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Abstract

Previous experimental studies have shown that the onset of instability in sands under

undrained loading is affected by the initial state (i.e., void ratio and confinement), interme-

diate stresses, and fabric anisotropy. These experimental results have motivated numerical

studies that investigate the conditions for instability triggering; however, most efforts have

been focused on triaxial conditions, mainly addressing the role of state with few notable

exceptions that extend to a multiaxial setting incorporating fabric anisotropy. In this study,

we use the relatively new anisotropic critical state theory (ACST) to investigate the onset

of instability in sands under undrained loading considering the role of state, multiaxial load-

ing, and fabric anisotropy. We use the ACST-based SANISAND-F constitutive model to

extend a previously established stability criterion and take into account the effect of fab-

ric anisotropy in a multiaxial setting. The analytical instability criterion is derived from

the fabric-dependent constitutive equations, and predicts the plastic modulus and the flow

stress ratio at the instability point. The derived criterion highlights the benefits of the ACST

framework to incorporate fabric and anisotropy effects. Lastly, we show that the stress ratio

at the instability onset is not significantly affected by the extent of anisotropic consolidation.

Keywords: Flow liquefaction, Instability criterion, SANISAND-F, Fabric, fabric

anisotropy, Anisotropic critical state theory, Anisotropic consolidation

∗Corresponding author
Email address: jmacedo3@gatech.edu (Jorge Macedo)

Preprint submitted to Computers and Geotechnics March 2, 2023



1. Introduction

The onset of instability under monotonic loading of granular materials, also referred to

as static liquefaction or flow liquefaction, has caused numerous geotechnical failures in the

past (Bjerrum, 1971; Castro, 1969; Fourie et al., 2001; Hazen, 1918; Jefferies and Been,

2019; Morgenstern et al., 2015, 2016; Muhammad, 2012; Olson, 2001). Flow liquefaction is

associated with a state of instability followed by sudden increases in strain and pore water

pressure. It can occur in any saturated or near-saturated contractive soils, such as very

loose sands, silts, as well as very sensitive clays. Previous research has suggested that the

instability onset triggers at a characteristic stress ratio. This concept is illustrated in Figure

1 using undrained triaxial tests from Lade (1999). In particular, Lade (1999) highlighted

that the stress state at the point of instability for samples with the same initial density but

under different confining stresses are aligned on a unique line called the instability line. This

so-called instability line represents the stress conditions in which flow liquefaction triggers

leading to the potential instability region shown in Figure 1.

Experimentally, flow liquefaction has been mostly explored under triaxial conditions

(Ishihara, 1993; Konrad, 1993; Sladen et al., 1985). Previous research has shown that despite

some small differences in the definitions adopted and conclusions drawn, physical interpre-

tations are consistent across different studies, i.e., the instability onset specifies a yielding

point where large plastic strains can develop (Chu et al., 2003; Lade, 1993; Najma and

Latifi, 2017). The effect of initial anisotropy (induced during consolidation before shearing)

under triaxial conditions has also been subject to different interpretations. For example

Najma and Latifi (2017) used undrained triaxial compression tests on Sacramento sands

performed by Kramer (1996) and suggested that the higher the anisotropy during initial

consolidation, the steeper the slope of the instability line. In contrast, Kato et al. (2001)

using anistropically consolidated specimens of Toyoura sand subjected to undrained triaxial

compression loading, suggested that the slope of the instability line did not vary signifi-

cantly with respect to the initial anisotropic consolidation. Beyond the triaxial conditions,

Chu and Wanatowski (2008) performed plane strain tests on Changi sand to understand the

2



Region of 
potential 
instability  Instability Line

Critical State Line

Critical
State

D
ev

ia
to

ri
c 

st
re

ss
, 

q=
σ 1

-σ
3

Mean effective stress, p'=1/3(σ'1+2σ'3)

Temporary
instability

Figure 1: Illustration of instability line in a p′ − q space, considering undrained triaxial compression tests.

Modified from Lade (1999). p′ represents the mean effective stress and q the deviatoric stress. Temporary

instability refers to the condition where there is a reversal in the stress path towards the critical state. The

shaded region marks the potential instability region.

conditions for flow liquefaction. An instability line was established, which was dependent

on the state parameter defined by Been and Jefferies (1985). Chu and Wanatowski (2008)

also suggested that a normalization of the instability stress ratio (ηf ) by the stress ratio at

the critical state (M) provides a unique relationship in terms of the initial state parameter.

Using this relationship, the instability conditions established under triaxial conditions can

be used for plane strain conditions if M is known.

Other studies have also highlighted the role of the rotation of principal stress axes and

the magnitude of the intermediate stress on the onset of flow liquefaction. For example,

Yoshimine et al. (1998), Georgiannou and Tsomokos (2008), Uthayakumar and Vaid (1998),

and Sivathayalan and Vaid (2002) used the hollow cylinder apparatus to evaluate the in-

fluence of principal stress direction and intermediate principal stress on the onset of flow

liquefaction. These studies consistently showed that sand specimens that were loaded under
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a large intermediate principal stress or under large rotation of principal stress axis had a

lower instability stress ratio. Experimental studies have also highlighted the role of ini-

tial fabric on instability triggering. For instance, Miura and Toki (1982); Tatsuoka et al.

(1986); Vaid et al. (1999); Yang et al. (2008) and Sze and Yang (2014) showed that speci-

mens prepared following different reconstitution methods while maintaining similar loading

conditions exhibited significantly different behaviors, highlighting the initial fabric effects.

The instability onset associated with flow liquefaction has also been studied numerically

and analytically with more efforts focusing on triaxial conditions. For example, based on

experimental tests and numerical modeling, Been and Jefferies (2004) hypothesized that

flow liquefaction could be triggered by a change in hardening modulus, rather than frictional

properties. Lade (1992) used the Hill’s instability criterion (Hill, 1958) to define an instability

line for flow liquefaction. Borja (2006) used the bifurcation theory to establish a condition

for liquefaction instability.

