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Abstract

This manuscript constructs global in time solutions to master equations for po-
tential mean field games. The study concerns a class of Lagrangians and initial
data functions that are displacement convex, and so this property may be in di-
chotomy with the so-called Lasry—Lions monotonicity, widely considered in the
literature. We construct solutions to both the scalar and vectorial master equa-
tions in potential mean field games, when the underlying space is the whole space
R4, and so it is not compact. © 2022 The Authors. Communications on Pure
and Applied Mathematics published by Wiley Periodicals LLC.
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Introduction

In this manuscript, we study a Hamilton-Jacobi equation on 42, (Rd ), the set
of Borel probability measures on R¥ of finite second moments. This allows us to
make inferences on the master equation in mean field games, introduced by P.-L.
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2686 W. GANGBO AND A. R. MESZAROS

Lions in [37]]. Our study relies on a special notion of convexity, the so-called dis-
placement convexity, which is natural for functions ¥ : ,@z(Rd) — R. It differs
from the classical notion of convexity on the set of measures, which corresponds
to the so-called Lasry—Lions monotonicity condition, central in most prior works
aiming to study global-in-time solutions to the master equation. A comparison be-
tween the classical notion of convexity and displacement convexity can already be
made by considering ways of interpolating Dirac masses. Given two Dirac masses
840 and 84, , the paths

[0,1] 3¢+ 0 := (1 =1)849 + 184, [0.1] 3¢ = 07 = 8(1—t)go+1q1 -

provide two distinct interpolations, these two elements of 92,(R¢). The function
¥ is called convex in the classical sense if it is convex along classical interpolation,
which in particular implies # +— ¥ (a;) is a convex function on [0, 1]. The function
is called displacement convex [40] if its restriction to any W5-geodesics is convex,
which in particular means ¢ — 7#'(0}") is a convex function on [0, 1].

A blatant example which shows that convexity and displacement convexity can-
not be the same is when

20 = [ | li=dPudou(dq), pe 2a@),

In this case, it has long been known that ¥ is concave in the classical sense while
¥ is obviously displacement convex. However, for the purpose of our study, we
need to come up with a richer class of examples consistent with our analysis. For
instance, let us consider two functions ¢,¢; € C 2(Ra’) with bounded second
derivatives and such that ¢ is even and define

29 () := /Rd 26(9) + (¢1 * W@)u(dg), 1 e P2(RY).

Let us recall that (see Lemma [B.2) the function ¥ is convex in the classical sense
if and only if qAS 1— the Fourier transform of ¢;—is nonnegative, independently of
whether or not additional requirements are imposed on ¢. Suppose for instance that
¢ is 2A-convex for some A > 0. If ¢p; is A1 -convex for some 241 € (—A, A), then
¥ is displacement convex. As discussed in Sections and we can choose
¢1 such that $1 changes sign, so that 7 fails to be convex in the classical sense.
The theory of well-posedness of the master equation in mean field games is well
developed on the set of probability measures [[14] (for a probabilistic approach to
study such equations, we refer the reader to [17]) under the Lasry-Lions mono-
tonicity condition [13}[35,36}/38]] for games where the individual and/or common
noises are essential mechanisms governing the games. In the same setting of mono-
tone data, global solutions were also constructed in [19], where the authors can
handle even degenerate diffusions in the equations. In the same context, [42] im-
proves the regularity restrictions on the data, which need to be still monotone, and
propose a notion of weak solutions for the master equation. When the monotonic-
ity condition fails (even in the presence of the noise), only short time existence
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DISPLACEMENT CONVEX POTENTIAL MFG 2687

results for the scalar master equation were achieved (in the deterministic case, we
refer to [10,/31,[39]; in the presence of noise, we refer to [[17,|19]]). For classical
mean field games systems, the smallness of the time horizon sometimes can be re-
placed by a smallness condition on the data (see, for instance, [3,/4]). Via a “lifting
procedure”, it is possible to study master equations on a Hilbert space of square
integrable random variables. The main benefit of this process is to instead use the
more familiar Fréchet derivatives on flat spaces and bypass the differential calculus
on the space of probability measures, which is a curved infinite-dimensional mani-
fold. Such analyses were carried out for a special class of mechanical Lagrangians
and for potential games, either in a deterministic setting [9] or in the presence of
individual noise in [7}/8]]. Furthermore, the authors needed to impose higher than
second-order Fréchet differentiability on the data functions. It turns out (see be-
low) that this may sometimes be a too severe restriction. Therefore, from this point
of view the Hilbert space approach has a serious drawback.

This manuscript constructs global solutions to potential mean field games master
equations, where the widely used Lasry—Lions monotonicity condition is replaced
by displacement convexity, a concept which appeared in optimal transport theory in
the early 1990s. The use of displacement convexity in mean field control problems
and mean field games goes back to [15]], where the authors study control problems
of McKean—Vlasov type. In the case of mean field game systems with common
noise, we refer the reader to [[1,[2], where their so-called weak monotonicity condi-
tion, assumed on the data, is equivalent to displacement convexity in the potential
game case. As mentioned before, in [7, 8], this condition is used in the Hilbertian
setting. In the study of master equations arising in control problems of McKean-
Vlasov type (in the presence of individual noise), [19] seems to be the first work
in the literature that imposed displacement convexity on their data to obtain well-
posedness of a master equation in the spirit of [[15].

In potential mean field games, one considers smooth enough real-valued func-
tions %, .Z defined on 2,(R?). We assume that there are smooth real-valued
functions ug, f defined on RY x 22,(R¥) that are related to %, .7 in the sense
that the Wasserstein gradient of % at 4 € 92, (Rd) equals the finite-dimensional
gradient Dguo(-, u) and the Wasserstein gradient of .% at u € P5(R?) equals
the finite-dimensional gradient Dy f (-, ). Given a Hamiltonian H € C 3(R29)
and a time horizon 7' > 0, the master equation consists in finding a real-valued
function u defined on [0, T") x R4 x 2, (Rd), a solution to the nonlocal equation

deu + H(q, Dgu) + N[ Dgu(t,- 1), Vuult,q, 1)) = fx. ),
in (0,7) x R? x 2,(R?),

u(0,-,-) = uo, in R4 x 2,(R%).
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2688 W. GANGBO AND A. R. MESZAROS

Here, .4}, : L?(u) x L?() — R is the nonlocal operator defined as

(0.1) Apln. 0] = fRd DpH(c.n(c)) - 0(c)uldc).

Let L(g, -) be the Legendre transform of H(g,-) and assume L is strictly convex,
and both functions have bounded second-order derivatives. Under the assumption
that % and .# are displacement convex (convex along the Wasserstein geodesics),
we construct classical solutions and weak solutions to the master equation, de-
pending on the regularity properties imposed on the data. Following [32]], the
starting point of our study relies on the point of view that the differential struc-
ture on (Z,(R¥), W) is inherited from the differential structure on the flat space
H := L2((0,1)%;:R%), and the former space can be viewed as the quotient space
of the latter. The functions %, % are lifted to obtain functions ?Z), Z defined on
the Hilbert space H, with the property that they are rearrangement invariant. What
we mean by rearrangement invariant is that %(x) = ?Z)( y) whenever the push
forward of Lebesgue measure restricted to (0, )4 by x,y € H coincide. In this
case, we sometimes say that x and y have the same law. The Hamiltonian H is
used to define on the cotangent bundle H?2, another Hamiltonian denoted

H(x,b) = /(O » H(x(w), b(w))dow — Z(x).

The corresponding Lagrangian .Z'is on H2, the tangent bundle, and is

P(x.a) = / L(x(w),a(w))dw + Z(x).
d
Both the Lagrangian and the Hamiltonian are invariant under the action of the
group of bijections of (0, 1)¢ onto (0, 1)4, which preserve the Lebesgue measure.
We are interested in regularity properties of 7 : (0, o0) x H — R, solutions to the
Hamilton—Jacobi equation

o~

WU + A(- NxW) =0 in(0,00) x H,
(0, = U on H.

The characteristics of this infinite-dimensional PDE and the smoothness properties
of % will play an essential role in the application of our study to mean field games.
They allow us to obtain an explicit representation formula of the solution to the
master equation for arbitrarily large times. Similar observations were made also by
P.-L. Lions during a recorded seminar talk [[37]. This lecture seems to suggest that
is was not clear at all how far the displacement convexity assumptions on the data
could be used to advance the study of the global-in-time well-posedness of master
equations.

Under appropriate growth and convexity conditions on the data, the classical
theory of Hamilton—Jacobi equations on Hilbert spaces ensures that U (t,-) is
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of class C 1’1(]HI). Our Hamiltonian and Lagrangian being rearrangement invari-

loc
ant, by the uniqueness theory of Hamilton—Jacobi equation, % (¢, -) is rearrange-

ment invariant. This allows us to define a function % (¢,-) on Z,(R%) such that
wt, 1) = U (t, x) whenever x € H has u as its law. At the same time, % will
be the unique classical solution to the corresponding Hamilton—Jacobi equation set
on Z,(R%).

By Lemma a function 7 : L@z(Rd) — R is of class Cliél on the Wasser-
stein space if and only if its lift ¥ :H — R is of class C,*! on the Hilbert space.

loc

Since the Hilbert space theory ensures that U (¢,-) is of class Ckl)’c1 on the Hilbert
space, we obtain as a by-product that (¢, - ) is of class Cl(l)él on the Wasserstein
space. This is how far one could push the Hilbert approach in terms of regularity
theory if one would like to make useful inference in mean field games. Indeed, im-
posing that a rearrangement invariant function ¥ : H — Ris of class C2 (twice
Fréchet differentiable) is too stringent for the purpose of mean field games. For
instance, if ¢ € C° (R?), unless ¢ = 0, the function ¥ defined on H by

”I7(x) = /(01

s

does not belong to C2(IH) (cf. Proposition . The reader should compare this
to another subtlety in [[11, sec. 2]. Similar conclusions can be drawn on other
functionals with a local representation such as

L P@)do.

H9x|—>“/7(x)::/

( )d¢(x(w1)’---ax(wn))dw1'--dwn,
0,1)"

when ¢ € C3(R"%) is symmetric and has bounded second- and third-order deriva-
tives (cf. Proposition [A.2). Pursuing a deeper analysis, we assume o € (0, 1],
¥ e Cliéa (H) is rearrangement invariant so that it is the lift of a function 7" :
P5(R%) — IR. We show in Lemmathat if holds for all /2, hy € H, then
Dy (Vw 7/(pL)) is a constant function on spt(it).

A final argument to support the fact that we need a new concept of higher-
order derivatives on the set of probability measures is the following: When k > 3,
making assumptions on k-order differentials of Hamiltonians A : H? — R and
treating them as continuous multilinear forms on Cartesian products of H? is too
restrictive for a theory in mean field games. Indeed, frequently used Hamiltonians
in mean field games theory are of the form

H(x,b) = My (x,b) — F(x), Hu(x.b)= f H(x(0), b(w))dw,
(0,14
where H € C3(R2%) is such that D2H is bounded. Let & € (0, 1]. Even if
Cliéa (H?) is an infinite-dimensional space, its intersection with the set of functions
that have a local representation is contained in a finite-dimensional space. For
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2690 W. GANGBO AND A. R. MESZAROS
instance,
0.2)  dim(C2*(H?) N { A« H € CE¥(R??), D2H is bounded}) < oo.

In this manuscript, to write a meaningful master equation, we are interested in
functions ¥ : 2, (R4) — R that satisfy hlgher regularity properties than being of
CloC We assume at least that their lifts 7 : H — R are such that V¥ is Gateaux
differentiable with bounded second-order differential in a sense to be made precise.
Due to the rearrangement invariance property of ”/7, V29 must have a special form.

Given x € H, there exist matrix-valued maps
AY, € L0, )4 R4, A%, € L®((0,1)24; RI*4)

such that AT, is symmetric almost everywtiere, A%, (w,0) = A%,(0, )T almost
everywhere and the operator I > ¢ > V27%/(x){ can be written as

03) (V2T (0)0) (@) = A% (@) (o) + f( - AL, (w.0)¢(0)do.

In fact, as observed in [[11]] (cf. also [[14}/16}/17,/19,121]]), there exists a matrix field
A1, defined on R(x), the range of x, and a matrix field A, defined on R(x)x R(x)
such that the following factorization holds:

2(@) = A12(x(@)). 43 (@,0) = A2 (x(w), x(0)).

We argue in Remark that Aj2 can be interpreted as Dy (Vy ¥ (1)(g)) and
indicate the relation between A, and the Wasserstein gradient of V,, 7.

When #Z C 22,(R9) is an open set, we introduce vector spaces of functions
C2%¥ (%) as substitutes for the spaces C2*(H). These spaces are such that
whenever ¥ € C2%¥ (), its restrictions

1 m
d > (ql,...,qm) = ”I/(EZ&],)

i=1

belong to Clica (R’"d). The precise definition of this space can be found in Def-

inition n At least we require that if ¥ € C2%%(2), since the second-order
Gateaux differential of its lift #” exists, it must satisfy the property

04) |VV () (@)~ V7 (x) (@) — V27 () (@) ((y (@) — x(o))]
< C(Iy(@) — x(@)[* + [|x — y]%)

whenever x, y € I, x pushes w4 forward to u, y pushes 74 forward to v,

(0,1)4 (0,1)4
and ||x — y|| = Wa(u, v). In fact, spaces of type C 21 (2, (M)) have already been
considered in the framework of mean field models in [[11], based on a construction
very similar to ours in Definition [3.13]

A discretization approach (which consists in restricting our study to the sub-
sets of 2, (R?) that are averages of Dirac masses) greatly facilitates the task to
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show (0.3), with ¥ replaced by the solution to the Hamilton—Jacobi equation we
constructed on the Hilbert space. This helps us show that

Atz € L®(R(x); R, Ay € L®(R(x) x R(x); RY*)
and for ¢ € CCOO(Rd) and h := Dgox,

D2V (x)(h, h) =/( )dAlz(x(a)))h(w)-h(w)da)

+ f A (2 (@1). x(@2))h(@1) - h(wa)dwy dws.
(O,I)Zd

This allows us to make inference beyond an estimate such as
sup {|D2%(t,x)(h,B)| : |h]| <1, ||x|| <7} < +o0 Vr>O0.
x,heH
Unlike studies of the master equation in compact settings such as the periodic set-
ting R? /Z4, the fact that the range of % is certainly unbounded is a source of
additional complications in our study,

When V7 is Lipschitz, the characteristics of the Hamilton—Jacobi equation are
the Hamiltonian flow ¥ = (Z!, ¥?) : [0, 00) x H?> — H?, uniquely defined by
the solution of

SUt,-) = Vi (S(t,-)), in (0,00) x H2,
(0.5) X2(t,-) = =V (2(t,)) in (0,00) x H2,

3(0,-) = idppe.
The vector field V.7 is the velocity in Eulerian coordinates for the trajectory X
on the cotangent bundle H2. We denote as

(£.7) : [0,00) x H — H?
the restriction of X to the graph of V%, ie.,
(0.6) E.7 = =(-, . V%).

When . and 02/0 are convex, under appropriate standard conditions on £ and
A, differentiability propertles of % are obtained by standard methods. A strict
convexity property of % ensures that for any fixed t > 0, S (¢,-) is a bijection of
I onto . The trajectories

[0,7]3 s+ S![x]:=&(s. & (1, %) e H
are useful to write the representation formula
~ ~ —~ t ~ o~ d
Ut,x) = U (S§[x]) —i—f Z(Sst[x], BsSst[x])ds.
0
The identity
0.7) VU (t,-) = 7t S§)
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2692 W. GANGBO AND A. R. MESZAROS

suggests that the smoothness properties of 9 rest on the smoothness properties of
§6 and 7. While strict convexity of 7 is sufficient to get that the restriction of
§(z, -)~! to appropriate finite-dimensional spaces is continuously differentiable, it
becomes much harder to show that g(t, )71 is continuous on the whole space H
unless appropriate convexity properties are imposed on the data.

Let us consider the vector field

B(t,-) := Vp (-, 7i(t, SE)),

which helps to study the second-order derivatives of 9 and which represents the
velocity of the flow 's' in physical space, since § = B(s, §) When % (t,-) is
twice differentiable then V2% (¢, x), VB(t, x) : H? — R are bilinear forms which
satisfy the relation

VB(t, x)(h,a) = v%z’i(z,x)(a, D2 H(x, vaz'/‘(z,x))h)

+/ (Dng(x,Vﬁz'Z(z,x))a)-hdw, (Vh,a € H).
0,1)4

Summary of our main results

Coming back to the description of our main results, after having provided the
Clé’cl regularity for the viscosity solutions % to the corresponding Hamilton—Jacobi
equations on &, (R?), we completely abandon the setting of the Hilbert space and
via the mentioned discretization approach we show that %/ (¢, - ) is actually of class
Cligl’w. We note that our approach seems to be novel and, although similar in fla-
vor, it is completely different from the ones developed in [31,39]. It relies on fine
quantitative derivative estimates with respect to m € N on the Hamiltonian flow
for m-particles, then these in turn translate to higher-regularity estimates on % by
carefully differentiating the identity (0.7)), written for the restriction of % to the set
of averages of Dirac masses. Let us emphasize that this finite-dimensional projec-
tion of the value function solves the corresponding optimization problem but driven
by the finite-dimensional projections of the cost coefficients (see Remark [T.4); this
is in fact what allows for a preliminary analysis of the optimal trajectories of the
mean field control problem when restricting initial states of the population to uni-
form finite distributions. A key point is then to obtain regularity estimates that are
independent of the cardinality of those finite distributions. This is one crucial step
where the convexity structure plays a key role. This idea is in fact the heart of our
analysis and works only for deterministic mean field games; the approach in this
manuscript is entirely different from the existing ones to tackle mean field games
master equations: most of them consist in working directly at the level of PDE
system of mean field games.

Having 7 (t,-) € Cliél’w (S5 (R9)) allows us to obtain weak solutions (see in

Theorem ¥ [0, T] x Z5(R9) x RY — R? to the so-called vectorial master
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equation,

3V + DqH(q. V(t.t.q)) + Dg V' (t. 1. q)Vp H(q. V' (t. 1. q))
0.8) A+ MV V]t pq) = Vi F (1)(q).

Y0, 1, +) = V() ().

where for ¥ : 2,(R?) x R — R? we define
TN = [ VIS ) ®ID H (b (1 b)),

This equation can be seen as a vectorial conservation law on (0, 7)) x &, (Rd) X
R4 and be derived formally by taking the Wasserstein gradient of the Hamilton-
Jacobi equation satisfied by %/. Such a method is possible in the setting of the
Hilbert space as well (provided one has the sufficient regularity to justify the dif-
ferentiation), and this is done for instance in [7,9] for short time and special Hamil-
tonians. Let us emphasize that there is a subtlety in this derivation and in particular
at a first glance the vectorial master equation in the setting of 22,(R%) is satisfied
pointwise only on (0, 7) x | J e 2,(Rd) L} X spt(p). Therefore, we refer to such a
solution as a weak solution. Thus, additional effort is needed to extend the vectorial
master equation to (0, 7') x Z»(R%) x R4, and actually, this is possible through
the solution to the scalar master equation. One cannot observe this phenomenon in
the setting of Hl, because VU (t, x), as an element of H, does not carry explicitly
the dependence on the range of x € H.

Let us stress that even though there is a deep connection between the vectorial
and scalar master equations, while formally speaking the former one is the Wasser-
stein gradient of a Hamilton—Jacobi equation, additional effort is needed to justify
the well-posedness of the latter one. In particular, this is not a simple consequence
of the well-posedness of the vectorial equation at all. In the same time, while the
vectorial master equation might have physical relevance as a vectorial conservation
law, in the theory of mean field games the scalar master equation is the one that
has profound significance. One of the reasons for this is that this equation deeply
carries the features of m-player differential games. In particular, as we can see this
in [14], it provides an important tool to prove the convergence of Nash equilib-
ria of m-player differential games to the mean field games system as m — +00.
At the same time, typically it provides quantified rates on propagation of chaos.
Therefore, such equations are very natural, and they were successfully used in the
literature in the context of mean field limits of a large particle system (see, for
instance, in [20L41]]).
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2694 W. GANGBO AND A. R. MESZAROS

The candidate for the solution of the scalar master equation is constructed as
follows. Given ¢ € [0, T], ¢ € R?, and pu € 2»>(R?), we define

t
u(t. . 1) = inf{uo(yo,oé[m) n / (L(rs. 75) + f(ys. ! [u])ds,
(0.9) Y 0

y € Wh2([0,1],RY), y, = q},

where the curve (0 [14])seo,r] is the projection onto &2, (R?) of the Hamiltonian
flow. We underline the important fact that the previous formula defines u(z, - , u)
for every g € R? (and not just for g € spt(u)).

After obtaining the sufficient regularity of the mapping p + o' [u] (using also

the fact that Z (¢,-) € crhv (2, (R?))), we show that u is of class Ckl)’c1 ([0, T] x

loc

R4 x 22,(R?)) (see Lemma |4.13)). The connection between u and % is that

(0.10) Dqu(t,-,p) = V% (t, 0)(-) onspt(p).

This is an important remark, since it means that Dgu(z, -, ;) provides the natural
Lipschitz-continuous extension for Vo, % (1, t)(-) to R¥. By these arguments we
can prove Theorem the main theorem of this manuscript, which states that
under our standing assumptions u defined in (0.9) is the unique classical solution
to the scalar master equation which is of class Cliél ([0, T] x R? x 2, (R4)).

Theorem [{.19| has several implications. First, the obtained regularity of » and
(0.10) allow us to deduce that D,u is a solution to the vectorial master equation and
(0-8) is satisfied for all (¢, 1) € (0, T)x Z5(R?) and for £?-a.e. ¢ € R?. Second,
since the scalar master equation, and in particular our definition (0.9) possesses the
features of m-player differential games, we could easily deduce that u(z, -, - ), when
restricted to quRmd Mém) xspt(uém)), provides approximate solutions to a system
of Hamilton—Jacobi equations, characterizing the Nash equilibria of the associated
m-player differential game (such a construction would be similar to the ones in
[141124,125]], so we omit the details on this). At the same time, the regularity of u
would allow us to deduce the local convergence of Nash equilibria as m — +o0,
provided we know that the m-player Nash system of Hamilton—Jacobi equations
has a smooth enough classical solution. In such a fortunate scenario, the proof of
this result, even in the deterministic setting, would follow similar ideas as the ones
in [[14]], [24}25]]. However, let us emphasize that the well-posedness question of
systems of Hamilton—Jacobi equations in the deterministic setting is not a settled
issue in the literature. It’s worth mentioning the recent work [28]], which studies
this convergence question in the deterministic setting in a suitable weak sense,
without relying on the well-posedness of either the Nash system or the master
equation.

The structure of the rest of the paper is the following. In Section[I|we provide the
first part of our standing assumptions, and we present the discretization approach
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and show a direct argument that provides Cl(l)él regularity for solutions to a class of
Hamilton-Jacobi equations set on Hilbert spaces.

Section [2] contains the important quantitative estimates with respect to m on
the Hamiltonian flows of m-particle systems and the corresponding derivative esti-
mates of the solutions to Hamilton-Jacobi equations set on R™4

In Section [3] we compare notions of convexity and regularity for functions de-
fined on 22, (R%), their lifts defined on H, and their restrictions to discrete mea-
sures. Here we also show how can we deduce regularity estimates for functions
on Z,(R%) from precise quantitative derivative estimates on their restrictions to
discrete measures.

Section[]is the core of the manuscript, where we investigate the well-posedness
of both vectorial and scalar master equations. Additional assumptions need to be
imposed to establish the well-posedness of the scalar master equation. These are
listed in this section.

In Section [5] we have collected an important implication of the scalar master
equation. We use scalar master equations to improve the notion of weak solution
for the vectorial equations.

To facilitate the reading of the main text, our manuscript has several appendices.
In Appendix[A]we demonstrate the limitations of the Hilbert space approach, when
studying or assuming C2* type regularity on rearrangement invariant functionals
having local representations.

In Appendix [B]we emphasize how our setting by imposing displacement convex-
ity of the data can replace the more standard, so-called Lasry—Lions monotonicity
assumptions imposed typically in the mean field games literature. Here we provide
examples of functionals which produce nonmonotone coupling functions in the
Lasry-Lions sense and an example of a Hamilton—Jacobi equation on 2, (R%),
for which the data have this standard monotonicity condition, yet its classical solu-
tion ceases to exist after finite time.

In Appendix [C] we have collected some standard results on Hamiltonian flows
on Hilbert spaces, and we explain how the regularity of these flows can be used to
show regularity of solutions to a Hamilton—Jacobi equations.

1 Preliminaries

We start this section with some well-known definitions in the Hilbert setting as
well as in the Wasserstein space. We denote by 2 := (0, l)d C R¥ the unit cube
and as .fg the Lebesgue measure restricted to £2. We sometimes refer to any Borel
map of €2 to M as a random variable. We shall work on the Hilbert space

H:= L%(9:R%),

the set of square-integrable Borel vector fields with respect to €2.
Since it is more convenient to write M™ instead of (R?)”, we shall write M in
place of R?. Letters x, y are typically used for elements of H, while elements of
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M are typically denoted by ¢, p, v. Sometimes, we also use the notation Ry :=
[0, +-00).

Given two topological spaces S; and S», a Borel measure ;& on S1, and a Borel
map X : Sy — Sz, Xypu is the measure on S, defined as Xyu(B) = w(X~Y(B))
for B C S».

The canonical projections 7', 72 : M x M — M are defined as

7Yq1.92) = q1. 73(q1.q2) = g2 Yq1.q2 € M.

Given o, 41 € P2(M), we denote as ['(1g, ;1) the set of Borel probability
measures y on M x M such that nﬁl)/ = Mo and nﬁzy = u1. We denote as

Ty(po, p1) the set of y € I'(io, (1) such that
W2 (po. p1) = / 91 — q2*v(dq1, dg2).
R2d

The law of x € H is the Borel probability measure §(x) := Xﬁfg . The map
maps H onto &7, (M), the set of Borel probability measure on M of finite second
moments. One basic result in measure theory is that as €2 has no atoms, any Borel
probability measure on R¥ is the law of a Borel map z : Q — R¥.

If w € Z,(M), the set of Borel vector fields £ : M — M that are square
integrable is denoted by LZ(u). The tangent space to &2,(M) at u denoted by
1,9 (M) is the closure of VC°(M) in L2(w).

If % : H — R is differentiable at x € H, we use the notations V% (x) or
Vi U (x) to denote its Fréchet derivative at x c (as an element of H). If Y is twice
differentiable at x, we use the notations V2% (x) or Vg x@/ (x) to denote its Hes-
sian (as a bi-linear form on H x H). If u : M — R is differentiable at ¢ € M,
we use the notation Du(q) or Dyu(q) to denote its gradient at g. If it is twice
differentiable at g, we use the notation D?u(q) or ngu(q) to denote its Hessian
matrix at ¢.

For r > 0, we define %, to be the closed ball in (Z2,(M), W>), centered at g
and of radius r. B, (0) stands for the closed ball in H centered at 0 and of radius r.

For any integer m > 1 we fix (Q}")7_, to be a partition of £ into Borel sets of
the same volume. Given

= (1. qm), P:=(p1.....pm) € M",
we set

m m
M=) "gixgn, M™ =) (mp)yqn =mM?,
i=1 i=1

(m) Z 8gs-

1—1

(1.1

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



DISPLACEMENT CONVEX POTENTIAL MFG 2697

We set

m m
1
B = qum:m_lg qj|2§r2§, ,@ém)(M) = ;EE Sqi:qum}.
j=1

i=1
1.1 Assumptions

In this manuscript N > 1 is an integer, m«, Ao € R, and ko, A1,k3 > O.
We shall denote by « a generic constant depending on my, kg, 72,k3 > 0. Let
—00 < § <t < o00,and let m > 1 be an integer.

When S is a metric space, we denote by AC»(s,t;S) the setof S : [s,7] — S,
which are 2-absolutely continuous. When t € [s, t], when convenient, we write S
in place of S(z). We are imposing the following standing assumptions throughout
the paper.

Suppose

(H1) F Uy € CVY(H), F >0, % >ma.

and are rearrangement invariant in the sense that if x, y € H have the same law,
then .% (x) = % (y) and % (x) = % (y). Note that (HI) implies in particular that
there exists ko > 0 such that and

(1.2) Vg , V?Z) are ko-Lipschitz-continuous.
We assume
(H2) ?Z) is convex.
Let
(H3) H, LeCNTI M xRY, L >0,

such that L(q, - ) and H(q, - ) are Legendre transforms of each other for any ¢ € M.
We assume

(H4) D2, L > k3ly, D;pH > 0,
and
(H5) DH, DL are kg-Lipschitz-continuous.
We further assume
(H6) Ailvl? + Ao < L(g.v).

