. Even if a heavier-tailed proposal were used,
however, there is no obvious choice for its shape, or reason to
believe the shape would be consistent across inter-observation
intervals. Further, some species might have a different spread
than others, requiring differently shaped regions. Finally, this
shape would typically depend on θ , as exemplified in the fol-
lowing remark.

Remark 1. Consider a Lotka-Volterra system with moderate
variability between X0 = x and X1 = x′, but now divide the

true reaction rates by 1000, which is equivalent to slowing down
time by a factor of 1000. The most likely paths would be those
with close to a minimal number of events to get from x to x′,
so P

(
r̃(X; 0, 1) = 1

) ≈ 1; on the other hand, a large increase
in all of the rates would see an approximately quasi-stationary
distribution for most of the time interval so larger regions would
be more likely.

We will reformulate the likelihood, creating an explicit
extended statespace, and giving a different distribution for r
and r′; as a result, there is no division by P (R ≥ r) and, indeed,
no requirement for a generic proposal p(r). The potential for
different amounts of variation between species and across
intervals is allowed for by letting the shape of the cuboidal
regions vary and for the nature of the cuboids themselves to vary
between observations, all governed by two tuning parameters.
Further, instead of requiring a random number, R of matrix
exponentials for each inter-observation interval, our algorithm
requires just one.

3. New Algorithms

We employ the same idea of a sequence of nested regions as in
GHS17, with one sequence for each inter-observation interval.
The nMESA has one auxiliary variable per interval as in GHS17,
whereas the MESA has a single auxiliary variable. In each case
we explicitly extend the statespace from � to include the index
of the outermost region visited by X over the observation win-
dow (MESA) or between each pair of observations (nMESA),
and perform MCMC directly on this extended statespace. This
partitioning of the space was defined in GHS17 but then unbias-
edly integrated out via random truncation using auxiliary vari-
ables to set the truncation levels. Figure 1 depicts a realization
of an MJP together with the relevant regions for MESA and
nMESA. It provides a graphical representation of three regions
(MESA, see Section 3.2) or three regions per inter-observation
interval (nMESA, see Section 3.3) together with a realization of
the MJP.

3.1. New Regions

For simplicity, each region, {R(i)
r : i = 1, . . . , n, r = 1, . . .}, is

cuboid. Let the upper and lower bounds for species s in region
r for inter-observation interval i be u(i)

r,s and l(i)
r,s ; we refer u(i)

r,s −
l(i)
r,s + 1 as the width of region R(i)

r for species s. In GHS17, for
an interval between observations of x and x′, R1 is the smallest
cuboid that contains both x and x′. However, this cuboid does
not necessarily allow a path between x and x′. For example, since
no reaction increases predator numbers by 1, a Lotka-Volterra
system with x = (x1, x2) and x′ = (x1 +1, x2) must have left the
rectangle with corners at x and x′. We therefore define a scalar
parameter wmin, which specifies, for Region R1, the smallest
width for every species; if, for any species, the smallest cuboid
that contains the two observations is narrower than wmin then
the recursions below are performed for that species until this is
no longer the case, leading to region R1. Subsequent regions are
obtained recursively from the previous region with the increase
in region width for a given species proportional to the current

40 C. SHERLOCK AND A. GOLIGHTLY

Figure 1. Realization (thick line) of X , a one-dimensional MJP, over the time interval
[0, 3], with x0 = 8, x1 = 15, x2 = 12 and x3 = 16 (solid circles). For MESA,
region 1 is the union of the three rectangles filled with diagonal increasing lines,
and is contained within region 2 which is the union of the three rectangles filled
with diagonal decreasing lines, and is contained within and region three which is
the union of the three rectangles filled with vertical lines. For nMESA, the same line
types apply to the regions for each inter-observation interval.

width. For region k + 1,

u(i)
r+1,s = us ∧

{
u(i)

r,s + [1 ∨ γ (u(i)
r,s − l(i)

r,s + 1)]
}

,

l(i)
r+1,s = ls ∨

{
l(i)
r,s − [1 ∨ γ (u(i)

r,s − l(i)
r,s + 1)]

}
where γ > 0 is a tuning parameter and ls and us are hard lower
and upper bounds. Typically ls = 0, whilst us is only required
when there is an upper bound on the numbers for species s.
The regions in GHS17 use the above formulation, with γ =
wmin = 0.

3.2. The Minimal Extended Statespace and Target

For the observation regime given at the start of Section 2, define

B̃r(X) :=
n∏

i=1
B(X; ti−1, ti,R(i)

r) (r ≥ 0).

Thus, B̃r(X) = 1 if for every inter-observation interval, X is
entirely contained within that interval’s region r. We denote the
smallest index r for which B̃r(X) = 1 by r̃(X). In every inter-
observation interval the process is confined to that interval’s
region r̃(X) but in at least one inter-observation interval it is not
confined to that interval’s region r̃(X) − 1 (r̃ = 3 in Figure 1).
We target the extended posterior

π̃(ψ , r) ∝ π0(ψ)P
(
x1:n, r̃(X) = r | ψ , x0

)
,

where

P
(
x1:n, r̃(X) = r | ψ , x0

) =
n∏

i=1

[
eQr(ψ)t

]
xi−1,xi

−
n∏

i=1

[
eQr−1(ψ)t

]
xi−1,xi

.

The marginal for ψ is π0(ψ)
∑∞

r=1 P
(
x1:n, r̃(X) = r | ψ , x0

) =
π0(ψ)P (x1:n | ψ , x0), as required.

3.3. Nearly Minimal Extended Statespace and Target

Let r̃i(X) ≡ r̃(X; ti−1, ti) be, for the ith inter-observation inter-
val, the index of the smallest region to completely contain the
MJP over that interval (in Figure 1, (r̃1(X), r̃2(X), r̃3(X)) =
(2, 1, 3)). We target the extended posterior

π̃(ψ , r1:n) ∝ π0(ψ)

n∏
i=1

P
(
xi, r̃i(X) = ri | ψ , xi−1

)

where

P
(
xi, r̃i(X) = ri | ψ , xi−1

) = [eQri (ψ)t]xi−1,xi −[eQri−1(ψ)t]xi−1,xi .