Andrade (2009) expanded the work of Borja (2006) by using a variation of the Norsand

model (Jefferies, 1993) to evaluate the onset of instabilities under triaxial conditions and suc-

cessfully predicted experimental data. Andrade et al. (2013) provided a closed-formulation

of the instability criteria in terms of hardening modulus and stress ratio for the model of

Dafalias and Manzari (2004). Mohammadnejad and Andrade (2015) generalized the insta-

bility criterion of Andrade et al. (2013) from triaxial conditions to general loading conditions

and applied it to triaxial tests on Toyoura sand using the model by Dafalias and Manzari

(2004). Buscarnera and Whittle (2012) and Lashkari (2016) used the difference between

current and critical values of the plastic hardening modulus as an index for predicting the

stress ratio at the onset of static liquefaction. Najma and Latifi (2017) used undrained stress

paths and the instability definition at their peak to derive an instability criterion in terms

of hardening modulus. A closed formulation was obtained for the model of Dafalias and

Manzari (Dafalias and Manzari, 2004) and other constitutive models, focusing on triaxial

conditions. This work was later expanded (Najma and Latifi, 2017, 2018) considering the

multiaxial version of the model by Dafalias and Manzari (2004). These previous studies have

emphasized that the predictive performance of the different instability criteria depends on
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that of the constitutive model at play (Andrade, 2009; Andrade et al., 2013; Mohammadne-

jad and Andrade, 2015). Thus, including fabric anisotropy effects has not been feasible in

these previous studies, due to the limitations of the constitutive models employed.

The studies by Lü et al. (2017) and Leguizamón-Barreto et al. (2021) are the only efforts

that we are aware of exploring fabric and loading anisotropic effects on the onset of flow

liquefaction. Lü et al. (2017) formulated a 3D cross-anisotropic model by incorporating a

fabric tensor into the Mohr-Coulomb criterion. The second–order work criterion was used

to identify the conditions for instability onsets. The formulation limited the study to cross-

anisotropic sands. Leguizamón-Barreto et al. (2021) used the instability criteria derived by

Mohammadnejad and Andrade (2015) combined with the model by Dafalias et al. (2004)

to evaluate the onset of instability on hollow cylinder tests on Toyoura sand performed by

Yoshimine et al. (1998). While this is a step forward, the model by Dafalias et al. (2004)

does not account for fabric evolution and considers that the critical state line is evolving –an

aspect that has later been found non-appropriate (Li and Dafalias, 2012; Theocharis et al.,

2017; Wang et al., 2020) and inconsistent with the anisotropic critical state theory proposed

by Li and Dafalias (2012).

In this study, we use the relatively new ACST framework formulated by Li and Dafalias

(2012) to investigate the onset of instability in sands under undrained conditions considering

the role of state, multiaxial loading and fabric anisotropy. To this end, we use the ACST-

based SANISAND-F model developed by Petalas et al. (2020) to establish instability criteria

in sands under undrained loading, for the most general form of fabric anisotropy features.

Our study is structured as follows. After a general introduction (Section 1), we briefly in-

troduce the SANISAND-F model (Section 2). We then derive the fabric dependent undrained

flow liquefaction instability criteria (Section 3) and describe the instability surface in the

π-plane (Section 4). Next, we describe the evolution of soil state before and after insta-

bility during undrained multi-axial compression stress paths (Section 5). Then we propose

a closed-form analytical equation to compute the stress ratio at instability and discuss its

performance to reproduce numerical simulation results and experimental data (Section 6).

Afterwards, we study the effect of the initial anisotropic consolidation on the onset of in-
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stability (Section 7). We close the study with a discussion section (section 8) and the

conclusions (section 9).

2. The SANISAND-F model

2.1. Model formulation

The SANISAND-F model was recently proposed in Petalas et al. (2020). It is an exten-

sion of the critical two-surface plasticity model presented in Manzari and Dafalias (1997) and

Dafalias and Manzari (2004). The model is formulated within the ACST (Li and Dafalias,

2012), that accounts for the effect of fabric anisotropy on the mechanical behavior of gran-

ular soils. For a detailed presentation of the model and the ACST, the reader is referred to

Li and Dafalias (2012) and Petalas et al. (2020).

The equations of the SANISAND-F model are summarized in Tables 1 and 2. In addition

to the features of the DM04 (Dafalias and Manzari, 2004) model, the SANISAND-F model

utilizes a deviatoric fabric tensor F (Eq. 1) as an evolving state variable. A scalar-valued

Fabric Anisotropy Variable (FAV) A is then introduced as a measure of relative orientation

between loading and fabric directions (Eq. 2). The original critical state conditions are

enhanced as proposed in Li and Dafalias (2012) via Eq. 3, which denotes that at critical

state the fabric and loading direction coincide. The isotropic state parameter ψ (Been and

Jefferies, 1985) is enhanced with the effect of fabric via the dilatancy state parameter ζ in

Eq. 4. The new state parameter determines the estimated dilatancy, which depends on fabric

anisotropy, and the model’s response becomes more contractive as the difference in fabric

and loading orientation increases. Figure 2 geometrically summarizes the SANISAND-F

constitutive model highlighting the constitutive surfaces and vector directions in the π-plane

of the deviatoric stress-ratio space.

One of the limitations of the SANISAND-F model compared to other ACST based models

in the literature (e.g. Gao et al. (2014)) is that due to the fact that fabric anisotropy mainly

affects the dilatancy and the plastic modulus, and not the deviatoric plastic strain rate

direction, the model leads to coaxiality between the stress and plastic strain rate tensors
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Figure 2: Illustration of the yield surface (YS), bounding surface (BS), dilatancy surface (DS) and critical

surface (CS) on the deviatoric stress ratio space (from Petalas et al. (2020))

in radial loading (e.g. triaxial compression in an isotropically consolidated sample). The

non-coaxiality between those two tensors was proven to have a significant effect when strain

localisation initiation and evolution is simulated (see Gao and Zhao (2013)) in drained

loading of dilative sands. However, in this study we focus on simulating the liquefaction

triggering, assuming diffused instability without strain localization, and thus we expect that

the effect of fabric in dilatancy dominates the effect of fabric via the non-coaxiality of stress

and plastic strain rate tensors.

