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1 Introduction

Superconformal field theories (SCFTs) in five spacetime dimensions have received much
deserved attention in recent years. Their mere existence forces us to expand our view of
quantum field theories, as these fixed points cannot be reached by traditional means of
perturbing around free field Lagrangians. Yet, by now, there is overwhelming evidence
to support their existence, mostly due to stringy constructions starting with the seminal
papers [1–4]. Broadly speaking, there are three independent, yet complementary points of
view for studying these SCFTs, namely their embedding into type IIB brane webs [5–25],
geometric engineering [2, 26–34] and holography [35–41].

Many 5d SCFTs, admit supersymmetry preserving mass deformations, which trigger
an RG flow, whose low energy dynamics is effectively captured by an N = 1 gauge theory.
Such deformations, preserve the SU(2)R symmetry, while breaking the flavour symmetry.
An important dynamical question is therefore to determine the full global symmetry of
the parent SCFT of a given 5d gauge theory. 5d SCFTs and gauge theories, can possess
a Higgs branch of their moduli space of vacua, which in the gauge theory regime can be
constructed as the hyperKähler quotient [42, 43]. In the SCFT limit, the hyperKähler
quotient, is no longer accessible, due to a lack of a Lagrangian description, making the
study of the Higgs branch in this limit more challenging. There are, by now, a plethora of
techniques to determine the enhanced global symmetry of the SCFT parent of a given 5d
gauge theory, such as 7-brane analysis [44–49], superconformal indices [50–52], as well as
geometric approaches [2, 26–28, 53–58]. One particularly elegant approach to determine
the SCFT flavour symmetries as well as the Higgs branch of the SCFT, pioneered in [59],
is to consider their magnetic quivers. The magnetic quiver (MQ), of a given 5d theory, is a
3d N = 4 quiver gauge theory, whose Coulomb branch is isomorphic to the Higgs branch
of the 5d theory in question. In many cases, though not always, one can show that the
magnetic quiver of a given 5d theory, is the 3d mirror of its torus compactification. This
leads to an interesting interplay between 5d N = 1 theories and 3d N = 4 theories, and
has prompted many recent studies [59–78].

That 3d magnetic quivers are advantageous, is due to recent advances in extracting
the algebraic geometry of 3d N = 4 Coulomb branches [79–83]. Coulomb branches of 3d
N = 4 theories, are parameterised by BPS monopole operators, whose R-charges can be
determined from the R-charges of the fermionic content of the theory [84]. Following the
terminology of Gaiotto and Witten [85], we refer to a 3d N = 4 theory as good, ugly or bad,
depending on the conformal dimension of the monopole operators in that theory. A theory
is said to be good, if the conformal dimension of all monopole operators is greater than
1
2 , which is the dimension of a scalar in (2+1) dimensions. A bad theory is one in which
some monopole operator has a conformal dimension less than 1

2 . Finally, in an ugly theory,
there are some monopole operators whose conformal dimension is exactly 1

2 , but none that
are smaller. For good or ugly theories, the monopole formula [79], can correctly produce
the Hilbert series of the Coulomb branch, using the UV gauge theory data. However,
for bad theories, the monopole formula fails, due to the fact that the UV R-symmetries
of the theory are different from the superconformal R-symmetry, and hence the UV R-
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charge cannot be used to predict the conformal dimension of the SCFT operators. The full
structure of the Coulomb branch of some bad theories was recently understood by Assel
and Cremonesi in [86, 87], building on earlier results in [88, 89]. In particular, it was found
that for USp(2N) SQCD with 2N flavours in the fundamental representation, the Coulomb
branch has two most singular points, where the theory flows to an interacting SCFT in
the deep infra-red, with a local mirror Lagrangian in the vicinity of each singular point.
This is unlike the situation for good theories, where the most singular point on the moduli
space is unique, namely the origin, with an SCFT at the bottom of the RG flow in that
vacuum. The Coulomb branch Hilbert series of the local geometry around one of the two
most singular points of the USp(2N) SQCD with 2N flavours was computed in [87], and
shown to agree with the Higgs branch Hilbert series of the local mirror.

The goal of this paper is to illuminate the Higgs branch of the SCFT parents of
5d gauge theories whose gauge group is either SO(6), or SO(8), and with matter in the
vector, spinor, and conjugate spinor representations. Our motivation is partly due to
the fact that, among classical simple gauge groups, the magnetic quivers for AN and CN
cases are well studied [59, 90], while those of BN and DN remain relatively unexplored.
The magnetic quivers for SO(N) gauge theories with matter in vector representation were
recently constructed in [62], using their embedding into brane webs with O7+-planes. The
current work complements this study by adding matter in the spinor and the conjugate
spinor representations. The reason for restricting the rank of the gauge group is mostly
for practical reasons. The construction of magnetic quivers from brane webs with O5-
planes is, at present, still not completely systematic. It is, therefore, useful to limit the
discussion to situations where a consistency check of our computations is available. For
SO(6) gauge theories, this is achieved by comparing the orthosymplectic magnetic quivers
obtained from brane webs with an O5-plane, with the unitary magnetic quivers obtained
from the brane webs of SU(4) gauge theories. Similarly, for SO(8) gauge theories, one can
set up a consistency check, by exploiting SO(8) triality. As we shall see, in the rest of this
paper, such considerations also lead to some interesting results for 3d N = 4 theories. In
particular, in section 2, we exploit the isomorphism between SO(6) and SU(4), to conjecture
exact highest weight generating functions for orthosymplectic magnetic quivers, simply by
carrying over the results from their unitary counterparts. Similarly, in section 3, we uncover
several intriguing equalities of moduli spaces, of naively unrelated quivers.

Throughout the paper, we encounter magnetic quivers which contain bad USp(2N)
nodes, where the effective number of hypermultiplets is exactly 2N . We devise a method
to associate a Hilbert series to these quivers, by using the local mirror description around
one of their two most singular loci. We will refer to this procedure of associating the
Coulomb branch Hilbert series of a good theory, to the local geometry of the Coulomb
branch near a singular locus of a bad theory as “B2G”. For the specific case of USp(2) with
2 flavours, the prescription is first encountered in section 2.2.1. A similar prescription for
USp(2N) theories for N ≥ 2 is used throughout the paper, though the technical details will
be published elsewhere [91]. The validity of our prescription is confirmed, by comparing
the results with those computed using the Hall-Littlewood technique [80]. In addition,
many of the magnetic quivers that involve bad nodes, can have a good “dual” description,
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2S+2C

4S+4C

1S (or 1C)

Figure 1. A web diagram for SO(6)+2V with various spinor matters.

since we have several inequivalent brane constructions for each 5d theory we consider. The
Hilbert series computed using our proposed prescription, is also consistent with the good
“dual” quivers.