As for the MESA, the marginal for ψ is the desired posterior, in
this case since

∑
r1:n

n∏
i=1

P
(
xi, r̃i(X) = ri | ψ , xi−1

)

=
n∏

i=1

∞∑
ri=1

P
(
xi, r̃i(X) = ri | ψ , xi−1

) =
n∏

i=1
P (xi | ψ , xi−1) .

3.4. The MCMC Algorithms

Both MESA and nMESA use Metropolis-within-Gibbs algo-
rithms. First, either r | ψ , x0:n (MESA) or r1:n | ψ , x0:n (nMESA)
is updated, then, respectively, ψ | r, x0:n or ψ | r1:n, x0:n. For
each algorithm, the ψ update can, in principle, use any MCMC
move that works on a continuous statespace; for simplicity
and robustness we employ the random walk Metropolis. We
propose ψ ′ from a multivariate normal distribution centered on
ψ and with a variance matrix proportional to the variance of
ψ obtained from an initial tuning run. For MESA we update
r using a discrete random walk, proposing r′ = r − 1 or
r′ = r + 1 each with a probability of 0.5 (when r = 1,
the downward proposal is immediately rejected). For nMESA,
conditional on ψ , each component, ri, is updated independently
via this symmetric discrete random-walk move. The random
walk moves by a single region so as to save on computational
cost. The new likelihood for a region r′ involves quantities of
the form v�[eQr′]xs,xe and v�[eQr′−1]xs,xe ; when r′ is either r + 1
or r − 1, one of these quantities is already available from the
likelihood calculations for the current region.

Both stages of both algorithms require the computation of the
exponential of at least n rate matrices. As with the algorithm of
GHS17, therefore, our algorithm is, well suited to parallelization
if the rate matrices and/or the largest required matrix power are
large; we do not pursue this here.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 41

3.5. Algorithm Tuning and Relative Efficiency

We now consider the behavioral differences between MESA and
nMESA and the effects of the tuning parameters.

MESA uses a single additional auxiliary variable, which
specifies the region number for all inter-observation intervals,
whereas nMESA has one variable per inter-observation interval.
It is known (e.g., Roberts, Gelman, and Gilks 1997) that many
MCMC algorithms, including the random walk Metropolis mix
more slowly on larger statespaces. This suggests that the MESA
algorithm should be more efficient in terms of effective samples
per iteration.

On the other hand, conditional on any given parameter
vector ψ , consider the posterior distribution of the MJP X over
the set of inter-observation intervals, and the variability in the
definition of the regions from one interval to the next.

Setting wmin to the minimum allowable for the system (e.g., 1
for the Lotka-Volterra model and 0 for the Schlögel model) leads
to the smallest R1 sizes and the resulting matrix exponentials
are very cheap to calculate. However, the larger the between-
observation stochasticity the larger the region that is likely to be
needed to contain the process between the observation times,
yet some consecutive observations in the sequence will just
happen to be similar, so the minimal R1s will be too small. This
is not an issue for nMESA which allows each inter-observation
interval to find its own region level r̃i; but MESA forces all inter-
observation intervals to use the same region number, r̃. The
disparity between some of these R1s very probably containing
the process, and others very probably not containing it leads
to poor mixing for MESA when wmin is at its minimum, and
suggests increasing wmin to a sensible minimum value for any
interobservation interval. Increasing wmin too far, for example
beyond the range where the stochastic process is likely to lie,
would lead to unnecessary computational expense, suggesting
there may be an optimal wmin value.

Even with this larger wmin, for many inter-observation inter-
vals, the less flexible MESA will typically exponentiate larger
matrices than nMESA. The numerical experiments in Section 4
show that in the scenarios considered, nMESAs flexibility is
more advantageous than MESAs smaller statespace, but typi-
cally by a factor of less than 2.

When the tuning parameter γ = 0, for each species Rr+1
is 2 units wider than the Rr . However, for regions of size >>

10, say, this is a very small relative increase in width, and as
such, we might expect an associated very small probability of
the process staying within Rr+1\Rr . In other words, the range
of region indices over which the process is likely to need to
move is large. Since in MESA and nMESA the MCMC move
to change region proposes either an increase or decrease of the
region index by 1 (see Section 3.4), region number mixes slowly.
Since larger region indices are associated with larger reaction
rates, for example, this also affects the mixing of ψ , all of which
suggests choosing γ > 0. On the other hand, consider a γ

so large that the process is almost certain to be in R1; the
dimension of R2 will be approximately (1 + 2γ)ns times the
size of that of R1, and may contain unnecessarily large rates,
making matrix exponentials expensive to calculate, yet a move
toR2 is proposed every other iteration. These heuristics suggest
that there should be an optimal γ ∈ (0, ∞),

4. Numerical Comparisons

For each of the reaction networks given in Section 1.1 and a
known initial condition, x0, we simulated a realization from the
stochastic process from time 0 to an appropriate tend and then
recorded the states at regular intervals so that there were 50
observations each from a realization of the Schlögel process and
a realization of the autoregulatory process, and 20 observations
of a Lotka-Volterra process; we name these datasets Sch50,
AR50, and LV20, respectively. To investigate the effect of altering
the inter-observation interval, for the Lotka-Volterra process,
two further datasets, LV40 and LV10, were generated with 40
and 10 observations, respectively. To suppress the effect of inter-
realization variability, LV40 and LV10 were generated from the
same realization as LV20 by, respectively, halving and doubling
the inter-observation time interval; thus, LV10 ⊂ LV20 ⊂
LV40. Figure 2 shows the realizations of the stochastic processes
from which LV20, LV40, LV10, and Sch50 arose, together with
the observations in LV20 and Sch50. The realization from the
autoregulatory process and the observations AR50 are pro-
vided in Figure 4 in Appendix B.1, which also provides values
for x0, tend and the true parameters for all three processes
(see Table 5) as well as the prior distributions assigned to the
parameters.