2.2. SANISAND-F vs DM04

The SANISAND-F model that is formulated within the ACST is an extension of the two-

surface plasticity model (DM04) (Dafalias and Manzari, 2004) that is formulated within the

classical critical state theory. The goal of this extension was to include the effect of fabric

anisotropy, and thus, this effect is investigated in this section through simulations that assess

the onset of flow instabilities. Isotropically consolidated, triaxial compression and extension

laboratory tests conducted on Toyoura sand by Yoshimine et al. (1998) are simulated and

illustrative results from the comparison are presented in Figure 3 to highlight the role of

fabric.
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The parameters for the DM04 model were calibrated by Dafalias and Manzari (2004)

using triaxial compression tests performed by Verdugo and Ishihara (1996), but we observed

that a re-calibration was required to match the experimental results from Yoshimine et al.

(1998) better. To this end, we slightly adjusted some parameters, specifically: c = 0.75,

h0 = 4.5, ch = 1.0, nb = 1.25, A0 = 0.4 and nd = 2.1 (refer to Dafalias and Manzari (2004) for

the rest of the parameters). For the SANISAND-F model, we used the parameters suggested

by Petalas et al. (2020) (see Table 3) who calibrated the model against the experimental

results from Yoshimine et al. (1998). In this study, the initial fabric tensor is characterized

by transverse isotropy (cross-anisotropy) for the simulations (see nF in Table 3), but note

that ACST framework is amenable to generalized fabric tensors.

We simulated eight isotropically consolidated undrained triaxial compression and ex-

tension tests on samples with initial (after consolidation) relative density in the range

Dr = 22 − 30% (Figure 3). The initial (after consolidation) mean effective stress was

p0= 50, 100, 300 and 500 kPa. Based on the simulation results, it can be observed that

the DM04 model can accurately reproduce the triaxial compression tests with a single set

of material parameters, while it fails to predict the onset of static liquefaction as well as

the significantly lower undrained shear strength in the triaxial extension experiments. In

contrast, simulation results with the SANISAND-F model match both the triaxial compres-

sion and extension test results. In all cases, the initial fabric can be assumed similar (as

similar reconstitution procedures were used), but the loading direction is different in triaxial

compression and extension; hence, the results in Figure 3 highlight the coupling between

fabric and loading direction (i.e., fabric anisotropy) on the overall response, which can be

captured under the ACST framework and the SANISAND-F model, but not with the DM04

model.

3. Flow liquefaction instability criteria

In this section we derive analytical flow instability criteria using the fabric-dependent

multiaxial SANISAND-F constitutive model for undrained loading, following the procedure

presented in Najma and Latifi (2017).
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Table 3: Material parameters of the SANISAND-F model, calibrated for Toyoura Sand (from Petalas et al.

(2020))

Description Symbol Values

Elasticity G0 125

v 0.05

Critical state eref 0.934

ξ 0.7

λ 0.019

Mc 1.25

c 0.75

Plastic modulus h1 7.5

ch 0.85

nb 1.4

Yield surface m 0.01

Dilatancy A0 0.704

nd 3.5

Fabric eA 0.0818

Fin 0.5

c0 5.2

h2 1.3

nF


2√
6

0 0

0 −1√
6

0

0 0 −1√
6


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Figure 3: Performance of DM04 and SANISAND-F constitutive models for triaxial compression and exten-

sion tests from Yoshimine et al. (1998)
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3.1. Instability Criterion 1: Plastic Modulus

In undrained loading conditions, the rate of total volumetric strain is zero.

dεv = dεev + dεpv = 0 (21)

Considering the volumetric part of the total strain rate given in Eq. 18, Eq. 21 is written

as:

dεv =
dp

K
+ 〈L〉D = 0 (22)

During elasto-plastic loading, the plastic multiplier L is positive and equal to 1
Kp
pn : dr,

according to Eq. 20. Thus, Eq. 22 is rewritten as:

dp

K
+

D

Kp

pn : dr = 0 (23)

Thus, the plastic modulus that satisfies the zero volumetric strain constraint is given by:

Kp = −KDpn :
dr

dp
(24)

The deviatoric stress ratio is defined as r = s
p
, which implies dr

dp
= 1

p
(ds
dp
− s

p
). During the

onset of undrained flow instability, ds
dp

= 0 (Najma and Latifi, 2017, 2018), which implies

dr
dp

= −r
p

. This simplifies Eq. 24 as:

Kp,f = KDn : r (25)

where Kp,f is the plastic modulus at the onset of the flow liquefaction. Then, we write the

first instability criterion as H1 = 0, where

H1 = Kp −Kp,f (26)

and Kp is the current bulk modulus. We show later that H1 becomes zero for a second

time after the onset of undrained flow instability, if the material exhibits a change from

contractive to dilative behavior.

The general form of Eqs. 25 and 26 is the same as those proposed in the isotropic

flow instability criterion of Najma and Latifi (2017). However, since Kp,f is a function of

dilatancy D, and in this work D is a function of the anisotropic dilatancy state parameter

ζ (see Eq. 13), the derived instability criterion of Eq. 26 is also fabric-dependent.
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3.2. Instability Criterion 2: Stress Ratio

The three constitutive ingredients in Eq. 25 are the elastic bulk modulus K, the dilatancy

D and the plastic modulus Kp, which are defined based on the SANISAND-F model in Eqs.