The content of the remainder of this paper is organised as follows: section 2 contains
MQs for SO(6) gauge theories derived from brane webs with O5-planes, as well as MQs for
SU(4) theories, derived from ordinary brane webs. Here we will encounter MQs with bad
symplectic gauge nodes and devise various methods to extract the good interacting part.
Section 3 is dedicated to studying the MQs for SO(8) theories, and a comparison is made
between MQs of SO(8) theories related by triality, exchanging spinor, conjugate spinor,
and vector representations of SO(8). We conclude with our wish list for future projects in
section 4. Appendix A contains the unrefined Hilbert series results for the orthosymplectic
(OSp) quivers.

2 SO(6) vs. SU(4)

In this section, we consider magnetic quivers for 5d SCFTs that admit a mass defor-
mation, such that their low-energy dynamics is captured by SO(6) gauge theory with s

hypermultiplets in the spinor representation S, c hypermultiplets in the conjugate spinor
representation C and v hypermultiplets in the vector representation V of SO(6). Since the
Lie algebra of SO(6), is isomorphic to the Lie algebra of SU(4), the low-energy theory may
also be thought of as SU(4) gauge theory, with (s+ c) hypermultiplets in the fundamental
representation F, and v hypermultiplets in the 2nd rank antisymmetric representation AS
of SU(4). The Chern-Simons level for the SU(4)κ gauge theory is given by κ = s−c

2 :

SO(6) + sS + cC + vV↔ SU(4) s−c
2

+ (s+ c)F + vAS . (2.1)

One can engineer SO(6)+sS+cC+vV using a five-brane web with an O5-plane. In par-
ticular, (conjugate) spinors are introduced as a separate web on the left or right side of
an SO(6) five-brane web as given in figure 1. This web can be viewed as a quiver theory
USp(0)–SO(6)–USp(0), where the USp(0) instanton, plays the role of the spinor matter [12].
Notice that in figure 1, only restricted configurations of spinors and conjugate spinors are
possible. For instance, 4S+3C cannot be depicted as a five-brane web. Furthermore, the
distinction between spinors and conjugate spinors needs some caution. For instance, con-
sider a five-web with two spinors, as shown in figure 2. This web can have three different
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1S1S 1C1C1S1C

Figure 2. 5-brane webs for the SO(6) with three possible spinor configurations. The web diagram
on the top is generic 5-brane web depicted with an O5-plane (dotted line) where spinors are intro-
duced on the left and right. The 5-brane webs in the middle are three possible brane configurations,
1S+1C, 2S, and 2C. The web on the bottom is the 5-brane configuration at infinite coupling.

interpretations, depending on how the configuration undergoes the “generalized flop” tran-
sition [20] when two spinor webs are brought towards the centre of the Coulomb branch.
In particular, 1S is modified into the web for the E1 theory, while 1C is modified into the
web for the Ẽ1 theory [20, 60]. In figure 2, we depict three possible configurations, 1S+1C,
2S, and 2C. We stress that the corresponding webs in the infinite coupling limit all look
the same, and hence one needs to distinguish them by hand.

One can engineer SU(4) s−c
2
+(s+c)F+vAS, using a five-brane web description without

an O5-plane [10]. Taking the SCFT limit of the two brane webs, of the SO(6) and SU(4)
theories, and reading off the corresponding magnetic quivers following the techniques de-
veloped in [60, 61, 90] yields two dual descriptions for the Higgs branch of the 5d SCFT
in question. The magnetic quivers obtained from the brane web with an O5-plane will
have qualitatively different features, compared to the magnetic quivers obtained from the
brane web without an O5-plane. Typical features of magnetic quivers obtained from brane
webs with an O5-plane are the presence of orthogonal, and symplectic gauge nodes, hy-
permultiplets in the fundamental-fundamental representation of two unitary nodes, and
hypermultiplets in the second rank symmetric or antisymmetric representation of unitary
nodes. In contrast, the magnetic quivers obtained from ordinary brane webs will only
contain unitary nodes and bi-fundamental matter, with the possibility of multiple links
(bi-fundamental hypermultiplets) connecting two gauge nodes.

In what follows, we will often encounter theories, whose Higgs branch is given as the
union of several cones, where each cone is described by a distinct magnetic quiver. We
will denote by MQs,c,v

i , the magnetic quiver for the i-th cone of the SCFT parent of SO(6)

– 4 –
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+sS+cC+vV, i.e.,

H5d
∞ (SO(6) + sS + cC + vV) =

⋃
i

C3d (MQs,c,v
i ) . (2.2)

Our notation for the magnetic quivers follows those of [60, 62], which we now briefly re-
view for the reader’s convenience. We use a circular white, red, or blue node to denote
a unitary, orthogonal, or symplectic gauge algebra (and hence a 3d N = 4 vector multi-
plet) respectively. Square nodes with the same colour-coding are used to denote flavour
symmetries. We label each node by the dimension of the fundamental representation of
the corresponding algebra. A solid line connecting two nodes, represents a hypermultiplet
transforming in the bi-fundamental representation of the nodes that it connects. An excep-
tion to the previous statement is the case in which a solid line connects a symplectic and
orthogonal node, in that instance one has to impose a reality condition which leads to a
half hypermultiplet in the fundamental-fundamental representation. We use a dashed line
connecting two unitary gauge nodes to represent hypermultiplets transforming under the
fundamental-fundamental representation. A link starting and ending on a unitary gauge
node represents hypermultiplets in the second rank antisymmetric representation, the num-
ber of such hypermultiplets will be written explicitly in the diagrams. Hypermultiplets in
the second rank symmetric representation of unitary gauge nodes are denoted by jagged
lines.

The rest of this section is further subdivided to the cases with v = 0, 1, 2.

2.1 SO(6) theories without vector matter

We will first consider SO(6) theories, with (conjugate) spinors and without any vector
hypermultiplets. The unitary magnetic quivers correspond to SU(4)κ with fundamental
hypermultiplets, and were given explicitly in [74]. All the magnetic quivers appearing in
this section have a simple highest weight generating function (HWG) [83] for their Coulomb
branch Hilbert series. We verify that the same HWG can correctly reproduce the unrefined
Hilbert series of the Coulomb branch of the OSp quivers.