We set

L(x.a) = /QL(x(a)),a(a)))da) + .7 (x),

j?(x,b)=fQH(x(w),b(w))dw—§(x),

for x,a,b € H and assume

H7) Zis jointly strictly convex in both variables.
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Observe that a sufficient condtion for (H7) to be satisfied is to assume existence of
a constant k1 > 0 such that .% is k1-convex and that there exists ko > 0 such that
(1.3) D?L(g.v) (i’) : (3) > v’ Vq.3.v.7 e RY.

In this case, the strict convexity of . would follow from the fact that
2

di2

The regularity assumptions (H and will be important to derive regularity
estimates on the classical solution % to the corresponding Hamilton—Jacobi equa-
tion. At first glance these are sufficient to obtain well-known semiconcavity and
Lipschitz estimates on this solution. The convexity of .Z in and of % in
will then imply that U (¢,-) (as a value function in an optimal control problem) is
convex. Together with the previous properties this will lead to the C ! regularity
on % (t.-). To be able to achieve higher regularity estimates on U (t.-) that will
be necessary to derive the corresponding master equations, additional assumptions
will be introduced in Section[d] The combination of and ensures that the
underlying Hamiltonian flow is globally well-posed. We combine (H6) and
to obtain existence and uniqueness of solutions to the optimal control problems
associated to %/ (¢,-). Finally, the strict convexity assumptions in will help
us to deduce the invertibility of the Hamiltonian flow and by this linking it to the
optimal curve in the definition of U (t,-).

For any S € AC;(s, t; H) we set

14 L Px+ixa+ ta)‘ > 1 lx|? + kallal> ¥x.a, %7 € H.

AH(S) = /t Z(S, S)dr.
When x, y € H we set S
Clix,y) = igf{,xzzt(S) L S(0)=x,S() =y, S e AC2(s,t;H)}
and define for t > 0,
(1) Z(.y) = inf {Co(z.y) + %)
We denote as AC>(0,¢; Hy) the set of S € AC>(0,¢; H) such that JZZOI(S) < 00

and S(r) = y. Strict convexity of <! is ensured by (H7).

Remark 1.1. The following holds.

(i) Using (HS)), we obtain that |H| and |L| are bounded above by quadratic
forms.

(ii) Note that by (HI)) and (H6),
t
FES) = M / 1S12d7 + Aot + ms.
0
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This ensures a precompactness property to the sublevel sets of JZZ)I when
they are contained in AC>(0, ¢; H,) for some y € H.

(iii) The functions DL, DH, V%, and V.Z being Lipschitz, there is a constant
k such that
|IDL(g.v)| <k(jv[+|g| + 1), [DH(q. p)| =k(p[+lgq| + 1),
and [VZ% ()| + IVZ ()l < &(llx] + D.
The assumptions imposed on H and Z ensure V2 : H2 — R is Lipschitz,
and so there exists a unique Hamiltonian flow ¥ : R x H? — H? on the phase

space, a solution to the initial value problem (0.5). By Remark [I.1[(ii) there exists
a constant ¥ > k¥ depending only on k such that

(1.6) 1= x,0)| + 1 < (I, b)]| + 1)

for any ¢ > 0 and x,b € H. The restriction of X to the graph of V@Z) is the flow
map denoted by (£,7) (defined in (0.6)) on the spatial space, with values in the
cotangent bundle. We combine (1.2) and (1.6) to find ¢s > O depending only on

ko and ||V?Z)(O)|| such that

(1.7) IE. DI+ 1 < es(lx]| + De*.
We discuss some more classical properties of the Hamiltonian flow in the setting

of Hilbert spaces in Appendix[C]

1.2 Discretization

Fix a natural number m > 1. For ¢, v, p € M we define
1 & ~
L™ (g, v) = f LM, MY)dw = —> " L(gi.vi). F™(q):=F (M),
Q m

i=1

and

1 m
H™(q, p) := /Q HM, M™P)do = — 3 | H(gi,mp:).
i=1
Then we set
L™(q,v) i= L™ (q,v) + F™(q), #™(q.p) := H™(q, p)— F™(q),
U™, q):= U (1, M9).

One checks that for each j € {1,...,m}, V??(t, M4) is constant on Q;" and the
following useful identities (see, for instance, [[16},31]]) hold:

1 ~
(1.8) Dy, U™t q1.....qm) = VU (1, M)
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Note this means in particular,

(1.9) V% : {M?:q e M"} - {M?:qecM"}
We infer
- m
(1.10) VU@ M)y =m) xam Dy U™, q).
j=1
Observe

1 ~
Dy, L™ (q.v) = n—qvx.f(Mq, M?)gm.

(1.11) 1
vagm(qv 'U) = Evag(Mq’Mv”QT’
and so
- m
Vi Z(MT MY) =m Y yanDe; £™(q.v),
(1.12) =
Vo Z (M4, M) =m Z )(Qz]nDUj.ﬁfm(q, V).
j=1
Similarly,
1 ~
Dg, 7™ (q, p) = —Vx (M, M™P)|g
(1.13) m /

Dy, #™(q. p) = Vp (M, M"P)|gm.

Note that the fact that the coefficient in front of Vbe%z (M2, M™P) is not divided
by m is not a misprint. However, we have

1 ~ —_
(1.14) Dg, #™(q. DU ™ (t,q)) = va%(M’I, VU, M)lgm,
and so
1 - e m
(L15) Ve (M9 VU (1. MD) =} Dy, 2™ (g. DgU ™ (1.9) xe-
ji=1

For any natural number 7 denote by (%, %) : R x M>™ — M?™ the Hamil-
tonian flow for ™.

For x € H such that {f(x) = /,L,(Im) (i.e., x = M%), we consider the spatially
discretized flows

~ 1 _
(1.16) §'(.q) = Eslxllgp. 17 (s.q) = sl
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Using the notation (§™,n) = (§7",.... &7, 01", ..., ny), these flows are uniquely
defined to satisfy

EM(s,q) = Dp, A (EM (5,0 17 (5,0)),  (5.9) € (0,00) x M™,
(1.17) i (s,q) = =D ™ (E™(5,9). 17 (5,9)),  (5.9) € (0,00) x M™,
(E™(0,9), 7™(0,9)) = (9. DaU™ (@), q € M™.

1.3 Direct arguments for Cl(l)él—regularity in Hilbert setting

Throughout this subsection, we apply (HI)-(H7). We rely on the theory of
existence of solutions to Hamilton—Jacobi equations on Hilbert spaces developed
in [2223]]. The function U defined in (I.5)) is the unique viscosity solution to

U + A (x,VU) =0 in(0,00) x H,

(1.18) ~
w(0,:) =Y on H.

In this subsection, basic analytical tools are used to verify that U is of class
Cl})’cl. We refer the reader to [33]] for the proof of the following proposition.

PROPOSITION 1.2. There exists e; € C(R4+, R4) monotone nondecreasing such
that the following hold for T > 0 and r > 0:

(i) % is ey (r(T + 1))-Lipschitz on [0, T] x B, (0).

(ii) 0Z7(t, ) is ey (r(t + 1))—semiconcave on B, (0) fort €[0,T].
PROPOSITION 1.3. There is an increasing function ¢; € C(R4,R4) such that if
t > 0 then

(1) % (t,-) is rearrangement invariant.

(ii) % (t,-) is convex, and so it is differentiable and V% (t,-) is e} (r (t + 1))-

Lipschitz on B,(0).

PROOF. (i) The invariance property imposed on @Z) and .7 implies Z sat-
isfies the invariance property

j(x,a) zj(on,aoE)

for x,a € H, E : Q@ —  such that £ preserves Lebesgue measure.

Since . is further continuous, we conclude that % (t,-) is rearrangement
invariant for ¢ > 0 (cf. [32])).

(i) The convexity of befot on AC,(0,¢; H) and yields the convexity of

U (¢,-) on H. This, together with Proposition (ii) completes the proof.

O

Remark 1.4. Let ¢ € M™. Note o +> fot L™(0,6)dt + Uo(m)(a(O)) is strictly
convex on AC(0, 1 q;Rmd), and the set of paths ¢ € ACQ(O,Z;R’””") is such
that o(¢) = ¢. Since £ is of class C? and satisfies the assumptions in Section
standard results of the calculus of variations ensure that f(; L™(o,6)dt +
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Uo(m)(a(O)) admits a unique minimizer 0™ on AC>(0,7;¢: M™). The minimizer
is completely characterized by the Euler—Lagrange equations
d
— (D, L™ (6™, 6™)) = D, L (c™,6™), o™(t)=gq,
w1 e (D" EM) = Dy LGS (0 =g
DaUs™(6™(0) = Dy (0™ (0).6™(0)).
Define

t
U™, q) = f LM, My dT + U™ (6™(0)),
0
It is well-known that U™ is the unique continuous viscosity solution to
(1.20) 8, U™+ (q, DyU™) =0 on(0,00)xM™,  U™(0,-) = U™,

Setting S := M°", we have S = M%". We use (I.I0) at t = 0, and then use
(T.12) and (I.19) to obtain
d ~ . ~ . ~ ~ .
—T(Vai”(S,S)) = VxZ(S.5). VU%(S(0)) = VaZ(5(0), 5(0)).
This means S is a critical point of 5220’ over AC>(0,¢; ) if we set y := M9,
Since ,;zfot is convex over AC5(0, ¢; H), we conclude that § is a minimizer of Jaf({
over AC>(0,¢;H,). Thus,
(1.21) U™(t.q) = g (S) = U (. M?) = U™ (1.q).

Consequently, U™ is the unique viscosity solution to (I.20). We emphasize that
the observation (I.21)) is crucial in our consideration and in fact represents the heart
of our analysis. This is a feature of the deterministic setting, and so this approach
might not be applicable to stochastic Hamiltonian systems.

The proof of the following proposition will be provided in Appendix |C.3
PROPOSITION 1.5. There exists eg : [0, 00) — [0, 00), monotone nondecreasing,
such that the following hold:

1) If0<t; <ty <T, then

~ ~ L _ ~
Uta,y) —U(t1,y) = —/ Ay, V% (t,y))dt VyeH.

n

(ii) U is continuously differentiable on (0, 00) x Hl, and 8th7 VU are Lip-
schitz on [0, T] x B, (0).
(iii) For any y € M, there exists a unique S € AC3(0,¢;Hy) such that

U(t.y) = A3 (S) + %(S(0)).
(iv) Let S be as in (iii) and set P := Vag(S, S). Then S, P € C2(]0, ¢]; ),
S = Vp (S, P), P =V Z(S.8)=—VeH(S,P),

(1.22) g .
VU(-,S) =V, 2(5.8) onl0,1].
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In particular,
(1.23) V% (S(0) = VaZ(S(0), S(0)).
(v) We have
C(S(0). ). IS@I = eo( + DIyI).
IS < Iyl + reo((z + Dlyl) Yz e]0,17].
Remark 1.6. (i) We denote the unique S that appears in Proposition [T.5[iii) as
Sill) :=S(s.0). 0<s<t weq.

It is uniquely characterized by the equation

(125)  U(t,y) = /0 2(S5'y). 0s5t ) ds + Zo(SEIy]).  Sily] = ».

Defining

(1.24)

PIy] = Vo Z(SHy). 958201).
we have
35Sty = V2 (Silyl. Pl[y])  for (s,y) € (0.1) x H,
(1.26) 0s PLy] = =V (St[y). PL1y]) for (s.y) € (0.0) x H,
(Sty1. PEIy)) = (v, V%(y))  fory e H.

(ii) For any natural number m and g € M™, we have
~ t.m
(1.27) SHMT) = Mo 1],

where (02" [¢]) se(0,r) 1s the optimizer discussed in Remark Let us empha-
size that only in the case of deterministic Hamiltonian systems like ours, (I.27)
provides the characteristics not only for the viscosity solutions of the Hamilton—
Jacobi equation on H but also for the one on M.

(iii) When the conditions in Remark [I.6]are satisfied, we define the vector field

(1.28) B(t,-) := Vp (-, 7i(t, SE)).

which will turn out to be the velocity in Eulerian coordinates for the trajectory §

2 Regularity Estimates for HJEs and Hamiltonian Systems
for Systems of m Particles

In this section, we assume that — hold. Let ug € CN (M) be a convex
function with bounded second derivatives. Let ¥ € C (M) and L be such that
the corresponding Lagrangian action, as in (H7)), is strictly convex. We fix T > 0.
We shall show that classical solutions to Hamilton—Jacobi equations set on M™
possess higher derivative estimates that we precisely quantify in terms of m. As
we will see in the next sections, when m — + 00, these estimates will provide the
necessary regularity estimates on %/, the solution to the corresponding Hamilton—
Jacobi equation set on &2, (M).
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2.1 One-Particle Hamiltonian Flow

We study the regularity of viscosity solutions u : [0, 7] x Ml — R of Cauchy
problems of the form

3;u+H(6],Vu)—F(C])=O, (OsT)XML

(2.1
u(0,-) = uo, M.
Given ¢ € (0, T], we consider the Hamiltonian system
$(s.q) = DpH(S(5.9). P(s.9)). s €(0,1). g € M,
(22) (P(s.q) = —DqH(S(s.q). P(s.q)) + DgF(Q(s.q)), s € (0,1). g €M,
S(t.q) =q. P(0.q) = Duo(S(0.9)). q € M,

Such a flow has been considered in greater generality in Remark Recall § is
the unique optimizer in
t

(23) u(t.x):= inf{uo(y(o)) +/0 L(y(s),7(s)) + F(y(s))ds : y(1) = x¢.

Similarly, we shall use the flow

€(s.z2) = DpH(§(s,2),n(s,2)), s €(0,1), z €M,
(24) is.z2) = =DgH(E(s,2),n(s.2)) + Vg F(§(s,2)), s €(0,1), z €M,
£(0,2) = z, 1(0,z) = Duo(z2), zeM,

denoted as (£, 7) in (0.5) when our Hilbert space reduces to M.

LEMMA 2.1. Lett € [0, T].
(1) The map & : M — M is a homeomorphism Sy = &5 o g;l and Py :=
ns o &L, We have &, 1, € CN-1(M).
(2) If we further assume N > 2, then u € Cl’l([O, T] x M) is a classical

loc

solution to 1) and z v £(t,z) is a CN =1 diffeomorphism from M onto
itself.

PROOF. (1) The existence and smooth dependence on the data of the solution of
(22)) is classical, Proposition [C.2] ensures & : M — M is a homeomorphism and
S(s,-) 1= &5 07!, P(s,-) i=ns 0 &7

(2) By Proposition u € CLL([0, T]x M) and is a classical solution to 2.3).

loc

Let us show that z — &£(¢,z) is a global CV ! diffeomorphism. Recall that by
Proposition|C.2] £ is a solution to

%é(s,z) = DpH(E(s,2), Duls, £(5,2))), s € (0,0),
£(0.2) =z,

from where one has

dsD;E(s,2) = A(s,2)D;E(s,2), s €(0,1),
D;£(0,2) = 1,.
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Here we used the notation
A(s.z) == D2, H(§(s.2). Du(s, £(s. 2)))
+ D}, H(E(s,2), Du(s.£(s,2))) D?u(s. £ (s, 2)).

Since A(s, z) is locally uniformly bounded, we have that for s > 0 small enough
D;&(s, z) is invertible. Therefore, Jacobi’s formula yields

det(D;&(s,z)) = exp (/: tr(A(r, z))dr) .

Since A(z,-) € L (M), uniformly with respect to 7 € [0,7], we have that
det(D;&(s,z)) > O for all z € M, uniformly with respect to s. Therefore,
D;&(s, z) is invertible for any z € M and for any s € [0,¢]. Thus, by the fact
that £(¢,-) € CV~1(M) and that £(¢, - ) is bijective, we conclude that z > £(¢, 2)

is a global C N1 diffeomorphism of M onto itself. g

2.2 m-particles Hamiltonian flow

Throughout this subsection, we assume to be given a positive monotone non-
decreasing function Cyp : (0,00) — (0, 00). Furthermore, we impose that in the
assumption (A3) N > 2 and F™, Uém) e C3(M™).

As in Section [[.2Z] we define

1 &
0= Yt ) P = (Y8 ) va e
i=1 i=1

We also assume we are given that Uém), F™ . M™ — R satisfy Property
2) with C = Co(r). We also consider viscosity solutions U : [0, T] x
M™ — R of the Hamilton—Jacobi equation

2.5) 9, U™ (t,q) + H™ (g, DU (1,9)) — F™(g) =0 on (0,T) x M™,
' Um,.) =yl on M™,
By Remark [I.4]

U™ (t,q) = % (t,M?) V(. q) € [0,00) x M™.

Given ¢t € (0, T') we consider the m particles flows S©-™ pHm . M™ — M™,
In other words,

SP™(s.q) = DpH(S!™ (s, q), mP™ (s, q)). (5.q) € (0, 1) x M™,
26 Pl™(s.q) = =L DgH(S!™ (5. q).mP!™ (5.9))
' Dy F™ (S5 (s, ). (5.4) € (0.1) x M™,

SPM(t,q) = gi, PI™(0,q) = Dg, U™ (S5™(0,q)) g € M™.

This is analogous to the flow (S*™, P*™) in Remark where we have not dis-
played the m- and z-dependence to simplify the notation. We also consider the
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2706 W. GANGBO AND A. R. MESZAROS

m-particle flows £, 7™ : [0,00) x M — M™, similar to (2.4) (which also
correspond to the discretized flow (1.17)). They are defined as
EM(s,z) = Dp H(EM (5, 2), mn (s, 2)), s € (0,1).
Q2.7) {07(5.2) = = DgH(E (5. 2). mn (5.2)) + Dg, F™ (™ (5,2)). s € (0.1),
£"(0.2) = zi. 1(0.2) = Dy, Us™ (2),
fori € {1,...,m}, where z = (21, ...,2m) € M™.

We next introduce functions on M™ and list some of their special properties
which are useful for our study.

Property 2.2. For a permutation-invariant function G/ : M™ — R we define
the following properties by assuming for each r > 0 that there is a C = C(r)
increasing in r such that the following hold:

(1) (a) G™ ¢ Clgél (M™) N C1(M™), and for every m € N and ¢ € B (0)

we have
(2.8) 1Dy, G™(q)| < Cm™!, Vi € {l,....m}.
(b) G ¢ Clg’cl (M™) N C1(M™), and for every m € N and ¢ € B™(0)
we have
m
2.9) Y m|Dg; G (g))> < C.
i=1
(2) G™ ¢ Cl(l)él (M™) N C2(M™), and for every m € N and g € B (0) we
have
Cm™Y, i=j;ief{l,...,m},
(2.10) 1D3,4,G " @)oo <

Cm™2, i#j,i,je{l,....m}.

Here for A = (A,-J-)?’]-:l, we use the notation |A4|e := max; ;) |A4jj.
(3) G™ ¢ Cliél (M™) N C3(M™), and for every m € N and ¢ € B™(0) we
have

3 (m)
(2.11) ‘inq/qum (q)‘oo

Cmli=j=k ie{l,....m},
< Cm2 G =j#kor(i#j=kor(i=k#)),
Cm3,i#j#k i jkefl,. .. om,
fori, j,k €{1,...,m}. Here for A = (Aijk)?jj,kzl’ we use the notation |A|s :=
max; ;i |Aijil.

We present now the main theorem of this section.
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THEOREM 2.3. Let U™ : (0, T) x M™ — R be the unique viscosity solution of
(2.5), which is constructed by the discretization approach described in Remark|[1.4]
Letr > 0. Then for all t € (0, T) there exists C(t,r) > 0 such that the following
hold for all m € N.

(1) U™ (t,-) satisfies the estimates in Property 2) in B (0) with constant
C(t,r).

(2) Further assume that Uo(m) and F satisfy Property 3) and (HI3)
takes place. Then U (¢, .) satisfies the estimates in Property 3) in
B (0) with constant C(t,r).

(3) We assume that the assumptions from (1) and (H13) take place. Then
3, UM (¢,.) satisfies the estimates in Property 1)(b) in B (0) with
constant C(t,r).

Remark 2.4. Since the proof of the previous theorem is quite technical, we summa-
rize its main ideas. First, as a consequence of the results in Section|[I] (in particular
in Proposition [1.5), U™ is actually a classical solution to (2.3)), which is of class

Ckl)’cl. Then classical results from the literature will imply that it is as smooth as

the data H, F m) and Uo(m) (cf. [12]). Therefore, it remains to obtain the precise
uniform derivative estimates as claimed in the statement of the theorem.
A key observation is the well-known representation formula for Dy U ) e,

DU ™ (t.q) = 0™ (1) 0 E™) (2.9,

where (§", ") is the Hamiltonian flow, the solution to (2.7). Therefore, the pre-
cise derivative estimates on U can be obtained by differentiating the previous
formula and relying on careful derivative estimates of the flow (§™,#™) and of
its inverse. We obtain these necessary estimates by studying the linearized system
(and its derivative) associated to (2.7). Since these computations will be quite del-
icate, we identify two simplified systems in Lemma [2.5 and Lemma [2.6] which
carry the main structure of the original linearized systems. Estimates on these sim-
pler systems will essentially be enough to deduce the estimates on the linearized
systems we are aiming for. Finally, the derivative estimates on d,;U ") are obtained
by directly differentiating the Hamilton—Jacobi equation and using the previously
established estimates on spatial derivatives of U (m),

PROOF OF THEOREM We aim to obtain precise upper bounds on expres-
sions depending on m (with respect to m when m is large). For this, we use the
standard big-O notation. For instance, if « is an integer and A(m) is a real number
depending on m, by

A(m) = O(m®)
we mean that there exists C > 0 independent of m such that |A(m)| < Cm®* for
all m large. If A(m) = (a;j(m));; is a matrix whose elements are real numbers
depending on m, by abuse of the notation, by A(m) = O(m*) we mean that there
exists a constant C > 0 independent of m such that |a;; (m)| < Cm® for all i, j.

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



2708 W. GANGBO AND A. R. MESZAROS

When A(m) = (a;j(m));; and B(m) = (b;j(m));; are matrices, by A(m) =
O(B(m)) we mean that a;;j (m) = O(b;;(m)) for all i, j. To simplify the notation,
we sometimes write A(m) ~ B(m) for A(m) = O(B(m)) and B(m) = O(A(m)).

First, let us notice that by Proposition U™ jsa Cl(l)’c1 ((0, T)xIM™) classical
solution of (2.3); therefore in particular any point (¢,q) € (0, T) x M"™ is regular
and not conjugate (by the proof of Lemma in the sense of definition 6.3.4
of [12].

Furthermore, we notice that Lemma [2.1] asserts that £”(s,-) is a CV diffeo-
morphism, and theorem 6.4.11 from [12] yields that U™ e C3((0,T) x M™).
In what follows we aim to obtain quantitative derivative estimates on U ) with
respect to the discretization parameter m.

Step 0. Basic bounds on £™ (t, z) when q := £["(z) € B (0).
By Proposition EM(s,z) = SE™[q] since ¢ = £™(r,z). By the same
proposition, fori € {1,...,m} and z € M™, we have

EM(1,2) = DpH(EM(t,2),mDg, U™ (1,€™(t,2))), 1€ (0.7),

2.12
12 emo.2) =2
and
Mt z) = Dy, U™ (¢, £M(t, 7)) = D, U™,
013 7 (t.2) ai (t.£"(t,2)) ai (t,x)

N7(0.2) = Dg, U™ (2).

By Proposition[I.5]there exists (¢, 7) > 0 (independent of m); for any g € B (0)
we have

(2.14) Sg™lq) = €M (s,z) € BE,,, foralls e [0,1].

Proposition ensures 7% is locally Lipschitz on [0, o0) x H, and so there exists
C1(t,r) > 0 (depending on B(z,r)) such that |VZ (¢,£(t, M?)|| < C1(¢,r). Us-
ing the relation between V% and 7 provided by Proposition iv) we conclude

(2.15) D mlf (e, 2)? < Cit,r).

i=1
We are now well equipped to start the proof of the assertion (1) of the theorem.

Step 1. Estimates on (Dz;§;(t,-), Dz, n;i(t, -));"jzl.
CLAIM 1. There exists a constant C»(#,r) > 0 (independent of m) such that if

E(t,z) = q € B(0), then for all 7, j € {1,...,m} we have

Co(t,r), =],
Cotr) sy
zTa l # ]’
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and
m Cz;(vz’r)’ =]
(2.16) D) < S oy
et 7 J.

PROOF OF CLAIM 1. By differentiating the Hamiltonian system (2.7) with re-
spect to the z;, we get

atDZjE,m = Dng(§?1~m77i)DZjE,'rn +mD§pH(§,-m,mﬂ?1)Dz>,-flf",
9Dz = —L (D2, H(EM . mn;) Dz, £ + mD2, H(E™ mn;) Dz, n")

(2.17) + YL D2, F™E™ D, &,

lyxa, 1=, 2 (m)
Pes ) = §0dxd, i #J. Dz;ni"(0.2) = Dgq, Ug™ (2)-

91Dz, " = DG, H(E" . mni) D € + mDy, H(E" mu]") D},

4
atDZ_,' 7]1" = _% (ngH(%-lm’ mr]i)DZjEim + ngqH(ffn~m77i)Dz,- 77:")
(2.18) + 0L D, F (™) Doz, 87",
Laxg, =], (m)
m — m — D2
Dz;£(0,-) = {deda i £, Dz;n"(0,z) = quQiUO (2)-

Let us set
Gy = max{[a505H(g. p)|  (¢. p) € R x R, |a + |b] = 25,
If £™(t,z) = q € B*(0), then in the same way, there exists Co(t.r) > 0 (de-
pending on B(¢,r)) such that D;lq,,F(m) (¢1,....&n) and Déj%’ Uo(m)(z) satisfy
the estimate (2.10) with C»(z, r). Set
Co = Ca(t,r) := max{Cs, Ca(1,7)}.
We plan to use the bounds
| D2, HE™ mni)| . |Dp HE . mni)|, < Ca,
|(1/m)D2g HCE .mny)| o, < Co/m,  |mDy, HE" mn")|, < Cam,

and

Colt,rym™, i=1,
Cot.r)ym=2, i #1,
az(t,r)m_l, i =],

DG P E™) o =

D2,4,U8" (2] <

Colt,rym™2, i # .
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Thus, to obtain the precise bounds (in terms of m) on the solution to the system
(2.18)), it is enough to obtain bounds on the solution

(X (). Y (5)) = ((Xij NI =y. i 5D i—y)
to
8, X;; = CXij + mCa¥y;,
3, Vij = (Ca/m)Xi; + Co¥ij + 27;1,17&1-(62/”12))?1]',

Com™!, i=],
Com™2, i # ],

1, i=j

. Yii(0) =
0, i#] #(0)

Xi;(0) =

The constant C, > 0 can be simply factorized out from the previous system, and
since this is independent of 1, when studying the solution, without loss of gener-
ality it is enough to study the modified system with coefficients 1, instead of Co.
Thus, when writing the system in a closed form, one can clearly identify the blocks
By, ..., B4 defined in (2.25) and the system appearing in Lemma Therefore,
by the precise estimates on (X;;,Y; j);’szl in Lemma [2.6] we conclude that there
exists C > 0 (independent of m) such that Claim 1 follows by setting

Ca(t,r) = etCé(t’r).

Now, let us denote by ™ = ({7(t,+), ..., {7(t,+)) := Sy |q] the inverse of
g™ (t,-); in particular, we have that if £ (z, z) = g;, then {" (¢, q) = z;. Next, we
derive estimates for Dy, {7 (2, ).

Step 2. Estimates on (Dg, {")7"; ;.

CLAIM 2. There exists C3(t,r) > 0 (independent of m) such that for all i, j €
{1,...,m} we have

d;5i [ 0o — C;(t, ) . . m r .
= 1 #

Since £™(¢,-) : Ml — M is a diffeomorphism, we have

(2.19) D" (t,q) = (DE™(t,)) " 0 " (1, q).

Since we have a uniform lower bound on det(D;&(z,-)) in M™, we can sim-
ply study the asymptotic behavior of D,{™(,q) with respect to m via the as-
ymptotic behavior of (D £™(t,-))~'. By the previous uniform local estimates on
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D E™(¢,-) (from Claim 1), we have that there exists a constant C(¢,r) > 0 de-
pending on C»(t, r) such that

[ A Ltay Lag, o L4y
1 1 1
La, Ay Lag, - Lay
(2.20) DEM ¢ty ~Ct,r) | " " "
1 1 1
| Aa ;A A4 0 Ag

for some invertible (d x d)-blocks A,. Therefore,
(DE(t. )™ ~

-1 — -1 — -1 — -1
mrf%Ad (2m—l)nzm—l)Ad (2m—1;7(lm—1)Ad (2m—1;7(lm—1)Ad
—m —1 m —1 —m —1 —m —1
1 (2m—l)(m—l)Ad m_%Ad (2m—1)(m—1)Ad (2m—1)(m—l)Ad
C(t,r)
— —1 - -1 — —1 —1
(2m—1)”(lm—1)Ad <2m_1>"§m_1>Ad (2m—1)”(lm—1)Ad m’f%Ad

and so Claim 2 follows by setting C3(¢, ) := C(t,7)7 L.
Going forward to conclude the proof of assertion (1) of the theorem, we recall

that by (2.13),
T (1. L™ (. q)) = D, U™ (t,q).