For each dataset the output from a tuning run of 104 iter-
ations of nMESA was used to create an estimate, 	̂, of the
variance matrix of the parameter vector, ψ . For comparability,
for all algorithms, proposals for the random walk on ψ were of
the form: ψ ′ = ψ + λ	̂1/2z, where z is a realization of a vector
of standard Gaussians, 	̂1/2 is defined so that 	̂1/2	̂1/2� = I,
and λ is a tuning parameter. The scaling, λ, of the random walk
proposal was chosen using standard acceptance-rate heuristics
(e.g., Roberts, Gelman, and Gilks 1997; Sherlock, Fearnhead,
and Roberts 2010; Sherlock et al. 2015). The number of particles
was chosen so that the variance of log π̂ at points in the main
posterior mass was not much above 1 (Sherlock et al. 2015;
Doucet et al. 2015). No tuning advice is given in GHS17 so
we proceeded by first tuning γ and a for a fixed, sensible ψ ,
and then tuning λ; see Appendix B.2 for further details. Unless
otherwise stated, each algorithm was run for 105 iterations. In all
cases, the first 100 iterations were removed as burn in, as trace
plots showed that this was all that was necessary.

Results for MESA are presented in terms of the CPU time in
seconds, T, the acceptance rate for the random walk update on
the parameters, αψ , the acceptance rate for the integer random
walk update on the region, αr , and the number of effective
samples per minute (rounded to the nearest integer) for the
parameters, the region index and log π . The number of effec-
tive samples was calculated usingeffectiveSize command
in the coda package in R (Plummer et al. 2006). Quantities
are the same for nMESA except that αr is the mean of the
acceptance rates for the random walks on each of the region
indices, and the effective samples per minute of the average
region index is recorded. Neither particle MCMC nor GHS17
has a “region” auxiliary variable, so the two fields for this are left
blank. GHS17 strictly should have γ = 0, but we also report the
results for larger γ where this did not reduce the efficiency too
much.

42 C. SHERLOCK AND A. GOLIGHTLY

Figure 2. Left (predators) and central (prey) panels: the realization of the stochastic process from which datasets LV10, LV20, and LV40 arose, together with the LV20 data.
Right panel: the Sch50 data with the Schlögel process from which it arose.

4.1. Numerical and Computational Issues

Calculations of the form v�eQt were performed using the more
efficient of two possible algorithms, chosen automatically at
runtime on a case-by-case basis. The uniformisation method
(e.g., Sidje and Stewart 1999) and a variation on the scaling
and squaring method (e.g., Moler and Van Loan 2003). In our
examples, Q is a sparse d × d matrix with O(d) nonzero entries;
define ρ := maxi=1,...d |Qii|. With this set up, the uniformisation
method takes O(ρtd) operations and has a memory footprint
of O(d), whereas the scaling and squaring method has takes
O(d3 log ρ) operations with a footprint of O(d2). The latter was
typically only used for some of the calculations for the Schlog̈el
model where for some of the observation intervals, with the
MESA and GHS17 algorithms, typically, ρ � 108 but d � 103.
See Appendix A for more details on the methods.

The maximum size of an unsigned integer in C++
is ≈ 4 × 109. Both methods of exponentiation require the
evaluation of v�Mj for some matrix, M with no negative entries,
for some integer power j ∼ ρ + O(

√
ρ). Straightforward, exact

(to a prescribed small tolerance) evaluation requires storing j as
an integer. For the Schlögel system using GHS17 or using MESA
with small wmin, for some inter-observation intervals on some
iterations ρ > 4×109, sometimes considerably so. In such cases
ρ was truncated to 4×109 so that inference was no longer exact,
but could at least continue; in the remainder of this section we
refer to this as the integer overflow problem. With an increase
in code and algorithm complexity this issue could be overcome,
but on the occasions when it occurred the algorithms for which
it occurred, even with the inexact inference, were much less
efficient than MESA with a larger wmin or nMESA, so we did
not pursue this further.

Unless stated otherwise runs were performed on a desk-
top machine using a single thread of a single i7-3770 core.
Code for MESA, nMESA, and GHS17 is available from https://
chrisgsherlock.github.io/Research/publications.html .

4.2. Lotka-Volterra Model

Tables 1–3 show the simulation results for a selection of the runs
performed, respectively, for the LV20, LV40, and LV10 datasets.
We focus on the LV20 dataset, and point out any differences
evident in the other two datasets.

First, particle MCMC using the bridge of Golightly and
Wilkinson (2015), henceforth referred to as GW15, was approx-
imately a factor of 4 times as efficient as the algorithm of GHS17
(factors of approximately 3 and 7 for LV40 and LV10, respec-
tively). Further, runs of GHS17 with γ ≈ 0.1 (best performance
was for LV10, which is shown) were much less efficient than with
γ = 0.0. The most efficient MESA tuning was a factor of 3 more
efficient than particle MCMC (factors of approximately 7 and
2.5 for LV40 and LV10), whilst the most efficient nMESA was
a factor of nearly 5 times more efficient than particle MCMC
(factors of approximately 12 and 4.5 for LV40 and LV10).

For MESA and nMESA, the variations in efficiency with γ

and many of the variations with γ visible in Tables 1–3 are
explained by the heuristics in Section 3.5. Further, any trend
(or drift) in the process between a pair of observations would
be approximated by the observations differences, so the choice
of wmin should be driven by the expected stochasticity, and so
should increase as the inter-observation time interval increases,
as also observed in the three tables.

4.3. Schlögel Model

For the Schlögel model Table 4, nMESA is slightly more efficient
than MESA which is approximately forty times as efficient as
GHS17. The particle MCMC scheme of Golightly and Wilkin-
son (2015) failed to converge, but a bootstrap particle filter
scheme with a large number of particles did converge, although
it was over two and a half orders of magnitude less efficient than
MESA and nMESA. There are several reasons for these striking
results.

First, for typical rate parameters, θ , and large values of X
the rates of the two reactions involving the reservoir A are
extremely high. Any particle filter must simulate all the reactions
that occur, a number of the same order as the sum of the four
reaction rates. For Sch50, GHS17, MESA, and nMESA all used
the scaling and squaring algorithm (see Section 4.1), with a cost
proportional to the logarithm of the of total rate; for reference,
runs using used the uniformisation, which is linear in the rate,
led to speed reductions by factors of 270, 105, and 54 for GHS17,
MESA, and nMESA, respectively.