2.1.1 SO(6) + 2S/(1S + 1C)←→ SU(4)1/0 + 2F

The brane web for SO(6)+2S at infinite coupling is given by

(2,−1) (1,−1) (1, 1) (2, 1)

O5− O5−

. (2.3)

This diagram can actually represent two distinct theories, namely, SO(6)+2S, as well as
SO(6)+1S+1C. The easiest way to see this, is to realise that (2.3) contains the following
subweb

O5− O5−
, (2.4)
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which can either be the strong coupling limit of USp(2)0, or that of USp(2)π, depending on
how one performs a generalized flop in going to the gauge theory phase [20, 60]. Therefore,
this decomposition gives rise to two magnetic quivers, depending on whether one treats the
subweb comprised of the (2, 1) and (2,−1) 5-branes as the strongly coupled limit of USp(2)0
or USp(2)π gauge theory. In the former case, the subweb in question is dynamical, and gives
rise to a gauge node of rank one in the magnetic quiver, while in the latter we treat this
subweb as frozen, and it only contributes as a flavour node in the magnetic quiver, whose
rank is determined by taking its intersection number with the remaining subweb made up
of the (1, 1) and (1,−1) 5-branes. In addition, we can consider the subweb decomposition

, (2.5)

giving rise to a total of three magnetic quivers that one can extract from the diagram (2.3).
A comparison with the unitary magnetic quivers, obtained from the brane webs for
SU(4)0+2F, and SU(4)1+2F, allows us to recognise the magnetic quiver for SO(6)+1S+1C
to be

MQ1,1,0
1 =

1 1

1

3 , (2.6)

while the magnetic quivers for SO(6)+2S are given by

MQ2,0,0
1 =

1 1

4
, MQ2,0,0

2 =

1

2

. (2.7)

To confirm this, let us consider the brane web for SU(4)0+2F at infinite coupling

(1,−1)

(2, 1)

(1,−1)

(2, 1)

(1, 0)(1, 0) . (2.8)

The magnetic quiver one reads from this brane web is

1

1 1

3
, (2.9)

– 6 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

which we claim to be the same theory, in a sense to be clarified shortly, as MQ1,1,0
1 . In

addition, we can consider, yet another web diagram, for the infinite gauge coupling limit
of SO(6)+1S+1C

(1,−1)

(2, 1)

O5+ O5−1
2

1

1

1 2 . (2.10)

The magnetic quiver that one obtains from this brane system is

1 1

1 3

, (2.11)

which is trivially the same as (2.9), upon removing the overall decoupled U(1).
Consider now, the brane web for the SCFT limit of SU(4)1+2F

(2,−1)
(1, 1)

(2, 1)
(1,−1)

. (2.12)

From here, one can read off the following pair of magnetic quivers

1 1

4 ∪
1 1

2
, (2.13)

which can easily be identified with MQ2,0,0
1 ∪MQ2,0,0

2 (2.7), modulo field redefinitions. The
Coulomb branch and Higgs branch Hilbert series of MQ1,1,0

1 , MQ2,0,0
1 and MQ2,0,0

2 match
with their unitary counterparts and the unrefined results are given in table 3 and table 4
respectively. The HWG for these magnetic quivers takes a very simple form and is given by

HWGC
(
MQ1,1,0

1

)
= HWGC(2.9) = PE

[
(1 + µ2)t2 + (q + q−1)µt4 − µ2t8

]
,

HWGC
(
MQ2,0,0

1

)
= HWG1

C(2.13) = PE
[
t2 + (q + q−1)t4 − t8

]
,

HWGC
(
MQ2,0,0

2

)
= HWG2

C(2.13) = PE
[
µ2t2

]
, (2.14)

where in the above, we use µ to denote the highest weight fugacity for SU(2), and q as a
U(1) fugacity.

We will now present an intuitive argument, for the agreement of the Hilbert series of
the two apparently different quivers in (2.6) and (2.9). These quivers actually describe
the same 3d N = 4 theory. The only reason for which they look different, is that the
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U(1)1 U(1)2

Q1 1 −1
Q2 1 1
Q3 2 0

Table 1. Table of charges for the hypermultiplets in theory (2.6).

Ũ(1)1 Ũ(1)2 aŨ(1)1 + bŨ(1)2 cŨ(1)1 + dŨ(1)2

Q̃1 1 0 a c

Q̃2 1 −1 a− b c− d
Q̃3 0 1 b d

Table 2. Table of charges for the hypermultiplets in theory (2.9). In the last two columns we
define two different U(1)s, whose Lie algebra generators are a linear combination of the generators
of Ũ(1)1 and Ũ(1)2.

two abelian quivers are written considering U(1) charges of the hypermultiplets under two
different sets of U(1)s. Said in other words, a simple change of basis in the Lie algebra of
U(1)2 can recast the table of charges of (2.9) into that of (2.6). We collect the charges of
the various hypermultiplets in tables 1 and 2.

We notice that we can reproduce the U(1) charges of table 1 by taking a = 1, b = c =
d = −1 in table 2. We will then identify Q1 with Q̃1, Q3 with Q̃2, and finally Q2 with
the charge conjugate of Q̃3. In particular we remark that it is consistent to identify Q2
and the charge conjugate of Q̃3, as each hypermultiplet consists of two chiral multiplets in
conjugated gauge representations.

2.1.2 SO(6) + 2S + 1C←→ SU(4) 1
2

+ 3F

The brane web for SO(6)+2S+1C at infinite gauge coupling limit is given by

(2,-1)

(1,-1)

(1,1)

O5− O5−1 1
2

1
2

1

1 , (2.15)

from which we read off the following magnetic quiver

MQ2,1,0
1 = 1

1

11

3
. (2.16)
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Next, we consider the web diagram for SU(4)0+3F

(1,−1)

(1,−1)

(1,1)

(2,1)

121

1
1

1 1

, (2.17)

whose magnetic quiver is readily obtained to be

1 1

11

3 . (2.18)

The unrefined computations of the Coulomb branch and Higgs branch Hilbert series for the
two quivers match and are given in table 3 and table 4 respectively. The Coulomb branch
and the Higgs branch of the above two quivers are identical with the following HWG:

HWGC = HWGH = PE
[
(1 + µ1µ2)t2 +

(
µ1q + µ2q

−1
)
t4 − µ1µ2t

8
]
, (2.19)

where µi are the highest weight fugacities of SU(3) and q is the U(1) charge. We remark
that the duality between (2.18) and (2.16) generalises to the case in which the three bifun-
damental hypermultiplets among the U(1) nodes are replaced with an arbitrary number n
of them.