Differentiating this expression with respect to g; yields

Dg,q:U™(t.q) = Dy, (ni(t.5™(1.9))) Dy, & (1.q)
=1

= Dg, 1 (t. 5" (t.9)) D, (2. 9)
+Dq,-’/?l(t,gm(l’Q))quflm(f"])
+ D D nM(t.8(t.9)) D, L (2. q).
I#il#]

The previous estimates established in Claim 1 and Claim 2 yield assertion (1).
. 2 2

Step 3. Estimates on (DZij EM(t.-), Dz, -, ni(e, '));’jj,k=1‘

CLAIM 3. There exists a constant C4(#,r) > 0 depending on all the previous

ones, but independent of m such that if £(¢,z) = ¢ € B*(0); then for all i, j, k €

{1,...,m} we have

Ca(t,ry . . ., . :
D2 ()| <y i=jFk i A =ki=k# ]

Calt.r) ., .

L 1#i#k
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2712 W. GANGBO AND A. R. MESZAROS
and
Cyult,
4( V)’ ==k
Calt, 1)
2 4, r . . . . . .
Dy M) < (= 5= i=j#hki#j=ki=k#]
Cat,ry ., .
— s ! #J Fk
m

PROOF OF CLAIM 3. Differentiating the system (2.18]) with respect to z;, we
obtain for the first equation

b ngzjgm
= Dzkgm qqu(é mnl)DZ_/Elm
(2.21) +mDgz, n; qupH(S .mn;)Dz &

+ D, H(E" ,mn[")DZ, , &" +mDz, & Dy, HE" mni) Dy,
+m2DZk’7:n pppH(él smr]l)Der]z +mD2 H(émsng)Dzkzjnl

together with the initial condition D Zxz) £"(0,+) = Ogxgxdq- From the differenti-
ation of the second equation with respect to z;, we obtain

2
9Dz, 7"
E(DZA §i ‘I‘I‘IH(St'm’m”;n)DZ/Szm +mDz,n; pqu(S .mn{") D, E")
! 3
(2.22) %( ‘”H(E T )DZkZ/EmDZkSm + Dy, HE . mn") Dy, )
1
;('n Dy i D2y HE ™) Doy + mD2 H(g.m™) D2, ")

3
Z Dzkélr?unfI/zqiF(m)(gm)Dzj El Z quqz F(m)(gm)DZkZ/ sl
1,lh=1

with the initial condition
2.23) D2, M0.2) = D34, U (@),

Let us fix k, j. The asymptotic behavior of (D, 7, (1), Dz, 2,07 (2,+)),
as the solution to the system (2.21)—(2.22), can be studied in the same way as for
(2.18) in Step 1. For this, one needs to identify the precise bounds on the coefficient

matrices in (2.21)—(2.22)). Let us set
Cy 1= max{[0%08 H(q. p)| : (q.p) e R xRY, 2 < |a| +|B] < 3};

then we notice that by the assumptions on H, we have that if £”(t,z) = ¢ €
B (0), then
0208 H(EM (¢, 2).mnT (¢, 2))| < Ca.

In the same way, there exists Ca(t,r) >0 (depending on B(z, 7)) such that

3 3 (m)
Dq/\q;qu(m)(ém) and Dy, ;.q; Uy™ (@)
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DISPLACEMENT CONVEX POTENTIAL MFG 2713

satisfy the estimate (Z.11)) with C4(z, 7). Set
Ca(t.r) := max{Ca. Ca(t. 1)} max{Cy(t, 7). 1}*.

Now, system @D (2.22)) has the same structure as (2.24), where the quantities
(Dqu m Dqu n;*) play the role of (X;,Y;). The blocks By, ..., B, the coef-
ficient blocks appearing in (2.24)), can be identified in the same way as in Step 1.
It remains to study the bounds on the corresponding A;, A2, and Yy appearing in

this system, where

(Al)i = DZ};E! qqu(%'m ’nnl)DZjEm +}nDZ]\ 7’)1 pqu(sm m’l, )Dzjsm
+’nDZk§i qppH(El »miy; )Dz, 771 +’n2DZk Thm pppH(sz >, mi; )DZJ 7);

1
(A2)i = 7%(Dzk$l qqu(Ez ,mn; )Dz_/sl +szk r]:n pqu(El mr]l)Dz_/El )
1
—E(Dzkgmngqu(gm mn) Dzl +m* Dy ' Dy HE . mnf") Dz,

+ Z D103, gq, F ™ EM) D 8T
11,h=1

and we set

u™.

(Yo)i := Dqkq q: -0

Using the obtained bounds on (D &;, Dz;7;) in Step 1 and the assumptions on

Uo(m) in (2.T1)), one checks the following asymptotic properties with respect to m.

Subclaim 3.
(D Ik = j =i then (A1)i = O(Calt.r). (A2); = O(SED), and
(Yo)i = O(SEt). i i
(2) Itk = j # i.then (4)); = O(“4ED), (4p); = 0452 and (Yo); =
0(C4(l 7”))
G Ik =i# jori=j#k (A); = OGN (4y); = 0(C&0),
and (Yo)i = O(“457).
(4) Ik # j #i,then (41); = O(EED), (4;); = O(SL), and (Yo); =
6 )
O(S45D),
Now, one considers two cases when studying the desired properties. Let us recall
that k, j are fixed.
Case 1. If k = j, (1) and (2) of Subclaim 3 can be combined with Lemma
[2.5(1) to conclude the proof of the claim.
Case 2. If k # j, (3) and (4) of Subclaim 3 can be combined with Lemma
[2.5]2) to conclude the proof of the claim.

Therefore there exists a constant C > 0 such that Claim 3 holds for C4(¢,r) :=
otC C, )
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2714 W. GANGBO AND A. R. MESZAROS
; 2 . )\
Step 4. Estimates on (Dqkqj Gie, ))i,j,k=1'
CLAIM 4. There exists a constant C5(¢,r) > 0 depending on all the previous
ones but independent of m such that for all i, j, k € {1,...,m}, we have

Cs(t.r). i=j =k
Cs(t,7)

|DF s Gty s = i=j#ki#j=ki=k#]j nB"
Cs(t,r) ., .
2 LFIFk
PROOF OF CLAIM 4. It is enough to differentiate the expression (2.19) and use

all the previous estimates on (ngzj Si);”j r—1 and on (Dgy;, Zi):."jzl from Step 3

and Step 2, respectively.
We have

-1 -1
The previous writing is used for the following shorthand notation: we have

Dy, Dyt(t.q)

[(Dzs(z, )~ <Z Dz, D:£(1.) Dy, @z(z,cn)(Dzsa, -))‘1} o z(z,q)},

=1

fork € {1,...,m}, and in particular for i, j € {1,...,m}, we have

=1

(Z Dy, D £(1.-) Dy, zz(r,m) =Y D}, &t )Dg i(1.q) =: Aij.
ij I=1

For k € {1,...,m} fixed, by the definition of A;; and by Steps 2 and 3, this last
matrix can be bounded as follows: by setting C5(¢,r) := Cq(t,r)C3(¢, r), we have

65(tar)s l:j:k,

Cst.r) o . _
|Al]|OO§ Sl(’n )s l:]#kvl#]:k,l:k#.]v

Cs(t.r) . , .

e R

Now, using the bounds on (D,&(z,-)) ! from (2.20), by setting
Cs(t,r) := Cs(t,r)C(t,7)?,
we conclude the statement of Claim 4.

Final Step. Let us recall that from (2.13)) we have

ni (1.0(t.9)) = Dg; U™ (1. 9).
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DISPLACEMENT CONVEX POTENTIAL MFG 2715

Differentiating this expression with respect to ¢; and g, we obtain

m
Dé’kqjqu(m)(l‘, ) = Z Dqk é‘lz(t’ ')Dg,zz,l ni (tv é‘(t’ '))qu‘ é‘ll (tv )
l,h=1

+ Y Dgymilt,§(t,))DG, L1,
I=1

from where by using the estimates from Steps 1-4, we obtain

D2, U™ )|,

dk4qj4i
1
< —(1DgiLilool Dy;&iloo + 1D, 4, Giloo)
1 m m m
+m—2( > IDalilelDgtilo+ Y 1DglilolDgliloo + Y. D24, 611c0)
1=1,14#i 1=1,l#i 1=1,1#i
1 m
+ 3 D [Daclnlool D, lhloo
I ,r=1
L##i

Using again the estimates from the previous steps, we obtain (1) and (2) of the
theorem.

The statement in (3) can be easily shown by differentiating the Hamilton—Jacobi

equation satisfied by U ™ with respect to the variable g 7 and by using the estimates
on U™ provided in (1) and (2). Indeed, we have

1
|Dg,8,U™] < n—z‘DqH(qj,mejU(m))‘
1
+ n—1‘DPH(qj,mejU(m))|m|D§jqu(m)‘

1
- ZE‘DpH(CIi’me[U(m))‘m‘ngqz'U(m)‘ + ‘D‘IJF(m)‘
i#J
1 1
= n_q‘DqH(qJ'vaqj u™)| + n_,l‘DPH(qj’mDQjU(m))‘

C
+—+ |Dg; F™|.
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2716 W. GANGBO AND A. R. MESZAROS

Thus

m
> “m|Dg;0,U™
j=1

m m
1 1
<D —IDgH(gj,mDgU™)* + 3 —|DyH(qj,mDg; U™
Jj=1 Jj=1

m
+C+ ) m|Dy, F™)2 < C,
j=1
where we used the assumption on F (m), (H135), and the fact that since
U € CH(0, T) x 25(MD)

loc

and DpH is Lipschitz, we have 37| LD, H(q;,mD,,U™)|? < C. The

j=1m
claim follows, which concludes the proof of the theorem. O

LEMMA 2.5. Let [X Y]T = [X1 ... X Y1 ... Y;m]" € R?™ be the solution of
the ODE system

X7 4 B B[X] [X(©] _ [Om
ez aly]= )+ [2 RID) 0] [%)
where A1, A2, Yo € R™, 0., € R™ is the zero vector, and the (m x m)-dimensional
blocks B; are such that

1 1 1

2 2

T % T

2 2

(2.25) By =By=1,, B =ml,, andB;=|™ " m
1 11

m2 m2 m

Then there exists a constant C > 0 (independent of m) such that
(1) Ifforig € {1,...,m} fixed

|
(A1), =1, (A1) = . Vi #ip

and
1 1 .,
(A2)iy = (Yo)ip = —. (A2)i = (Yo)i = —5 Vi # o,
m m
then
e'C, i =iy,
X0l = 4 e

S iefl,....m}, i+,
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DISPLACEMENT CONVEX POTENTIAL MFG 2717
and
el ..
“m 1 =1,
voi<! ™
‘;n—z, ie{l,...,m}, i #ip.
2) If for somek, j € {1,...,m} fixed, k # j, we have
1 1 L,
(A1)j = Ak = —, (A1)i=— Vi#j i #k,
m m
and
1
(A2); = (A2) = (Yo); = Yok = 5.
1 C
(42)i = (Yo);i = 3 Vi # j, i #k,
then
e i=ji=k
Xi()| <
X )] = L iell..mli# )i #k
and
el
S, i=j,i=k,
Yol <™

S ie{l...mi# i Ak

PROOF. We analyze the representation formula for (2.24) in the different cases.
Since we are only interested in the asymptotic properties of the solution with re-
spect to m, first let us study the asymptotic behavior of the exponential and the
inverse of the coefficient matrix.

| B1 B2
Let B := [33 By

Bl,n B2,n
|:B3,n B4,n:|.
CLAIM. We have the following properties for the blocks B; , for all n € N and
fori,j e{l,....,m}:
(1) (Bi,n)ii = O1), (Bin)ij = O(L),ifi # j.
(2) (B2,n)ii = O(m), (B2,n)ij = O(1),if i # j.
(3) (B3n)ii = OGy), (Ban)ij = O(5), ifi # j.
@) (Banii = O(1), (Ban)ij = O(z). ifi # J.
PROOF OF THE CLAIM. This follows from a mathematical induction argument
inn.
Since we have a characterization of the asymptotic properties in terms of m of
the elements of the powers n € N of the block matrix (which are uniform in ), the
property from the Claim will also hold true for the blocks of the matrix exponential

and for n € N, let us denote the powers of B as B” :=
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2718 W. GANGBO AND A. R. MESZAROS

of B. Setting A := [A;'— A;]T, the representation formula for the solutions of

(2.24)) reads as

[)Y(g;] = exp(B)([0g, Yo |" + B~ A) - B~ A.

It remains to compute B! (which exists, since B is nonsingular), for which we
have the formula (using the blocks from (2.23)))

gt _ | Un—mB3)™ —m(Ipy —mB3)™!
—B3(I, —mB3)~' I, + mBs(I,, —mB3)~!

. M —-mM
- —B3M Im+mB3M ’

where we have used the notation

0 -1 —1
) 1 0 —1
M:=U,—mB3)" =m
—1 -1 0
s o
mm—l ml—n mml
—_ _2 —_
_ T Mot et
- - )
L e et M1

Now, in the case of (1), we have that (B_lA)i = 0ifi € {l,...,m}, and
(B~ A)mip = 55 and (B A); = L5 if i e fm +1,....2m}, i # m + io.
Furthermore, there exists a constant C > 0 (independent of /) such that

etc’ l = 10,

etC ) . .

m lE{l,..,,m},l;élo’
(B0 1o, ~ o

G L=m+io,

L iefm+ 1, 2m), i £ m .

(1) from the thesis of the lemma follows.

In the case of (2), we compute similarly (B~14); = 0ifi e {1,...,m},
(B71A); = L ifi =m+ jorj =m+k,and (B~'4); = 5 otherwise.

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



DISPLACEMENT CONVEX POTENTIAL MFG 2719

Furthermore, there exists a constant C > 0 (independent of m2) such that
etC

7, l - j, l :k,
S . iell...mli#ji#k
(exp(tB)[Om YO ] ),‘ ~ C
Cx, i=m+j i=m+k,
S ieim+ L. 2myiEm i Emtk.
And finally, (2) from the thesis of the lemma follows. Il

LEMMA 2.6. Let X = (X;j)*;_y and Y = (Xij)]";_, be such that [X Y]T €

R2m*m s the solution of the ODE system

X| _[B1 By|[X XO) | _|Im
o alr]=[n gl Bol-[7]
where Yo € R™*™ js set to Yy := B3 and the (m x m)-dimensional blocks B; are
defined in (2.25). Then there exists C > 0 (independent of m) such that

etC

e 1= e =]
(XijOl =4 gc ., and [¥;@O=y o
mo VD e LF
PROOF. This result is a consequence of the asymptotic behavior of the matrix

B1 B>

exponential exp(tB), where B := ] Using the asymptotic result from

By By
the Claim in Lemma[2.5]and from the representation formula
X)) _ T
@27) Y| = et v,
the result follows. O

3 Comparing Regularity Properties of Functions
Defined on &2,(M), H, and M™

Throughout this section, we lift any given function % : %, (M) — R to H to
obtain the function % : I — R defined as % (x) := % (§§(x)). Recall (%2 );”21 is
the Borel partition in Section[I} We set

U(g) = U (ugP) = U (M),

3.1 Semiconvex and semiconcave functions on Hilbert spaces

DEFINITION 3.1 (Semiconvexity and semiconcavity on H). Let B € I be a con-
vex open set. We say that 77 : B — R is semiconvex (or A-convex) on B, if there
exists A € R and for all x € B there exists a continuous linear form 6, on H such
that

~ ~ A
U(y) z U (x) + 0x(y —x) + Ellx—yll2 Vy eB.
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2720 W. GANGBO AND A. R. MESZAROS

We say that a function % B — R is A-concave, if —% is (—A)-semiconvex.

Remark 3.2. The previous definition has an equivalent reformulation. Let B €
be a convex open set. Then % : B — R is A-convex if and only if

~ ~ ~ A
U((1—1)x +1y) < (1—f)?/()C)Jrf?/(y)—Et(l—t)llx—yll2
vVt €[0,1], Vx,y € B.

DEFINITION 3.3 (C1! functions). We say that % :B —RisC"! onan open set
B C M if it is Fréchet differentiable on B and its Fréchet differential is Lipschitz-
continuous; i.e., there exists C > 0 such that

IV% (x) = V% ()| < C|x — y|¥x.y €B.

Inspired by similar results on finite-dimensional smooth manifolds (see, for in-
stance, in [[27]]), we can state the following characterization of C L1 functions de-
fined on subsets of H.

Remark 3.4. Infact % : B — R is C! on a convex set B C H if and only if it is
Fréchet differentiable on B and there exists K > 0 such that

U (v) — U (x) = VU (x)(y —x)| < K|lx — y||*, V x,y €B.
3.2 Notions of convexity on (2, (M), W)

There are various notions of convexity for functionals defined on the Wasserstein
space. The concept of so-called displacement convexity [6,40] is expressed in
terms of Ws-geodesics. Recall that given pg, 1 € F»(M), for any geodesics
[0,1] 2t > us € P2(M), of constant speed connecting Lo to (1 in FPo (M) is
of the form p; = p; := (1 —)w! + tnl)ﬁy for some y € 'y (0, 1), then:

DEFINITION 3.5 (Semiconvexity and semiconcavity on (&2, (M), W3)). Let % :
PHr(M) — R.
(1-1) We say that 7% is semiconvex (or A-convex) in the classical sense if there
is A € R such that

w((1—=t)po +tpr) < (1 =% (o) + t% (1) — %t(l — W5 (1o, 1),

Yo, 1 € P2(M), vVt € [0, 1].

(1-ii)) We say that %7 : P>,(M) — R is semiconcave (or A-concave) in the
classical sense if —% is (—A)-convex. We refer to 0-convex and 0-concave
functions simply as convex and concave functions, respectively.

(2-1) Wesay % : P,(M) — R is displacement semiconvex (or displacement A-
convex) if there exists A € R such that for any [0, 1] 3 ¢ > u; € P> (M)
geodesic of constant speed connecting (1o to ;1 we have

A
U () = (1= O (o) + 1% (1) — S1(1 = DWZ (o 1)
Vi, w1 € Pr(M), YVt €0, 1].
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(2-ii) We say that 7 : &2,(M) — R is displacement semiconcave (or displace-
ment A-concave) if —%/ is displacement (—A)-convex. We refer to dis-
placement O-convex and displacement O-concave as simply displacement
convex and displacement concave, respectively.

The following results link A-convexity on the Wasserstein, the Hilbert, and the
finite-dimensional space M™. This is a generalization of proposition 5.79 in [16].

LEMMA 3.6. Let % : %2, (M) — R be a continuous function, and let U H—R
be defined as U = U o it so that U is continuous. As above, for a natural
number m consider U™ : M™ — R. Finally, fix A € R. Then the following are
equivalent.

(D) U is A-convex on H.
(2) % is displacement A-convex on (5 (M), W3).

(3) For any natural number m, we have that U m) jg A

2 -convex on M™.

PROOF. (1)=-(2). Let us suppose U is A-convex, let u,v € Z(M), and let
y € Iy(it, v). Then, there exist x, y € H such that (x, y)ﬁ.i”d = y. In particular,
we have fi(x) = u, f(y) = v and Wa(u,v) = ||x — y||. For [0,1] 2 t — u; 1=
[( 1 -t + t712]u y is a geodesic of constant speed connecting i to v. Actually,

any geodesic between p and v has this representation. By the A-convexity of U
we have

U(jue) = % G —)x +1y]) = (1 —1)x + 1y)

~ ~ A
=0 -0%x) +1u(y) -5t —1)|x —I?

A
= (L=D% W) +1UE) = 511 =W ().

Thus, % is displacement A-convex.

(2)=(3). Let us suppose that % is displacement A-convex and we show that
U s %-convex on M™ . Let us fix (¢1,....¢m) € M™. It is enough to show
the %-convexity of U™ in a small neighborhood of this fixed point. Therefore,
let (q1....,4qp,) € M™ be such that max{|g; —¢;| : i € {1,...,m}} is small so

that sz(u((lm) M;’fz)) = LS | |gi —q}|?. By this assumption, we also have that

the constant speed geodesic connecting M((Im) to M((]'fi) in a unit time is given by
[0,1] >+ Mgm) = % it 5(1—t)q,-+tq,f~
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2722 W. GANGBO AND A. R. MESZAROS

By this construction, for ¢ € [0, 1] we have
U™ (1 ~1)q +1q")
= U (™)

A
< (=02 W) + 1% (pg”) = S04 =D Wa (. ug”)

k m
= (1 =0U™(g) +1U™(g) = ——1(1=0) ) lai — .
i=1

Therefore, the %-convexity of U in a small neighborhood of g follows.

(3)=(1) We suppose U m) ig %—convex for all natural numbers m. We plan to
show the A-convexity of % on H. Note the %—convexity of U is equivalent to
the A-convexity of the restriction of % to {M¥ : ¢ € R™4} c H. In particular,

the local Lipschitz constants of these restrictions are bounded from above by a
number that is independent of m. These finite-dimensional functions then have a

unique extension ¥ on H, which is A-convex and coincides with % on a dense
subset of H. It suffices to know that %/ is continuous to conclude that it is nothing
but 7. 0

3.3 CU! functions on (225(M), W) versus C -1 functions on H

Given a differentiable function % : (M) — R (cf. [6]), we denote as
Vw? the Wasserstein gradient field of % . This subsection exploits the connec-
tion between the differential of % : &, (M) — R and the differential of its lift
% H-—>R [32]]. More precisely, we have the following result.

Remark 3.7. Let x € H and set u := #(x). Then % is differentiable at y if
and only if % is differentiable at x and in this case, we have the factorization
VU(x) = V% (1) o x.

DEFINITION 3.8. Let Z C £7>(M)) be open and geodesically convex. Let o €
(0,1]. We say that % e C1*(2) if it is continuously differentiable on # and
there exists a constant C > 0 such that

(1) spt(p) 2 g1 + Vu (11)(q1) is ¢-Holder-continuous (or simply Lipschitz-
continuous if « = 1) with constant C for any u € £.

U W) — U — /W V% (11)(q1) - (92 — q1)dy(q1.q2)

< CWt%(u,v), Yu,ve B, Yy e (i, v).

2

DEFINITION 3.9. Similarly to the previous definition, let 8 C Z7,(M) be open
and geodesically convex and let K € M be a convex open set. Let o € (0, 1]. We
say that u € C*(K x %), if it is continuously differentiable on K x % and there
exists a constant C > 0 such that
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(1) spt(p) 2 g1 — Vyu(g, n)(g1) is a-Holder continuous (or simply Lip-
schitz-continuous if @ = 1) with constant C for any (¢, u) € K x 4.

o (@, v) — u(g, 1) — Dgu(g, 12) - (@ — q)

~ [ Vot @) - @2~ g0dyar. )|

<C(Ig—ql"™ + Wyt (u, ),

Vg, g e K, u,v e B, Yy € T'o(u,v).
Remark 3.10. (i) Let us notice that Definition [3.8(2) implies that Vy, % is ‘-
Holder- continuous’ in the following sense. We have

/Mz Vo (11)(q1) - (g1 — g2)dy (g1, q2)

— sz Vo (v)(g2) - (g1 — 42)dV(g2.41)

E 2C W21+a(/’l’v V),

forany p,v € Zandy € To(i,v), ¥ € To(v, ).

(ii) Let us underline that the inequality in Definition [3.8(2) naturally encodes
also the fact that %/ is locally Lipschitz-continuous. Indeed, that inequality
implies that

2 0) U ()
=W + [ 0% (ian)-lg2 =11y

< CW, () + IV Z (W) L2y Wa (12, v)

= (CW3 (1, v) + IV Z (10 | L2y ) W2 (2, v),
so the local Lipschitz property follows.
(iii) Definition 2) naturally encodes that K 3 ¢ — u(g, 1) is of class C 1%,
uniformly with respect to pt.

LEMMA 3.11. % € CY(2,(M)) if and only if % € CV1(H).
PROOF.

Part 1. Suppose first that U e Cctl (H) so that by Remark there exists a
constant C > 0 such that

— —~ ~ C
3.1) % () =% () = VU () = 0)| < llx —yI* Vx,y € H.

This implies in particular that % € C'(%,(M)), and for any x € H such that
f(x) = p e P (M), we have V% (x) = Vo % (L) o x.
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2724 W. GANGBO AND A. R. MESZAROS

CLAIM. For any y € P>(M), g +— V% (11)(gq) is Lipschitz-continuous on
spt(u) uniformly in g, with Lipschitz constant at most C.
PROOF OF THE CLAIM. Let u € £>(M) and consider x, y € H such that

B(x) = #1(y) = pand ||x — y|| > 0. Since V% is Lipschitz-continuous, one has
that

IV (x) = VU ()| < Cllx — y|.

This is equivalent to

(3.2) IVw % (1) (x) = Vo Z (W)l = Clix = yll.

Suppose that spt(j1) contains more than one element; otherwise the statement is
trivial. Although x is defined up to a set of measure zero, we are going to choose a
representative which is Borel. Set

Qo 1= {a) € Q| w is aLebesgue point for x, V@V(x)} N x~Y(spt (n)).

Note that £2¢ is a set of full measure in €2, and so x(2¢) is a set of full u-measure.
In fact, we do not know that x (€2¢) is Borel, but we can find a Borel set A C x(2¢)
of full p-measure.

We suppose that A has more than one element; otherwise the statement is trivial.
Let g1,9> € A with g1 # g» and let q(l), qg € Qo such that x(q?) = ¢ and
x(qg) = ¢». Let r > 0 small such that B, (q?) N By (qg) = @. Set

w ifa)GQ\(Br(q(l))UBr(qg ),
(3.3) Sp(w) =30 —q%+4qY ifw e B(q?),
w—q3+q? ifoe B (gd).

Since S, preserves RN 2, x and y := x o S, have the same law . We notice
that in particular

0 0 0 0
Y = XAM\B (@) UB, @) T X+ 43 = a0) B, q0) + X( 41— 42) X B, (q0)-

Since g1 and g, are distinct image points of x for » > 0 sufficiently small,

L N NCEST R VIR
r\q

1

+/ 1x(z) — x(z + g —gd))*dz > 0.
Br(q(z))
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Similarly, (3.2) yields

IV (1) (6) — Va7 ()
= [ [P DG~ Vuw (x(z + 48— b)) iz
r\q

1

+/ O)Ww%(u)(x(z))—Vw%(u)(x(z+q?—qg))\2dz

Br(Qz
< cz(f 1x(z2) — x(z + g2 — ¢N)?dz
Br(q(l))
+ / Ix(z) —x(z 4 ¢} —qg)|2dz)
Br(qo)

2

Now, dividing the inequality by .24 (B, (q?)) and sending r | 0, since q? and qg
are Lebesgue points of x with x(q(l)) = ¢q and x(qg) = ¢», one obtains that

|V (1)(q1) — V% (1)(q2)] < Clg1 — qa2],

as desired. The claim follows.
Now, let ,v € (M) and x,y € H such that f(x) = u, i(y) = v, and
Wa(u,v) = ||x — y||. Let us note that y := #(x, y) € ['x(u, v). We have

VU )y —x) = /va?/(u)(X(w)) “(y(@) = x(w))dw

= [V @) @2~ a0y r.2).
Thus, by
c 2
YO -2~ [ Vo w i) @2 - a)dyara)| < S W@,

which by the arbitrariness of tt, v implies the statement.

Part 2. We now need to prove the reversed implication and start by assuming
that % is C 1'1(22,(M)). In particular, V,, % (1)(-) is C -Lipschitz-continuous on
spt(u) (uniformly in @) and increasing the value of C if necessary, we assume the
inequality in Definition [3.8|2) to hold with the same constant C. Take x,y € H
and set ;& := f{(x) and v := {{(y). Recall

Y e CY(H) and V%(x)= V%) o x.
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Lety := #i(x, y) and let yo € [',(u, v). We have
V)~ T~ VU () =)

~|we v - [ vermwan- e -

<ro)- - [ Vuw e @ - it

i ‘ / Vo (@) - (@2 — 41)d (o — ) (d1.42)
M2

S CWZZ(,U“a U)

1
+ 5 HquwOZ/(M)HLoo
- ( / a1 — a2 2d (a1, q2) + / g1 — 612|201V0(41,6]2))
M2 M2

1
< CW3 (. v) + 5C (I = I + W3 (1, v) < 2C|x = %,

where in the penultimate line we used an inequality from lemma 3.3 in [32]. In-
deed, according to this lemma if y1, y2 € T'(u, v) and § € C2(M), then

/W Dé&(q1) - (g2 — q1)d(y1 — v2)(q1.92)

|
<5107 ([ o= aaPdn + viana).
M2

Since Vy, % () is the limit of (D§,),en (Where (§,)pen € C°(M)) in LIZL(M;

R%Y) and V,,% (1) has a global Lipschitz-continuous extension to M, it is easy to
see that the previous inequality is still valid for D& = V,, % (u) (for which we use
its Lipschitz-continuous extension to M).