The bridge of Golightly and Wilkinson (2015) tries to drive
the path for the stochastic process along an approximate straight
line from the current position to the next observation. For

https://chrisgsherlock.github.io/Research/publications.html
https://chrisgsherlock.github.io/Research/publications.html

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 43

Table 1. Tuning parameter settings and results for GHS17, MESA, and nMESA for the LV20 dataset.

ESS/minute

Algorithm λ γ wmin T αψ αr ψ1 ψ2 ψ3 r or r̄ log π

GW151 1.6 8157 15.5 24 25 26 10
GHS172 1.6 0.0 1 17,874 6.3 6 6 6 4
MESA 1.5 0.0 1 8270 28.2 73.5 64 65 62 42 58
MESA 1.5 0.1 1 12,634 28.4 72.2 42 42 42 36 42
MESA 1.5 0.1 7 8023 28.2 68.9 65 65 64 85 66
MESA 1.5 0.0 10 7579 28.2 70.8 68 69 68 54 66
MESA 1.5 0.1 10 8035 28.2 67.1 67 68 69 95 72
MESA 1.5 0.1 20 7557 28.2 51.4 72 73 71 147 74
MESA 1.5 0.1 30 9396 28.9 1.3 62 64 62 194 61
nMESA 1.4 0.0 1 2887 27.8 69.4 106 111 105 78 140
nMESA 1.4 0.1 1 2991 27.7 69.2 106 105 104 78 157
nMESA 1.4 0.2 1 4164 27.6 59.5 81 85 84 90 264
nMESA 1.4 0.3 1 5553 27.9 50.2 69 70 71 91 252
nMESA 1.4 0.0 10 3054 28.8 53.6 115 117 115 75 93
nMESA 1.4 0.1 10 3126 28.7 53.6 116 117 115 89 115
nMESA 1.4 0.2 10 3745 28.9 40.9 114 114 108 276 180
nMESA 1.4 0.1 20 4458 30.6 4.2 120 119 118 192 171
nMESA 1.4 0.1 30 9480 31.6 0.07 63 62 60 177 65

NOTE: 1GW15 used 100 particles. 2GHS17 used a = 0.98.

Table 2. Tuning parameter settings and results for GHS17, MESA, and nMESA for the LV40 dataset.

ESS/min

Algorithm λ γ wmin T αψ αr ψ1 ψ2 ψ3 r or r̄ log π

GW151 1.5 14,039 16.9 15 14 15 6
GHS172 1.4 0.0 19,320 6.7 5 6 5 5
MESA 1.5 0.0 1 5252 27.5 59.2 97 101 101 145 105
MESA 1.5 0.1 1 5372 27.7 59.3 103 102 99 131 103
MESA 1.5 0.0 7 4964 27.5 57.3 105 106 106 151 111
MESA 1.5 0.1 7 5073 27.6 57.3 98 108 112 148 112
nMESA 1.4 0.0 1 1672 25.6 59.1 164 162 161 155 312
nMESA 1.4 0.1 1 1680 25.7 59.2 169 170 169 162 317
nMESA 1.4 0.0 7 1805 27.3 37.8 186 196 202 196 220
nMESA 1.4 0.1 7 1807 27.3 37.9 180 185 186 179 203

NOTE: 1GW15 used 170 particles. 2GHS17 used a = 0.98.

Table 3. Tuning parameter settings and results for GW15, GHS17, MESA, and nMESA for the LV10 dataset.

ESS/min

Algorithm λ γ wmin T αψ αr ψ1 ψ2 ψ3 r or r̄ log π

GW151 1.6 10,324 14.6 14 16 17 6
GHS172 1.4 0.0 19,800 3.6 2 3 2 2
GHS172 1.4 0.1 10,773 4.1 0.6 0.5 0.7 0.5
MESA 1.5 0.0 1 18,615 27.9 85.9 24 25 29 7 20
MESA 1.5 0.1 1 56,925 27.9 72.4 9 9 9 7 9
MESA 1.5 0.1 7 33,932 27.9 72.3 16 15 16 14 16
MESA 1.5 0.1 14 18,172 27.7 68.1 27 28 27 34 31
MESA 1.5 0.0 20 14,274 28.1 82.6 32 34 34 12 25
MESA 1.5 0.1 20 14,911 27.9 65.2 36 36 35 53 37
MESA 1.5 0.1 30 13,144 27.8 51.7 41 40 41 82 44
MESA 1.5 0.1 40 14,659 28.1 6.4 36 37 37 90 38
nMESA 1.4 0.0 1 6355 28.7 79.7 49 53 58 19 37
nMESA 1.4 0.1 1 12,244 28.7 75.1 29 30 31 15 45
nMESA 1.4 0.2 1 21,082 28.9 62.1 20 20 21 24 44
nMESA 1.4 0.1 14 7570 29.3 60.0 48 52 57 37 78
nMESA 1.4 0.0 20 6132 29.4 43.2 54 56 58 23 36
nMESA 1.4 0.1 20 6469 29.4 37.6 65 71 67 81 94
nMESA 1.5 0.2 20 7857 29.7 29.4 62 63 66 148 126
nMESA 1.5 0.1 30 8177 27.6 7.1 60 63 63 96 86
nMESA 1.5 0.1 40 13,652 28.1 0.7 40 40 40 83 40

NOTE: 1GW15 used 140 particles. 2GHS17 used a = 0.98; with γ = 0.1, GHS17 was run for 104 iterations.

44 C. SHERLOCK AND A. GOLIGHTLY

transitions both between meta states and within the higher meta
state this is an extremely poor approximation to the behavior
(see Figure 2). However, particle MCMC using a bootstrap
particle filter did mix. As well as needing to simulate every single
one of the reactions, the large computational cost arose from the
filter needing an order of magnitude more particles than was
used on the Lotka-Volterra examples.

Figure 2 shows that the largest changes from one observa-
tion to the next occur during transitions from one meta state
to the other, but that it is in the higher meta state that the
largest expansion in region coverage from the smallest cuboid
containing adjacent observations is required. To fit the latter
a relatively high region number (MESA with wmin = 0) or
a proposal distribution that leads to a relatively high region
number (GHS17) is required, but this leads to a large statespace
size as well as larger ρ arising from the upper end of this large
statespace. For MESA, this problem is overcome using a larger
wmin.