2.1.3 SO(6) + 2S + 2C←→ SU(4)0 + 4F

There are two inequivalent brane webs with O5-plane that realise SO(6)+2S+2C. The first
web diagram, involves a configuration with the orientifold plane asymptotically an O5− on
both ends, corresponding to the 5d electric quiver [1S + 1C]− SO(6)− [1S + 1C]

(1,−1) (1, 1)

O5− O5−1
2

1 1 1
2

2

1

2

1

. (2.20)

The corresponding magnetic quiver is

MQ2,2,0
1 ∪MQ2,2,0

2 =

2

2

1 1
2 ∧2

∪

2

4

, (2.21)
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where ∧2 denotes the rank 2 antisymmetric tensor. Alternatively, one can consider a brane
web with an O5-plane which is asymptotically an O5+-plane on one end, and an O5−-plane
on the other end

(1,−1)

O5+ O5−3 5
2

2 3
2

1 1
2

1
2 , (2.22)

corresponding to the 5d IR quiver SO(6)− [2S + 2C]. From this web diagram we find an
alternative magnetic quiver

M̂Q
2,2,0
1 ∪ M̂Q

2,2,0
2 =

1 2 3 2 2

2 1 1

∪

2

6

. (2.23)

Let us now consider the fixed point limit of the web diagram for SU(4)0+4F

(1,1)(1,-1)

(1,-1)(1,1)

1 2 12

1 1

1 1

. (2.24)

The magnetic quivers for this brane system are

1 2 1

1 1

∪

1

1

4 . (2.25)

The unrefined Coulomb branch and Higgs branch Hilbert series for the orthosymplectic
quivers in (2.21) and (2.23) match with their corresponding unitary quivers in (2.25) and
are given in table 3 and table 4 respectively. Moreover, we know the HWG of the Coulomb
branch of the two cones of (2.25) as

HWG1
C(2.25) = PE[t2(1 + µ1µ3) + t4(µ2

2 + q1µ2 + q−1
1 µ2)− t8µ2

2]
HWG2

C(2.25) = PE[t2 + t4(q2 + q−1
2 )− t8] , (2.26)

where µi are the highest weight fugacities of SU(4) and q1 and q2 are U(1) charges. Thus,
we can write the HWG for the orthosymplectic quivers as:

HWGC(MQ2,2,0
1 ) = HWGC(M̂Q

2,2,0
1 ) = HWG1

C(2.25)

HWGC(MQ2,2,0
2 ) = HWGC(M̂Q

2,2,0
2 ) = HWG2

C(2.25) . (2.27)
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2.1.4 SO(6) + 3S + 2C←→ SU(4) 1
2

+ 5F

The brane web for SO(6)+3S+2C is given by

(1,−1)(2,−1)

O5− O5−3 5
2

2 3
2

1 1
2

1
2 . (2.28)

From this brane web we obtain the following magnetic quivers

MQ3,2,0
1 ∪MQ3,2,0

2 =

2 2 4 2

11
2

∪

2 2 2

1

2

3

. (2.29)

On the other hand, the brane web for SU(4) 1
2
+5F is given by

(1,−1) (1, 1)

(1,−1)

1 2 3

2 1
. (2.30)

The magnetic quiver one reads off from this ordinary brane web is

1 2 2 1

1 12

∪

1 1

1 1

1 13

. (2.31)

The unrefined Coulomb branch and Higgs branch Hilbert series for the orthosymplectic
quivers in (2.29) match with their corresponding unitary quivers in (2.31) and are given
in table 3 and table 4 respectively. The HWG of the Coulomb branch of the two unitary
cones in (2.31) is known by [66]:

HWG1
C(2.31) = PE

[
t2 + (µ2q + µ3q

−1)t4 +
2∑

k=1
µkµ5−kt

2k − µ2µ3t
8
]
,

HWG2
C(2.31) = PE

[
(1 + µ1µ4)t2 + (µ1q + µ4q

−1)t4 − µ1µ4t
8
]
, (2.32)

where µi are highest weight fugacities of SU(5). Thus from the above discussion, we can
conjecture that:

HWGC(MQ3,2,0
1 ) = HWG1

C(2.31) ,

HWGC(MQ3,2,0
2 ) = HWG2

C(2.31) . (2.33)
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2.1.5 SO(6) + 3S + 3C←→ SU(4)0 + 6F

The brane web for SO(6)+3S+3C at infinite coupling is given by

(1, 1)

O5− 1
2

1 3
2

2 5
2

13 1
2 O5−

1

2
2

. (2.34)

From here we read off the magnetic quiver to be

MQ3,3,0
1 ∪MQ3,3,0

2 =

2 2 4 4 2

2

1

1 ∧2 ∪

2 2 4 2 2

2
2

1

.

(2.35)

On the other hand, the brane web for SU(4)0+6F at infinite coupling is given by

(1,−1)

(1,−1)

1 2 3

3 2 1

1

1

1

1

, (2.36)

from which we obtain the magnetic quiver

1 2 3 2 1

1 1

∪

1 2 2 2 1

1 1

. (2.37)

The unrefined Coulomb branch and Higgs branch Hilbert series for the orthosymplectic
quivers in (2.35) match with their corresponding unitary quivers in (2.37) and are given
in table 3 and table 4 respectively. The HWG of the Coulomb branch of the two cones
of (2.37) are given by [66]:

HWG1
C(2.37) = PE

[
t2 + (q + q−1)µ3t

4 +
3∑

k=1
µkµ6−kt

2k − µ2
3t

8
]

HWG2
C(2.37) = PE

[
t2 + (µ4q + µ2q

−1)t4 +
2∑

k=1
µkµ6−kt

2k − µ2µ4t
8
]
, (2.38)
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where µi are the highest weight fugacities of SU(6). Thus, from the above discussion, we
can conjecture that:

HWGC(MQ3,3,0
1 ) = HWG1

C(2.37)

HWGC(MQ3,3,0
2 ) = HWG2

C(2.37) . (2.39)

2.1.6 SO(6) + 4S + 4C←→ SU(4)0 + 8F

The brane web for SO(6)+4S+4C at infinite coupling is given by

O5− 1
2

1 3
2

2 5
2

3 3 5
2

2 3
2

1 1
2 O5−

4

2

,

(2.40)
whose corresponding magnetic quiver is

MQ4,4,0
1 =

2 2 4 4 6 4 4 2 2

4

2

. (2.41)

The brane web for SU(4)0+8F at infinite coupling is given by

1 2 3 4

4 3 2 1

1

2

1

2

, (2.42)

from here we obtain the following magnetic quiver

1 2 3 4 3 2 1

21 1

. (2.43)

The perturbative results of unrefined Coulomb branch and Higgs branch Hilbert series for
the quiver (2.41) match with that of (2.43) and are given in table 3 and table 4 respectively.
The HWG of the Coulomb branch of the unitary quiver was computed in [59]. Thus, we
can conjecture the following HWG for the orthosymplectic quiver:

HWGC(MQ4,4,0
1 ) = PE

[ 4∑
i=1

µiµ8−it
2i +

(
ν2 + λ2

)
t2 + t4 + µ4νλ(t4 + t6)− ν2λ2µ2

4t
12
]
,

(2.44)
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where µi are SU(8) highest weight fugacities, while ν and λ are SU(2) highest weight
fugacities.

2.2 SO(6) theories with a single vector hypermultiplet

We will now begin to examine SO(6) gauge theories with a single hypermultiplet in the
vector representation, as well as hypermultiplets in the (conjugate) spinor representations.
Accordingly, we will be looking at the magnetic quivers for SU(4)κ gauge theory with a
single second rank antisymmetric hypermultiplet, as well as fundamental hypermultiplets.
As we shall see, the magnetic quivers do not always have a simple HWG, unlike the previ-
ously examined cases. Nevertheless, some magnetic quivers still have a HWG that can be
written down in closed form.