This completes the verification of the proof of the lemma. U

Remark 3.12.

(i) It seems an interesting open problem whether the equivalence in Lemma
B.11]holds for C 1 functions for & € (0, 1).

(i1) The uniform Lipschitz continuity property of g — Vy, % (11)(g), from the
proof of Lemma|[3.T1] appeared already in [[I5] lemma 3.3] and in [[16, prop.
5.36]. However, not only is our proof based on a different approach, it is
considerably shorter and will be useful in the proof of Lemmal[A.T]

DEFINITION 3.13. Let Z C %5(M) be open and geodesically convex and let
o € (0,1]. We say that % € C>%Y(B) if % € CY*(A), and if there exist a
constant C > 0 and functions

Ao R4 x B — R4 AL M?x B — RI¥4,
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such that
() Ao € L®(M; ), Ar e L®(M?p @ ),

‘vw%)@) V% (W0)(@1) — Aogr. 1)@ — 1)
—/ Av(qr.a. ) (b —a)dy(a.b)
M2

< C (lgr = @' + Walu, v)' ).

(2) Ap and A are a-Holder continuous, i.e.,

1Ao(g1. 1) — Ao(@1.v)|oo < C(lg1 — T11* + W5 (1. 1))

and
IA1(g1.92, 1) — A1(G1,G2, V)0 < C(lq1 — q11% + |g2 — Z2|% + W5 (1, v)),

forany pu,v € %, (q1,41). (42.92) € spt(p) x spt(v), and y € Lo (i, v).
We say that % € cow (P (M) if % € C*%¥(%,) forall r > 0.

loc

Remark 3.14. Let Ag and A1 be as above.

(1) By abuse of notation we write

D, (Vo % (11)(q1)) == Ao(q1. ) and Vi, % (11)(q1.42) := A1(q1.92. j0),

for all 4 € #>(M) and x, y € spt(it). The bar is to recall that A is not
exactly the second Wasserstein gradient as introduced in [21]].

(2) Note that if we choose any matrix A(a, i) such that any of its rows w
is such that V - (wu) = 0 and w € L?(u), then the matrix defined as
Ai(g.a, ) := Ai(g,a, ) + A(a, ) also satisfies Definition 1).
We could determine A (g, -, i) uniquely by imposing that the i™ row of
(Ao(g, 1), A1(q, -, i) is the unique element of minimal norm of the sub-
differential of (¢, ) = V% (1)(g). The i™ row of the element of mini-
mal norm belongs to M x 7;, %%, (M), and the new matrix will be denoted
as V2, % (11). This new matrix is selected at the expense of giving up the
property that A is uniformly bounded. Increasing C if necessary, we can
instead ensure

IVaw? (@1, 2 = CO) Vi e B ¥ar € spi(p).

(3) In the spirit of the terminology used in [21]], we refer to ?iw% as an
“extended Wasserstein Hessian” of %/. In contrast with the assumptions
in [21]}, in Definition [3.131), we assume slightly different conditions: the
expansion here is required only on spt(u) xspt(v), Ap and A | are supposed
to be essentially bounded only on spt(u), and in addition we require the
Holder/Lipschitz property in Definition[3.13|2) to be fulfilled.
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(4) We shall now compare our definition of C12 *W(P5(M)) regularity of %
to C2 *(H) regularity of % (where %(x) v (). f % € cx *(H),

loc_ loc
then % is twice continuously differentiable in the Fréchet sense and for
each r > 0 there exists C = C(r) such that

INU () — VU (x) = V2% (x)(y — x,)|| < C|x — y||'T®

34
(34) Vx,y € B,.

To heuristically compare this inequality to the setting of &7, (M) we
proceed as follows. Let §(x) = w and ffi(y) = v with |x—y|| = Wa(u,v).
Then we know (see [32]) that

VU (x) = V% () ox, VU(G)=VeZ@)oy,
and

V2U (x)(h, hs) = / Dg(V (1)) o x h - hydw
Q

—i—/ Viw%(u)(x(a)),x(a)*))h(a)) cha(wy)do dw,
Q2

if§, 6 € Ty P2(M)and h = £ o x and hy = &4 o x. Thus, (3.4) would
read as

sup
lA«ll=<1

/Q [V % (0)(y (@) - hae(@) = Vo % (1) (x (@) - hs(@)] de

(3.5) _/QD‘I(V")%(M))OX (y — %) - he do

— /;22 VawZ (W) (x (@), X (@) (y — x)(@) - ha(0x)do dws

< CWa(p,v)'*e.

From here we see that a necessary condition to obtain inequality (1) in
Definition [3.13|is to have hold when we maximize over the set of
h such that ||i«| ;1 < 1 rather than maximizing over the set of /& such
that ||4«|| < 1. In other words, we have not been able to show that if
U eC? “*(H) then % € C2 2,000 (P2 (MD)). Moreover, in Appendix @We

loc loc

show that imposing % € C2*"
U e C2%(H).

1
(5) Let us ;;)glnt out that using an extrinsic approach, [11]] introduced spaces
of the type C2'1(22,(M)) via the differentials of their lifts on a Hilbert
space. In this work, we define C%'1% (22,(M)) in an intrinsic way, i.e.,
directly via the differential calculus on the Wasserstein space. As a result,

our derivatives are always defined on the supports of the corresponding

(5 (M)) in general does not imply that
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measures, while in [11] the authors work with global extensions. Simi-
larly, we require essential boundedness of the Wasserstein Hessian only on
the support of the corresponding measures, while [11] requires bounded-
ness of the global extensions. The work [32]] allows us to assert that both
the intrinsic and extrinsic approaches are essentially the same. However,
C%1L¥(2,(M)) has the advantage that it can be seen as an increasing
‘limit’ of the spaces C 21 (M™) when m — 400, as we show in Section
B. 4 below.

(6) [11, sec. 2] constructs an example of % € C>1(Z,(M)) for which its
lifted version % fails to be twice Fréchet differentiable at any point. More
discussions can be found in [[11,[14,(16,{17,/19].

3.4 Regularity of % as a by-product of regularity estimates on U ™

This subsection implies regularity properties on functions %/ defined on &7, (M)
from estimates on their restrictions U ™. Recall that for » > 0 B™ is a ball in
M™ while %, is a ball in &2,(M]). We assume that we have at hand a constant
C=C(r)>0.

LEMMA 3.15. Suppose for eachm € N fixed, Um . M” - R is permutation in-
variant with respect to its m-variables and |U (m)| is bounded on B by a constant
that depends on r > 0 but is independent of m. Then there exists C = C(r) > 0
such that the followings hold true:

() If U sartisfies Property(])-(b), then for any q,b € B, we have
U™ (q) = U™ b)] < CWa (g™, ni™).
(i) If U™ satisfies Property( 2), then for any q,b € BI"*, we have

U™ () — U™ (g) =Y D U™ (q) - (bi — i)
i=1

< CWZ (. 1™,
(iii) The assumption in (ii) implies for any q,b € B
(a)
m|Dg; U™ (g) — Dg, U™ ()]
< C(lgi — bil + Wa (g™ . ™).
(b) We have
m|Dg; U™ (g) ~ Dg, U™ (1)

1 .
<C (|(]i —bj| + Wz(Mt(lm),Mgm)) + ﬁ) LI E£ ]
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(iv) Suppose that U™ satisfies Property 3). Ifi e{l,...,m}andq.b € B,
then

m
m|Dg, U (b) — Dg, U™ (q) =Y DZ.,. U™ (q)(b; —q))

j=1
< C(lgs = bil® + WF (g™ 1y™)-
(v) The assumption in (iv) implies q,b € B},
(@) Ifi # j then
mZ‘Dgiqj'U(m)(q) - DginU(m)(b)‘
< C(lgi = bil + lg; — byl + Wa(ud™, ug™)).
() If G, j) # (k,1),i # j.k #1, then

21 12 (m) 2 (m)
m ‘qu'thUm (q)_DtkaI/Um (b)‘

1
<C (|Qi — bl + 1g; — bl + Wa(ul™, nd™) + —) :

Jm
(c) We have
< C(lgi — bil + Wa (™. ™).
(d) We have

2 2
m|Dg., U™(g) - Dgq U(m)(b)‘

1
<C (Iqi — bj| + Wa(ud™. ™) + ﬁ) .

PROOF. Since U is permutation invariant, reordering ¢ and b if necessary,
we may assume

1 m
y = S € Tl ™).
i=1

Below, using Taylor’s expansion, we may find & € B’ on the line segment con-
necting ¢ to b such that (using the shorthand notation | - [|oo to denote || - || o0 (i)

(i) we have
m
U™ By — U™ ()] < | Y Dg, U™ () - (bi — 1)
=1
l 1 1
m 2 m 1 2
s<2m|quU(m)|2) (;Em—b#) .
1= 1=
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Using the fact that
m . m .
Zm‘DQiU(m)(CI)‘ <C? and szi_b”z: ( (m),Mzm))’
i=1 i=1

we verify the statement in (i).
(i1) A second-order Taylor expansion yields

U™ b)) - U™ (g) =" D U™ (q) - (b — 1)
i=1

=3 D (b=, D2, UM OG; —a))
i,j=

= 3 D20 —a). D, U s )
i—l

b3 Yo — ). D3y, U@ E; — gy)).

l#/

Thus, under the assumption in (ii), we have

U™ )y - U™ (q) = Dg, U™ (q) - (bi — i)

i=1
C m
S gy Ll bl 1D, U g~ biP
=1 l#/
T Z”Dq,q,U(m)”ooWj—bjP
1#1
c C ¢ )
S\5t7t7 —w|?dy™ = CWR (™, ™).
_(2 + 1 + 4)/M2|Z w|“dy(z, w) ( 1"y )

(iii)-(a) Performing again a first-order Taylor expansion, we find
Dg; U™ (g) = Dy, U™ (b)
= Z DZ U™ (@) (g — by)

- Dé,q, U™ )i —bi) + Y D2, U™ () (g — bi).
k#i
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2732 W. GANGBO AND A. R. MESZAROS

Thus using the assumptions, we find

\Dq,.u(””(q)—o U™ (b))

1 1 1
< s = bil + (Xm0, U™1%) (3 sl — bel?)’
k#i k#i

C
< —(Iql — bi| + Wa (™, u™)).

(iii)-(b) Without loss of generality, let us suppose thati < j. By the permutation
invariance of U™, we observe that D,, U™ (q) = D,, U™ (¢"/) and a similar
identity holds for Dy, U ) (b) if we set
(3.6) 47 =G, 95 q1s - Qi1 Git 1 Qi1 i 15 - -+ Gm)-

Using a similar identity for Dy, U (m) (h) we obtain
[Dg; U™ (q) = Dg, U™ )| = |Dg, U™ (q7) — Dg, U™ ("))

< ||Dqlqlu<'"’||oo|qi — byl

+ Z 102, ., 01U loolqic — il

+ Z |Dt1A+1q1U(m)||oo|C]k—bk|
k=i+1

+ Z IDZ, 4, U™ llooldr — bil.
k=j+1

Thus,
\DqU""’(q)—D U‘””(b)\

<= qu—b|+ (|611|+|b|)+ Z|C]k_bk|

C 2r
<— (qu —bj| + Waulm, 1) + f)

C 1
<— (qu — by + Wa(ulm . u ™) + ﬁ)
where we have used the assumptions on D;{, 4 U and in the last two rows we

used the facts that since ¢, b € B, we have that |g;|, |b;| < r/m foralli,j €
{1,...,m}.
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DISPLACEMENT CONVEX POTENTIAL MFG 2733

(iv) Similarly to the previous points, we perform a Taylor expansion (of order 2)
to obtain

m
Dg; U™ (b) — Dg, U™ (x) = Y D7, U™ (q)(bj — q5)
j=1

1 m
5 2 k= 4). D3 4,0, U™ @) (s =),
Jk=1

and thus

m
Dg, U™ (b) — Dg, U™ (q) = > D2, U™ (q)(b; — q5)

qiqj
j=1
1 1
= EHDSi‘IiQiU(m) Hoo|qi —bil* + EZHDSilequ(m) HOO|QJ —b;|?
J#i
1
* 2 Z HDSi‘Ij‘IjU(m) Hoo|qj —bjl - lgk — brl.

ki

We conclude

m
Dy, U™ (b) — Dy, U™ (q) =Y D2, U™ (q)(b; —g;)

qiqj
j=1
C C &1
< —\|g; —bi|* + — —\lgi —b;|*
_2m|% il +2mj§=1m|qj .I|
c [&1 21
_ § —lg: — b E:_ —b
+2m j:1m|% j| (k_lka k|)

c
< ol = bi* + WE (g™ ™).

(v) We write again

2 (m) 2 (m)
D7, U™ (@) — D, U™ ®)
m
- Z DSinQkU(m)(CI)(CIk — by)
k=1

= D;’iqjqu(m)(q)(q,‘ - 6]1‘) + DgiquIjU(m)(q)(Qj — bj)
m
+ > D U™ @k — a0
k=1,k#i,k+j

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



2734 W. GANGBO AND A. R. MESZAROS

Thus in the case of (a) using the assumptions, we find

1D3,4,U"™(q) = Dg,,, U™ (b)]
G
= —2(|Qi —bi|+1q; —bj|) +C Z _3|6]k — by
" k=1
C
= W(Mi —bi| + |gj —bj| + Wa(u (m)’Mgm)))‘

In the case of (¢), since i = j in the above expansion, we find

|D3,q,U™(@) = DG, U™ ®)]

A

” DQI qidqi U(m) H - bi |

+> 1D} 40U <m>||oo|qk—bk|
k#i

C
E(Wi — bi| + Wa(u (’”),u,ﬁ’”))).

qidqi

A

To show (b), let us suppose without loss of generality thati < j < k < [. By
the permutation invariance of U ™) we have the identities

Dz?,q,U(’")(q)= a1 U ™ (qi. s dk- 91+ 9)

and

D‘?AQI (m)(b) Dgqu (m)(bk’blvbiaijg)v

where g, b € R2*m=4) obtained from g and b, respectively, by deleting the vec-
tors indexed by i, j,k,l. Therefore, using the local bounds on the third-order
derivatives of U™ we have

‘DQIQJ U(m)(q) B QI\QI U(m)(b)‘

‘Dqlqz (m)(ql"qj’quql’q)_ QIQZU( )(qk qi, C]z,CI/a
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DISPLACEMENT CONVEX POTENTIAL MFG 2735
and so
‘DQIq U(m)(q) - q/‘q/U(m)(b)‘
HD‘]1‘12CII U H gi — b/
+ HDtINIqu (m) H - bl| + HDqlqzq'; (m)HOOWk - bi|
i—1
+ HD‘1142514U(m) | oolar = bi1 + ZHDqlqzqa+4U(m)Hoo|qa — ba|
a=1
+ Z HD41424a+3U(m) Hoo|q05_ba|
a=i+1
+ Z HDqlqzqa+z um Hoo|q0‘ — bq|
a= J+1
+ Z ‘DQIQZ‘IDH»IU(m) Hoo|qd — ba|
o= k+1
+ Z HDQIQZQaU(m)Hoo|q°‘_b"‘|‘
a=Il+1
Thus,
|DQ1q (m)(q) D;;\q/ (m)(b)|

C C
< ﬁ(W:’ — bi| + lg; — br]) + ﬁ(l%l + 1bi| + lg11 + 1bj])
C m
+— Z |9
a=1

Cc 1
(m) , (m)
< o (Jar =l =l W)+ ).
where we have used again that since ¢, b € B, we have |qq/|, |by| < C /m for all
ac{l,...,m}.
In the case of (d), we proceed similarly as for (b). Let us suppose without loss

of generality that i < j. Then, by the permutation invariance of U™, we use the
expression in ((3.6) to obtain

qzqu(m)(Q) qlqu(m)(qll)
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2736 W. GANGBO AND A. R. MESZAROS

Using the analogous identity with ng U m) (h) we conclude

‘Dq,q U™ (q) _ngqu(m)(b)‘
‘Dqlqu(m)(qij)_ q1q1U(m)(bU)‘
= HDCII(IICZIU(m)H _b |+ HDq1q1q2U(m)H _b |
j—1
+ ZHDqHIllJH-z |9k — bic| + Z HDq1q1q1\+1H |k — bk |
k=i+1
+ Z HDSIQIQI\' Hoo|qk—bk|‘
k=j+1
Thus,
‘Dq,q U(m)(q) o ngqj' U(’")(b)‘
C C &
< n_1|%' —bj| + W(IC];’I + |bil) + =) Z lqr — bx|
C 1
== (|Ch —bj| + W2(H(m)’ﬂb )) + \/ﬁ)

where we have used again that since ¢, b € B, we have |gq|, |bo| < C /m for all
ac{l,...,m}. O

The following two theorems show how the quantified regularity estimates on
the restrictions of functions u : Ml x Z(M) — R and 7 : (M) — R to
M x M™ and M"™, respectively, will imply the corresponding regularity of the
original functions.

THEOREM 3.16. Let u : Ml x 223 (M) — R be a continuous function. Form € N,
we define u™ : M x (M)™ — R as

u™ (qo. q) == u(go. "),
where (q0.q) = (@o.q1.---.qm) € (M)™ ! and pg" ™ = ZLE S8,
Suppose that u'™ e Cl1 1(IMI x (M)™) and that for K C M compact and r > 0,

(m)(qg, -) satisfies the estimates of Property .1 )-(a) and (2) for all g9 € K,
with a constant C = C(K,r) > 0. Let us moreover assume that for any K C M
compact and r > 0, there exists C = C(K,r) > 0 such that

| Dgot™(q0.9)| < C. 1D 5014 "™ (q0.9)|oc < C.

(3.7)
meq,qo ™ (go.9)|% < C.
i=1
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DISPLACEMENT CONVEX POTENTIAL MFG 2737
and
C . .
—, i =jandi >0,
2 (m) m

Py i #j,1,]>0,
forany qo € K andq = (q1,....9m) € B

Then, there exists ®1 : Ml x &5 (M) x M — RY, g locally Lipschitz-continuous
function such that for any r > 0 and K C M compact, there exists

C=C(K,r)>0
such that for any qg, vo € K, any i, v € P>(M), and y € Tp(i, v), u satisfies

u(yo,v) —u(qo, ) — Dgot(qo, 1) - (Yo — qo)

—/ @1(q0. 1-q) - (y —q)dy(q. )
M2

< C (Igo — yol* + W5 (1, v)).

This implies in particular that u € Ckl);l (M x P5(M)), Vyul(go, w)(+) can be
obtained as the projection of ®1(qo. i1, ) onto T, F»(M) and

u(yo, v) — u(qo, k) — Dgou(qo, 11) - (¥o — qo)
- [ Vuntao. 0@ - )drta. )|

< C(l90 — yol* + W5 (. v)) .
PROOF. Our construction is inspired by 31} lemma 8.10].
For m € N we define CID(()m) : M x @ém)(M) — R4 and Cng) : M x
Uty SPL) x {1} — B as

CP(()m)(QO, puimy = Dgou™ (go. q)
and
@gm)(qo,qi,u((]m)) = mDgu™ (qo.q) Vie{l,...,m}.
Here

1 m
q=1(q1.....qm) and pI™ .= 52541- e 2 ().
i=1
From the assumptions of this theorem, as a consequence of Lemma [3.15]i), when
restricted to K x Bzém)(M) N %, where K C M is compact and r > 0, CD(()m)
is uniformly bounded and uniformly Lipschitz-continuous, with respect to m (and
the Lipschitz constant depends solely on K and r).
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2738 W. GANGBO AND A. R. MESZAROS

Let J# be the collection of compact sets in V. We assume there exists a positive
function C defined on 7~ x (0, 00) such that C(K,r) < C(K’,r’) K C K’ and
r<r'.

We assume to be given a family of functions

£ M x 28 (M) - R

such that for each r > 0 and each K € .#, the restriction of £ to K x
(,@ém)(M) N %) is C(K, r)-Lipschitz. We assume there exists a compact subset

in the real line which contains all the (0, §9).
In what follows, we will perform Lipschitz extensions of various functions using
the Kirszbraun extension formula. For » > 0, gg € M, and K € %", we define the

Kirszbraun-Valentine extension f' Ign? (go,*) : (M) - R as

1M (qo. 1)

(3.8) ] (m) m)
= 113f{f ™ (qo.v) + C(K,r)Wa(p,v) :v e Py (M) N %’r}.

We have that f é’ﬁ) (go.-) is C(K, r)-Lipschitz for all go € M and f Ig"? coincides

with £ on K x (Qzém)(M) N %,). Furthermore, for any K’ € %, flg”;)( )
is C(K’, r)-Lipschitz on K’ x &2,(M).

Let Br(0) denote the closed ball of radius R > 0, centered at the origin in M,
and let Z(M) be the union of all the &2, (B(0)). Since P, (Bg(0)) is a compact
subset of #Z>(M), we apply the Ascoli-Arzela theorem and use a diagonalization
argument to obtain a function

&y M X Ze(M) — R
such that a subsequence of ( f; Ig';))m converges locally uniformly to f2°. on com-
pact sets. We have that f2° (qo, - ) is C(K, r)-Lipschitz on Z (M) for all go € M,
and f2° (-, ) is C(K’,r)-Lipschitz on K’ for € Z.(M). In fact,
(3.9) | /&5 (@o. 1) = f5(@o. v)| = C(K'.r)(Iq0 — aol + Wa(u.v))

for all gg, a9 € K" and 1, v € %,.
The function fz° admits a unique C(K,r)-Lipschitz extension to K x %,
which we continue to denote as fz°.. Using the construction (3.8) for each coor-

dinate function of dD(()m), we construct
Xk, M x P25 (M) — R,

Similarly, assume we are given a family of functions Cng) defined on

M x {(qi, n% Zaqj) g€ (M)’"}.
j=1
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DISPLACEMENT CONVEX POTENTIAL MFG 2739
As a consequence of the assumptions and Lemma|[3.15[iii)-(b), we assume for each
r>0and K € .7,

\<I>§’”) (g0. Q1,M§m)) CI>(m)(610 q1, “1(1 ))‘

_ 1
< C(K, r)(lqo — 4ol + lq1 —q1| + Wz(u(’"),uq ) + ﬂ)

for all o, go € K, and all ¢, g € B!".
Foreachk € {1,...,d}, @Em),k and qo, g« € M, define

k
"X (G0, g 1)

- 12f{d>gm)’k(qo.(7i,ul(7m))) + C(K, r)(lq* —Gi| + Walp, u,({"))) g€ Bi”}-
Note
k k C
(3.10) ‘d>§m1)<, qo.qi, 1) — @ (o, q,,ug'ﬂ)\ NG V(go.q) € K x B™.
As done earlier, there is a function

<I>1Kr M x M x (M) - R

and a subsequence (which we may assume to be the same as the ones above) such
that (@g’?%f:)m converges locally uniformly to CDTOIf »~ on compact sets. Increasing
the value of C(K’, r) if necessary, we have

(3.11) |99 . (q0.q1. 1) — Pk (0. q1.v)| < C(K'.7)(Ig0 — ol + |91 — 1| + Wa(u.v))

if go,91,90,91 € K and ., v € %,.

Let go,qo € M and let K C M be the closure of a bounded open set con-
taining the line segment [go, go]. Let furthermore q,g € B*. By the regularity
assumptions on 1™ one can write the following Taylor expansion:

u" (G0, 7) —u" (0, 9) — Dgou"™ (0. ) - (Go — q0)

m
=3 D™ (0. q) - @ — i) =
i—l
= —(610 —q0) - D2, 41" (20.2)(@o — 90)

+ Z(% — i)+ D341 (20.2)(@o — qo)
i=1

1o _
+ 5 2@ — 4D, 1™ (0.2 — 41)

i=1

Z @ — 4) D7, 4™ (20. )@ — 4.
1#]—1
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where (z¢9,z) € M x (M)™ is a point on the line segment connecting (go, q) to
(Go.q). If g, q € B, by convexity, we also have that z € B". Now, using the
uniform bounds on Dgi a; u™) from the assumptions of this theorem, increasing
the value of C = C(K,r) > 0 if necessary, we have

u™ (o, 7) —u"™ (g0, q) — Dgouu"™ (g0, 9) - @0 — q0)

m
— " Dgu"™(qo.q) - @ — q)
i=1

m
_ _ I
(.12) = Clgo—qol* + Cldo — ol 3 —=ldi = il /| DG g™
i=1

1 1

c& c (& Slm oy z
= _ 124 = - V) A .12
+ m zZI gi —qil” + ) ;—1: m |q.l ql| (;_1 m 1gi — qil )

= C(Ig0 = Gol> + W2 (n™. 1)),

where in the last inequality we have used a Cauchy-Schwarz and a Young inequal-
ity, i.e.,

m
_ 1 _
70— qol| Y —=Ii — il v/m|Djg,u™

= m

1

m 2
_ 1 _ 1
< 1o — qol (Z — g —qi|2> (m D2, 4ou™?)?
i=1
1._ Cn 1
<Sldo—aol?+ ) — G —ail’.
i=1

Now, using the previous constructions, the first line in the chain of inequalities
(3.12) can be rewritten as

U™ (Go. D) — u"™ (g0, ) — Dgo'™ (90.9) - (Go — qo)

m
- Z Dg,u"™ (q0.9) - (@ — 47)
(3.13) i=1

= u(ao» M;_m+1)) - U(QO, Mgm—i_l)) - (Dg)m) (qO’ Mém)

— | "™ (g0, 4. ™) - @— q)y™ (dq,dD),
MZ

)+ (G0 — q0)

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



DISPLACEMENT CONVEX POTENTIAL MFG 2741
where (g;)._, and (g;)7", are ordered in such a way that
(m)
W (n™, ug Z lai — i,

1—1

1 m
= = San € Tolid™ g™
i=1

In what follows, we pass to the limit all the terms in the previous line, keeping
in mind that only the integral term needs some additional effort. We have

[ o0 e.n) - @ = ey de. o)
_ (m) m)y . (7 _ (m)
G14) = [0 e @ ey ide.d?)
i /M (@™ (g0, €, 1™ = DR (g0, €. u§™)) - @ — )y ™ (de. d?).
Let us observe that

‘/ (@1 (g0, e, u{™) — "R (g0, €. p™)) - @ — )y ™ (de, d?)

2rC
le —2ly ™ (de, de) < %

(3.15)
<
= \/ﬁ 2

The next step in our argument to pass to the limit in the remaining integral in
the first line of works as follows. Fix a compact set K C M, R > 0,
go € K, and let u,v € P(Bg(0)) and y € T'y(1,v). Moreover, let x, y € H
be such that f(x,y) = y, which implies f{(x) = u, #f(y) = v. Form € N,
recall (Qm)m | is the partition introduced in Section I Let us notice that for a.e.
w € Q, (x (a)) y(w)) € spt(y). Let (w;)7L, be Lebesgue points of (x, y) such that
w; € Q; foralli € {1,...,m}. Let us define

gi := x(@i), qi := y(wi), ¢ :=(q1,---.qm),q = (q1.-...qm) € B,

foralli € {1,...,m}. We will assume that we have chosen the Lebesgue points
such that M, — x, M;, — y as m — oo, strongly in H. We have that
{(gi.qi)}7, is contained in spt(y) and so, it is cyclical monotone. This implies
that if we define y™ := 1/m > 8(¢;.3;)- then by the monotonicity of the set
of these points, one has that

y™ e To(ug™. ug™).

Let us underline that in our construction it is very important that y“™ be an optimal
plan and a necessary and sufficient condition, for this is the cyclical monotonicity
of its support (cf. [43]44]).
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2742 W. GANGBO AND A. R. MESZAROS

Furthermore, as the supports of the measure involved are contained in the com-
pact set Br(0), we have the following narrow convergence

N . 1 (m) _
Y™~y m — +oo, mlgnoo WQ(M((]”’) w) = mh_r)nc>o Wz(Mq ,v) =0.

As
H(ME) = ™. 4(MI) = pI”, and (MG, MZ) = y™,
we have in particular

m
1 _ _
WE (™ 1) = 37 —lai = @il = |15 — M|
i=1
By the uniform Lipschitz property of d)gmlg -» we have

lim ") (g0, My (@), n{™) = % (0, x (@), 1)

and
lim @) (qo. M (). uI”) = @, (g0. y(@).v).

m—00

for a.e. w in Q. Also, since for a.e. w € Q, (3.10) implies

O (g0, M&(@). ) = mDgu™ (o, q) + O(1/ /m),

for some i € {I,...,m}, by the assumption Property 2.2[1)(a), we have that
(<I>’1", K.r (qo0. MiL(), /L,(]m)))m is a uniformly bounded sequence. Therefore, using
all these facts, Lebesgue’s dominated convergence theorem yields that up to pass-
ing to a suitable subsequence, that we do not relabel, we obtain

lim [ (go. MZ. pI™) — &% ,(qo. x. )|

m—oQ LK.r
= Jim_[ @\ (0. M. 15"”) — ©3% ,(go.y.v)| = 0.