The biggest problem with GHS17 was the requirement for the
same proposal distribution for the truncation index whatever
the meta-state of the process, whereas in reality the process is
likely to need a high index when in the high meta state and
a low index when in the low meta state. For lower a values,
such as 0.95 (not shown), small region numbers were typically
proposed, the calculations were relatively cheap but the chain
mixed exceedingly poorly because of the enormous (possibly
infinite) variance of the logarithm of the unbiased estimator of
the likelihood through the quotient term in (3); the chains failed
to converge. To bring the variance under control, the probability
of proposing larger region numbers had to be increased substan-
tially, leading to expensive calculations because, for each inter-
observation interval, the final region is larger, and because there
are typically more terms in the random truncation. Increasing γ

similarly reduces the variance of the truncation estimator of the
likelihood and increases the computational effort. Furthermore,
for γ ≥ 0.2 with a large enough for visible mixing, integer
overflow (see Section 4.1) became more and more frequent since
the states in the larger proposed regions led to larger rates.
Specifically, for the best run, which used γ = 0.2, integer
overflow occurred on 120 of the iterations with a maximum
true ρ ≈ 1.2 × 1011 and d values in excess of 3000. For MESA
with wmin = 0, integer overflow occurred on 10 of the 104

iterations, with a maximum true ρ ≈ 5.7 × 109, and d values up
to ≈ 1400; no overflow occurred when wmin ≥ 10. For nMESA
the maximum value of ρd was < 1.1 × 108.

4.4. Autoregulatory System

Finally, we applied nMESA to the AR50 dataset. A run of 2×105

iterations took approximately 40 hr and gave a minimum (over
all parameters) effective sample size of 1491. Tuning runs for
GW15 suggested that the same number of iterations would take
around 48 days, so the algorithm was not run. However, alter-
native, approximate inference is available via particle MCMC
using the chemical Langevin equation (CLE), a stochastic dif-
ferential equation (SDE) approximation to the evolution of the
spatially discrete Markov jump process (e.g., Wilkinson 2018).
The modified diffusion bridge of Durham and Gallant (2002)
was used to propose paths between the observation within a

particle MCMC scheme. When simulating from an approxima-
tion to the conditioned SDE using a bridge, a discretization time
step must be chosen; the larger the time step, the smaller the
computational cost of each iteration. In addition to the Monte
Carlo error inherent in any MCMC scheme, the CLE approach
introduces error due to the approximation of the MJP by a
spatially continuous process and then due to the approxima-
tion of the temporally continuous SDE by discretizing time.
Fearnhead, Giagos, and Sherlock (2014) observed that a coarser
discretization can lead to a premature decrease in the right tail of
the posterior for some parameters, essentially because doubling
a rate parameter is equivalent to doubling the inter-observation
interval and keeping the parameter the same, thus, effectively
doubling the discretization interval.

Using �t = 0.2 we observed a severe truncation in the
right tails of the four parameters involved in reversible reactions
(ψ1, ψ2, ψ5, ψ6) so we decreased the time step to �t = 0.05, a
run which took approximately 90 hr for 2 × 104 iterations and
gave a min ESS of 1404.

Posteriors resulting from the final discretization are com-
pared with the true posteriors in Figure 3. Even with this dis-
cretization a clear premature decay is visible in the four param-
eters involved in reversible reactions. The issue is likely to be
compounded for ψ1, ψ2 and ψ3 by the error in approximating an
MJP with an SDE since the first three reaction rates depend on
the number of DNA molecules, which, with the set up detailed
in Appendix B.1, can only take values of 0, 1, or 2.

Decreasing the discretization interval of the CLE still further
would reduce (but not entirely remove) the error resulting from
the CLE approximation; however, this would reduce the com-
putational efficiency still further, and particle MCMC using the
current discretization is already only half as efficient as nMESA.

5. Discussion

We have described the MESA and the nMESA for inference on
discretely and precisely observed Markov jump processes, a set-
ting in which standard inference by particle MCMC is severely
challenged. Our algorithms use the same key idea of nested
regions that was used in the random-truncation algorithm of
Georgoulas, Hillston, and Sanguinetti (2017) but, in practice,
are one or more orders of magnitude more efficient than that
algorithm.

On the three Lotka-Volterra datasets MESA was 2.5–7 times
as efficient as the best particle MCMC algorithm, and nMESA
4.5–12 times as efficient as particle MCMC. On the Schlögel
model, where the scaling and squaring matrix-exponentiation
algorithm was used, the improvement over the best particle
MCMC algorithm was over two orders of magnitude. For the
autoregulatory gene model, nMESA was able to perform exact
inference in a reasonable time, where no other method could.
The simulations suggest that the greater flexibility of nMESA
is more important for efficiency than the reduced statespace of
MESA, though the advantage is only decisive for the autoregu-
latory model.

Both MESA and nMESA can be framed within the technique
introduced in Walker (2007) of rendering an infinite number of
possibilities finite, and hence computable, by introducing one
or more auxiliary slice variables. Like nMESA, Walker (2007)

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 45

Table 4. Tunings and results for GHS17, MESA, and nMESA for the Sch50 dataset.

ESS/min

Algorithm λ γ wmin T αψ αr ψ1 ψ2 ψ3 ψ4 r or r̄ log π

BS1 1.2 840,782 18.0 0.30 0.30 0.25 0.27 0.21
GHS172 1.0 0.0 3271 0.019 − − − − −
GHS172 1.0 0.0 4158 4.69 2.58 2.55 2.43 2.17 2.76
GHS172 1.0 0.2 110,333 0.342 0.01 0.01 0.01 0.01 0.01
MESA3 1.2 0.4 0 31,182 27.7 28.9 1.21 1.28 1.07 1.04 0.27 1.01
MESA 1.2 0.4 10 4879 27.3 17.7 85 86 80 74 158 85
MESA 1.2 0.4 20 4596 27.4 8.8 91 91 81 83 158 78
MESA 1.2 0.4 40 3648 27.9 5.8 116 114 114 110 196 104
MESA4 1.2 0.4 60 7912 29.1 12.4 58 58 53 53 ∗ 43
nMESA 0.8 0.8 0 1322 26.2 29.9 120 140 55 81 47 102
nMESA 0.8 0.2 20 1276 29.1 9.4 145 157 116 96 69 103
nMESA 0.9 0.4 20 1420 28.8 5.5 170 179 150 137 132 362
nMESA 0.9 0.4 40 3325 39.8 0.22 118 117 105 107 78 98

NOTE: 1The bootstrap particle filter used 1400 particles. 2For GHS17, a was, respectively, 0.99, 0.998 (both with γ = 0) and 0.98; the run with a = 0.998 used only 2 × 104

iterations; the “−” indicates mixing so poor that ESS could not be estimated even approximately (estimated ESS< 20). 3MESA with wmin = 0 was run for 104 iterations.
4 MESA with wmin = 60 never exited region 1.