2.2.1 SO(6) + 2S/(1S + 1C) + 1V←→ SU(4)1/0 + 2F + 1AS

Consider SO(6) gauge theory with two spinors or one spinor and a conjugate spinor, in
addition to a vector. Both of the theories can be realized by a brane web of the same shape
(see the discussion around figure 2) and the brane web at infinite coupling is given by

(1, 1)
(1,−1)

(2,−1)

O5− 2 3
2 O5−

. (2.45)

From here we find three subdivisions and the magnetic quivers obtained from the subdivi-
sions are

MQ∗,∗,11 ∪MQ∗,∗,12 ∪MQ∗,∗,13 = 2

1

1
1

2 ∪

1 2

2

2

∪

1

1

2 3 . (2.46)

Then a question is which of the magnetic quivers are for SO(6)+2S+1V or SO(6)+1S+
1C+1V. In section 2.1.1, we encountered a similar situation and at that time some sub-
divisions corresponded to the magnetic quivers of one theory and the others corresponded
to those of the other theory. In this case it turns out that the situation is different due to
the presence of bad gauge nodes in the magnetic quivers.

In order to resolve this issue, we consider the magnetic quivers from their unitary
counterparts. SO(6)+1S+1C+1V corresponds to SU(4)0+2F+1AS and its brane web at
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infinite coupling is given by

(2, 1)

(1,−1)

(1, 1)

1 2

1
2

1

2
1

. (2.47)

The diagram admits two subdivisions and the magnetic quivers that one reads off from
this brane web are

1 1

11

2 ∪ 1

1

1

2 . (2.48)

On the other hand SO(6)+2S+1V corresponds to SU(4)1+2F+1AS and its brane web at
infinite coupling is given by

2 1

1

12

2

1

. (2.49)

This brane web has three subdivisions and the corresponding magnetic quivers are

1 1

11 2

∪ 1 1 12 2 ∪ 1 1 13 2 . (2.50)

Hence we have five subdivisions for the two theories in total and the five subdivisions need
to fit into the three subdivisions in (2.46).

Among the three magnetic quivers in (2.46), the last quiver MQ∗,∗,13 is a good theory
and one can compute the Coulomb branch Hilbert series by using the monopole formula.
Then it is possible to see that the Hilbert series agrees with that of the rightmost magnetic
quiver in (2.50).

When the magnetic quivers contain bad gauge nodes the correspondence could be more
involved. In bad theories, the Coulomb branch may not be simply a cone. For example
the Coulomb branch of USp(2N) SQCD with 2N flavours has two most singular points
and the theory flows to an interacting SCFT at low energies at each point [87]. Both the
first and the second magnetic quivers in (2.46) contain a bad USp(2) gauge node with 2
effective flavours (which is the N = 1 case of aforementioned example), it is natural to
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expect that the full Coulomb branch of the bad magnetic quivers is not a single cone. On
the other hand, all the magnetic quivers in (2.50) are good theories and so their Coulomb
branch is expected to be a single cone. Hence, the Coulomb branch of the first and the
second magnetic quivers in (2.46) seem to be different from the magnetic quivers in (2.48)
and (2.50).

From the viewpoint of the Higgs branch of 5d theories, we expect that the Higgs branch
of 5d SO(6)+2S+1V/SO(6)+1S+1C+1V or SU(4)1+2F+1AS/SU(4)0+2F+1AS at the
infinite coupling is a union of cones and the origins of the cones are located at the same
point where a 5d SCFT is realized. While this picture is consistent with the expectation
for the Coulomb branch of the magnetic quivers in (2.48) and (2.50), this does not agree
with expectation for the Coulomb branch of the bad magnetic quivers in (2.46). Hence
we argue that the Higgs branch of the 5d theories is given by the Coulomb branch of the
good unitary quivers in (2.48) and (2.50). As for the bad quivers in (2.46), which contain
the bad USp(2) gauge node, we need to extract a part which corresponds to the Coulomb
branch of the good unitary quivers from the Coulomb branch of the bad quivers in order
to reproduce the Higgs branch of the 5d theories.

We hereby propose a prescription (which we denote as ‘B2G’) that extracts the mag-
netic quivers whose Coulomb branch agrees with that of the unitary counterparts from
magnetic quivers which contain the USp(2) gauge node with two effective flavours. A
similar prescription can be given to extract the good magnetic quivers from bad magnetic
quivers which contain a USp(2N) gauge node with 2N effective flavours. We will discuss
more about the N > 1 case in an upcoming work [91]. To motivate the prescription, note
that the Coulomb branch of the USp(2) gauge theory with two flavours has two most singu-
lar points. An SCFT is realized at low energies at each point and it is the same SCFT which
arises from the U(1) gauge theory with two flavours [87, 89, 92]. Hence the local geometry
in the vicinity of one of the most singular points of the Coulomb branch of USp(2)+2F,
which is given by C2/Z2, can be described by the Coulomb branch of U(1)+2F. Then a
natural way to change quivers which contain the bad USp(2) gauge nodes into good theo-
ries, is to replace the USp(2)+2F with U(1)+2F. Namely, we use the local geometry near
one of the most singular points of the Coulomb branch of USp(2)+2F to construct the
whole Coulomb branch moduli space. In order to embed U(1)+2F into the original quiver,
we need to gauge the flavour symmetry. However we need to be careful of the gauging
since the flavour symmetry of U(1)+2F is different from that of USp(2)+2F. The flavour
symmetry of the USp(2) gauge theory with two flavours is SO(4) and either all or a part
of the flavour symmetry is gauged in a magnetic quiver. We propose matter contributions
to the dimension of the monopole operators in various gaugings. It turns out that there
are two ways of implementing the matter contributions which can give different Coulomb
branch Hilbert series. We will see that these different Coulomb branch Hilbert series agree
with the Coulomb branch Hilbert series of the unitary quivers in (2.48) and (2.50).