5, 13 and 14 respectively. Substituting them in Eq. 25 and denoting β as βf , the stress ratio

at the onset of flow liquefaction, we get:

(M b
θ − βf )

βf (βf − βin)(Md
θ − βf )

=
2Ad(1 + ν)(2.97− e)2

3(1− 2ν)(1 + e)h1exp(h2A)(e−1 − ch)2︸ ︷︷ ︸
Fe

(27)

After rearranging:

β3
f − (βin +Md

θ )β2
f −

(
1

Fe
− βinMd

θ

)
βf +

M b
θ

Fe
= 0 (28)

Eq. 28 can be recast in a simple cubic polynomial form as shown below:

β3
f + C1β

2
f + C2βf + C3 = 0 (29)

with C1 = −
(
βin +Md

θ (ζ)
)
, C2 = −

(
1
Fe
− βinMd

θ (ζ)
)

, and C3 =
Mb
θ (ζ)

Fe
. As shown in Najma

and Latifi (2017), the general cubic polynomial has three roots, of which two are imaginary

and one is a real acceptable root. The real root can be estimated as (Najma and Latifi,

2017):

βf =
−C1

3

[
1 + 2

(
1− 3

C2

C2
1

)0.5

cos

(
φ+ 4π

3

)]

φ = cos−1
1 + 27C3

2C3
1
− 9C2

2C2
1(

1− 3C2

C2
1

) (30)

At the initiation of flow liquefaction, the stress ratio β is equal to βf . We rewrite this second

instability criterion as H2 = 0, where:

H2 = β − βf (31)

Again, the general form of Eqs. 30 and 31 is consistent with that proposed in Najma

and Latifi (2017); however, the terms C1, C2, C3 and Fe depend on fabric anisotropy in this
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Figure 4: Element in a hollow cylinder specimen showing stress components

study, via the DSP ζ and FAV A. This dependence is the critical component that allows us

to introduce the effects of fabric anisotropy on the onset of flow liquefaction.

4. Numerical prediction of the flow instability

In this section we use the SANISAND-F model to predict flow instability based on the

criteria discussed in the previous section. Here, we simulate hollow cylinder shear tests as

this type of test allows investigating fabric anisotropy and intermediate stresses. In addition,

we will use the previously discussed SANISAND-F parameters calibrated for Toyoura sand

(Table 3).

Figure 4 shows the typical configuration of a hollow cylinder test where the normal

stresses σz, σθ, σr and the shear stress σzθ can be independently controlled. The angle

ασ =
1

2
tan−1

2σzθ
σθ − σz

is referred to as the angle between the principal stress σ11 and the

vertical z-axis. If the principal stresses are in the order σ11 > σ22 > σ33, the intermediate

stress ratio is given by b = (σ22 − σ33)/(σ11 − σ33), which is also related to the Lode angle,

θ = π
6

+ tan−1
(

2b−1√
3

)
.

Figures 5a and 5b show the evolution of the instability criteria H1 and H2 while Figures

5c and 5d show the stress-strain response of numerical simulations performed at an initial
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void ratio of 0.89, and confining stress of p0 = 500kPa for the loading path with constant

ασ = 45o, and θ = 30o.

It can be observed that the first criterion yields two instances where H1 = 0 (see Fig. 5a):

the first point marks the onset of flow liquefaction, while the second represents a change

from contractive to dilative behavior, also known as the transformation point (Andrade,

2009; Andrade et al., 2013; Ishihara, 1996). By contrast, the H2 = 0 criterion (see Fig. 5b)

predicts only the onset of flow liquefaction point. It is important to note that both H1 and

H2 criteria are consistent in identifying the onset of flow liquefaction, and from here on,

unless specified, we use only the H2 criterion to predict flow liquefaction instability.
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Figure 5: SANISAND-F simulations of a hollow cylinder test for ασ = 45o and b = 0.5 on Toyoura sand with

e=0.89 and p0=500 kPa, showing (a) the H1 criterion; (b) the H2 criterion; (c) the stress-strain response,

and (d) the stress path.

Next, to illustrate the concept of an instability surface, we conduct simulations at con-

stant ασ = [0o, 45o] and varying the Lode angle, θ, with values from 0o to 360o. The

instability points predicted from these simulations can be plotted in a π-plane of the de-
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viatoric stress-ratio space to visualize an instability surface, as shown in Figure 6. Note

that the Lode angle θ = 0o corresponds to b = 0 while θ = 60o corresponds to b = 1. For

θ > 60o only the Lode angle will be used to refer the loading path. The instability surface

separates the stable stress states from the unstable stress states in terms of flow liquefaction.

Interestingly, it can be observed that the instability surface is not symmetrical with respect

to all the major axes in the stress space (i.e., the θ = 0o-θ = 180o, θ = 60o-θ = 240o, and

θ = 120o-θ = 300o axes), as typically observed in constitutive models under the classical

critical state framework (e.g., DM04). This is attributed to the effect of fabric anisotropy

that is incorporated by the ACST framework. Note that when ασ = 0o the instability sur-

face is symmetrical with respect to the major axes, θ = 0o-θ = 180o in stress space (refer

Figure 6a). This is due to the fact that when ασ = 0o the principal axes of loading and

fabric tensor align with each other thus allowing symmetry in the horizontal directions.
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Figure 6: Instability surface obtained from the numerical simulations of a hollow cylinder test with constant

Lode angle (θ) and constant stress principal axis rotation (ασ) using Toyoura sand properties with e=0.89

and p0=500 kPa (a) for ασ = 0o (b) for ασ = 45o
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5. Stress principal axis rotation, Lode angle, and fabric effects on the onset of

flow liquefaction

A series of numerical simulations with varying stress principal axis rotations (ασ), Lode

angle (θ) and initial fabric intensity (Fin) are performed in this section, to investigate their

effect on the triggering of flow instability. Note here that stress principal axis rotation

represents constant and fixed rotation of ασ during undrained shearing. Moreover, undrained

hollow cylinder experiments performed by Yoshimine et al. (1998) on Toyoura sand are

simulated for validation of the modelling procedure. All the simulations are done with

SANISAND-F and the set of parameters presented in Table 3.

5.1. Effect of stress principal axis rotation ασ

Figure 7 presents the simulation results of tests with initial void ratios in the range of

0.821-0.828, initial confinement p′0 = 100 kPa, θ = 30o (b = 0.5), and different ασ values

i.e., [15o, 30o, 45o, 60o, 75o]. The experimental results from Yoshimine et al. (1998) are also

presented for comparison. In the experiments, the instability point (marked with an open

circle) corresponds to the local peak in the p′ − q space. The instability criterion of Eq. 30

is also tracked for the numerical simulations and the open circles on the numerical-based

curves correspond to the stress ratios satisfying it.