Now, using a suitable subsequence that we do not relabel, we conclude

q>§',”}<,r(qo, q, M,(]m)) (e—e)y™(de,d?)

m—>00C M2

— T (m) q
= Jim | Tk, (0. Miy(@). 1) - (M (@) — M (@) do

- /Q BEy (0. x(@). 1) (y(@) — x(@))de

= [, 9% o.e.p)- @ epde.d2)
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We combine (3.12) and (3.13) to obtain

u(qo, v) —u(qo, 1) — ®5°k - (qo. 1) - (Go — qo)

- [ 0% o en) - @~ (e dd

< C(K,r) (g0 — Gol* + W3 (i, v)).

We underline that the previous inequality has only been established under the con-
dition that u, v € %, have compact support. Since u is continuous, we combine

(3.9) and (3.11) to conclude

u(go, v) — u(qo, 1) — 25k (g0, 1) - (G0 — qo)

(3.16) ~ [ 0% o) @ - eypide.da)
M2z

< C(K.7) (Ig0 = Gol? + W7 (11. 1))
for any qo,qo € K and ., v € %,.

Note that in (3.16)), (DS?K,r and CD‘l’f’KJ depend a priori on K and r. However
since K and r are arbitrary, u is differentiable at every (go, ) € M x 25 (M).
We have that 5% (qo, ) must coincide with Dgyu(go. ) which is uniquely
determined and so, it is independent of K and r. Furthermore, the Wasserstein
sub- and super-differentials of u#(qgg, -) at p coincide and contain a unique element
of minimal norm Vy,u(qo. ). We do not know that ®$°% (qgo.-, 1) equals to

Vwu(qo, 1) (-), however, for y € Ty (e, v), (3.16) implies

u(go. v) —u(qo, ) — Dgyu(qo. i) - (Go — qo)
(3.17) _ / Vuu(go. 1)) - @ — e)y(de. d?)
Mz

< C(K.7) (Ig0 — Gol* + W2 (1, v))

for any go,go € K and u,v € ;. In fact, we notice that Vy,u(qgo, 1) is the
projection of ®°  (qo, -, ) onto T}, P, (RY). O

Using the exact same steps as in the proof of Theorem [3.16] we can show an
analogous result for functions depending on time as well. We formulate this in the
following:

COROLLARY 3.17. Letu : (0, +00)x M x &5 (M) — R be a continuous function.
Form € N, we define u®™ : (0, +00) x M x (M)" — R as

u™ (10,90, 9) = u(to. qo. ™M),
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2744 W. GANGBO AND A. R. MESZAROS

where (q0.4) = (@o.q1..-..qm) € (M) and pg" = Z S 6.
Suppose that u'™ e Cli’cl ((0, +00) x M x (M)™) and that for I C (0, +00) and
K C M compacts and r > 0, u(’")(lg, qo.-) satisfies the estimates of Property
2.2[1)-(a) and (2) for all (ty.qo) € I x K, with a constant C = C(I,K,r) > 0.
We assume moreover that for any I C (0, +00) and K C M compacts and r > 0,
there exists C = C(I, K,r) > 0 such that

|Dgou™ (10, g0, 9)| < C. |D2,,,u"™(t0.90.9)|, < C.

qdo4q0
m
> m|DZ 4o u ™ (t0. 90.9)1% < C,
3.18 i=1
(3.18) c

—, i=j,i>0,
D7, u"(t0.90.9)| o, < né
_27 i # ja l’] > 0’
m
and
|94,u"™ (0, g0. q)| = C. |32, u™ (10.90.9)| < C,
m
G D™ <C Dy d7ou™ 2<cC
| toVqgolt (IO’ q0, q)| =L, Zm| qi 9o (IO’ 40, q)| =L,
i=1
forany (tg.q0) € I x K andq = (q1.....qm) € BJ".

Then, there exists @1 : (0, +00) x M x P, (M) x M — R¥ locally Lipschitz-
continuous function such that for any r > 0 and I C (0,+00) and K C M
compacts, there exists C = C(I, K,r) > 0 such that for any so,to € I, qo, vo €
K,any p,v € Zo(M), and y € Tp(i,v), u satisfies

u(yo, v) —u(qo, ) — Dgou(qo, 1) - (Yo — qo)

- /M2 @1(q0. 4, q) - (y —q)dy(q, y)

< C (l90 — yol* + W5 (1, v)) .
This implies in particular that

u € ClL((0, +00) x M x P25 (M), Vu(to. go. i) (-)

loc

is the projection of ®1(to, qo. |. - ) onto T,, P> (M) and
M(S(), Yo, V) - u([()aqo’ /’L) - quu(f(), qo0, /’L) . (y() - C]O)

droulto, qo, 1)(so — fo) — [M2 @1 (0. q0. 1. q) - (y —q)dy(q.y)

< C (Iso — tol® + g0 — yol* + W (1, v)).
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THEOREM 3.18. Let % € C.N(P2(M)). Let U™ : (M)™ — R be defined as

Um(q) = %(u((]m))for g € M™ such that Property 2—3) are satisfied. Then
U e CcE? (P (M) in the sense of Definition such that the following hold.

loc
There exist C : (0, 00) — (0, 0c0) monotone nondecreasing and

(1) there are continuous maps
Ao : M x 2,(M) — R4 and Ay : M x M x (M) — R4*4
such that for u € &»(M) we have

sup [Ao(-.WllLoequy.  sup [IAL(. -, )| Loo(uepy = Cr).
I/Lea%)r /Leﬁr

(i) Let p,v € By andy € To(i,v). We have

‘vw%m@ V% (1)(@) — Nolg. 1)@ — )
(3.20) - / A1(g, @, )b — a)dy(a, b)
MZ

< C (g —qI* + W (u.v))
and
(G21) Vo Z ()(@) — Yo% 0@ = C (1 =71+ Walw.v))  Vi.v € %,
forall (q,q) € spt(p) x spt(v).

PROOF. We follow ideas similar to those presented in the proof of Theorem

Recall that for ¢ € B!, we use the notation /L,(]m) =1/m Y[, 84 and use
a similar notation for ¢ € B!"*. Let us define the matrix-valued functions

A(()m) : U Spt(ll((lm)) % {Mt(]m)} _, Réxd

qeB;!
and
A(lm) : U ((spt(/,L((Im)) x spt(uflm))) \{(gi,qi):i=1,..., m}) X {,u,g")} — R4>d
qeBy
as
A @ 1) = D3 U @),
A (g gy 1d) == m2 D2, U™ (q), i # .

Let us underline that we have not defined Agm) (qi . qi, M((Im)) fori = j. Because of
this, later we will need special care when one passes to the limit the corresponding
objects as m — +o00.
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We observe that as a consequence of the assumptions and Lemma @V)—(b,d),
we have that for any » > 0, there exists a constant C = C(r) > 0 such that

— _ 1
A (i 1) = A @ ™| < Mg — Gl + Waud™ . ud™) + —
Jm
and
\AE’") (1. qx. nI™) - NG 7R M;—m))\
o = (m)  (m) 1
<C (qu —= il + lax — qil + Waug™ ug ) + ﬁ)
for any ¢g.q € B}, and for any i, j. k,l € {1,...,m}, i # k, j # [. For
every coordinate function (Agm))a,g, (Agm))aﬂ (. B €{l,...,d}), we define the
extensions

(AT)ap M x 22(M) >R and (A7) 5 M x M x 2,(M) —> R

as follows. For z,21,22 € M, u € Z>(M) we set
(AT a5 @ 1) o= inf{(AS)ap (i, 1) + C (1g: — 2] + Wa(ud™. 1)}

and
(AYZ‘))O[}Q (21,22, 1) 1=
inf{(A{™) 5 (@i @k 1Y) + Cllai — 211 + lax — 221) + Wa(u§™. 1)}

where both infima are taken over g € B, i,k € {1,... . m},i # k.
Recall that Ag";) and Agm) are C(r)-Lipschitz, and we have

,r

C
(3.22) |AY? (gi ™) = AV (g1 ™) < N VgeB™ iefl.....m)

0 =
and

(m) (m) ¢
3.23) A" (@ioqr. w8 — ATV (g5 qr. 187)| o < N

VgeBl ike{l,...,m}, i #k.

If R > 0, 21,22 € Bg(0), and u is supported by Bg(0), then for all o, 8 €
{1,....d}
s s

—C < (A%))aﬂ(zhm,ll) < C + C(|z1| + |z2| + Wa(0, u)) < C(3R).

We obtain a similar uniform bound on (A g";)) m- As in the proof of Theorem [3.16
there are C-Lipschitz functions

Aor i M x Po(M) — R4 Ay M x M x 2,(M) - R4,

locally bounded, respectively, on Ml x (M) and M? x &,(M) by a constant
depending only on » and R. Up to a subsequence, as m — o0, (A(()’?r))m
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and (A?’”r))m converge to Ao and Ay, uniformly on Br(0) x Z(Bg(0)) and
Br(0) x Br(0) x Z(BRr(0)), respectively.
Our next task is to show that

Aor(-op) € LM p), Arp(-.- p) € LM x M u Q@ p),

(3.24) !
Vu € B, N P(Br(0)).

CLAIM 1. Aqr(-,-, 1) € L®M?; u ® p).

PROOF OF CLAIM 1. Letr > 0, R > 0, and first let u € ZBr N P(Br(0)).
Let z1,z2 € Br(0). As we plan to let m tend to oo, there is no loss of generality
to assume R < r/m. Since ¢ = (z1,22,0,...,0) € B™, we have

—C= (AY’n’))aB (21,22, ) = (Agm))a,s (Zl,Zz,Mz(Jm))
+ C(r)(|Z1 —z1| + |lz2 — 22| + WZ(Mém)’M))
< C(r)+2rC(r).

Letting m tend to oo we conclude that ‘(Al,r)aﬂ (z1.22. /L)‘ < C(r) 4+ 2rC(r)
first on M2 x Z.(M) and by continuity, this holds on M? x 2, (M).

CLAIM 2. Ag (-, ) € L=(M; p).
PROOF OF CLAIM 2. The proof is similar to but simpler than that of Claim 1.

For g, g € B we have the expansion

mDq, U™ (q) —mDq, U™ (q) —mD2 , U™q)(@ — q1)

m
—m Y D2, U™ @)@ —qr)
525) kZ

o3

m
> @ 4D, 4,0, U™ (G — qx)
k=1

where z is a point on the line segment connecting g to g.

Let w,v € %,y € Lo(it,v), and let (g1,41) € spt(p) x spt(v) (which is not
necessarily in spt(y)). Suppose that both spt(u) and spt(v) contain more than one
element. We choose x, y € H such that f{(x, y) = y and so, [{(x) = u, {(v) = v.
Let (Q;"_l);"z_ll be the partition of €2 introduced in Section [I| We are going to

choose special values of m := 2! 41 and choose Lebesgue points w; 41 € Q?l such
that all the points in Qizl are kept in Q%Hl. We set g; = x(wi), ¢qi := y(w;)
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fori =2,---,m Set
| -
m-1) ._ _ (m— 1) _
v = m_lzg(‘]iﬂi)’ Mg m—lzgqi’
=2 i=2
(m—1) [
m—1) . _
Mg e 28%.
1=

Since, (gi, qi){2, is cyclically monotone,

_ _ 1
J/(m D ¢ Fo(#ém 1),M§m ))

By construction (y™~1),, converges narrowly to y. Let M (qm _1) M (qm 1

the random variables corresponding to the previously chosen points (¢s, . ..

and (g2, ...,qm), respectively. We have

lim W (ul™. p)

m—+o0

(3.26) = lim Wa(u{" D p) = tim Wa(ug”.v)

= lim Wg(u(m 1),1))—0.

m——+00

Furthermore,
By M) = 770,
and
Jim M- x| = lim MG, - y] =0,

e H,
3 Qm)

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



DISPLACEMENT CONVEX POTENTIAL MFG 2749

Using the assumptions on D2 U™ since 7 € B, increasing the value of C

if necessary, we have

q;9k491

m
m Y (i —=x)D3 4q, U™ (@)@ — qx)
k=1

= m|D!11£]1q1 U(m)(z)|oo|q_1 - Q1|2

+m Z 1D 0o U™ (@lool@k — axllds — a1
+mZ|Dq1qlq, U™ (2)|oolq1 — q11131 — a1

+m Z 1D 40 U @)loolTk — qicl* +

+m Z 1= qil1D}, 400 U™ @)ook — gk
k#1=2
<|q1 a1l> + 131 — qﬂZ |qk—qk|+2 |qk—qk|2)
k= 2
C - _ _
t-3 > 1@ — aillge — gxl
k#1=2

< C(1q1 — a1 + W2l ulmD)).

Thus, this together with (3.25)) implies

m|Dg, U™ (@) — D, U™ (q) — D2, ,, U™ ()@ — q1)

Z D2, U™ (@)@ — q0)| < C(171 — q1* + W (uim=D, u "= 1Y),

Using the definition of Agm) and Agm) we read off

‘Vw%(uém))(%)—vw ((m))(ch) A(()m)(ch, (m))(611 q1)

m—1 —
327 _ . /WA(m(q1 a. u) (b — ayy™ 1>(da’db)‘

<C(Ig — il + W22(M((]m—l)’ugm 1)))’
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2750 W. GANGBO AND A. R. MESZAROS
Now, first by the continuity of V,, %, (3.26) implies
lim Vo (g (@1) = Vo (W(@q),
Jim Vo2 (1) @) = Vo (0)@)-

Before passing to the limit in the other terms, let us further suppose that u, v €
P(Bg(0)) for some R > 0. In light of (3.22), A(()m)(ql, )) and A(m) (g1, qu ))
have the same limit. By the local uniform convergence property of A(()’r), we have

that limp,— 0o A(m) (g1, M(m)) = Ao,r(q1, 1)-
To handle the limit in the last term on the left-hand side of the inequality (3.27)),
we observe that

/Mz A (g1.a. 1) (b — @)y "D (da. db)
_ fM A (g1, a, 1) (b — ayy ™D (da, db)

+ /MZ( AT (g1 a. pi™) = AT (g1.a. pS™)) (b — @)y ™D (da. db)

and by (3.23)), increasing C if necessary, we have that

‘/Mz (A (@1 1$™) = A (a1, 1§™) ) (b — @)y ™=V (da, db)

C

< — b—aly™V(da,db

_ﬁ//Mz| aly™ " (da, db)
r

Eﬁ-

Therefore, it is enough to study the limit of

/M A (g1, a. 1p§m) (b — a)y ™V (da. db).

Since
(m) (m) ¢
\A’" (q1. M{,_ (@), ™) — AT (ql,Mgn_l)(w),u;W)\ ==
and since
A(m)(ql M(m 1)(6‘)) M(m)) A( )(CII,%, (m))
forsomei € {2,...,m} forae. w € 2, we have that

0 o A (g1 MG,y @). 1)

is uniformly bounded with respect to m € {2, 3,...}. Thus by the previous con-
vergences and by Lebesgue’s dominated convergence theorem, up to passing to a
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subsequence that we do not relabel, we have that
: (m) q -
dim AT (g1, M,y ™) — A(grx )| = 0.
Thus, up to a subsequence,

lim Ai’f?(ql,a,ugm)(b—a)y(’"—”(da,bb)

m—0o0 M2

= lim A(m)(m M(m @), “q (M (m—1)(@) = (m—1)(‘0))dw

m—00 Q

- /Q A1 (g1, x(@), ) ((©) — x(@))do

=/MZAI,AqI,a,M(b—a)y(da,db).

We have all the ingredients to conclude that up to subsequence (3.27)) implies

‘vw%(v)@) V% (0)(@1) — Aoy (@1 )@ — 41)

—/ Avr(qr.a. )b — a)y(da.db)
M2

< C(lg1 — q1* + Wi(r.v)).

As C is independent of R, we extend the previous inequality to all i, v € %, with-
out imposing that they lie in &(Bg(0)). We also notice that by the assumptions,
i.e., Property[2.2(3), the map g — V,, % (1)(g) is Lipschitz-continuous uniformly
with respect to © € %,. More precisely, Lemma (ii1)-(b) yields that there
exists C = C(r) > 0 such that for all u,v € %, and (¢1,q1) € spt(i) x spt(v),
we have

(V% (1. 1)(q1) = Vo % (1, v)(@1)] = C(lq1 — q1] + Wa(u, v)),
so (3.21) follows. O

Remark 3.19. Note that A is a symmetric matrix, as a limit of symmetric matrices.

4 Global Well-Posedness of Master Equations

Throughout this section, we fix 7 > 0 and impose (HI)-(H7). We further
assume

(H8) %, 7 € C21Y(P5(M)) and Uém), F satisfy Property @3).

loc
Let % be the solution obtained in Proposition and define % : [0,T7] x
Py (M) — R as %(t, 1) : %(t x) where y = ji(x) By Lemma L the
regularity property obtained on U in Proposmonﬂ ensures that

U (t,-)is Gy (P2(MD),

loc
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We use Remark to obtain that 7 € Clé’cl ([0, T] x Z2(M))) (in the sense of

Definition [3.8), and it is a classical solution to the Hamilton—Jacobi equation

03U + A (Vo) =F(p) in(0.T)x F(M),

@.1) )
w0, 1) = U, in 22, (M).

4.1 The vectorial master equation
Let ¥ : 2,(M) x M — R¥ and define

MV VeV q) = /M Vo ¥ (t, . ) (B)Dp H (b, V (¢, 11, b)) 1(db).

We plan to obtain existence of ¥ : [0, T] x ZZo(M) x M — R4, a solution to the
so-called vectorial master equation

0V + DgH(q, V(t, 1. q)) + Dg V' (t, b ) Vp H(g, V(1. 1t 4))
(4.2) F NV VGVt . q) = Vo T (1)(q)

7/(0’ 2 ) = 7/0(/‘(’)’

as a by-product of the regularity properties of the solution to (4.1)). The lower-order
regularity results in the Hilbert setting are starting points to improve to higher-order
regularity results in the Wasserstein space. First, let us discuss the existence and
regularity of solutions of (4.T)).

THEOREM 4.1. The equation (4.1)) has a unique classical solution

U e ClH([0, T] x 22, (M))

loc

such that % (t,+) € Cligl’w (£23(M)), which has to be understood in the sense of
Definition [3.13)

PROOF. First, we notice that Proposition [I.5] asserts existence and uniqueness
of a solution % € C,\'! ([0, T] x &3 (M)). Then, Theoremwill imply that

loc
U™(t.q) :== % (t, nI™) fort € (0.7), m e N, g € (M)™,

satisfies the regularity estimates from Property [2.2|in B} (0) with constant C(z, r).
We apply Theorem to infer % (¢, ) is of class clv (P (M)). O

loc

Remark 4.2. In this subsection we discuss existence of weak solutions to (@.2).
The regularity of solutions % to the Hamilton—Jacobi equation (4.1)) established in
Theorem [4.1] are enough to differentiate this equation with respect to the measure
variable. This procedure gives us a notion of weak solution to the vectorial master
equation. Better regularity properties of this solution are subtle, and we need ad-
ditional effort to obtain these. We postpone this analysis to Section [5.1} where we
point out a deep connection between the vectorial and the scalar master equations
as well.
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DEFINITION 4.3. We say that ¥ : [0, T]XUMegz(M){M}XSPt(M) — R is a weak
solution to (.2)) if it is locally Lipschitz on its domain of definition, #'(-, u,q) is
differentiable on (0, T') for all u € &> (M), and ¢ € spt(u),

Yy e Gl Ut xspt).

WE P> (M)

Y (t, u,-) is differentiable on spt(i) for all 1 € [0, 7], and . € F>(M) and the
equation (4.2) is satisfied pointwise on [0, 71 x U ;e 2, vy 14} X SPt(14).

THEOREM 4.4. Suppose % (t,-) € cxtv (P2(M)) (in the sense of Definition

loc

B.13). Using the notation in Remark [3.14] we have assumed
Dy (V% (6. p)(+)) € L¥M: ). Vi, %t p)(+.-) € LM x M: p ® ),
Vi e P(M), and a.e. t € (0, T). Then the vector field

VAt e q) i= Vo (1, 1)(9)

defined on [0, T] x | ey (M)AHS X spt(p) solves the vectorial master equation
@.2) with initial data ¥y = V% in the sense of Definition[4.3]

PROOF OF THEOREMH.4l Let i € Z2p(M), let ¢ € C°(M) be arbitrary, and
set £ := D¢. Choose ¢ > 0 small enough such that for all s € [0, ¢], X := id+ 5§
is a diffeomorphism of M into M and |id|?/2 + s¢ is convex. For any g € spt(i)
we have

Vo (t,05)(Xs(9)) = Vo % (1, 1)(q) + sDg V% (1, 1)(q)§(9)

43) b / V2% (1. 1)(q. )E(@)p(da)
M
+ o(s).

Since
/H(z,Vw%(t,as)(z))os(dz)=f H(Xs(q). V% (t,05)(Xs(q))) (dg),
M M

(#@.3) implies
C%(O—S’ vw%(t’ OS)) = L%‘ﬂ(/"l" Vw%(tv ,LL))

w5 [ Dyt 0.V (1.0@) @)
@4y T /M DpH (q. Vo (1. 1)(q)) - (Dqu?/(t,u)(q)S(q))u(dq)
b5 [ Dyt (. Vu 0.00@) - (Va2 . 1)@ O @p(da) ) u(do)

_F() s /M Vo Z(0(@) - E@(dg) + o(s).
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Similarly,
@45) U0y = 0 U L)+ /M DV (1. 10)(q) - E@(dg) + o(s).

Note that since % is a Ckl)él ([0, T] x P2(M)) solution to @.1), Vo, Z (-, 1)(g) is
Lipschitz-continuous on [0, 7']. Moreover, from equation (4.1) and since Z (¢,-) €
c2hw (P2 (M)), we get that 3;% (¢, -) is differentiable for all r € (0, T'). There-

loc

fore’ alvw%(tv/’l’)(q) = Vwat%(t» M)(q) for all (t’ l’L) € (O’ T) X <@2(]‘\41) and

q € spt(u).
Since

3, (1,05) + H (05, V% (t,05)) =0,
@A) and @3) imply
fM (8:Vu (. 1)(@) + Dy H (. Vo (. 1)(@)) - Vwﬁf(u)(q)) E(Qu(dq)
4.6 + /M DpH (q, Vo (1, )(q)) - (Dqu%(t, M)(q)é(q))u(dq)
[ Do Vu (@) - (Vo 1)@ O @(da) ) a(dg) = 0.

Since we asserted in Remark that D, Vy, % (¢, 0)( ) is symmetric, {.6) can
be rewritten as

/M [0V (1, )(q) + DgH (q. Vo % (t, £)(q)) — Vo F (1)(q)] - §(q)n(dq)
+ /M DV (6, 1)(@) Dy H (4. Vo 2 (1, 1)(@)) - £ () (dg)

+ /M2 (Vo (t.1)(q.a)" DpH (q. Vo (t. 1)(q))) 1(dq) - E(a)u(da) = 0.
Note that
DgH(- V% (t. 1)) + Dg V% (t, W) Dp H (-, Vo % (1. 1))
= Dg(H (-, Vo (t, 1)) € Ty P> (M).
Since the rows of V2, % (¢, 11)(¢. @) belong to T), (M), so does
Vaow (t.1)(q.a) " Dy H (q. Vo % (1. 1)(q))

(as linear combinations of these rows). By the arbitrariness of £ and the previous
claims, we conclude

alvw%(tv/’l“) + DqH(',Vw%(taM)) + quw%(tvM)DpH(',Vw%(t,ll))
+ MV VE ) = Ve (),

p-almost everywhere on g € M. [
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Remark 4.5. At this point we do not know whether all the terms appearing in
(#.2) could be extended to (at least L4 ae) g € M. We have good pointwise
continuity properties of ﬁ;)rw% (,-)(-,-), but we do not know much about the
continuity properties of V;vr w (t.-)(-,-). If we knew

NV NV | . ) = AV Vo % (1. 1. q)

we could deduce that g +— ,/ZL[”I/ , V;—w% ](t, g, }t) is continuous. In the same
time, we do not know whether d; % admits a continuous extension.

As a remark, despite the fact that (¢, u, - ) itself is defined only on spt(it), we
know that it is Lipschitz-continuous there, uniformly with respect to ¢ and p. But
it is not clear at all whether any Lipschitz-continuous extension of this at the same
time would produce a valid extension for 3,7 and V) #. As highlighted before,
we revisit this question in Section[5.1] and in particular there we produce a solution
to the vectorial master equation that is defined for (Lebesgue) a.e. g € M.

4.2 The scalar master equation

In this subsection we assume there exists a function C which assigns to each
compact set K C M and each real number r > 0 a positive value C(K,r). We
assume to be given

(H9) uo. £ € it (M x 25 (M))
such that

Vo % (1)(q) = Dguo(g, 1),
Vu Z(u)(q) = Dq f(q, 1),

Since we can modify L or .# as follows,

(H10) Y(q, 1) € M x P5(M).

P(x,a) = /Q(L(x(a)),a(w)) —r|x(@)?)dw + F(x) + 7| x|?,

we learn from Proposition [B.6| that (H2)) and imply that

M 3 g — ug(q, ) is convex and MxR? 5 (g, v) —
4.7) NS
L(g,v) + f(q, p) is strictly convex Y € &> (M).

Let us remark that by the fact that uq, f € Ckl)’c1 (M x &5 (M)), we have that ug
and f are locally bounded, i.e., VK C M compactandr > 0, 3C = C(K,r) :

luo(qo. w1, | f(qo, W) < C V(qo, ) € K x %y.
We are to find a function u : [0, T] x Ml x #Z,(M) — R that satisfies the scalar

master equation
atu(tv q, /'L) + H(q’ un(tv q, I'L))

+ N[ Dgu(t, -, ). Vyu(t.q. 1)(-)] = f(q. ),

4.8) in (0, T) x M x 2,(M),

u(0,-,-) = ug in M x F,(M),
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where the nonlocal operator .4, is defined as in (0.I). We define the notion of
classical solution to (4.8) as follows.

DEFINITION 4.6. We say that u is a classical solution to (4.8)) if the following

holds. It is continuously differentiable on (0, T) x M x &2, (M), continuous up to

the initial time 0, and the PDE is satisfied pointwise. The vector field M > g

Dgu(t, q,v) is Lipschitz, uniformly with respect to (¢,v) € [0, T] x %, (r > 0).
Furthermore, for all v € &,(M) and for £! ® 24 _ge.

(s.9) € (0.7) x M. DgVypu(s.q,v)(+), VuDgu(s.q.v)(-)

exist, belong to L2(v), and satisfy additionally
@9) [ ((D4%u = TuDyJus..9))) Dy H(y. Dyus. y.»)w(dy) = 0.

Remark 4.7. The condition (4.9)) in the previous definitions needs some comments.
In Theorem we will actually show existence of the Cl(l)él ([0, T]x M x Z5(M))
solution to (#.8). Let us notice that for functions w € C, LIV x 22,(M)),

loc

D4Vyw(g,v)(-) is meaningful for all v € Z7,(M) and for a.e. g € M (see Sec-
tion[5.T). But since Dy w is only Lipschitz-continuous with respect to the measure
variable, Vy, Dgw(g, v)(-) might not be meaningful in general (since Rademacher-
type theorems in (Z25(M), W) are more subtle; cf. [26]). So the C 1! regularity
in general is not enough to ensure ({£.9).

Nevertheless, as the discussion in Section [5.1] shows, the solution that we con-
struct for the master equation (#.8)) naturally satisfies (4.9). This condition in par-
ticular will imply uniqueness of the solution as well.

For m € N, we define
ug”. M x (M)™ >R, UYL F™ (M) - R
as
ug”(r.q) == o (v 1u§). fP0.9) = (),
U ) = o). ) = P (),
where for g = (g1, ..., qm) € (M), puy™ is defined as in (L1).

We impose the following hypotheses on u(()m) and f U™,

(H1D) u(()m)(y, ) f(”’)(y, -) satisfy Properties 1)(a) and (2),

locally uniformly with respect to y € M.

(H12) Dyuf)m)(y, ), Dy f™(y,-) satisty Propertyl)(a),
locally uniformly with respect to y € M.
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Notice that based on the previous assumptions, we have that Dyuf)m) and Dy f (m)
are locally uniformly bounded, i.e., Vr > 0, K C M compact,

’

3C = C(K.1) | Dyu§™ (3.9, | Dy f™ (v q)| < Cif (v.q) € K x B,

At the same time, by the assumption (H5), DL and 8; ij’L (for all a, b multi-
indices with |a| + |b| = 2) are locally uniformly bounded.
We assume that there exists a constant C > 0 such that

(H13) ||3232H||L°°(Mde) < C for a, b multi-indices with |a| + || = 3.

We also assume there exists a locally bounded continuous function 6 : 2, (M) —
[0, 00) such that

(H14)

L(g.v)+ f(g. 1) = A1vP=0(w)(lg] +1)  V(g.v) € MxRY, Vi € 2,(M).