When SO(2)×SO(2) is gauged, the prescription of replacing the bad USp(2) gauge
node is given by the following two ways,

· · ·
2 2 2

· · · B2G−−−→B2G−−−→ · · ·
2 1 2

· · ·
1
2

1
2 , (2.51)
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or

· · ·
2 2 2

· · · B2G−−−→B2G−−−→ · · ·
2 1 2

· · ·
1
2

1
2 . (2.52)

Here the solid/dashed line between SO(2) and U(1), with 1
2 above it, implies the bifunda-

mental/fundamental-fundamental matter. In the Coulomb branch Hilbert series compu-
tations, the contribution to the dimension of the monopole operators from the matter is
given by1

∆hyp
(

2 11
2

)
= 1

2 |m1 −m2|, (2.53)

∆hyp
(

2 11
2

)
= 1

2 |m1 +m2|, (2.54)

where m1 is the magnetic flux for SO(2) and m2 is the magnetic flux for U(1). Note that
this is different from the matter represented by a straight line without 1

2 between SO(2)
and U(1) since in that case U(1) gauge node arises by gauging U(1) part of USp(2). When
we consider the local part then the two configurations can be equivalently written as

1 2
=

1 11
2 , (2.55)

and
1 2

=
1 11

2 . (2.56)

When SO(3) inside SO(4) is gauged, the prescription is the given by the following re-
placement,

1 2 3
· · · B2G−−−→B2G−−−→

1 1 3
· · ·

1
2

1
2 . (2.57)

Here the contribution from the matter represented by the solid line with 1
2 on it between

U(1) and SO(3) to the dimension of the monopole operators in the Coulomb branch Hilbert
series computations is given by:

∆hyp
(

1 31
2

)
= 1

2 |m1 −m2|+
1
4 |m1|, (2.58)

∆hyp
(

1 11
2

)
= 1

4 |m1|, (2.59)

where m1 is the magnetic flux of U(1) and m2 is the magnetic flux of SO(3). Finally when
the full SO(4) is gauged then the prescription is given by the following replacement,

2 4
· · · B2G−−−→B2G−−−→

1 4
· · ·

1
2 , (2.60)

or
2 4

· · · B2G−−−→B2G−−−→
1 4

· · ·
1
2 . (2.61)

1Appropriate modifications are required while using the Molien-Weyl integral to compute the Higgs
branch Hilbert series. We do not give explicit expressions, but it should be implicit from the expression of
the conformal dimension of the monopole operators.
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The contribution from the matter represented by the solid/dashed line between U(1) and
SO(4) with 1

2 on it, to the dimension of the monopole operators in the Coulomb branch
Hilbert series computations is given by (see footnote 1):

∆hyp
(

1 41
2

)
= 1

2 (|m1 −m2,1|+ |m1 −m2,2|) , (2.62)

∆hyp
(

1 41
2

)
= 1

2 (|m1 −m2,1|+ |m1 +m2,2|) , (2.63)

where m1 is the magnetic flux of U(1) and m2,1,m2,2 is the magnetic flux of SO(4).
We can apply the above prescription to the first and second magnetic quivers of (2.46).

Each quiver gives rise to two magnetic quivers whether we use the replacement (2.51)
or (2.52). From the explicit evaluation of the Hilbert series of the moduli spaces, we find
that the replacement (2.51) corresponds to the magnetic quivers of (2.50) and the replace-
ment (2.52) corresponds to the magnetic quivers of (2.48). Namely the correspondence is
given by

MQ2,0,1
1 ∪MQ2,0,1

2 ∪MQ2,0,1
3 = 1

1

1
1

2 ∪

1 1

2

2

∪

1

1

2 3 , (2.64)

MQ1,1,1
1 ∪MQ1,1,1

2 = 1

1

1
1

2 ∪

1 1

2

. (2.65)

We have explicitly computed the unrefined Coulomb branch Hilbert series of the orthosym-
plectic quivers and they agree with their unitary counterparts. The results are given in
table 3. Moreover, since we know the HWG of the Coulomb branch of some of the unitary
quivers [66, 79], we can conjecture the same for the orthosymplectic quivers:

HWGC(MQ2,0,1
2 ) = HWG2

C(2.50) = PE
[(
µ2 + ν2

)
t2
]

HWGC(MQ2,0,1
3 ) = HWG3

C(2.50) = PE
[(
µ2 + 1

)
t2 +

(
q + q−1

)
t3 − t6

]
HWGC(MQ1,1,1

1 ) = HWG1
C(2.48) = PE

[
(1 + µ2 + ν2)t2 + µν(q + q−1)t4 − µ2ν2t8

]
HWGC(MQ1,1,1

2 ) = HWG2
C(2.48) = PE

[
(1 + µ2)t2 + µ(q + q−1)t3 − µ2t6

]
, (2.66)

where µ and ν are highest weight fugacities of SU(2), and q is the U(1) charge.
In fact, we found that the same prescription also works for the Higgs branch. The

Higgs branch Hilbert series of the magnetic quivers in (2.64) and (2.65) agree with the
Higgs branch Hilbert series of the magnetic quivers in (2.50) and (2.48) respectively. The
result is summarized in table 4.
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2.2.2 SO(6) + 2S + 1C + 1V←→ SU(4) 1
2

+ 3F + 1AS

The brane web for SO(6)+2S+1C+1V at infinite coupling is given by

(1,−1)

(1, 1)

O5− O5−1
2

1 2 3
2

2

1

1

1

. (2.67)

The magnetic quiver extracted from this brane web is

MQ2,1,1
1 ∪MQ2,1,1

2 =

1

1 1

2 2

2 ∪
1 2 1

3
. (2.68)

The magnetic quiver MQ2,1,1
1 contains a bad USp(2) gauge node and we apply the pre-

scription proposed in section 2.2.1 to extract magnetic quivers which capture the moduli
spaces of the unitary counterpart. The magnetic quiver after applying the prescription is
given by

MQ2,1,1
1

B2G−−−→B2G−−−→

1

1 1

2 1

1
2

2 =

1

1 1

1 1

2 . (2.69)

Next, consider the brane web for SU(4) 1
2
+3F+1AS

(1, 1)

(1,−1)

(1, 1)

1 2 3

1

2

2

1 . (2.70)

The corresponding unitary magnetic quiver is given by

1

1
1 1

1 1

2

∪
1 2 1

3
. (2.71)
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The unrefined Coulomb branch and Higgs branch Hilbert series for the quivers in (2.69)
match with the corresponding unitary quivers in (2.71) and are given in table 3 and table 4
respectively. The HWG of the Coulomb branch for the second cone on unitary side is
known [93] and so we can write the same for the OSp quiver:

HWGC(MQ2,1,1
2 ) = HWG2

C (2.71) = PE
[
ν1ν2(t2 + t4) + (ν3

1 + ν3
2)t6 − ν3

1ν
3
2 t

12
]
, (2.72)

where ν1 and ν2 are the highest weight fugacities of SU(3) group.