The increasing contractive behavior with the increase of ασ is well captured by the

SANISAND-F model, which also reproduces with acceptable accuracy the stress-strain re-

sponse as also discussed in Petalas et al. (2020). In all cases, corresponding to experiments,

after the flow instability point, a phase transformation from a contractive to dilative ten-

dency is observed. This response is also well captured with the model.

Figure 8 shows the instability surfaces on the deviatoric plane estimated for loading paths

with different ασ, using the procedure discussed in Section 4. Note that the instability surface

is discontinuous due to the fact that flow instability does not occur for every combination

of angles θ and ασ. For example, the surface is not defined for θ = 30o when ασ = 15o, 30o,

and 45o (i.e., there is no instability onset), but it is defined for ασ = 60o and 75o, which is

consistent with the results in Figure 7. Of note, instability may be still triggered for other θ
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values (i.e., other loading paths) where the instability surface is defined when ασ = 15o, 30o,

and 45o as illustrated in Figure 8. Interestingly, for a loading path in the downward r11

direction (i.e., θ = 180o), we can see that there is an instability onset for ασ = 15o, but not

for ασ = 75o, which is apparently in contrast with the observations in Figure 7. However, this

observation is associated with the coupled effects between the loading direction and fabric

orientation. The quantity N (refer to Table 1) measures the relative orientation between

the fabric and loading directions. If the fabric and loading have the same direction (i.e.,

N = 1), the computed behavior shows a hardening response. As the difference between the

fabric and loading directions increases a softening response is enhanced. These observations

are consistent with the results in Figure 7 where as ασ decreases N increases (i.e., it gets

close to 1), causing an enhanced hardening response. For the θ = 180o loading path, when

ασ = 15o the initial value of N is -0.89 causing a softening response that triggered an

instability condition. Whereas when ασ = 75o the initial value of N is 0.41, causing a

hardening behavior with no instability triggering.

5.2. Effect of lode angle θ (or intermediate stress ratio b)

Figure 9 shows the SANISAND-F simulations of undrained tests on Toyoura sand with

void ratio e = 0.855, initial confinement p′0 = 100 kPa, ασ equal to 45o, and different θ val-

ues, i.e., [0o, 13.9o, 30o, 46.1o, 60o] (corresponding to b = [0, 0.25, 0.5, 0.75, 1]) using the same

set of parameters as in previous simulations (i.e., Table 3). The experimental results from

Yoshimine et al. (1998) are also presented for reference. Note the void ratio in experiments

varies from e = 0.849− 0.861. A representative mid-value for the void ratio of e = 0.855 is

selected for simulations. The numerical results are qualitatively consistent with the exper-

imental results, i.e., as the b value increases, a more contractive response with lower peak

values is observed. Notice also that there are more differences in the dilatancy response (i.e.,

experimental versus numerical) at large strains for large b values, which may be attributed to

the dilatancy scaling in SANISAND-F. However in assessing instability conditions the post-

peak response is, comparatively, not as important as assessing the triggering (Sadrekarimi,

2014). The instability points estimated by the criterion H2 are also presented in Figure 9.
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Figure 7: Experimental data (a,b) and SANISAND-F simulations (c,d) for undrained shearing with constant

θ = 30o (b = 0.5) and constant ασ=15o − 75o on Toyoura sand with e=0.821-0.828. Data after Yoshimine

et al. (1998). The instability points in both experiments and simulations (from the H2 criterion) are

represented by a blue circular marker.
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Figure 8: Numerical estimation of instability surfaces for tests with constant ασ = [15o − 75o] on Toyoura

sand with e=0.821-0.828. Instability points corresponding to b = 0.5 (θ = 30o) are plotted on instability

surfaces when defined (for ασ = 60o and ασ = 75o).

The estimated instability surface for ασ−45o is presented in Figure 10, which also shows the

instability points for different b values. In Figure 9, instability triggers for all the considered

b values, which is consistent with Figure 10. In addition, the instability stress ratios (i.e.,

the distance from the instability surface to the origin) decrease as b increases, which is in

agreement with the previous discussions. For higher Lode angles, i.e., θ from 250o to 350o,

the simulations show hardening responses, and thus the instability surface is not defined.

5.3. Initial soil fabric effects

To assess the effect of the initial fabric on the instability surface. A sensitivity analysis is

performed using different fabric intensities for the initial cross-anisotropic fabric direction.

Figures 11 (a) and (b) show the undrained constitutive response obtained for a constant

loading path with ασ = 0o and θ = 0o (triaxial compression loading), a void ratio e = 0.89,

an initial confinement pressure p′0 = 500 kPa, and a variable initial fabric intensity Fin =

[0.01, 0.5, 1.0], which includes the typical range of Fin = 0−0.6 for Toyoura sand in different
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Figure 9: Experimental data (a,b) and SANISAND-F simulations (c,d) for undrained shearing with constant

ασ = 45o and constant b=0 to 1 (or θ = 0o to 60o) on Toyoura sand with e=0.855. Data after Yoshimine et al.

(1998). The instability points in both experiments and simulations (from the H2 criterion) are represented

by blue circular markers.

22



b=0.0b=0.25

b=0.5

b=1.0

b=0.75

Figure 10: Numerical estimation of the instability surface for a stress path with constant ασ = 45o on

Toyoura sand with e=0.855 and p′in = 100 kPa. Instability points corresponding to b = 0 to 1 (or θ = 0o to

60o) are plotted on the instability surface.

sample preparation methods (Gao and Zhao, 2015). Note that Fin = 0.01 represents a

nearly isotropic fabric and Fin = 1.0 represents a highly anisotropic fabric. Such extreme

fabric intensities are chosen along with the value Fin = 0.5 (recommended in Petalas et al.