Note that it suffices to impose that f(-, u) is convex to have that (H6) implies

(HT4).

Recall that Remark [I.1] (iii) ensures there exists a constant C such that
We assume that there exists C > 0 such that
|DgH (g, p)| = C(1 +|q| + [pl) and

H15 .
I p,L(g.v) < CU+1g]+v]) Y(g. p.v) € M xR

4.3 Examples of data functions

We pause for a moment to give examples of initial data %/ and u, which satisfy
the standing assumptions of this manuscript. Similar examples can be constructed
for . and f as well.

Let ¢g, 91 : M — R be smooth bounded functions with uniformly bounded
derivatives up to order 3. For simplicity, we assume also that they are positive and
¢1 iseven. Fix A > 0 and let ¢ : M — R be defined as ¢(gq) := %|q|2 + ¢o(q)
and assume A is large enough such that D¢ + D2¢; > 0 on M. Then, let us
define % : Y2 (M) — R as

Yo(p) = /qu(q)u(dq) s /M b1 % W@Ou(dq). Do) = Uo(xp.28).

Vi € P5(M), x € H. Then % fulfills the assumptions (HI) and (H2).
Set

uo(qo, 1) = ¢(qo) + (¢1 * 1)(qo)-
Forqg := (q1.....9m) € M™ and gg € M, we have

m "
uf™ (o.9) = $(@0) + Y —1(d0 — 1)

i=1

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



2758 W. GANGBO AND A. R. MESZAROS

and
1 & 1 &
UG = — D o) + 5— D b1(ai — 4)).
m - 2m* 4
i=1 i,j=1
andsoforl <i <m,

1 1
Dy;ug™ (0. 9) = —Ddi(q0—¢i) and D2 416" (q0.9)) = ED2¢1(y — Xi).
We have
1
Daoitg” (G0.4) = DY) + Y — D (0 —41).
i=1
>From these computations, one can easily verify that through (H12) are sat-
isfied.
Under appropriate conditions on functions Lg, /, and g, Lagrangians of the form
L(g,v) := Lo(v) +1(q,v) + g(q)
and Hamiltonians defined as H(q,-) := L*(q,-) satisfy (H3) through (H7) and
(H13) through (HI5).

We are ready now to define the candidate for the solution to the scalar master
equation. Givent € [0,T],q € M, and u € %> (M) we define

t
u(t, g, ) = inf{uo(yo,os[m) + / (LG5 3) + (a0t [u])ds :
(4.10) v 0

y e Wh2([0,¢], M), y; = q}-

Here the curve (of[])sefo,¢] is defined in (C3). Define

My(r) = sup [0+ [uo|+T(|fI+]LO,-)]), cx(r):= sup J|uol.
By (0)XZBery (r) B1(0)x %,

Remark 4.8. Letr > 0.
(i) Asuq(-,v)is convex, if Dyu(0,v) # 0, then

D,u(0, Dgu(0,
MO(M’ v) > MO(O, v) + M . un(o’ ‘))
| Dqu(0, v)| | Dqu(0, v)|
| Dgu (0, V)|
=ug(0,v) + ———.
| Dqu (0, v)]

Thus, if v € %4,, we conclude that
|Dgu(0,v)| < 2c4(r).

Clearly, the previous inequality still holds when Dg4u(0,v) = 0. Conse-
quently,

uo(q.v) = uo(0,v) + Dgu(0.v) - g = —cx(r)(1 + |g).
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(ii) Suppose (¢, ¢, 1) € [0, T] x B+ (0) x %B;. Then

u(tvq’ /’L) S M*(r)’

and so, if y is the unique minimizer in (4.10), we use (HI14) and Remark
(ii) to obtain

My(r) > u(t.q.pn)

> —ener ()1 + 1yO)) — Mu(HT — M*(r>/0 Iylds

t
+ A1 / 7% ds.
0
We conclude there exists a constant M (r) independent of ¢ such that

ft [712ds < M(r).
Hence, ’
4.11) Ve, — VP S M@) | —1] if0<1 <1<t
(iii) By (ii), there is a constant M *(r) such that
lut,q. )| < M*(r) (t,q, ) €[0,T] x Br(0) x B,
Since

(q.v) = Ls(q.v) := L(q.v) + f(q.o5[u]). g = uolg, oplul),

are convex, we obtain that u(z, -, i) is a convex function and so as argued
above,

Dqu(t.q, 1)
[Dgult.q, Wl
LEMMA 4.9. Let (t,q, ) € [0,T] x By(0) x By and let y : [0,t] — M be the

unique optimizer in @.10). Suppose that the assumptions (H4), (H3), (H6), (HIO),
and (HT3)) take place. Then y € C1([0,1]).

|Dgu(t, 4. p)| = u(z,q ¥ ) utg ) < M)+ M),

PROOF. The proof follows the same lines as the one of [12, theorem 6.2.5]. [

PROPOSITION 4.10. Let u € P> (M) and t € [0, T]. Recall [0,t] > s +— ol[u] is
defined in (C.3) in Lemma|C.5}

(1) We have u(t,-, 1) € Cl(l)él (M)). Furthermore, there exists a unique y min-
imizer in (@10) which we denote as s — St[u](q).

(i) Ifw € 2, x e H, p = f(x), and ¢ = x(w) (meaning in particular that
q € spt(p)), then Sg[x](w) = S§[ul(g).

(iii) Under the assumptions in (ii) we have Dgu(t,q, t) = Vo % (t, 1)(q).

(iv) [0,¢] > s = Dgu(s, SH{l(q), ol[n]) is Lipschitz-continuous, for all
(q, 1) € M x P (M).

95U8017 SUOWILLOD 311D 3dedlidde auy Aq peusenof are ssppiie YO ‘8sh J0 S3JnJ oy AleiqiauluO AS|1AA UO (SUOIIPUOD-pUe-SWLB)W0d A3 1M ARe1q 1 Ul UO//:StiL) SUORIPUOD pUe SWS 1 3y} 39S *[220z/0T/TE] uo Ariqiqaulluo |1 591 AQ 69022 edd/200T OT/I0P/L0d A3 |1 Alelq 1)Ul juo//Sdny Woly pepeojumod ‘ZT ‘2202 ‘2TE0L60T



2760 W. GANGBO AND A. R. MESZAROS

(v) We have that u(-,-,u) € c! ([0, T] x M), with Lipschitz constants de-

loc
pending onr > 0, where |1 € PBr.

PROOF. By Remark [4.8(iii), u(z,-, 1) is a convex function. The fact that u(z,
-, ) is locally semiconcave is a standard property. Thus, u(f,-, @) is Cléél (MD).
Since the action

t
y > Adly] = wo(vo, ob[u]) + / L (ys. 75)ds
0

is strictly convex, S![u](g) is uniquely defined.

(i) By the convexity of 4,, any critical point of A, onthe set {y € C1([0,¢], M) :

y: = ¢} is a minimizer. Set
ps = P{[1l(@).
The Hamiltonian associated to Ly, is Hs;(q, p) := H(q, p) — f(q,0ol[u]). Since
DpHs:(q, p) = DpH(q, p),
in light of Proposition [C.2[iv) we have
4.12)  DpHyu(ys. ps) = DpH (S{x](@). P{[x](@)) = 8sS;[x](@) = ¥s.
By (HIO)
DgHy,t(q. p) = DgH(q, p) — Dq f(q.05[1]) = DgH(q. p) — Vo 7 (05 [1])(q)-
Thus, by Remark [3.7]
DgHs (s, ps) = DgH (S{[x](@). P{[x](@)) = VF (S][1)(w)
= 3, P{[x](@) = —ps.
We use first (HIO), second Remark and third the last identity in (L.26)) to
obtain
Dguo(ro. o 1l) = Vu % (04[1]) (o) = VZ(SguD (@) = P[xl@)) = po.
This, together with (#.12)) and @.13)), implies y is a critical point of A; on the set
{y e C'([0.4], M) : y; = g}
Hence, y is the unique minimizer, which verifies (ii).

(iii) By the optimality property of y, the standard Hamilton—Jacobi theory en-
sures that

(4.14) Vs = DpH(ys. Dgu(s.ys.oglul)) Vs € (0.1).
First, by the strict convexity of H in the second variable, we have that
un(S’VSvO_g[M]) = DUL(J/S’ VS) VS € (Ovt)v

from where, by Lemma 4.9|and by the regularity of D, L, one obtains that [0, {] >
s +> Dgu(s, ys,0l[u]) is Lipschitz-continuous. This shows (iv).
Then, by Proposition[C.2](iv),

Vs = DPH()/Sa Vw (s, Ust [l/«])()/s)),

(4.13)
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which, together with (#.14), implies

DPH(J/Sﬂvw%(S’O{‘[l‘L])(YS)) = DPH(VS7DqM(S’ YS’O;[/’L])) VS € (07 t)
Thus, by (H4)), one has

V% (s, 0g[1]) (vs) = Dqu(s. ys.o5[n]) Vs € (0.1).

Letting s increase to ¢ we verify (iii).

(v) What remains to be shown is the Lipschitz regularity of u with respect to the
variable ¢. But this follows from the dynamic programming principle and from the
time Lipschitz continuity of (ys)sefo,s] and (o [it])sefo,¢] (see Lemma ii) and
Lemma[4.9). O

Remark 4.11. (i) Let u € &,(M), t € [0, T]. Note that in Proposition SHul
is defined on the whole set M and not just on the support of . When x € H is
such that u = fi(x), Proposition [4.10] (ii) reads as

Silx] = Silul o x.
Also,

@.15) dsSslu] = DpH(S{[u]. V% (s, og[uD(SsuD)), s € (0.0),
SHul = id.

(i) It is very important to underline the fact that by Proposition 4.10{iii) we
have that for all (t, ) € (0,7) x Po(M), Dyu(t.-. ) = Vo Z (t. )(-) on
spt(u). Since Dgu(t,-, ) is defined on the whole M (and we will see below
that it is locally Lipschitz-continuous), this produces a very natural extension for
Vuw? (¢, t)(-) to the whole M. This observation will also help us to improve the
previous notion of weak solution to the vectorial master equation, as we will see in
Section[5.11

(iii) Since % is of class Ckl)’c1 (cf. Definition [16} cor. 3.38] yields the
existence of a Lipschitz-continuous extension of V,, % (¢, ;t)(+) to the whole M,
with a Lipschitz constant independent of w. This extension has the property that it
is continuous at (i, q) for g € spt(i). Our result, as described above, because of
the local Lipschitz continuity of Dgu (cf. Lemma[4.13) provides a slightly better
extension.

PROPOSITION 4.12. Forallt € [0,T] and g € M, the function u(t,q,-) is con-
tinuous on P (M).

We skip the proof of this proposition since it is obtained by standard arguments,
similar to those appearing in the proof of Proposition [C.1]

LEMMA 4.13. When (HI)—(HI13)) hold, then u defined in (4.10) is of class
CLL([0, T] x M x 22, (M)).

loc
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2762 W. GANGBO AND A. R. MESZAROS

PROOF. We proceed by a discretization approach. Let u € Z>(M), ¢ > O,
m € N, and go € spt(p) be fixed. Moreover, given {¢1,...,qm} C spt{i) we
shall use the notation of ¢ = (g1, ...,¢gm) € (M)™. We define

l m
(m+1) _ (m+1) ._ t[,,(m+1)
qu T om+ 1 i:Zquf, o =0y [qu ]

so that o™ +1 is the solution to the continuity equation (C-4) with ,u((ImH) as

terminal condition. Note
1 m
o ng +1) — 5

w1 2 Ostugt i VS € 00
i=0

We define
wmHD D Ve VD S R, 0D 000, Ty (M) D > R

as
+1
"V (o, q0.9) = uo(vo. L"V), £ D (vo,g0,9) = f (vo. nI"D),
and
(4.16)
U (s.q0.q) 1= % (5. p D). u"™(t.q0.9) = ult. qo. p"HY).
Observe
u™(t,q0.9) = uo(Qo(O.qo.q).UémH))
t
+/(; L(Q0(5~qO~Q)~DpH(Qo(S-Clo.q).Vw?/(s.os(m“))(QO(S.qO,q))))ds
t
+/ f(Qo(S,qo,q).os(’"“))ds
4.17) 0

+u§"(20(0.40.0). 00(0.40.4). 0(0.40.9)))

t

+ [ L( Q0. d0.0). Dy H(Qo(s.g0.). 01+ 1Dy U™V, Qo(5.0. ). Q.0 )) s
t

+ [ (Qu6s.0.0). Q0. 0.1, 065.0.0)) s

where we have set

Qi(s.90.9) := S;[1d" V] (1),
Q(S, q0, q) = (Ql(sv q0, q)’ cee Qm(quo’ q))

Now our first goal is to obtain derivative estimates on u™) with respect to the
‘distinguished’ variable g¢ and second, with respect to all the other variables ¢.
Finally, we also derive the necessary estimates involving the time variable ¢ as
well. It is convenient to introduce the notation

ﬁ(()m-i-l), f(m—i—l)’ ym+D o« (M)™ - R

(4.18)
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defined as
(4.19)

7 (o, ¢) = ul" (000, g0, 9), Q0(0, 90, 9), 0(0, 0, q)).

_ t
FOD (g, q) o= /0 F(Qo(s.40.4). Oo(s. d0.4). O(s. do. @))ds

t
VeD (g, q) = /0 L(Qo(s.40.4). Dy H(Qo(s. 40 q).
(m + 1)V UMV (s, 0005, 90, 9), Q5. 0. 9))))ds.

In Lemma [4.15] and Lemma [.18] below we establish the necessary derivative
estimates on these new quantities. These imply in particular that there exists a
constant C = C(T,r, K) > 0 such that for any (g9, q) € B$m+1), go € K (where
K C M is compact), and forall ¢ € [0, 7] and i, j € {0,...,m}, we have

C, i=0,
(4.20) 1Du™(t,q0.9)| <7 C
— 1 >0,
m+1
4.21)
C, i=j=0,
D24 4. Moo < | ey (=) andi>0)or (-] =0, maxii, j} > 0),
c L
W, i#j,i,j>0.
and
m
(4.22) 1Dgodu™(t.q0.q)) < C, Y (m+ 1)|Dg, d,u™ > < C,
k=1
and
(4.23) 19.:u™(t,q0.9)| < C, |92,u"™(t,90.9)| < C.

Let us notice that by definition and the assumption (H10), u is bounded on
[0, T] x K x A, forany K € M compact and r > 0. Therefore, ™ is uniformly
bounded (with respect to m) on [0, 7] x K x B,

Now, all these properties allow us to verify the assumptions of Corollary
and conclude by this that there exists # : [0, T] x M x £,(M) — R such that
after passing to a suitable subsequence (1™),,cn converges to i in the sense as

described in Corollary [3.17] Let us notice furthermore that #(z, o, i) has to be

the limit of u(z, go, ;L,(]mH ) (since by Proposition u(t, qo,-) is continuous)

and therefore # and u must coincide. Thus, as a consequence of Corollary [3.17|
u e CLL(0, T] x M x 92, (M)). O

loc
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2764 W. GANGBO AND A. R. MESZAROS

COROLLARY 4.14. Under the assumptions of Lemma .13 we have that the vec-
tor field M > q — Dgult,q, ) is globally Lipschitz, uniformly with respect to
(t,n) €0, T] x By forany r > 0.

PROOF. Letr > 0,7 € [0,T],and u € %By. Let g1,q2 € M. Let (ity)neN be
a sequence in %, such that W (u,, u) — 0asn — —+oo and spt(u,) = M for

all n € N. By Proposition iii) we have Dgu(t, qi, in) = Vo2 (t, iin)(qi),
i = 1,2. Inlight of Proposition|I.3]and Lemma[3.11|there exists C = C(r,T) > 0
independent of 7 such that

|Dqu(t.q1. n) — Dqu(t. g2, pn)| = [V % (t, un)(q1) — Vo % (1, un)(q2)|
< Clg1 — q2|.

By the continuity of Dgu(z,g;,-) provided in Lemma [4.13| one can pass to the
limit with n — 400 to obtain

|Dgqu(t,q1. in) — Dgu(t. g2, un)l < Clq1 — g2
The result follows. O

LEMMA 4.15. Let ﬁgm—H), .f(m"'l), and VMtV be defined as in #@.19) and sup-
pose the assumptions of Lemmad.13|are fulfilled. Then, for T,r > 0 and K C M
compact, there exists a constant C = C(T,r, K) > 0 such that for any (qo,q) €

B+ yith go € Kandi,j €{0,...,m}, we have
(1)
(m+1) C’ i:O’
Dy, il =y C
ity (g0, q)| < Lo,
m+1
and
N C, i =0,
Dy, F™ V(o) < ¢
— i>0.
m+1
2)
~(m+1
‘Dgqu“(()er )(qo,q)\oo
C, i=j=0,
C
- T (i=jandi >0)or(i-j =0and max{i, j} > 0),
=\m
C
VTG [ .s .’ i > 0’
CESTRRR
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and
13,4, 7"V (G0, 9o
C, i=j =0,
¢ ({=jandi >0)or(i-j =0and {i,j} >0)
T = jandi or (i - j = 0and max .
5 m + 15 ! .] .] l’.]
iAo
e F 0]
3)
m ) C, ifi =0,
D, v )| < C
Dy (0.9)] = . ifi>0.
m+1
4)
‘Dgfqiv(m+l)(q0’q)‘oo
C, i=j=0,
<!ImT 1 (i=jandi >0)or (i -j = 0and max{i, j} > 0),
C oy
— .
(m + 1)? /

As a consequence, ulm) defined in {.17)) satisfied the estimates (4.20) and (4.21))
from Lemma[4.13]

PROOF. As the computations to obtain the corresponding estimates in the case
of 17(()m+1) and f n+1) are completely parallel, we perform these only in the case

~(m+1)
of u .

(1) In the computations below, to facilitate the reading, we will display neither
the time nor the space variables in Q;. Fori > 0, we have

~(m+1)

inuo (610, C])
4og) = Dyug" Q0. Q0. 0)Dy, Qo + D™V (Qo. Q0. Q) Dy, Qi

+ Z Dqku(()m+1)(Q0’ QOv Q)DQi Qk

k=0,k#i
Now, let us recall that by assumption (H10) we have

1
Dyuo(y. 1) = VuZ(w)(»). u™V(.q0.91.....qm) = o (y, "),

forall u € H2,(M), all y € spt(p), and all go, ¢1, ..., ¢gm € M. This implies

Dyud™V(v.q0.9) = Dyuog(y. p" V) = Vi % (") (v).
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2766 W. GANGBO AND A. R. MESZAROS
and so
1
" (gi.90.9) = Dyuo(gi. pI"V) = Vo % (ud™V)(gi)

4.25)
= (m+ 1) D4 U (g0, q)

foralli € {0,...,m}.

Let us notice that by (HIT)—(HI2), Lemma[4.16, and Lemma provide pre-
cise regularity estimates on the discrete flow (Q;)yL ), with a positive constant

C = C(T,r, K) such that

(m + 1) Dgu™ (0. Q0. 01..... Om)| < C.
and
1D, ul™ Q0. Q0. Q1..... Qm)| < C.

so (1) follows by combining the previous arguments with Lemma .16
(2) Differentiating (4.24)) with respect to ¢; one obtains

Dt?,q, —H)(QO’Q) qu Qo D +1)(Q0» Qo. Q)Dg; Qo

+ 2 Dy, QD24 18" P (Qo. Q0. Q) Dy, Qo

k=0
+ Dyul™(0o. Q0. 0)D2., 0o

+ Z Dq] Qqu/‘q] (m+1)(Q0 QO? Q)DQI Qk

k,l=0

m
+ 3 Dyul™ (0o, 0o, Q)2 O

k=0

>From (4.23) we observe again for any i € {0, ...,m},

1
D2 u$" (g1, q0.9) = D2uo(gi. n"*V) = Dy Vi % (1" V) (41)

= (m+ 1D, U (g0, 9).
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Thus, ifi, j > 0andi # j,

1
D2, 15" (q0.9)|

C n
< e 1 1)[DGg, Ug™ (0. Q)

+ Z 1Dg; Oklool D24, 15"V (00, Q0. Q)loo| Dg; Qolos

k=0

- C
+ (m + 1) Dg UV (00, 0)

(m + 1)

+ Z Dg; Qklool D2, 4, 46" (0, Q0. Q) ool Dy Qoo

k=0

+Z|qu Ql|00‘Dq]\q1 (m+1)(Q0 QO Q)‘ |Dq1 Qk|00
k#l

+ Z‘Dql\u(m-i-l)(Qo’ Q0. Q)||D2.4. Okl

Let us recall that by our assumptions, there exists C = C(T, r, K) such that

(m+1) c (m+1)
|D3040Uo (Q0. 0)| = .| D20 (0. Q0. 0)] < pt
D2, us" (0. 00.0)|, < ’"L“’ =l
0> 0, iy C
ql‘ql o© (m+1)2’ k 7é l,
(m+1) C
|Dgug” " (Qo. Q0. Q)] < ——

and by Lemma and by the assumptions on Uémﬂ),

(m+1) C
D4, U, , < .
[DgoUp" " (Q0. O] = -

Therefore, combining the previous arguments and computations, we conclude that

m+1)
‘Dqlq] (qo q)‘oo — ( + 1)2

Similar arguments yield that if i = j, we have

~(m+1)
‘DQIQI ) (610 q)‘oo ~m+ 1

The computations and arguments given above yield that

C
1 1
‘qu]o " )(q CI)‘ = C and ‘D‘IOQA gm+ )(q q)‘oo “m+1

and so the thesis of the claim follows.

ifk >0,
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2768 W. GANGBO AND A. R. MESZAROS
(3) Let us set vg := Dp H(Qop, (m + I)VXOU(’""'D(S, Qo, O)). First, we have
Dy;v0 = D2, H(Qo. (m + 1)V U™ V(5. 00. 0)) Dy, Qo

(4.26) + Dy, H(Qo. (m + 1)Vg UV (s, 00, 0))(m + 1)

m
’ Z D;quU(m"'l)(s, Qo, 0))Dy; Ok,
k=0

by using the assumptions (H3) and (H5) on H, Lemma[4.16] and the properties of
D2 UMD we obtain

C C
+
m+1 m+1

m
+m+1) Y |Dg UG5, Q. Q)| oo 1 P Okl
k=1

|D11iv0|oo =

<

c .
ifi > 0.
m+1

The same computation and arguments yield that | D4, vgleo < C.
Now, we compute

Dy, V™ (g0, )

4.27) t
=/0 (DyL(Q0.v0)Dy; Qo + Dy L(Qo. vo) Dg;vo)ds.

Using the smoothness property and the assumptions (H3)) and (H5)) on L, together
with Lemma 4.17, we have that there exists a positive constant C = C(T',r, K)
such that |Q¢(s, )| < C and |Qo(s,-)| < C forall s € (0,1), and so

|DyL(Qo,vo0)| < C and [DyL(Qo.vo)| = C.
Therefore, by combining all the previous arguments, the thesis of the claim follows.

(4) From one obtains

D2, V™ (q0.9)

t
(4.28) = [0 (Dg; QoD2, L(Qo.v0) Dy, Qo + Dy, v0D%,L(Qo.v9) Dy, Qo + DyL(Qo. UO)D,?,-qj Qo)ds
t
+ /0 (Dg; QoD3y L(Qo,v0) Dx;vo + Dy, v9 Dy, L(Q0, v9) Dg;vo + DyL(Qo,v0) Dy, 4, v0)ds.
We first notice that by the arguments from (3), we have that there exists a constant

C = C(T,r, K) such that |Qg(s, )| < C and |vg(s,-)| < C forall s € (0,¢), and
50 [ D3, L(Qo, vo)| < C, |D3,L(Qo,v0)| < C,and |D3, L(Qo.v0)| < C.
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To conclude, from (4.26) we compute

DZ.4;v0 = Dg; QoD}y H(Qo, (m + 1) Dgy U1 (s, Qo, ) Dg; Qo
m

+@m+1) Y Dz, U™V (s,00,0)0)Dy; Qk Dy H(Qo, (m + 1) Dy U™ TV (s, 0, 0)) Dyx; Qo
k=0

+ D, H(Qo, (m + 1) Dy UV (s, @0, 0)) D7, Qo
m

+Dy; @D}, H(Qo, (m + 1)Dy UV (s, 00, Q) m +1) Y D7, U (s, Qo, 0))Dy; Qi
k=0
m

+ D2, H(Qo, (m + 1)Dgy U (5,00, 00(m + 1) Y. Da; 01D} 410U+ (5. Q0. 00)Dy; O
k.1=0

+ D2,H(Qo, (m + 1)Dgq UV (s, 0y, @))(m + 1) Z quq Umt(s, Qo, ..., Q,,,))Df;iqj Q.

>From here, using the assumptions (H5) and (HI3) on H, the estimates on the
quantities DC?OQk Um™m+D and D;’ququ(m"‘l) and Lemma , we obtain that
there exists C = C(7,r, K) > 0 such that

1DZ.4,v0(40,9)] o

C, l:] :O’
C
<dmyg  @=Jandi>0or(i-j =0and max{i.j} > 0).
C i
5 1 .
(m+1)2 g

Combining this with the previous arguments and with (4.28) the thesis of the claim
follows. O

LEMMA 4.16. Form € N and q = (qq, . ...qm) € (M), let

gt = (+DZ%”QGW—SUMW@L

and

Pi(s,q) == Pl[n (m+1)](q,) 0<i<m.

(m+1)°

We set Uém—H)(q) Yy (M(m+1)) and F™+V(q) := 9(/¢L(m+1)) Further as-
sume Uémﬂ) and Fm+1) satisfy Property 3). Then (as in Theorem for

r > 0andt > 0, there exists C = C(t,r) such that for all g € B£m+1), s € (0,1),
andi,j €{0,...,m} we have

C,
(4.29) |1Dg; Qi(s.9)lo0 =4 ¢
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2770 W. GANGBO AND A. R. MESZAROS

and
C. i=j=k,
430) |D? , 0i(s. 9| <\ = FkiF =k i=k# ],
G [ #T#k
PROOF. Let £(-,z) = (o(-,2),...,Em(-,2)) be defined as in (see also
the systems in and (2.7)). By Proposition [C.2] we first observe that
gt =85,
To facilitate the writing, as it is done in Appendix we denote & (¢,-) = £~ (. ),
and so we have

Qi(sv q) = gi (S, é‘(tv q))

Thus, by differentiating and using the estimates on (&g, ..., &) and (o, ..., lm)
from Theorem by denoting |-[oo := |||l oo (gun+1y» We have that there exists

C = C(t,r) such that

|qu Qi(s")|00 = Z |DZ/\-§i(s’é‘0(tv')""’é‘m(t"))|oo|qu'§k(tv')|00
k=0

= [Dz;&i (5,80 ), ... Em(t. - )oo|Dyg; 8i(t. ) oo
+ Z |DZk§i(s’§0(t")v .. -aé‘m(ta'))|oo|qu§k(t")|oo

k#i
C, i =],
e
mrie ! # J.
Therefore, (4.29) follows. Furthermore, since
m
D3, Qi(s.)= Y D g Ei(s.80(t. ). . Em(t,-) D b1, (t.-) Dy, b1, (2.
11,l,=0

+ Y Dy Ei(s Lot ) Gn (6 ) DG g Gy (1) =
11=0

= Y Dg g 65500t )s o bt ) Dy 81y (1) Dy 1y (110

Lh#Dh

+ Y D2 & (. Lot ). o Lt ) D g Gi(t. ) Dy, G (1)

=0

+ Y Dy Eils ot ) bm (DD g Gy (8,

11=0
we have that (4.30) follows. O
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LEMMA 4.17. Let us suppose that we are in the setting of Lemma [4.13| and in
particular all of its assumptions are in place. Let (Q;)7"_, be defined in [@.18)). Let
(90.9) € MY Then (0,1) 5 s — Qo(s,qo.q) is Lipschitz-continuous with a
Lipschitz constant independent of m and for all v > 0 and K C M compact. Let

us notice that (Qo(s. qo.q))se(o.r) solves @13), with data o [;L,(Imﬂ)] and final

condition qo. Furthermore, since (o, [M,(Im+1)])se(o,t) belongs to B ry, for some

B(t,r) > 0, the velocity field
(0.0) x M 3> (s.y) > DpH (y, Vo % (5. 6L [ud"V1(y)))
is globally Lipschitz-continuous after a suitable extension of the velocity field
V% (s. o4 [nd" V] ().

Therefore, classical results in the theory of ODEs imply the thesis of the lemma,
and the bound on Qg(s,-,-) depends only on t, K, and the Lipschitz constant of
the previously mentioned velocity field (hence on r).