2.2.3 SO(6) + 2S + 2C + 1V←→ SU(4)0 + 4F + 1AS

There are two inequivalent web diagrams for SO(6)+2S+2C+1V. The first web diagram,
corresponding to the quiver [1V]− SO(6)− [2S + 2C], is given by

O5+ O5−1 1 3 5
2

2 3
2

1 1
2

3

1

. (2.73)

The corresponding magnetic quiver for this theory is

MQ2,2,1
1 =

1 2 3

2

1 1

1

2 3 2 2

1

MQ2,2,1
2 =

2

2 2 2 4 2 2

2

. (2.74)

Note that the magnetic quivers MQ2,2,1
1 and MQ2,2,1

2 have a bad USp(2) gauge node. Hence,
we use the prescription proposed in section 2.2.1 to extract magnetic quivers which capture
the moduli spaces of the unitary counterparts:

MQ2,2,1
1

B2G−−−→B2G−−−→

1 1 3

2

1 1

1

2 3 2 2

1

1
2

1
2

MQ2,2,1
2

B2G−−−→B2G−−−→

1

1 2 2 4 2 2

2

1
2

=

1

1 1 2 4 2 2

2

.

(2.75)
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An alternative web diagram, for 5d SO(6)+2S+2C+1V can be obtained by considering
[1S + 1C]− SO(6)

|
[1V]

− [1S + 1C]

(1, 1)

O5− 1
2

1 5
2

13 1
2 O5−

1

2
2

1

, (2.76)

which gives the following magnetic quivers:

M̂Q
2,2,1
1 =

2 4 2

2

1 1
1 ∧2

; M̂Q
2,2,1
2 =

2

2 2

1 1

2 2

. (2.77)

The magnetic quiver M̂Q
2,2,1
2 has a bad USp(2) gauge node and we again replace it by a

U(1) node using the prescription in section 2.2.1. The magnetic quiver after applying the
prescription is given by

M̂Q
2,2,1
2

B2G−−−→B2G−−−→
2

2 2

1 1

1 2

1
2 1

2

=
1

2 2

1 1

1 1

. (2.78)

On the other hand the brane web for SU(4)0+4F+1AS is given as

1 2 3 4

2

1
1

3

1

, (2.79)

which gives the following two unitary quivers:

1 2

1

2 1

1 1

∪

1 2 2 1

1 1

. (2.80)
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The unrefined Coulomb branch and Higgs branch Hilbert series of the orthosymplectic
quivers match with their unitary counterparts and are given in table 3 and table 4 respec-
tively.

2.2.4 SO(6) + 3S + 2C + 1V←→ SU(4) 1
2

+ 5F + 1AS

The brane web for the SCFT limit of SO(6)+3S+2C+1V is given by

(1, 1)

1
2

1 3
2

2 5
2

3 2 3
2 O5−O5−

1

3 1
. (2.81)

The magnetic quiver associated to this brane system is

MQ3,2,1
1 =

11 2

4 24422

. (2.82)

On the other hand, the brane web for the SCFT parent of SU(4) 1
2
+5F+1AS is given by

12345

1

3

1

2

1

, (2.83)

which gives the following unitay quiver:

1 21

21 3 2 1

. (2.84)

Note that the quiver (2.82) has a bad USp(2) gauge node and we can use our B2G pre-
scription to extract the good quiver. The Coulomb and Higgs branch Hilbert series after
doing the B2G replacement agrees with that of the unitary quiver (2.84) and the results
are given in table 3 and table 4 respectively.
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2.2.5 SO(6) + 3S + 3C + 1V←→ SU(4)0 + 6F + 1AS

The brane web for SO(6)+3S+3C+1V at infinite coupling is given by

O5− 1
2

1 3
2

2 5
2

3 3 5
2

1 1
2

4

2

1

O5−

. (2.85)

From here we read off the following magnetic quiver

MQ3,3,1
1 =

2 2 4 4 6 4 2

4

2

1

. (2.86)

Note that this quiver has a bad USp(4) gauge node. We use our upcoming prescription [91]
to compute the Coulomb branch and Higgs branch Hilbert series which are presented in
table 3 and table 4 respectively. These Hilbert series are in agreement with the Hilbert
series of the following unitary quiver:

1 2 3 4 2 1

31 1

, (2.87)

which is associated with the following brane web for SU(4)0+6F+1AS at infinite coupling:

(1,−1)

1 2 3 4 5 3 1

1

1

2

3

. (2.88)

2.2.6 SO(6) + 4S + 4C + 1V←→ SU(4)0 + 8F + 1AS

The brane web for SO(6)+4S+4C+1V at infinite coupling is given by

1
2

1 3
2

2 5
2

3 9
2

10 1
2

13
2

25
2

39
2

10 O5−O5−

4

.

(2.89)
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The magnetic quiver associated with this brane web is

MQ4,4,1
1 =

2 2 4 4 6 8 10 8 6 4 4 2 2

4

.

(2.90)
Now let us consider the brane web for SU(4)0+8F+1AS at infinite coupling

1 2 3 4 5 6

6 4 3 2 1
3

3

. (2.91)

The magnetic quiver for this brane system is given by

1 2 3 4 5 6 4 3 2 1

3

. (2.92)

The magnetic quiver in equation (2.92) (resp. (2.90)) can also be seen as the 3d mirror of a
class-S theory of A5 (resp. D5) type on the sphere, with three regular untwisted punctures.
The three (Nahm) punctures defining the A-type theory are [16], [3, 3], [2, 14], while the
three (Nahm) punctures defining the D-type theory are [22, 16], [22, 16], [5, 5]. Following
the techniques explained in [94] and [95], we computed the Coulomb branch spectrum of
the two four-dimensional theories, as well as their superconformal central charges. Let us
denote by di the number of Coulomb branch operators of conformal dimension i. We find
for both theories an identical spectrum given by {d4 = 1, d5 = 1, d6 = 1}, and identical
central charges given by a = 65/8 and c = 19/2. We take this match as a further evidence
for the agreement of the magnetic quivers in (2.92) and (2.90).

Note that the quiver in (2.90) has two bad USp(8) gauge nodes. We use our upcoming
prescription [91] to compute the Coulomb branch and Higgs branch Hilbert series. The
perturbative results up to first few orders are given in table 3 and table 4 respectively.
These results agree with the Hilbert series of the unitary quiver (2.92).

2.3 SO(6) theories with two vector hypermultiplets

We now move on to study the Higgs branch of SO(6) theories with two hypermultiplets in
the vector representation, as well as the hypermultiplets in (conjugate) spinor representa-
tions.
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2.3.1 SO(6) + 2S/(1S + 1C) + 2V←→ SU(4)1/0 + 2F + 2AS

The brane web for SO(6)+1S+1C+2V at infinite coupling is

O5+ O5−1 1 3 5
2

1 1
2

3

2

1

. (2.93)

The magnetic quiver for this brane system is given by the union of three cones

MQ1,1,2
1 =

1 2 3 2

2

2

1

1

1

1

MQ1,1,2
2 =

2 2 2 2

2 2

1 1

1 1

B2G−−−→B2G−−−→

2 1 2 1

2 2

1
2

1
2

1
2

1
2

1 1

1 1

MQ1,1,2
3 =

1 2 3 4 2

3

. (2.94)

We can alternatively consider the brane web for SO(6)+2S/(1S+1C)+2V at infinite cou-
pling

(1,−1) (1, 1)

O5− O5−3
2

2 2 3
2

1

2 , (2.95)

which gives the following magnetic quivers

MQ∗,∗,21 ∪MQ∗,∗,22 ∪MQ∗,∗,23 =

2 4 2

1 2

1

∪

1

1 1

2 22

2 ∪

2 4 2

1

2 .