(2020)) to highlight the influence of initial fabric on a wide range. It is observed that the

constitutive behavior becomes more dilative as the fabric intensities increase from 0.01 to

1.0 (see Fig. 11a,b). In fact, for a fabric intensity of Fin = 1.0, there is no instability

point detected. This is because, in the ACST framework the fabric anisotropy variable,

A = FN , controls the contractive (lower value of A) or dilative (higher value of A) behavior

of the constitutive response in undrained loading. Where F is the fabric intensity and N

is the relative orientation between fabric and loading directions. For the three cases in

Figure 11(a,b), the value of N = nF : n′ is equal to 1, this is because the cross-anisotropic

fabric (triaxial compression like fabric direction) and the triaxial compression loading has

the same orientation. Thus the value of A is equal to F and for higher initial fabric intensity
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the constitutive response is more dilative and the instability stress-ratio is higher. Figures

11 (c) and (d) show results of numerical simulations conducted with constant ασ = 0o and

θ = 180o. It is now observed that the fabric intensity has an inverse effect on the constitutive

response and the instability stress-ratio compared to the triaxial compression loading path.

This is because, for the new loading path the value N = −1, implying A = −F , and

thus causing the inverse effect. This highlights that the overall observed response (e.g., the

instability triggering) is intimately related to coupled effects between the initial fabric and

the imposed loading paths, which is at the core of the ACST framework. This is further

illustrated in Figure 12, which shows the effect of fabric intensity on the instability surface

represented in the π-plane for loading paths with constant ασ = 0o . The effect of initial

fabric intensity is clearly evident from the shapes of the instability surfaces. For ασ = 0o,

the highest influence of fabric intensity on the instability point is observed for loading paths

with θ values close to zero. The initial fabric effects at other loading paths such as θ = 60o,

θ = 180o, θ = 300o are also substantial.

6. Analytical prediction of instability surfaces and stress ratios

The instability stress ratio (βf ) derived in Equation 30 is a function of the SANISAND-

F parameters, A, ζ, and loading conditions (i.e., θ, ασ). Given fixed loading and initial

conditions, A and ζ evolve to their values when flow instability occurs. However, this

evolution does not significantly affect the estimation of βf . This is illustrated in Figure 13

using SANISAND-F for a simulation on Toyoura sand with e = 0.89, p0 = 500 kPa, ασ = 45o,

and b = 0.5. Figures 13 a and b show the stress-strain response and three snapshots of the

stress path, namely: (i) the initial condition when the loading starts, (ii) the instability onset,

and (iii) a condition near to the critical state. Figure 13c shows the evolution of the dilatancy

state line (DSL). Interestingly, the DSL does not evolve significantly from configuration (i)

to configuration (ii). A similar observation can be made for A, Md
θ (ζ), M b

θ (ζ), and ζ (Figures

13 d, e, and f),(i.e., there is no significant evolution from configuration (i) to configuration

(ii)). The DEM study by Salimi and Lashkari (2020) also supports this observation where

the authors showed that the fabric, defined as the particle orientation tensor, did not show
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Figure 11: SANISAND-F simulations of undrained shearing with initial state of e=0.85, p′in = 500kPa and

different fabric intensities Fin = [0.01, 0.5, 1.0] subjected to constant ασ=0o and θ = 0o (b = 0) in (a) and

constant ασ=45o and θ = 0o (b = 0) in (b) . The instability points from the H2 criterion are represented

by blue circular markers.

significant evolution from the initial state to the instability state. This implies that the effect

of fabric evolution is not significant until the onset of instability and thus the instability state

could be approximated by assuming Af = Ain and ζf = ζin, where the subscripts f and in

refer to the instability and initial conditions, respectively. This is practical as the instability

stress ratio βf could be estimated directly by using SANISAND-F parameters, Ain, and ζin,

which act as inputs into the analytical instability equation (Eq. 30).

Under these considerations, the instability surface in the π-plane can also be estimated

directly from Equation 30 using the following steps:

1. Calculate A, from the initial fabric tensor Fin and the unit-norm deviatoric stress-ratio

tensor (n′′) or loading direction. For the desired Lode angle (θ) one can obtain n′′.

Note that the tensor Fin should be represented in the principal stress axes. Thus, a
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Figure 12: Effect of initial fabric intensity on the instability surface obtained for various loading paths, θ

varying from 0o to 360o with constant ασ = 0o

rotation of the fabric tensor from global stress axes (z, θ, r) to the principal stress

axes (11, 22, 33) needs to be performed prior to the computation of A. The rotation

matrix can be computed from the loading angle ασ.

2. Calculate Fe for the given void ratio e, material parameters, and the initial A from

Equation 27.

3. Calculate M θ
b , M θ

c and M θ
d from material parameters and ζ for the desired Lode angle

θ. ζ can be obtained from e, the initial p′0 and A.

4. Calculate instability stress ratio from Equation 30 using the factors presented in Equa-

tion 29.

5. Estimate the instability surface in the π-plane by iterating on different values of the

Lode angle θ.
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Figure 13: Evolution of Fabric Anisotropy Variable w.r.t the stress state. The FAV values at three stages

of the undrained response are shown.

Using the steps listed above, Figure 14a shows the estimated instability surface for

ασ = 45o in the π-plane. Figure 14a also highlights the numerical instability surface (i.e.,

considering the exact A and ζ values at instability) for comparison purposes. It can be

observed that the analytically estimated instability surface approximates with acceptable

accuracy the numerical solution. Another point to highlight is that the instability surface

is not symmetrical with respect to the origin in the π-plane. This is due to the fact that

within the ACST framework, the relative effects of soil fabric and the loading direction are

taken into account in the estimation of the instability stress ratios. Thus, the resistance to

flow liquefaction (represented as the distance between the origin and the instability surface)

changes as a function of the Lode angle θ, and it is also influenced by fabric anisotropy. To

further illustrate the application of the analytical estimation of instability surfaces, Figure

14b shows instability surfaces for Toyoura sand with e = 0.89, p′0 = 500, ασ values from 0o
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to 90o, and θ varying from 0o to 360o.