LEMMA 4.18. Under the assumptions of Theorem u™ defined in @10)
satisfies the estimates @.22)) and (4.23)) from Lemma4.13]

PROOF. In Lemma we showed that u™(z,-,.) € Cl(l)’c1 (M™+1) with the
corresponding derivative estimates and (4.21)), uniformly with respect to
t € [0,T]. Furthermore, since by Proposition {.10(v), u(-,q, pt) is Lipschitz-
continuous for all ¢, € M x Z2,(M), this property is inherited by u, and
therefore u™ (-, qo. ¢) is Lipschitz-continuous on [0, T] for all (g9, ) € M™*1.

Let us recall now the representation formula @.17) of u™(z, go. q). We fix K
to be the closure of a bounded open set in M and r > 0 such that /L,(]mﬂ) € Bm+L,

The regularity properties of 1) and for almost every ¢t € (0,7) and all
(go.q) € M1 yield

3:u™(t,q0,q) + Dagu™ (t,q0,q) - DpH (qo, m + 1)Dgo U™V (1,40, ))

m
@31)  + Y Dgu™(t.q0.q) - DpH(qj.(m + 1)Dg; U™V (e, 0. 9))
j=1

= L(qo, DpH(go, (m + 1) Dgo UV (t,90,9))) + £V (40, 90, 9)-
Proposition . 10{iii) and @.16) yield
(m + 1)DqOU(m+1)(t,qo,q) = Vw?/(t,ugm“))(%) = qu”(l,QO,MgmH))-

Now, let us notice that by the definition of u  one has the identity

1
quu(m)(t,qg,q) = quu(t,qg,u((]mﬂ)) + — lku(t,qo,u((]mﬂ))(qo).
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2772 W. GANGBO AND A. R. MESZAROS

For an arbitrary a € M, if we set in 2tV (¢, a,q0,q) = u(t,a,uflmﬁ)), we

have that

(m+1) _ ~(m+1)
g Vet go. 118" ) (qo) = Dot ™Vt aqo. )| _

and so
4.32)
(m + 1)Dgo U™V (t, g0, q) = Dgou(t. go. p" ")

= quu(m)(t’ q()v q) - quﬁ(m+1)(t’ C]O, qu Q)
We notice furthermore that #(+1 (with respect to the regularity and derivative

estimates) essentially behaves as ™tV (z, go. go. ¢), and in particular by (@.20)
and (4.21) there exists a constant C = C(K,r) > 0 such that

DotV (¢ g0, 90, 9)| < .
| Dy, (qOQOQ)‘_erz

All these arguments allow us to conclude that
|(m + 1)Dg U0 (1, g0,9)] < C.

Now, we differentiate (4.3T]) with respect to the spatial variables.

Differentiating with respect to go, denoting the variables of #+1 as (yq.¢o. ¢),
we find that there exists C = C(T, K, r) such that if (¢,qo,q) € [0,T] x ]Bgmﬂ)
with g¢ € K, then

‘qua[u(m)‘

= ‘Dgoqou(m)HDpH(qo, (m + l)DqOU(’"H))‘

+ [ Dgou™||D2, H (go. (m + 1) Dg, U™ *V)|

+ (n + 1| Dggu ™| D3, H(go. (m + 1) Dgo U D) DF U V)|

m

+ Z‘D;Oqju(m)HDpH(qj, (m +1)Dg, UMDY 4 T+11
=1

where

m

I:= Z‘quu(m)HszH(qj, (m + 1)quU(m+1))‘(m + 1)‘D§Oqu(m+1)‘
Jj=1

+|Dgo L (g0, DpH(qo, (m + 1) D gy U™ D))

+ |DyL{go. DpH (qo. (m + 1) Dg, U™ V))|| D2, H]|
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and
11 := | DyL(go. DpH (go. (m + 1) Dg U™ VY))|| D2 H |(m + 1)| D]
+ [ Dyo £V (g0, 90.9)| + | Dgo £ ™ (q0. 0. 9).

Thus, using @20), @21)), and the estimates on U "1 from Theorem as well
as the hypotheses on the data H and £+ we have

(m+1)
q0aoU" |

|Dq03tu(m)|
1 1
2 m | N 2
<C+C mem w2 ) |3 | Dy H gy o + 1Dy, U D)
j=1 j=1m
+C+Z ——/m 11Dy, Ny
i=0
m % m :
SC+<Zm+1) (Z(mH)IDq,-f('”“)IZ) <C,
i=0 i=1

This yields the first part of (4.22]), since
DpH (- VU (1. 1" V) () € L2 ("),

with an LZ(u (m+1)) -norm uniformly bounded with respect to m.

If k € {1,...,m}, completely parallel computation gives
|Dq 8tu(m)‘
< |DGeqot ™ || H(go. (m + 1) Dgy U™ V)|

+ (m + 1)|D40“(m)||D1%p (‘10 (m +1)Dy U(m+1))||DquoU(m+1)

+ Z|Dqkqj (m)||DPH(qJ" (m + 1)quU(”hLl)”
+ |Dqku(m>|w\D§pH(qk, (m + 1)Dg, U™TD)|

m
+ Z|quu(m)|(m + 1)|D2,H (qj.(m + 1)Dg, U™ V)||D2
j=1

(m+1)
quUm |

+ |DUL(quDP (610 (m + 1) Dy, U(m+1) )||D2 H|(m + 1)|Dqkqu(m+1)|
+ | Dy £V
C
u™ (m+1)
< C[Dg g™ | + (m+1)|DpH(61k,(m+l)Dqu )|+_(m+1)

+ | Dgy S,

from where, using the same arguments as for the conclusion of the first part of
@22), we find Y7, (m + 1| Dy, d,u"™)|? < C, as desired.
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To show (@.23)), we argue similarly. First, from (4.3T)) we simply have
[
< |Dgou™||DpH(qo, (m + 1) Dg, U™ V)|

m
+ Z |Dq>,~u(m)||DpH(qj, (m + 1)qu U(m-|—1))|
Jj=1
+ |L(q0, DpH(qo, (m + 1)Dq0U(m+1)))| " |f(m+1)|

1

m 2 m 2
1
< C+ | Y mDgu™? > :n—1|DpH(qj,(m +1)Dg, U™TD)2
j=1 j=1
S C’

where we used the previous estimates and the fact that H (go, quu(m)) and f(m+1)
are locally bounded.
Second, differentiating (4.3T)) with respect to z, we find
‘B%t”(m)|
< [3:Dgou™ || DpH (go. (m + 1)D gy U™ V)]
+ [Dgou™)|| D2, H|(m + 1)|3: Dg, U ™1)| +

m
+ Z|athju(’”)||DpH(q,-. (m + 1)Dg, U™HD)]|

j=1
m

+ Y | Dg;u™|| D2, H (gj. (m + 1)Dg; U™ V)| n + 1)]3, Dy, U ™D
j=1

+|(m + 1) Dgo U V(D2 H|(m + 1)|9; Dgo U™ D))

1
m 2 m
1
<C+ (Z(m + 1)|a,quu('">|2) (Z m|D,,H(qj. (m + 1)quU(m+1>)2)
j=1

1

2

j=1
+ C(m + 1)]9; Dg, UMD

1

m 2
+C (Z(m + l)|8,quU(’"+1)|2) .

J=1

Let us notice that by (4.32) we have that

~ C

(m + 1)|3[Dq0U(m+1)| < |8th0M(m)| + IBIquu(m+1)| < C + ﬁ,
where we have used that Z;”:O(m + 2)[3; Dgy itV 12 < C. Relying on the
previously obtained estimates and on the fact that by Theorem[2.3]3),

m
> _(m +1D)[3; Dg, UMV < C.,
ji=1
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the claim in (4.23) follows. O

Recall that throughout this section, we have imposed that (HI)-(H7) and (HS))
hold. We are ready to state and prove the main theorem of this section.

THEOREM 4.19. Suppose the assumptions (HI) through (HI3) are satisfied. Then,
the scalar master equation (4.8) has a unique global-in-time classical solution of
class

Cioe. ([0, +00) x M x 25 (M)
in the sense of Definition[4.6]

PROOF. Let T > 0 be a fixed time horizon. Notice that Theorem {.1]yields that
u defined in is of class Cl(l)él ([0, T] x M x Z25(M)).

Let p € (M), g € M, and ¢ € (0,T). Using the representation formula
#@.10), by the dynamic programming principle, we have that for s € (0, 1)

u(t,q, k)
= u(s, S5[1l(q). o3 [u])

+ / L(Sg[11(q). DpH (S:11l(@). Dgu(r, S¢[ul(9), o¢[u]))d T

t
+ [ (sl ot )

Hence,
i u(t,q. ) —u(s, SHul(g). otul)
sl—>n} [ —s
t
= lim { / L(SL[n1(q). DpH(SL{1l(q), Dgu(t. Stnl(q). oilul)))dt

+ / f(Si[ukq),o;[m)dr},

where both limits exist and are finite, due to the continuity of the integrand on the
right-hand side. Using the chain rule with respect to the measure variable (provided
in Lemma[.20), this is equivalent to

dru(t,q. ) + Dqu(t.q, ) - DpH(q, Dgu(t.q, 1))
+ /M Vatt(t,q. 1)(¥) - DpH (y. Vi 2 (s, 1) () 11(dly)

= L(q, DpH(q. Dgu(t,q. 1)) + f(q. )

Here we used that the optimal curve T > St[1](q) satisfies (@.14), while the curve

T > ol[u] solves the continuity equation (C.4).

Using that by Proposition . 10(ii)
Dou(t,-,p) = V% (t, n)(-) pn—ae.,
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one obtains
flg, ) =0wu(t,q. ) + Dgu(t,q, 1) - Dy H(q, Dgu(t,q, 1))
+ /M Vau(t, g, 1)(y) - Dy H(y, Dau(t, y, i)du(y)

— L(q. DpH(q, Dgu(t.q, 1))
= du(t,q, n) + H(g, Dqu(t.q, )

+ / Vuu(t.q. 1)(y) - Dp H(y. Dgu(t. y. w))p(dy).
M

where we have used the Legendre duality in the last equation. The arguments
in Section imply in particular that u also satisfies the condition (@.9). This
completes the existence part of the theorem.

Uniqueness. Let u € Ckl);l([O, T] x M x %2,(M)) be a solution to (4.8). Let
t€(0,7), e P(M),and z € H be fixed such that {§(z) = u. Using the vector
field Dp H (-, Dgu(-.-,-)), let (05)se(0,r) be the unique solution to the continuity
equation

0505 + V- (05Dp H(-. Dgu(s, -,05))) =0 in 2'((0.1) x M),
O = (.

Since Dgu is locally Lipschitz on [0, 7] x Ml x &7,(M) and the vector field M >
g — Dgu(t,q,v) is Lipschitz, uniformly with respect to (z,v) € [0, T] x %, the
existence and uniqueness of o above follows from standard arguments and from
the adaptation of theorem 3.3 from [30].

Then, in H we consider the ODE

Xy = DpH(xs, Dqu(s, x5,05)), s € (0,1),
Xt = Z.

(4.33)

(4.34)

This has a unique continuously differentiable solution x : (0,¢) — H.

CLAIM 1. We have that (x,) = 0.
PROOF OF CLAIM 1. Indeed, let us denote o := f(xs); we have

asas + V . (EstH(' N un(S, ',Us))) == O,

in the sense of distributions. But the vector field (s, q) — D, H(q, Dgu(s.q,0s))
induces a unique solution to the continuity equation; therefore o and ¢ must coin-
cide and the claim follows.

CLAIM 2. The unique solution x to (4.34) satisfies the Euler-Lagrange equa-
tions

DL (3. ¥4V F (1) = 0Dy, x}) and DyLx(0).X'(0)) = VZo(x(0)).

a.e.in Q2.
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PROOF OF CLAIM 2. Let us notice first that by our assumptions D, L(g, - ) and
D, H(q,-) are inverses of each other for all ¢ € M. Furthermore, we have

DqL(q. DpH(q, p)) = —DqH(q, p) Y(q.p) € M xR,
Indeed, this last equation is a consequence of the Legendre-Fenchel identity
H(q.p) = p-DpH(q, p) — L(q. DpH(q. p)).
Now, from by continuity, by (HI0), and by the fact
Vo % (05) (xs) = V().
one can deduce that
x'(0) = Dp H(x(0), Dquto(x(0). 09)) = DpH (x(0), Vi %o (00)(x(0)))
= DpH(x(0). VZ(x(0))).

which by inversion of D, H (x(0),-) is equivalent to

Dy L(x(0),x(0)) = V% (x(0)).

0
Then, from (4.34), again by inversion of D, H (xs,-) we have

Dy L(xs,x5) = Dgu(s, x5, 05).

Since u € Cl(l)’c1 ([0, T] x M x &5 (M)), for a.e. s € (0,¢) we have
(4.35)

d
gDUL(xS,x;) = 05 Dqu(s, x5, 05) + ngu(s,xs,as)DpH(xs, Dgu(s, x5, 05))
+ [ VuDgu(s. . 0)(@) Dy Hia. Dgu(s.a.03))05(da)
M
= 0sDqu(s, xs,05) + quu(s, Xs,05)DpH (x5, Dgu(s, xg,05))

4 f DgVut(s, x5,05)(@) - Dy H(a. Dgu(s. a,05))o5(da).
M

a.e. in €2, where we have used (4.9) in the last equation. Let us note that the
previous computation is meaningful. Indeed, by the regularity on u (see also the
arguments in Section [5.1)), we can differentiate the master equation (4.8 with re-
spect to ¢, and so for ! ® Z%-ae. (s,q) € (0,¢) x M and for all v € 25 (M)
we have

aSun(S’ qv \)) + ngu(&q, V)DPH(q’ un(sv q5 V))
(4.36) +/ Dy Vyu(s,q.v)(a)DpyH(a. Dyu(s,a.v))v(da)
M

= Dg f(q,v) — DgH(q, Dgu(s,q.v)).
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We notice that (HIO) implies that D, f(g,v) = V% (v)(¢) and so, by combining
(#.35)) and (@.36) one deduces

%DUL(xs,x;) = Dy f(xs,05) — DgH (x5, Dgu(s, x5, 05))
= Vyu F(05)(Xs) + Dy L(xs, Dgu(s, xs, 05))
= Vﬂ:(xs) + Dy L(xs, Dyu(s, xs,05)),

and so the claim follows.

CLAIM 3. Foreacht € [0,T] and u € Z»(M), u(t,-, u) is uniquely deter-
mined on spt(u).

PROOF OF CLAIM 3. By the strict convexity of the action, the previous claims
show that (xs)se(0,r) is the unique solution in the action minimization problem

(L.5) for U (t,z) Butsince U € Cklx’:l([O, T] x H) (as we showed in Proposi-
tion [I.5(ii)), we have at the same time that the optimal velocity for this curve is
Dy H(xs, V% (s, xs)), and so, by the convexity of H in the second variable, one

deduces that
Dgu(s, xs(w), 05) = VU (s, x5)(w),

fora.e. w € Q. This further yields that the vector field g — D4u(s, g. o) is unique
(i.e., does not depend on the solution u) on spt(oy) for all s € [0, ¢]. From here
we also deduce that for each u € &7, (M), the solution to the continuity equation
(#.33) is unique (independent of the solution u) and this corresponds to the unique
minimizer in the action minimization problem, i.e., to the solution to (C.4).

Now let g1 € spt(u) and let (¢s)se(0,r) be the unique solution to

q;‘ = DPH(qS’un(S’ qS’US))v s € (07 t)v
qr = 41.

(4.37)

It is clear that g5 € spt(os) for all s € [0, ¢]. Moreover, for each fixed g1, the curve
solving (4.37) is unique (independent of the solution u).
Using the Legendre duality, the master equation for u can be rewritten as

dsu(s.q.v) + Dqu(s.q.v) - DpH(q. Dgu(s.q,v))
—i—/ Vwu(s,q,v)(a)- DpyH(a, Dgu(s,a,v))v(da)
M
= f(q’ V) + L(q’ DPH(qv un(sv qv U))),
and replacing in (g, v) = (¢, 05) the chain rule gives us
d
(4.38) s (u(s,qs,05)) = f(gs,05) + L(Qs’ DpH(gs, Dgu(s, gs, Us)))-

Now, let u € C 1’1([0, T] x M x &(M)) be another solution to (4.8) in the

loc

sense of Definition By the previous arguments one has Dg,iu(s,q,05) =
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Dgu(s,q.05) for all s € [0,¢] and ¢ € spt(os). Then, similarly to (.38), one
has that

d
(4.39) a (u(s.gs,05)) = f(gs,05) + L(Qs, DPH(CISv Dq“(s’%,as)))-

By defining now w : [0,¢7] — R as w(s) := u(s, ¢s,05) — U(s,qs, 0s), we have
that w’(s) = 0 (by subtracting (#.39) from (.38)) and w(0) = 0. Therefore one
must have w = 0 and so u(s, gs,05) = u(s,gs,0s). By continuity one has also
that

u(t,qr, ) = u(t,q1, ) Yqi € spt(p).

CLAIM 4. u is a unique solution to (@4.8§).

PROOF OF CLAIM 4. It remains to show that if ¥ and u are two solutions to
#@.8), one has u(t,q, ) = u(t,q, p) forall g € M \ spt(it). Suppose that u does
not have full support; otherwise there is nothing to prove. Let go € M \ spt(u). For
e > 0 let pe stand for the heat kernel centered at 0 with variance ¢ > 0, and define
Ue := W * pg. Then one obtained a fully supported smooth probability measure .
such that W (i, pte) — 0 as ¢ | 0. Therefore, we have

u(t, qo. pe) = u(t, qo, pe)-

By the continuity of both u and p, with respect to the measure variable, one can
pass to the limit as ¢ | 0 to obtain that

M(l, qo0, /’L) = ﬁ(t’ q0, I'L)v

as desired. O

Despite the fact that the velocity field v(z,-) := Dy H (-, Vyy% (1, ) appear-
ing in the continuity equation (C.4) typically does not belong to 7, Z7>(M), we
have the following chain rule (cf. [[39] in the compact setting).

LEMMA 4.20. We assume that the hypotheses of Theorem take place. Let T >
0, 10,2 € (0,T), s € (0,2), g € M, and n € P, (M) and let (0,1) > s +> ol[u]
be the solution to the continuity equation (C.4). Then

i u(fo.q. k) — u(to.q. ot [u])
m

s—t r—s

_ /M Vuu(to.q. 1)(¥) - Dy H (v, Vo2 (1. 1) (9))e(dy).
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5 Further Implications of the Scalar Master Equation
5.1 Improvements on the notion of weak solution to the vectorial master
equation
Let us recall that the first part of Theorem asserts the existence of u €
Ckl)él([O, T] x M x &7,(M)), which satisfies the scalar master equation

deu(t,q. ) + H(q, Dgu(t,q, 1))
+ /M Vwu(t,q, w)(y) - DpH(y, Dgu(t, y, w)(dy) = f(q, ).

Let us observe that all the terms in the previous equation are locally Lipschitz-
continuous with respect to the g-variable. Indeed, except the nonlocal term, the
Lipschitz continuity of the others is a consequence of the regularity of u and the
data. Setting v(z, y) := DpH(y, Vw?/(t, /L) (y)) and denoting by v(z, - ) the pro-
jection of v(z, -) onto T}, &> (M), we have that

/ Vult, g () - vt y)u(dy) = f 1 (1. g . y) - T ) (dy),
M M

where ®; is defined in Corollary This relationship holds because we have
that Vy,u(t, g, i) () is the projection of ®1(z, g, p.-) onto T, &> (M). Since

@1 € CL1(0, T] x M x 22,(M) x M),

loc

G.D

the function g + [y, ®1(z, g, 1t y) - v(t, y)pu(dy) is locally Lipschitz-continuous
and for (Lebesgue) a.e. ¢ € M, we have

/M Dy Vuwu(t,q. ) (y) - v(t. y)uldy) = /M Dy ®y(t.q, . y) - 0(t. y) pu(dy).
Therefore, we are allowed to differentiate (5.1)) for (Lebesgue) a.e. ¢ € M to obtain
1 Dqut,q. ;1) + DgH (q, Dgu(t,q, 1)) + Dju(t,q. ) DpH(q, Dgu(t,q, jv))

+ /M DgVwu(t,q. ) (y) - DpH (v, Dqu(t, y. m))u(dy) = Dq f(q. p)-
By Proposition 4.10{iii) we know that for all (¢, 1) € (0, T) x P2(M),

Dgu(t.-. ) = V% (t, 1)(+) onspt(u),

where % is the unique solution to (4.1)). Since D4u is locally Lipschitz-continuous
with respect to all of its variables, it serves a natural extension for V,, Z (¢, i) ()
to the whole space, and so we have

Vo % (1, 1)(q) + DgH(q, V% (1. 1)(q))
+ Dg Vo % (t. 1)(q) Dp H (g, Vo % (1. 1)(q))
n /M DgVastu(t.q. 1)) (y) - Dy H(y. Vs (1. 1) () (dy)
= Dq fq. 1) = VwZ (1)(q),

5.2)
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forall (¢, u) € (0, T) x H2(M) and for (Lebesgue) a.e. g € M.

In Theorem we have seen that 7 := V% solves the vectorial master
equation (4.2) when the variable ¢ needs to be taken in spt(i). Since we have a
correspondence between all terms in (4.2) and (5.2)), except the nonlocal ones, we
can deduce that we must have

MV V) 1 q)
= N[V V5, % T 1. q)

_ /M DgVau(t.q. 1)(y) - DpH(y. V% (t. 1) (y)pa(dy)

for £%-ae. g € M.
This fact implies furthermore that

/M DgVuwu(t,q, n)(y)DpH(y, Dqu(t, y, w))(dy)
(5.3) = /M Vu Dgu(t,q, 1)(y)DpH(y, Dgu(t, y, u))p(dy)

- /M V2% (1. ) Dp H(y. Dau(t. . j)p(dy)

for all 1 € P»(M) and for L' @ Z%-ae. (t.q) € (0,T) x M, which shows in
particular that the function u constructed in the first part of the proof of Theorem

M.19] satisfies also (@.9).

All the previous arguments allow to formulate the following:

PROPOSITION 5.1. The weak solution V' to the vectorial master equation (4.2))
provided in Theorem[.4| can be extended in a Lipschitz-continuous way to [0, T'] x
P> (M) x M such that this extension still solves (4.2)) at every (t,u) € (0,T) x
P> (M) and at L% -a.e. ¢ € M.

Remark 5.2. Relying on the very same procedure as in Theorems [2.3| and [3.16] if
we assume higher regularity properties on the data (as H, L € C* with uniformly

bounded fourth-order derivatives, .7, % € Cliél’w and fiug € Cliél), one can

improve further the regularity of both ¥ and % (as u € Ckz);l and 7% € Clgél’w).
Such improvements would imply furthermore that one could have the vectorial
master equation satisfied for all ¢ € M (rather than £4_ae.). We do not pursue

the realistic goal of improving the regularity of u only to avoid writing a longer
paper.
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Appendix A Hilbert Regularity Is Too Stringent
for Rearrangement Invariant Functions

Let @ € C2(2,(M)) and let ® € C2(H) be such that @(p) = D(x) if u is
the law of x. Recall that

V23(x)(h, hx) :/qu(vwcp(m)oxh.h* do

(A1)

—i—f V2 5 @) (X (@), X (04))h(@) - ha(wx)dw dws
Q2

if§, & eTyr(M)andh =§oxand hye = &4 0 x.
Fork e Nand g € C2(MF), we define

&Di,k)(x) :=/ g(x(a)l),...,x(a)k))da)l---da)k Vx e H
Qk
and
800 = [ glar..qnldan - pda0) Vi 200,

Let Pj be the set of permutations of k£ letters. Replacing g by its symmetrization

~ 1
g(x1,...,xp) = F Z g(xr(l)’---’xr(k))’

t€ Py

we have &)gc) = 5%“. Therefore, there no loss of generality to assume g is sym-

metric.
We do not know how to write (A.T)) for general h,hy € H\ {fox : § €

T, &> (M)}. In some cases such as when o= E)ék) for some smooth g, then (A.1)
extends to i, hy € H\ {§ o x : & € T, F»>(M)}. This can be checked by hand by
writing the Taylor expansion of second order of

g(x(a)l) + h(wr), ..., x(wg) + h(a)k)).

Another example is when
1
(a2 o) =6(5 [ e v e 2200,

and so P(x) = 60 (% ||x||2) Vx € H. Writing the second-order Taylor expansion,
we have

VB =/ ( 511 ).
and

(A3) V2®(x)(h,h) = 9’(%||x||2)||h||2 + 9”(%||x||2)(x,h)2 Vx,h e H.
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We conclude

(ad Dy(Vu0) =0 (5 [ aPudo))1a Ve 22

and

V2, ®(u)(q.b) = e(é [ IQIZM(dq))q ®b Ve Po(M) Vg.b € spi(u).

Thus, when & is of the form (A.2)), (A.T) continues to hold for all £, i, € H. Note
that the expression in (A.4)) is constant on M. In fact, we shall see this is not a
coincidence, which is the aim of these notes.

Our goal is to show that if D e Cliéa (H), then D, (Vw CD(;L)) must be a constant
function on spt(x). This will allow us to make inference about the dimension

of C2¥(H) N {a)gc)} for any natural number k. In conclusion, the set of ® €

Cliéa (H) may be too small in some sense and a theory of mean field games for

functions ® € C%:%(H) may be too restrictive. Hence, C.2.%" (22(M)) (cf. def.
[3.13) is a better space for a general theory.

LEMMA A.l. Let a € (0,1] and assume ® € c (H) is rearrangement invari-

loc

ant so that it is the lift of a function ®. If (A1) holds for all h,hs € H, then
D, (Vw CD([L)) is constant function on spt(u).

PROOF. Let x € H and let i be the law of x. Fix an open ball B C H that
contains x and choose kg > 0 such that

(A5) (V2B(00) — V28(3) ) (h h) = wgllx = v]|*

forall y € B and all 4, h« € H such that ||&]], ||2«] < 1.
Let o € CZ°(M) be a probability density function whose support is the unit ball
in R? . For Z,7% € R¥ unit vectors and for w,o0 € 82, we set

Be=z02 B =zey/0l olw) =0 € )

Let y € H have the same law with x. We have

(V2®(y) — V2®(x)) (h€, h$)
= /Q (D4(V @) (v(@)) — Dy (Voo @(11)) (x(@)) ) (@) - o (0)
- /g (V20 @0 (2(0). y(@2)) = V2, @) (x(@), ¥(@2)) }h (@) - ha (02 de> doos
A6 _ /Q (D (Vw @) (+(0 + ca)) — Dy (Vu®(0)) (x(0 + €0)) )z - ze0(a)da
+ed fgz V2, ®(u)(y(0 + €a), y(0 + €b))z - zx Vo(@o(b)da db

— e / V,%WCD(;L)(X(O +ea),x(o + eb))z -zx.v/o(a)o(b)da db.
Q2
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Since @ € CL1(B), V2., ®(uw) is bounded, we use (A.6) to obtain that if o is a
Lebesgue point for (Dy Vi, ®(11)) o y and (Dg Vi, @()) o x, then

lim (V2@(y) = V20(x) ) (k. )

= (D4(Vu @) (7)) — Dy (Vu ®(10)) (x(0)) ) - 2.
This, together with (A.5) implies that if y € B then
(AT [Dg(Vw (W) 0 y(0) = Dg(VuwP(w)) o x(0)| < kpllx — y|*.
In the spirit of the proof of Lemma[3.11] set
Qo 1= {a) € Q | w is aLebesgue point for x, DgVy, ®(1) ox} Nx~Y(spt(w)).

Note that £2¢ is a set of full measure in €2 and so, x(£2¢) is a set of full u-measure.
In fact, we do not know that x (£2¢) is Borel, but we can find a Borel set A C x(2¢)
of full p-measure.

Assume in the sequel that 0 € 4 and set g1 := x(0). Assume we can findo € A
such that g» = x(0) # ¢g1. Let r > 0 small such that B, (o) N B;(0) = &. Set

w, ifweQ)\ (Br(o) U Br(5)),
Sr(w):=sw—0+o0, ifwe Br(o),
w—0+o0, ifwe B(0).

Since S, preserves Lebesgue measure, x and y := x o S, have the same law u.
We notice

l=yP=2[ v -x@+7-0dz
B, (0)
and so, for 7 small enough, y € B. By (A.7) implies
D4V ®(11))(d2) = Dy (Vuw ®(10)) 1)

= | Dy (Vu®(w)) © ¥(0) = Dy (Vu®(w) 0 x(0)]

< KB(zf (@) - x(z +5—o)|2dz)2
B, (0)

We let r tend to 0 to conclude the proof. O

PROPOSITION A.2. Forany a € (0,1] and k € N, we have

loc loc

dim (Cz’“(H) N{D, : g € C24MFK), | D2g||L < oo}) < 0.

PROOF. We aim to use Lemma since this asserts that Dy V,, @ (1)(q) is a
constant matrix C () which depends only on p.

In particular, in the case of k = 1, we have D;Vy, ®g(1)(q) = D?g(q), and
this being constant implies that g is a polynomial of degree 2, so the claim follows.
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For k € N general we have
DeVus @ = [ D} 8.2 @) . ()

+ /Mk_l Dy 0 8@1.42, - qk—1, Qp(dqn) . .. p(dgr_y).