Figure 3. Kernel density estimates of the parameter posteriors using nMESA (solid), and the CLE with �t = 0.05 (dashed), with the true parameter value (dotted).

uses one auxiliary variable per observation, but a single auxiliary
is also possible. In our case, the region number bounds the
dimension of the statespace of the MJP. The EA3 of Beskos,
Papaspiliopoulos, and Roberts (2008) uses a similar set of nested
regions and the idea of a minimal region containing a stochastic
process, but the region is used to bound a Radon-Nikodym
derivative and hence allow the exact simulation of a skeleton of a
diffusion with unit volatility. In Rao and Teh (2012), which, like
MESA and nMESA, applies to continuous-time Markov chains,

new states are sampled conditional on a finite set of possible
event times (which are resampled in another step); if the initial
condition is known and if the number of possible transitions
from any state is finite then the set of possible states after finitely
many jumps is also finite.

Particle MCMC and the random truncation algorithm of
Georgoulas, Hillston, and Sanguinetti (2017) are examples of
pseudo-marginal MCMC (Andrieu and Roberts 2009). Such
algorithms can be viewed as introducing an extended statespace

46 C. SHERLOCK AND A. GOLIGHTLY

Figure 4. The stochastic process that led to the AR50 dataset together with the AR50 data values: RNA (top left), P (top right), P2 (bottom left), and DNA · P2 (bottom right).
Quantities of DNA may be obtained deterministically as DNA = 2 − DNA · P2

and targeting a posterior on this extended space such that
the marginal, integrating out the auxiliary variables, is the tar-
get of interest. New auxiliary variables are proposed at each
iteration: in the case of Georgoulas, Hillston, and Sanguinetti
(2017) these are a set of truncation variables, whereas in particle
MCMC the auxiliary variables are all of the variables used by
the particle filter to estimate the likelihood. Both MESA and
nMESA, however, are examples of correlated pseudo-marginal
algorithms (Murray and Graham 2016; Deligiannidis, Doucet,
and Pitt 2018; Dahlin et al. 2015) since fresh auxiliary variables
are not proposed at each iteration, but instead a random walk
Metropolis move from the existing variables is applied.

Other matrix exponentiation algorithms are available and,
in particular, Krylov subspace-based techniques (e.g., Sidje and
Stewart 1999) are often used for calculating eAb for a general

sparse square matrix A and a vector b. In both the Lotka-
Volterra example and the autoregulatory gene example we found
this technique to be between a factor of three and an order of
magnitude slower than the uniformisation technique.

Our algorithms are designed for the challenging exact-
observation regime, but it would be straightforward to extend
them to deal with noisy observations: nMESA via additional
latent variables for the states at observation times, MESA by
considering all paths that stay entirely within Rr but not Rr−1,
and including a likelihood term at each observation time.
However, as the observation noise increased, the efficiency
of either algorithm would decrease gradually, whereas the
efficiency of particle MCMC would increase, so that, for
large-enough noise, PMCMC would be more efficient. Of
more interest, is the potential for including the nested-region

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 47

construction within particle MCMC, and this is the subject of
current investigations.

Appendix A. Matrix Exponentiation

Consider ν� expQ = ν� ∑∞
i=0 Qi/i!, for some nonnegative d-vector

ν and d × d rate matrix Q. In our case for region Rr , from the j − 1
to the jth observation, νr is the dr + 1 vector which is 1 at kr(xj−1)
and 0 everywhere else. For a general matrix the calculation is especially
difficult to evaluate efficiently yet to a predefined tolerance, ε, because
of the possibility of very large negative and positive numbers canceling
during the evaluation of the series; however, when Q is a rate matrix
this issue can be circumvented as follows.

Let ρ = maxi=1,...,d |Qi,i| then P := Id + Q/ρ has nonnegative
entries and is, in fact, a Markov transition matrix. Furthermore:

ν�eQ = ν�eρ(P−Id) = e−ρν�eρP.

The uniformisation method (e.g., Sidje and Stewart 1999) evaluates
ν�eP = ∑∞

i=0 ν�Pi/i! ≈ ∑m
i=0 ν�Pi/i!, where, given ν�Pi, and the

fact that P is sparse, the calculation of ν�Pi+1 = (ν�Pi)P is an O(d)

operation. The truncation point m is chosen so that ε ≤ 1−F(m+1; ρ),
where F is the cumulative distribution function of a Poisson(ρ) random
variable, since then

ν�eQ1 − ν̂�eQ1 = e−ρν�
∞∑

i=m+1

ρi

i! Pi1 = P (Poisson(ρ) ≥ m + 1) ≤ ε;

see Sherlock (2021) for further details.
The scaling and squaring method (e.g., Moler and Van Loan 2003)

uses: eM ≡
(

eM/2s)2s
, for any square matrix M. Thus, eM can be

obtained can be obtained from eM/2s by squaring s times. We calculate
eρP/2s using the uniformisation method (but without the ν� term, as in
Reibman and Trivedi 1988; Pulungan and Hermanns 2018), and revert
to vector-matrix multiplications before the final squaring; see Sherlock
(2021) for further details.

Appendix B. Details of Numerical Experiments

B.1. Parameter Values, Process Settings, and the AR50
Dataset

Table 5 shows the observation and parameter information for the five
simulated datasets used in the simulation study in Section 4. The real-
ization of the autoregulatory system and the associated AR50 dataset
are provided in Figure 4.