Lastly, Figure 14c compares instability stress ratios estimated numerically and analyti-

cally, against the instability stress ratios from the experiments on Toyoura sand considered

in this study (Yoshimine et al., 1998). When the computed instability stress ratio (ηcomf )

matches the experimental instability stress ratio (ηexpf ), the data points lie on the x = y line

(highlighted in the plot). The results are presented for the cases that showed flow or limited

flow behavior. As it can be observed, both the numerical and analytical predictions match

experimental results relatively well. Importantly, all our simulations used the SANISAND-

F model with a fixed set of parameters (i.e., Table 3), which were used under a variety of

loading conditions (i.e., considering intermediate stresses and fabric anisotropy). The results

highlight the usefulness of the ACST framework for estimating the instability onset under

generalized undrained loading conditions.

7. Influence of initial consolidation on the onset of instability

Assessing the instability conditions imposed by an undrained loading on a material that

has been anisotropically consolidated is of interest, for example, for anisotropic consolidated

triaxial tests (also known as K0 triaxial compression tests). When simulating an element

test that involves anisotropic consolidation by the use of a constitutive driver (Bardet and

Choucair, 1991), the method for initialization of the stress state and state variables after

consolidation (before undrained shearing) affects the results. In this work, we consider

two different methods, namely Method 1 and Method 2, for reference. In Method 1, the

anisotropic stress state after consolidation is directly assigned as input to the algorithm and

state variables (e.g., void ratio, etc.) are equal with the ones in the element test after the

process of consolidation. In Method 2, the simulation is performed in two steps. First, the

anisotropic consolidation is simulated, and then the undrained shearing is imposed.

In bounding surface plasticity models for sands, like DM04 or SANISAND-F, the above

mentioned choices affect the simulated stiffness of the material during undrained shearing

and thus the simulated flow instability stress ratio that is of interest in this work. More

specifically, the simulation results are sensitive on the determination of αin tensor in the
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Figure 14: Analytical estimation of instability surface/ratio for loading paths with constant ασ and b

(a) Comparison of instability surface predicted from the proposed analytical equation and the instability

points predicted from the numerical simulations (b) Estimation of instability surface for various ασ in global

deviatoric stress-ratio coordinate axes (c) Stress ratio at instability according to the analytical and numerical

methods, plotted against the experimental data
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denominator of Eq. 15. αin is the value of α at the initiation of a new loading process (e.g.

unloading after loading), which is signified by the zero or negative value of the quantity

(α−αin) : n within 〈〉 in the denominator. When (α−αin) : n ≤ 0, i.e., a new loading

process is determined, Kp ≈ ∞; thus, the model predicts very small plastic strain increment

(the step becomes elastic) and αin is updated to α. Therefore, after the initiation of a new

loading process the behavior becomes elastic with very high stiffness for the first few steps,

until Kp starts to decrease again due to elasto-plastic behavior.

We use the two methods (Method 1 and 2) to simulate undrained compression and

extension shearing on Toyoura sand, on anisotropically consolidated samples, considering

an initial void ratio of 0.915, p
′
0 = 100kPa and a consolidation ratio Kc = σ

′

hc/σ
′
vc = 0.8.

σ
′

hc and σ
′
vc are the horizontal and vertical effective stresses before the undrained shearing.

The discussion on the modeling strategy is relevant because, to our knowledge, previous

numerical studies have explored the effects of anisotropic consolidation by using Method 1

(e.g., Najma and Latifi (2017)). Figure 15 shows the simulation results, highlighting the

difference between the two methods. In Method 1 only the undrained shearing phase is

simulated and the initial back-stress ratio αin is set to be equal with the stress ratio r = α

at the end of consolidation. On the other hand, in Method 2, αin = 0, due to the fact that

the consolidation process is simulated starting from a zero stress and back-stress state, and

there is no new loading process initiated (i.e., there is no reversal of loading direction) from

the beginning until the end of the phase that updates αin.

In Method 1, (α−αin) : n = 0 during the initiation of both undrained compression

and extension, which makes the denominator of the plastic modulus in Eq. 15 infinity, and

thus, the plastic part of the total strain negligible. Practically, during undrained shearing,

the stiffness initially is elastic, and that it is observed in Figure 15b, where the stress path

initiates with a vertical orientation (no decrease in mean effective stress) for both cases.

This leads to a larger peak deviatoric stress in triaxial compression compared to Method

2 (Figure 15b and d). This is due to the fact that in Method 2, during the consolidation

simulation αin remains zero (no loading reversal), and when the undrained compression

begins (α−αin) : n > 0, the plastic modulus Kp remains a positive and finite value, without
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minimizing the plastic strain increment during the first step. This is why in Method 2,

during undrained compression, the slope of the stress path in Figure 15d starts immediately

inclined, a decrease in mean effective stress initiates from the first stem and the simulated

instability stress ratio is lower than the one predicted in Method 1. On the other hand,

during undrained extension with Method 2, (α−αin) : n < 0, αin = 0, α is a compression-

like tensor due to a compression consolidation process and n is an extension-like tension.

This updates αin, a new loading process initiates and the response is elastic for the first few

steps due to the very large plastic modulus.

Even though Method 1 has been used in the literature before (e.g., Najma and Latifi

(2017)), the update in αin for both the compression and extension cases means that the

loading history during consolidation affects equally the two cases by indicating that a new

loading process begins. We believe that Method 2 should be preferred since it reflects more

realistically the conditions experienced in the laboratory and takes into account the effect

of loading history. Thus, we adopt Method 2 to investigate the effect of initial anisotropic

consolidation on the onset of instability. Figure 16 shows the results of simulations of triaxial

compression and extension responses for several anisotropic consolidation ratios, Kc ranging

from 0.4 to 1.6 at void ratio 0.915 and mean effective confining stress of 100kPa. Note

that consolidation ratios of Kc = 1.0, Kc < 1.0 and Kc > 1.0 represent specimens that are

isotropically, compressionally, and extensionally consolidated, respectively. The undrained

triaxial compression tests (see Figure 16a,b) show that as Kc decreases, it is easier to trigger

an instability. For instance, in the case of Kc = 0.4, there is a spontaneous collapse (that

is, decreasing deviatoric stress with increasing axial strain), also referred to as “incipient

instability” (Buscarnera and Whittle, 2013). A similar behavior is observed in the triaxial

extension tests (see Figure 16c,d), but now it is easier to trigger liquefaction as Kc increases.