In fact, by [21]]
C(u) = Dg Vi P (1)(q)

(A.8) =k ka1 D ,8(4.q2. .- qr)i(dq2) ... p(dgy)

(A.9) = kakl Dy 0 8(q1,q2, .. qk—1. Pp(dq1) . .. p(dgi—1),

pu-a.e. For simplicity, let us set & = 2 (the proof of the result for general k € N
follows along the same lines). Let @ € M and ¢ € Cp(M) be a fully supported
probability measure and let p. be its standard rescaled function. The measures
0¢(g — a) have the whole M as their support, and so

/M D3 4,8(q.92)0e(q2 —a)dgy = /M D3 4,,8(@.42)0e(92 —a)dgqy ¥q.q € M.
Letting € tend to 0 we conclude

2 _n2 =
Dqlqlg(q’a) - Dqlqlg(q’ a)‘
In fact,
2 _ N2 —~ N _ n2 _ N2 =
Dq1q1 g(qv a) - Dq1q| g(q’ Cl) - qung(av q) - qung((l, q) - C(a)

>From these arguments, one can conclude that both g1 — Dgl N g(g1.a) and
gs > Dgzng(a, g») are constants for all ¢ € M; therefore the g, +— g(g1,a)
and g2 — g(a,g>) are polynomials of degree at most 2 for all ¢ € M. By an
adaptation of the result of [18] we conclude that g needs to be a polynomial of
degree at most 2. The result follows. O

COROLLARY A.3. Similarly, for the example in (A.2), if ® € Clig“(H), then by

Lemma(A.1|and (B:4) we have that 6(t) = cot for some co € R.

The result from Proposition in case of k = 1 is the consequence of the
proposition below, where we show that assuming even only C? regularity (instead
of C?%) for functionals on H having local representations might result in triviali-
ties.

PROPOSITION A 4.
CH)N{D, : g € C3(M), | D?gllre < 00, [ID3gllLe < 00, D3g # 0} = 2,
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and so
C*(H) N {®, : g € C*(M), |D?g|lL < 00, | D3gllLe < 00}
is a finite-dimensional space.

PROOF. For simplicity, let us suppose that ¢ = 1 and so = [0, 1]. The result
in higher dimensions follows from similar arguments.

For x, y € H we can write the following expansion for ®g:
(A.10)

/ g @)do — / (@) do — / ¢ (@) (@) — x(@))dw
Q Q Q

1
-5 / g"(x(@)(y(@) — x(w)*dw
Q

1,1 p1
:f / / / t2sg" (x(w) + ts1(y (@) — x (@) (¥ (@) — x(0))> dr ds dt dw.
2 Jo Jo Jo

By the assumptions on g’”, there exist constants cg, ¢, having the same sign, such

that on a bounded open interval ¢g < g”’ < ¢;. Without loss of generality, let us
suppose that this open interval is (—1, 1) and 0 < ¢¢ < ¢g.
CLAIM. The right-hand side of (A.10) is not of order o(||x — y||?) when x = 0.

PROOF OF THE CLAIM. Let x(w) = 0 and y,(w) = 0" forw € Q andn € N.
Then clearly |y, |?> = ﬁ — 0 asn — +o00. We write the previous expansion
for y, and x. In particular, the remainder satisfies

1 p1 p1
€ y(w)dw < / / f / 2sg" (tstyn(w)y(w)dt ds dt dw
(All) 6 Q QJO JO JO

=2 [ o
6 Ja

We easily find fol v (w)do = #_H Therefore dividing (A.T1) by ||v,||*> and
taking n — o0, we find

20 o i ! //Tfl’z "5 tyn(@)y3 @)t ds di do < -5
— im —— s sTyn(w w)dtds w < —.
18 = oo lyal2 Jao Jo Jo 108 RN 18
The claim follows and so does the thesis of the proposition. O

Appendix B Convexity Versus Displacement Convexity

B.1 Displacement convexity versus classical convexity

Using the terminology of [[14], in this section will consider weakly Fréchet con-
tinuously differentiable functions ¥ : &, (M) — R and denote their weak Fréchet
differentials as fs—z : R x P (M) — R. Let ¢p1.¢ € C2(M) be functions of
bounded second derivatives such that ¢ is even. Set

%w:;@mwwmwxue%M)
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and
V() = i) + /R P@ude). e Pr00).
Remark B.1. Recall from [14] that is monotone if and only if ¥ is convex

in the classical sense. Furthermore, the function #] is a twice weakly Fréchet
continuously differentiable function, and

¥4
S—MI(q,m (¢1 * 11)(9). —(q 1) = (@1 * (@) + ¢(q),

and

52"// 82y
1(61 Yo ) = 5 (G, y. 1) = ¢1(g — y).

LEMMA B.2. If we further assume ¢y € L1 (M), then 88_;/: is monotone if and only
if the Fourier transform ¢y is nonnegative.

PROOF. Denote the Fourier transform of ¢; by $1 Note that for any f €
LZ(M) by Young’s inequality we have ¢ * f € L2?(M), and so f(¢1 x f) €
L'(M). By the Riemann-Lebesgue lemma, q§1 € Co(M). Furthermore, (]51 is even
and has its range contained in the set of real numbers. By Remark B.1]§¥% /8 is
monotone if and only if #] is convex. Thus, using the expression of §27%; /8>
in Remark we conclude that §%'/§p is monotone if and only if for any f €

C (M) N L?(M) such that Jy f(@)dg = 0wehave 0 < [pa (1 * f)(q) f(q)dq.
Thanks to Plancherel theorem, §% /§u is monotone if and only if

0< / $1 % [(6) F*(§)dE = f 1 (&) f (&) f*(E)dE = / 1 (O f(©) dé.
R4 R4 R4

This concludes the proof of the lemma. U

LEMMA B.3. Assume A > 0, Ay € (=A/2,A/2), ¢ is A-convex, and ¢1 is A1-
convex. Then

(1) 7 is k-displacement convex, hence displacement convex, where k ;= A —
2|)Ll| > 0.

(i1) If we further assume ¢y is nonnegative, ¢1 = 1 on the unit ball, and
¢1 = 0 outside the ball of radius 2 centered at the origin, then ¥V fails to
be convex in the classical sense.

PROOF. (i) As above, denote the Fourier transform of ¢ as $1. Let us consider
o € AC5(0, 1; #23(M)) to be a geodesic such that its velocity v is not identically
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null. Since ||v¢||o, is independent of ¢, it is then positive. We have

d_zy/(g)—/ D?¢(q)ve(q) - v:(9)o¢ (dq)
172 1) = " q)velg) - ve\q)olaq

4 / D2$1(q — w)ve (@) - ve (@) (dq)or (dw)
M2

+ [ D = w)ue(a) - ve(won(dor(du)
> Mol + AaloelZ, — Al = elvrl2,

This completes the verification of (i).

(ii) Since ¢ is even, the range of its Fourier transform is contained in the set of
real numbers (including negative ones). Assume on the contrary that the range of
651 is contained in [0, co). By the Fourier inversion theorem we have for x € M,

61(0)] = ‘ [M 1 (E)P e

< [ BL®)dE = [ $1(6)dE = $1.(0).
M M

Since ¢1(x) = 1 = ¢1(0) on B(0), the ball of center 0 and radius 1, we must
have

(B.1) 1(8) cos(2mx - £) = |$1(E)] = $1(E)  V(x.£) € B1(0) x M.

Since ¢; is not the null function, $1 cannot be the null function. Choose &g such
that $1 (§0) > 0, and since $1 is continuous, we can assume without loss of gener-
ality that & # 0. By (B.I), cos(2wx - &) = 1 for all x € B;(0), which yields a
contradiction. One concludes the proof of (ii) by Lemma[B.2] U

B.2 Convexity versus displacement convexity of the action

Here we would like to emphasize the fact that imposing the joint convexity as-
sumption on the Lagrangian action, as in (H7), comes as a natural assumption
for displacement convex potential mean field games, which are considered in this
manuscript. We compare this to the more standard monotonicity assumption in
potential MFG.

Assume L, H € C'(M x R?) are such that H(q,-) and L(q, -) are Legendre
transforms of each other. We consider the actions

;z{OT (o,v) := /

0

T

([, Havetanontaa) + 7o) a
over the set of pairs (o, v) such that
(B.2) 30 +V-(ov)=0 2'((0.T) x M).

Recall that if we set V f(q, ) := Vy F(1)(g) then f monotone means .# is
convex.
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We can rewrite JZ/OT (0, v) in terms of the momentum by setting

T T dm a
A (0,1]) = L(q. 52 @))ou(dg) + F(o0) ) dt
0 M doy
over the set of pairs (o, 1) such that || < o; and
(B.3) 3o +V-n=0 2'(0.T)xM).

In fact, for each ¢ € M we introduce the function Zq "R xRY > R U {oo},
defined as

pL(g. %) ifp>0,

(B.4) Ly(p.e):= 10 ifp=0,e=0,

+00 otherwise.
Here 0 := (0,...,0). Since L, is homogeneous of degree 1, whenever p is a prob-
ability measure and £, ..., &, are signed Borel measures, the following function

is well-defined:
[ Lowaaae) itlel < .

+00 if |§] &£ p.

Let & be the set of (o,n) such that 0 € AC,(0,T; %, (M)) and t — 1n; €
M(M) x --- x A (M) is a Borel path of vector fields such that each one of its
d components is a signed Borel measure on M and

(B.5) 30 +V-n=0, Z2'((0,T)x M).

(1. §) = A(p, §) =

‘We can now extend the definition of &Z)T over ¢ to obtain

_ T
T (o.n) = /0 (A(or.ne) + F(o0)d1.

LEMMA B.4. If F is convex on P2 (M), then (i, &) +—> A(u, &)+ .F (1) is convex
(we do not assume L is jointly convex).

PROOF. It suffices to show that (u, &) +— A(u, &) is convex. The proof of this
well-known fact can be found in [43} prop. 5.18]. U

Remark B.5. (i) Note that the classical theory of potential mean field games in
which it is assumed that f is monotone and L, H € CY(M x R%) are such
that H(g,-) and L(q,-) are Legendre transforms of each other, This ensures that
(&) — A(u, &) + Z(u) is a convex function. Therefore, if we extend the defi-
nition of JZZ)T to obtain

_ T
T (0.7) = fo (A0 70) + F(00))di

over %, the action szf;T is a convex function in the variables (o, 1).
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(i) When replacing the assumption of convexity on the action by an assump-
tion of displacement convexity, as it is done in this manuscipt, it seems natural to
impose that JZ/OT (0, v) is displacement convex on the set of pairs (o, v) satisfying
(B.2). This means that

HxH>(X,V) / L(X.V)dw + .Z(X) is convex,
Q

and thus the Lagrangian L is assumed to be jointly convex on M x R4,

B.3 Convexity of f(-,n) is a consequence of the displacement convexity
of F

To study the scalar master equation, among others we have imposed the as-
sumptions and on the functions f and .#. As we have detailed in the
previous couple of lines, in our setting it is natural for the Lagrangian L to impose
joint A-convexity, and we impose that .% is displacement A-convex. We show be-
low that in this sense, imposing (4.7), i.e. that f(-, i) is A-convex, is also natural,
and it is a consequence of the displacement A-convexity of .%.

PROPOSITION B.6. Let & : P,(M) — R and f : M x P,(M) — R be of
class C? such that they are related via (HI0). We assume that F is displacement
A-convex; Mix 25(M) 3 (q. 1) = DV F(1)(q) = DZ, f(q. 1) is continuous
and that for any & C PH(M) compact, there exists C = C(#) > 0 such that

D3, 7 (W)(q1.92)| < C forany p € X and for any q1, 42 € spt(w).
Then, for any p € ZP»(M), the function spt(it) > g — f(q, 1) is A-convex,
ie.,

D2, f(x. ) = A1y ¥ q € spt(p).
PROOF. Letm € N and define F : (M)™ — R as
F(m)(ql’ i Gm) = y(u((lm)).

By the assumptions on ., we have that F ™) s twice differentiable on (M)™, and
by Lemma itis 2-convex on (M)™. This means in particular that

A
2 -(m) A m
DEFqr. - qm) =+ Ina V(q1. - qm) € (M)

or equivalently

A
a"D2F"™ (g1, ... gm)a > E|a|2md Ya € M",(g1,...,.qm) € (M)",

where | - |4 stands for the standard Euclidean norm on M™. Fori € {1,...,m},
let us choose the vector a € M such that its coordinates between the indices
d(i — 1) + 1 and di are not all zero, while all the others are zero. Then, the
previous inequality implies that

A
B6) DG F™r o dm) = —lg V(@1 gm) € (MD)™.
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We also have (see, for instance, in [21}, remark 3.5(iv)]) that
1
mDg, F™(q1.....qm) = DgVu T (™) @) + — Vi 7 (™) @i 40).

Vm e N, {q1,...,qm} C spt(ug).
Let b € M. By (B.6)), one has that

1
b DV F (™) @) + —b T Vi, F (™) i 4i)b > Alb5.

Vm € N, {q1,....qm} < spt(ug'). Now let us fix u € 22,(M) and q1 € spt(p).
For m > 2 a natural number, let g; € spt(u), i € {2,...,m}, and let us build

(m) ._ xm s
Mg~ =Y i1 8q;,as an approximation of ji.

We have that

1
b Dg Vi 7 (™) gk + —b Vi, F (™) 1. q0b = MBI

Since " :={ Mf]m) :m € N} U {u} is a compact set, by the assumptions we have

that V2 .7 (/L,(Im))(ql,ql) is uniformly bounded by a constant C = C(#") > 0
independently of /. By the continuity of D;V,,.#, one can pass to the limit in the
previous inequality to obtain

bT DgVu F (1) (q)b = AlbIG,

and equivalently
b D7, f(qu b = Alb|3.

By the arbitrariness of » € R? and g; € spt(u), the thesis of the proposition
follows. O

B.4 Failure of smoothness of solutions to the Hamilton-Jacobi equation for
monotone initial data

It is well-known in the theory of Hamilton—Jacobi equations on finite-dimensional
spaces that typically one cannot expect global existence of smooth solutions. This
led to the development of the notion of viscosity solution by Crandall-Lions and
Evans. We emphasize below that this phenomenon of existence of nonsmooth so-
lutions to Hamilton—Jacobi equations is also present on &, (M).

Letusconsiderd = 1. Let L : R xR — R and ¢ : R — R be defined as

v]?
L(g.v):=—. ¢(@)=—y/1+4q%

Set

W) = fR S, us(@) = $(@). L. §) = /R L(q. E@)u(dg).

Note that % is convex, and so U4 iS monotone.
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Let % : [0, 00)x % (R) be the unique viscosity solution to the Hamilton—Jacobi
equation

1
(B.7) U + 5/ Vo % ?u(dg) =0, %(0,-) = U.
R

Assume on the contrary that % is of class C'. Then % must satisfy point-
wise, and so its restriction defined as

ult,q) = U (t.54)

must be a C! function satisfying

(B.8) 8tu+%|8qu|2 =0, u(0,-)=¢
Thus,

(B.9) u(t.q) = min |y2—Q|2+¢(y) yeRe.
Given ¢, the minimum in is attained by y such that
(B.10) Y74 Y _y

t /1+y2

When ¢ = 0, (B.I0) has three solutions that are

yo=0, y1=+vt?2—1, y,=—-v2-1.
They produce in the values
t 1
-1 and —-——.
2 2t
Therefore for t > 1, we have
t 1
1,0) = —— — —.
ut.0)=-3 -7
Since fori € {1,2} we have
i —q? 1yil? |2 lq1?
u(t.q)—u(e.0) = 2L g0 = (- +o0n ) = =L+ 4

+yi/t = j:—”?_l belong to the superdifferential of u(¢,-) at ¢ = 0. Thus, u(z, -)
is not differentiable at 0.

Appendix C Hamiltonian Flows and Minimizers
of the Lagrangian Action

Most of the results of this section are expected to be known in some communi-
ties. We include them here for the sake of completeness and because of a lack of a
precise reference.
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C.1 Hamiltonian flows on the Hilbert space

Throughout this subsection, we impose (HI)—-(H6). Showing that the value func-
tion of our Hamilton—Jacobi equation is of class C1*! on the Hilbert space is the
starting point before improving the regularity property via a discretization method.
We underline that in Section using ‘direct techniques’ relying on the convex-
ity of the Lagrangian action, we have shown already that the value function U is
of class Cl})’cl. In this section, we discuss the regularity properties of the infinite-
dimensional Hamiltonian flow (0.5]), which could also be transfered to the value
function.

Let £,7 : [0,00) x H — H be given by (0.6). Using (1.6) and the last inequality
in Remark [1.1] (iii), we have

€1 JEEx. )| + 1< (V112 +R(x2 + 1) + 1)

for any t > 0 and x € H. We can formulate the following result.

PROPOSITION C.1. Lett € (0,T), u € P>(M), and q € M. Suppose (ty)n, C
[0, T] converges to t, (Jin)n C P2(M) converges to u, and (g,)n C M converges
to q. Then for every compact set K C [0,t), we have

lim |8 [1al(@n) = S5 1@ [ ¢ i) = O-

PROOF. To alleviate the notation, we set y"(s) := S¥[un](gn). It is character-
ized by the property that

tn
(C2) ultn, qn- ptn) = w0 (¥5- 05" [1tn]) + /O (LG y2)+ £ (2ot al) ),

with y! = gn.
We assume without loss of generality that there exists ¥ > 0 such that (i), C
Py and (gn) C B»(0). By Remark|[C.6|(ii)

{05 [unl :n € N,s € [0, 1n]} C Bey(r)-

In light of Remark [4.§] (ii), we may apply the Ascoli-Arzela lemma to obtain a
subsequence that we continue to denote as ("), which converges uniformly in
C([0,t — 8]; M) for every § € (0.¢). We have y € W12(0,¢; M) and may also
assume (y™), converges weakly to y in W12(0,¢; M). We use (@.I1) to obtain
that y; = ¢g. We would like to replace ¢, by ¢t — §. Since the integrand there is not
known to be nonnegative, we use to write

u(tn,CIna Mn)
tll

= wo (¥ 0" [l + /0 0(c" [al) (7] + 1)d

t"
<o+ [ (LO2) + £ 08 ua)) — 00 [ual (721 + 1))
0
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Thus, since all the integrands are nonnegative, we have
lim infu(tn, gn. in)
; t—6
. . n n . . th n
= timinfuo (7§ of lin) + limint [ 002 (ual) 2] + 1o
t—6
+ liminf | (L(y;’, i)+ f (2 ol ial) — 0 (o2 [ual)(|v2 ] + 1))d T.

We invoke the uniform convergence of (y"),, the pointwise convergence of the
curves (67 [ptn])n provided in (C.7), and the convexity of the functions in to
conclude that

liminfu (. gn. tn) = 10 (vo. oG [1])
t—§
+ /0 (L (e 7%) + £ (e 0 lu)) = 0D (el + 1)) d

t—§
+/ 0 (atlpl)(ly=| + Ddx.
0

We let § tend to O to conclude that

t
ot u(tn g i) = w0 (0,030 + [ (Llves0) + £ (et

>u(t,q, |b).

Since Proposition [d.12] asserts that u is continuous, we infer
t
u(t,q. ) = uo(yo. ohlpl) + /0 (L(yr, V) + f (v oé[u]))dr,

and so ys = S¢[ul(q).
In conclusion, we have proven that every subsequence of (S Hin] (qn))n admits

itself a subsequence which converges uniformly on every compact subset of [0, ¢).
This is enough to conclude the proof. U

PROPOSITION C.2. Lett > 0. Then the following hold:
(i) X(z,-) given in (0.3) is of class Clgél.

(ii) é} : H — H is a bijection and its inverse is §(t) For each natural number
m, Et is a homeomorphism {M4? : g € M™} onto {M? : g € M™}. This
means SE™ : MI™ — M™ is a homeomorphism.

(iii) 8! 0 &, = & and P! o &, = 7 for s € [0.1].

(iv) We have VU (t,E(t,-)) = 7(t,-). Furthermore, the vector field B in
is a velocity for the flow E in the sense that § = Vb%z(g, Vu (-, §))

Remark C.3. Although E} is a homeomorphism, let us underline that in Proposition

ii) we state that the image of {M? : ¢ € M"™} through 5} is not an arbitrarily
closed space but is exactly {M9? : g € M™}. Such special vector spaces are
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mapped onto themselves. Otherwise, we would not be able to conclude that the
finite-dimensional ODEs are restrictions of the infinite-dimensional ones.

PROOF OF PROPOSITION[C2L (i) Since 7 is of class C+!, ¥ is Lipschitz-
continuous. Let k* be the Lipschitz constant of V.7. We have

Lip(S(z,-)) < Lip(Z(0,-))e’™

for all + > 0. Here, Lip(X(¢, - )) stands for the Lipschitz constant of 3(z, - ).
Since  satisfies (0.3), we conclude that X is of class C:'.

loc

(ii) Surjectivity. Given any x € H. Set z := §6 [x] and define

y(s) = 8'[x],  b(s) = VoL (y(s), 7(5)).

We have that (y, b) satisfies the same system of differential equations as (5, 7) on
(0, ¢). Furthermore, y(0) = z and

b(0) = Vp-L(8;[x1. 855 [x]ls=0) = V% (2).
Thus, (), b) have the same initial conditions as (5, 7). Hence, conclude that y =
E(-.z) on [0,¢]. In particular, x = S?[x] = £(t.z) = &(t, S¥[x]). This shows the
surjectivity property.
Injectivity. The above shows that §6 is injective and §(r,-) is its inverse. To
show that §(z, -) is injective, it suffices to show that H is the range of 55 Let
Zo € H. Set xo := £(¢, zo) set

y(s) = §(s.20).  g(s) = 77(s. 20)-
Then (y, g) satisfies the same system of differential equations as
[0,£] 35 = (S!xo], P![x0]) on (0.1).
We have y(t) = xo and
g(0) = 71(0, z0) = V% (z0) = Y (y(0).
Thus, (7, £)(s) = (5[x0]. P[xo]) on [0,7]. In particular, zg = y(0) = S} [xo].
Thus, S§ is surjective.

Continuity. Since Et is a bijection of H onto H, (1.27) and the invariance of
domain theorem imply that &; is a homeomorphism of {M? : ¢ € M™} onto
{M1:q e M™}.

(iii) By (ii)

§60§t :ldego and ﬁéogt :V%(géogt)zv%:ﬁo
Since s > (S ! ogt, ﬁst ogt) and s (gs, 7)) satisfy the same system of differential
equations on (0, ¢), we obtain the assertions in (iii).
(iv) We use first Proposition[I.5](iv) and then (i) of tl_le current proposition to ob-

tain that V% (z, g(t, -)) = 7(t,-). We use the identity § = Vb,%’Z (§, 7)) to conclude
the proof. U
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Remark C.4. (i) We notice that Proposition [C.I} which imposes (4.7), allows us
to improve the continuity property of §, and its inverse to the infinite-dimensional
space; i.e., this implies that §, is a homeomorphism of I onto itself.

(ii) We observe that by Proposition iv) we have that V%1 (t,-) =7, §{) [D,
and since both 7 and §6 are locally Lipschitz-continuous (by (i) of the previ-

ous proposition and Lemma respectively) we have that VU (t,-) is locally
Lipschitz-continuous, just as in Section [I.3} by a different perspective one obtains
that Z (1,-) € 11 (H).

loc
C.2 Flows on H and on &2, (M) and their properties

LEMMA C.5. Let x,y € H be such that §(x) = {(y). Then for 0 < s < 1, we
have §(St[x]) = #(SL[y]). As a consequence, given . € P2(M), the following
measures are well-defined

(€3) of[n) = B(S¢1x)
where #1(x) = U depends only on u and is independent of the choice of x.

PROOF. Since §(x) = fi(»), there exist Borel bijective maps S, : Q@ — Q such
that (cf. [13[32])

H(Sa) = §(S, ) =28, lim |ly —x o Su] =0.
Thus,
lim || §2[y] = 8%[x]o Su| = lim | [y]— 8t [x 0 Sa]| = 0.
n—>o0 n—o0

This proves
W (8(SE00). 88t ) = lim Wa(8(SEET 0 S0). 8(SED)) = 0. O

Remark C.6. The following hold.

(i) By Proposition there exists er : [0, 00) — [0, 00), monotone nonde-
creasing such that

IStx1||, [|8sSEx|| < erClixl)  ¥s € [0.¢], Ve € [0, T7.
(i) By (1)

{ollul i€ Br0<s <t <T} C Bopir).

(iii) By Proposition again, there exists C7 : (0,00) — (0, 00) monotone
nondecreasing such that

|V (t,%)|| < Cr(r)(A + |x]),  Vx € B,(0),Vz € [0, T].

(iv) By Lemma , the regularity property obtained on U in Proposition
we have that %/ is differentiable. We use Proposition (iv) to conclude
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that (s,q) — DpH(q, Vi (s, 0l [1])(q)) is a velocity for s > o[u]. In
other words
(C4)

050 L]+ V-(Dp H (-, Vi % (5, 0§ [1]))ot[1]) = 0 in 7((0.£)xM) of[u] = p.

LEMMA C.7. Suppose 0 <t <t < T and r > 0. Then there exists a constant
C(r, T') monotone increasing in r such that the following hold.:

() If x,y € B,(0) then
|S71x] = SIy1|| < €D (T —tler(x]) + lx — ) ¥s € [0,7].

and - -
IS7[x] - STIx]|| < (s — Der(r) Vs € [,7).
@Gi) If w,v € By then

(C.5) Wa(ollul,olv]) < eCCDU) (7 —tler(r) + Wa(u,v)) Vs € [0,1].
and
Wa(oZlil.ofli)) < s —ner(r) Vs €11

PROOF. (i) Let x, y € B,(0).

We have
_ [ r o
|« = 5711l = | [ 8:Stts1as) =< [ ST as.
t t
We use Remark [C.6] (i) to infer
(C.6) |x = ST < [T tler (I
Set |
h(s) := EHS’St[x] — SHx]| Vs el0.1].
We have

W — Sip,y ot
© = [ (- Sita)
(D (ST1x), VT (s, ST1xD) — DpH (SEx1, VT (5. SExD) ) deo.
By the fact that DH is Lipschitz, we have
|Dp H (SE1x1. VT (5, SE1xD) — Dy H (St VT (s, 5t [x]))‘2
< Kg(\S'f[x] — 8! + [VT (5. §TIx]) - VT (s, 8. [x])\z).

We use Proposition [1.5[to obtain a constant C(r, T') which increases in r and such
that
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H D, H (ST[x]. VT (s, ST[x])) — Dp H (5! [x]. VT (5. ! [x])) H
< C(r, 1)) 8E1x] = S
This implies 7/ > —2C(r, T')h, and so Gronwall’s inequality yields
h(s) < 2CODEDpy s e [0,1].
Thus,
|350x1 = S5l < “CDEI ST 1x] = 8 [x]]| = €D ST [x] - x .

This, together with (C.6), implies

(C.7) |320x] = 82 1x)]| < €D 7~ tler(|x]).
We use arguments similar to the ones above to obtain
(C8) |550x1 = S5 < eCCPENx -y Vs €0,1].

We combine (C.7)) and (C.8) to verify the first identity in (i). The second identity
follows from direct integration.

(i) Let u, v € %, and choose x, y € H such that f{(x) = p and ff(y) = v and
Wa(u,v) = llx — vl Since 8(ST(x]) = of[u] and §(S![¥]) = of ], () implies
(ii). 0
C.3 Proof of Proposition 1.5

Let y € B,(0).

(i) By Remark U™ is a viscosity solution to (T.20), and so the standard

theory of Hamilton—Jacobi equations in finite-dimensional spaces yields the point-
wise identity

U™ (13.q) — U™ (11, q) = —/

i

t

2
H™(q, DgU™ (2, q))dt

for g € M. We use (I.10) to infer
~ ~ 2 ~
U(ty, MYy — YU (11, M?) = —/ A (MINYU(x, M?))dr.
5]
By Proposition ii), whenr > 1, V% is bounded on [t1, 2] X B, (y). Observe
that V% (z, - ) is continuous when 7 € [f1, 1] and 7 is continuous. Since
{M?:qeM™, meN}

is dense in H, (i) holds.
(ii) First, one obtains a finite number c (7, T') increasing in the variables r and T
such that

(C.9) VU (t2. ) = VU (t1.y)| < 2¢(r, T)|t2 — 11].
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This together with the space Lipschitz property of VU implies VU is Lipschitz
on [0, 7] x B,(0). As a composition of locally Lipschitz functions, (z,x)

A (x, VU (7, x)) is Lipschitz on [0, T] x B, (0). Hence since by (i) we have that
U = —%ﬂ(- V), we conclude 9,% is Lipschitz on [0, T] x B,(0).
(iii)—(v) We refer the reader to [33]]. Il
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