For the Lotka-Volterra model we assigned independent a priori
distributions of: ψ1 ∼ N(log(0.2), 1), ψ2 ∼ N(log(0.2), 1) and ψ3 ∼
N(log(0.02), 1). The Schlögel model parameters were a priori indepen-
dent with ψi ∼ N(log(1), 1), i = 1, . . . , 4. For the autoregularory
model, parameters were a priori independent with ψi ∼ N(log 0.2, 1),

Table 5. Observation and parameter information for our five datasets of exact
observations, together with the parameter values used and the abbreviated name
for the dataset.

Process θ x0 tend �t nobs Name

Lotka-Volterra 0.3,0.4,0.01 (30,40) 20.0 1.0 20 LV20
0.5 40 LV40
2.0 10 LV10

Schlögel 3.0, 0.5, 0.5, 3.0 (0) 200.0 4.0 50 Sch50
Autoregulatory 0.1, 0.7, 0.7, 0.2 (5, 5, 5, 1, 1) 25.0 0.5 50 AR50

0.1, 0.9, 0.3, 0.1

i = 1 . . . , 4, 6, . . . 8, and ψ5 ∼ N(log 0.2, 0.1). Both θ5 and θ6 describe
the rates for the reversible dimerization of P and are very poorly
identified by the data, although their quotient is well identified (e.g.,
Golightly and Wilkinson 2005); the tighter prior for ψ5 ensures that
the behavior of the MCMC algorithm is not almost entirely dominated
by this one reaction.

B.2. Tuning GHS17

The algorithm of GHS17 was tuned by first fixing ψ at some sensible
value (here the known true value, but in practice it would be set to the
posterior mean from a training run) and recording the log-posterior,
log π , at each iteration. For any given choice of γ , the parameter a
was adjusted to achieve the maximum ESS/sec for log π . Still with
ψ fixed, the ESS/sec of log π was then investigated for different γ at
the optimal a for each. In all cases it was found that γ = 0 gave
optimal performance. Then with the optimal γ and a parameters, λ

was adjusted to give an approximately optimal ESS.

Supplementary Materials

C++ code for MESA, nMESA and GHS17 is available as supplementary
material.

Disclosure Statement

The authors report there are no competing interests to declare.

ORCID

Chris Sherlock http://orcid.org/0000-0002-2429-3157
Andrew Golightly http://orcid.org/0000-0001-6730-1279

References

Al-Mohy, A. H., and Higham, N. J. (2011), “Computing the Action of a
Matrix Exponential with an Application to Exponential Integrators,”
SIAM Journal on Scientific Computing, 33, 488–511. [36]

Andersson, H., and Britton, T. (2000), Stochastic Epidemic Models and their
Statistical Analysis, Volume 151 of Lecture Notes in Statistics, New York:
Springer-Verlag. [36]

Andrieu, C., Doucet, A., and Holenstein, R. (2009), “Particle Markov chain
Monte Carlo for Efficient Numerical Simulation,” in Monte Carlo and
Quasi-Monte Carlo Methods 2008, eds. P. L’Ecuyer and A. B. Owen, pp.
45–60, Berlin: Spinger-Verlag. [36]

Andrieu, C., Doucet, A., and Holenstein, R. (2010), “Particle Markov chain
Monte Carlo Methods,” Journal of the Royal Statistical Society, Series B,
72, 269–342. [36]

Andrieu, C., and Roberts, G. O. (2009), “The Pseudo-Marginal Approach
for Efficient Monte Carlo Computations,” The Annals of Statistics, 37,
697–725. [37,38,45]

Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2008), “A Factorisation
of Diffusion Measure and Finite Sample Path Constructions,” Methodol-
ogy and Computing in Applied Probability, 10, 85–104. [45]

Boys, R. J., Wilkinson, D. J., and Kirkwood,T. B. L. (2008), “Bayesian
Inference for a Discretely Observed Stochastic Kinetic Model,” Statistics
and Computing, 18, 125–135. [37]

Dahlin, J., Lindsten, F., Kronander, J., and Schn, T. B. (2015), “Accelerating
Pseudo-Marginal Metropolis-Hastings by Correlating Auxiliary Vari-
ables.” https://arxiv.org/abs/1511.05483. [46]

Deligiannidis, G., Doucet, A., and Pitt, M. K. (2018), “The Correlated
Pseudomarginal Method,” Journal of the Royal Statistical Society, Series
B, 80, 839–870. [46]

http://orcid.org/0000-0002-2429-3157
http://orcid.org/0000-0001-6730-1279
https://arxiv.org/abs/1511.05483

48 C. SHERLOCK AND A. GOLIGHTLY

Doucet, A., Pitt, M. K., Deligiannidis, G., and Kohn, R. (2015), “Efficient
Implementation of Markov chain Monte Carlo When using an Unbiased
Likelihood Estimator,” Biometrika, 102, 295–313. [41]

Drovandi, C. C., and McCutchan, R. (2016), “Alive SMC2: Bayesian
Model Selction for Low-Count Time Series Models with Intractable
Likelihoods,” Biometrics, 72, 344–353. [36]

Durham, G. B., and Gallant, R. A. (2002), “Numerical Techniques for Max-
imum Likelihood Estimation of Continuous Time Diffusion Processes,”
Journal of Business and Economic Statistics, 20, 279–316. [44]

Fearnhead, P., Giagos, V., and Sherlock, C. (2014), “Inference for Reaction
Networks using the Linear Noise Approximation,” Biometrics, 70, 457–
466. [44]

Georgoulas, A., Hillston, J., and Sanguinetti, G. (2017), “Unbiased Bayesian
Inference for Population Markov Jump Processes via Random Trunca-
tions,” Statistics and Computing, 27, 991–1002. [36,37,38,44,45,46]

Glynn, P. W., and Rhee, C.-H. (2014), “Exact Estimation for Markov chain
Equilibrium Expectations,” Journal of Applied Probability, 51A, 377–389.
[37,38]

Golightly, A., and Sherlock, C. (2019), “Efficient Sampling of Conditioned
Markov Jump Processes,” Statistics and Computing, 29, 1149–1163. [36]