In this case, the incipient instability is observed at a consolidation ratio Kc of 1.5 or higher.

Using the results from Figure 16, Figure 17 shows that anisotropic consolidated spec-

imens have a higher instability stress ratio (ηf ) in triaxial compression than in triaxial

extension. In undrained triaxial compression tests on extensionally consolidated samples, it

is observed that the instability stress-ratio gradually decreases as the anisotropy in consoli-
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Figure 15: Constitutive responses in triaxial compression and extension using Method 1 (a, b) and using

Method 2 (c, d).
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Figure 16: Constitutive responses for several anisotropically consolidated specimens with Kc ranging from

0.4 to 1.6 in triaxial compression (a, b) and triaxial extension (c, d).
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Figure 17: Variation of instability stress ratio with respect to initial consolidation ratio, Kc, for triaxial

compression and triaxial extension.

dation increases (i.e., increase in Kc). But, from the undrained triaxial compression tests on

compressional consolidated specimens, it is observed that the initial consolidation ratio has

no significant effect on the stress ratio at the instability point except for extreme Kc values;

where due to the immediate collapse behavior, there is an increase in instability stress ratio

for Kc values < 0.5. Similar observations hold for the undrained triaxial extension tests

where the compressional consolidated specimens show a decrease in instability stress ratio

with the increase in anisotropic consolidation (i.e., decrease in Kc) and extensionally consol-

idated specimens have no significant effect on the instability stress ratio except for extreme

Kc values (> 1.4). The results presented for the triaxial compression tests on compressional

consolidated specimens in Figures 16 and 17 are consistent with previous experimental stud-

ies (Chu and Wanatowski, 2008; Kato et al., 2001; Yang et al., 2021).

8. Discussion

All the numerical simulations in this study were performed with the fabric based SANISAND-

F constitutive model, implemented in a strain-driver algorithm proposed in Bardet and

Choucair (1991), that assumes homogeonous stress and strain field within a Representative
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Elementary Volume (REV). This is consistent with previous efforts that also focused on the

material point response (Andrade, 2009; Borja, 2006; Najma and Latifi, 2017); however, in

contrast to these previous studies, we used the ACST framework that allows incorporating

fabric anisotropy effects as highlighted in Section 1. Gao and Zhao (2013) demonstrated the

effect of fabric anisotropy on the triggering and evolution of localized deformation, when

dilative granular soils are loaded in drained conditions (strain localization), by treating the

deformation of the REV as a boundary value problem using the Finite Element Method.

In this study the effect of fabric anisotropy on dilatancy, and thus, on the rate of pore

pressure generation during undrained loading was examined as the dominant mechanism of

liquefaction triggering, assuming diffused instability (Borja, 2006; Darve, 1996; Wu et al.,

2020), with no account for localized deformation. Future research could be done to investi-

gate the effect of localized deformation on liquefaction triggering in loose contractive sands

under undrained loading by treating the deformation of the REV as a boundary value prob-

lem and using fabric-based models with appropriate numerical methods for mesh-dependent

solutions (e.g. Gao et al. (2021); Jirasek (1998); Mallikarachchi and Soga (2020)).

We would also like to highlight the need for more experimental studies on the quantifi-

cation of the initial microstructure associated with different reconstitution methods, con-

sidering the evolution of fabric under multiple loading paths during deformation –in line

with recent studies (Viggiani and Tengattini, 2019; Zhao et al., 2021). These studies would

be instrumental to enable further validation of the trends presented in Section 5 (effect of

initial fabric). Lastly, we want to emphasize that our study was focused on the triggering of

liquefaction instability, a useful concept for estimating liquefaction trigerring in engineering

practice (Boulanger and Idriss, 2016; Robertson, 2010; Saye et al., 2021), however, it did not

include post-triggering deformation analysis, which could be considered in future studies.

9. Conclusions

In this study, we have used the SANISAND-F model formulated under the ACST frame-

work to investigate the flow liquefaction triggering in sands under undrained loading condi-

tions, considering the role of state, multiaxial loading and fabric anisotropy. It was shown
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that the ACST framework provides benefits to account for generalized loading and fabric

effects. In this context, we derived criteria that predict instability conditions for generalized

undrained loading including anisotropy and fabric effects. An interesting finding is that

the instability surface constructed using the derived criteria is not hexagonally symmetrical

with respect to the origin in the stress space. This is due to the fact that within the ACST

framework, the relative effects of soil fabric and the loading direction are taken into account

in the estimation of the instability stress ratios. Thus, the resistance to flow liquefaction

(represented as the distance between the origin and the instability surface) changes as a

function of the Lode angle and fabric anisotropy. In agreement with with experimental

results, the instability stress ratios estimated from the derived instability criteria are de-

pendent on b and ασ and can also be significantly influenced by the initial fabric, which

highlights coupling effects between the loading and fabric evolution. For example, the onset

of instability for a given Lode angle and an increasing ασ can be promoted or not, depend-

ing on the interactions between the loading and fabric directions. We also showed that

there is no significant evolution of the state variables that control the instability stress ratio

from initial to instability conditions. This provides a practical means to derive instability

stress ratios for generalized loading conditions once the SANISAND-F parameters (often

calibrated for triaxial conditions) and the values of initial state variables are known. Lastly,

the different strategies for estimating instability stress ratios when the undrained loading is

imposed after an initial anisotropic consolidation were discussed. Unless there is evidence of

loading/unloading processes that update the value of αin, we recommend using a two step

process that consists of simulating anisotropic consolidation before imposing the undrained

loading boundary conditions (i.e., αin is updated only upon loading reversal). We showed

that this strategy provides results that are consistent with previous experimental studies in

triaxial compression conditions, where the instability stress ratio is not significantly affected

by the initial anisotropic consolidation before loading.
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