Golightly, A., and Wilkinson, D. J. (2005), “Bayesian Inference for Stochas-
tic Kinetic Models using a Diffusion Approximation,” Biometrics, 61,
781–788. [37,47]

(2011), “Bayesian Parameter Inference for Stochastic Biochemical
Network Models using Particle Markov chain Monte Carlo,” Interface
Focus, 1, 807–820. [36]

(2015), “Bayesian Inference for Markov Jump Processes with Infor-
mative Observations,” SAGMB, 14, 169–188. [36,42]

Grimmett, G., and Stirzaker, D. (2001), Probability and Random Processes
(Vol. 80), Oxford: Oxford University Press. [39]

Jacob, P. E., and Thiery, A. H. (2015), “On Nonnegative Unbiased Estima-
tors,” The Annals of Statistics, 43, 769–784. [38,39]

Koblents, E., and Miguez, J. (2015), “A Population Monte Carlo Scheme
with Transformed Weights and its Application to Stochastic Kinetic
Models,” Statistics and Computing, 25, 407–425. [36]

Lyne, A.-M., Girolami, M., Atchadé, Y., Strathmann, H., and Simpson,
D. (2015), “On Russian Roulette Estimates for Bayesian Inference
with Doubly-Intractable Likelihoods,” Statistical Science, 30, 443–467.
[37,38,39]

McKinley, T. J., Ross, J. V., Deardon, R., and Cook, A. R. (2014),
“Simulation-Based Bayesian Inference for Epidemic Models,” Computa-
tional Statistics and Data Analysis, 71, 434–447. [36]

McLeish, D. (2011), “A General Method for Debiasing a Monte Carlo
Estimator,” Monte Carlo Methods and Applications, 17, 301–315. [37,38]

Moler, C., and Van Loan, C. (2003), “Nineteen Dubious Ways to Compute
the Exponential of a Matrix, Twenty-Five Years Later,” SIAM Review, 45,
3–49. [36,42,47]

Moran, P. (1958), “Random Processes in Genetics,” Mathematical Proceed-
ings of the Cambridge Philosophical Society, 54, 60–71. [36]

Murray, I., and Graham, M. (2016), “Pseudo-Marginal Slice Sampling,” in
Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, Volume 51 of JMLR: W&CP, eds. A. Gretton and C. C.
Robert, pp. 911–919, Cadiz, Spain. [46]

Owen, J., Wilkinson, D. J., and Gillespie, C. S. (2015), “Likelihood Free
Inference for Markov Processes: A Comparison,” Statistical Applications
in Genetics and Molecular Biology, 14, 189–209. [36]

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006), “Coda: Conver-
gence Diagnosis and Output Analysis for MCMC,” R News, 6, 7–11. [41]

Pulungan, R., and Hermanns, H. (2018), “Transient Analysis of CTMCs:
Uniformization or Matrix Exponential?” IAENG International Journal
of Computer Science, 45, 267–274. [47]

Rao, V., and Teh, Y. (2012), “MCMC for Continuous-Time Discrete-State
Systems,” in Advances in Neural Information Processing Systems (Vol. 25),
eds. F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Curran
Associates, Inc. [45]

Reibman, A., and Trivedi, K. (1988), “Numerical Transient Analysis of
Markov Models,” Computers and Operations Research, 15, 19–36. [47]

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997), “Weak Convergence
and Optimal Scaling of Random Walk Metropolis Algorithms,” Annals
of Applied Probability, 7, 110–120. [41]

Sherlock, C. (2021), “Direct Statistical Inference for Finite Markov Jump
Processes via the Matrix Exponential,” Computational Statistics, 36,
2863–2887. [47]

Sherlock, C., Fearnhead, P., and Roberts, G. O. (2010), “The Random
Walk Metropolis: Linking Theory and Practice through a Case Study,”
Statistical Science, 25, 172–190. [41]

Sherlock, C., Thiery, A. H., Roberts, G. O., and Rosenthal, J. S. (2015),
“On the Efficiency of Pseudo-Marginal Random Walk Metropolis Algo-
rithms,” The Annals of Statistics, 43, 238–275. [41]

Sidje, R. B. (1998), “EXPOKIT. Software Package for Computing Matrix
Exponentials,” ACM Transactions on Mathematical Software, 24, 130–
156. [36]

Sidje, R. B., and Stewart, W. J. (1999), “A Numerical Study of Large Sparse
Matrix Exponentials Arising in Markov Chains,” Computational Statis-
tics and Data Analysis, 29, 345–368. [36,42,46,47]

Vellela, M., and Qian, H. (2009), “Stochastic Dynamics and Non-
equilibrium Thermodynamics of a Bistable Chemical System: The
Schlögel Model Revisited,” Journal of The Royal Society Interface, 6, 925–
940. [37]

Walker, S. G. (2007), “Sampling the Dirichlet Mixture Model with Slices,”
Communications in Statistics - Simulation and Computation, 36, 45–54.
[44]

Wilkinson, D. J. (2018), Stochastic Modelling for Systems Biology (3rd ed.),
Boca Raton, FL: Chapman & Hall/CRC Press. [36,44]

	Abstract
	1. Introduction
	1.1. Reaction Network Examples
	1.2. Notation

	2. Inference for MJPs with Infinite Statespaces using the Rate Matrix
	2.1. Set Up for Countably Infinite Statespaces
	2.2. The Method of GHS17

	3. New Algorithms
	3.1. New Regions
	3.2. The Minimal Extended Statespace and Target
	3.3. Nearly Minimal Extended Statespace and Target
	3.4. The MCMC Algorithms
	3.5. Algorithm Tuning and Relative Efficiency

	4. Numerical Comparisons
	4.1. Numerical and Computational Issues
	4.2. Lotka-Volterra Model
	4.3. Schlögel Model
	4.4. Autoregulatory System

	5. Discussion
	Appendix A. Matrix Exponentiation
	Appendix B. Details of Numerical Experiments
	B.1. Parameter Values, Process Settings, and the AR50 Dataset
	B.2. Tuning GHS17

	Supplementary Materials
	Disclosure Statement
	ORCID
	References