(2.96)
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To distinguish the magnetic quivers for SO(6)+1S+1C+2V from those of SO(6)+2S+2V,
we must apply the B2G procedure to the above magnetic quivers and compare the Hilbert
series results with the unitary magnetic quivers for SU(4)0/1+2F+2AS (similar to what
we did in section 2.2.1). The end result can be summarised as

M̂Q
1,1,2
1 =

1 4 1

1 2

1

1
2

1
2

M̂Q
1,1,2
2 =

1

1 1

1 11

2 M̂Q
1,1,2
3 =

1 4 1

1

1
2

1
2

2

(2.97)

MQ2,0,2
1 =

1 4 1

1 2

1

1
2

1
2

MQ2,0,2
2 =

1

1 1

1 11

2 MQ2,0,2
3 =

1 4 1

1

1
2

1
2

2 .

(2.98)

To confirm these results, we can consider the brane web at infinite gauge coupling for
SU(4)0+2F+2AS

(1,1)

(1,1)

2

2

1

2

1

22

2

. (2.99)

The corresponding magnetic quiver is given by

1 2 1

2 2

∪
1

11

11

11

∪ 1 2 2 1 . (2.100)
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On the other hand the brane web for SU(4)1+2F+2AS at infinite coupling takes the form

(1,−1)

(1, 1)

1

4

2

22

1

2 2

, (2.101)

whose magnetic quiver is the union of the following three cones

1 2 2 1

2

∪

1

1 1

1 1

1

1

∪

1 2 1

2

. (2.102)

The Coulomb branch and Higgs branch Hilbert series of the quivers in (2.94) and (2.97)
match with the corresponding unitary quivers in (2.100), while those of (2.98) match with
that of (2.102). The results are given in table 3 and table 4 respectively. Further, the
HWG of the Coulomb branch of the second cone in (2.100) is known [66]:

HWG2
C (2.100) = PE

[
(1 + µ1µ3)t2 + (µ1q + µ3q

−1)t3 − µ1µ3t
6
]

PE
[
ν1ν2t

2
]
, (2.103)

where µi and νi are the highest weight fugacities associated with the groups SU(4) and
SU(3) respectively, and q is the U(1) charge. Thus, the HWG of the Coulomb branch of
the corresponding orthosymplectic quivers can be given as:

HWGC(MQ1,1,2
2 ) = HWGC(M̂Q

1,1,2
2 ) = HWG2

C (2.100) . (2.104)

2.3.2 SO(6) + 2S + 1C + 2V←→ SU(4) 1
2

+ 3F + 2AS

The brane web for SO(6)+2S+1C+2V at infinite coupling is given by

(1,−1)

O5− O5−3
2

2 3 5
2

1 1
2

1

2

3
1

. (2.105)
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The magnetic quiver for this brane system is

MQ2,1,2
1 =

1

2

2 1

4 42 2

. (2.106)

Now, let us consider the infinite coupling web diagram for SU(4) 1
2
+3F+2AS

(1, 1)

(1, 1)

1

2

4

24

2

1

2 1

, (2.107)

which gives the following magnetic quiver:

1 2

2 2 2

2 1

. (2.108)

We would like to point out that the quiver in (2.106) has a bad USp(2) and a bad USp(4)
node. For the bad USp(2) node, we can use our B2G prescription discussed before. For the
bad USp(4) node, we use our upcoming prescription [91] to compute the Coulomb branch
and Higgs branch Hilbert series, which are given in table 3 and table 4 respectively. These
results are in agreement with that of the unitary quiver in (2.108).

2.3.3 SO(6) + 2S + 2C + 2V←→ SU(4)0 + 4F + 2AS

There are two inequivalent web diagrams that engineer the SO(6)+2S+2C+2V theory.
The two brane webs differ in their asymptotic O5-plane charges. The first brane config-
uration, corresponding to the quiver [1S + 1C]− SO(6)

|
[2V]

− [1S + 1C] is given at infinite
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coupling by

O5− 1
2

1 5
2

3 O5−1
2

15
2

3

1

2

3

4

. (2.109)

The magnetic quiver one reads from this brane web is

MQ2,2,2
1 =

2 4 6 4 2

4

3

2

1

. (2.110)

The quiver in (2.110) has two bad USp(4) gauge nodes. We use our upcoming prescrip-
tion [91] to compute the Coulomb branch and Higgs branch Hilbert series, which are given
in table 3 and table 4 respectively.

The second web diagram, realising SO(6)+2S+2C+2V, corresponds to the infinite
coupling limit of the gauge theory [2V]− SO(6)− [2S + 2C], and is given by

O5+ O5−1 1 2 2 4 7
2

3 5
2

2 3
2

1 1
2

3
.

(2.111)
The corresponding magnetic quiver is

M̂Q
2,2,2
1 =

1 2 3 4 5 4 5 4 4 2 2

2

1

1
. (2.112)

This quiver has a bad USp(4) gauge node and we use upcoming prescription [91] to com-
pute the Coulomb branch and Higgs branch Hilbert series as given in table 3 and table 4
respectively.
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Now let us consider the brane web for the infinite gauge coupling limit of SU(4)0+
4F+2AS

1 2 4

124

2

4

2

4

. (2.113)

The magnetic quiver for this web diagram is

1 2 4 2 1

42 2

. (2.114)

The Hilbert series results of (2.110) and (2.112) mentioned in the appendix match with
the Hilbert series results of the quiver (2.114).

2.3.4 SO(6) + 3S + 2C + 2V←→ SU(4) 1
2

+ 5F + 2AS

The brane web for the SCFT limit of SO(6)+3S+2C+2V is given by

3
2

2 7
2

4 4 7
2

3 5
2

2 3
2

1 1
2

1

4

O5−O5−

. (2.115)

The magnetic quiver associated to this brane system is given by

MQ3,2,2
1 =

2 4 6 8 6 6 4 4 2 2

4

1

. (2.116)

If, on the other hand, we consider the brane web for the SCFT limit of SU(4) 1
2
+5F+2AS

1246

642
4

4

2

1

, (2.117)
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we get the following magnetic quiver:

1 2 4 6 4 2 1

4

2

. (2.118)

The magnetic quiver in (2.118) (resp. (2.116)) can also be seen as the 3d mirror of a class-S
theory of A5 (resp. D4) type on the sphere, with three regular untwisted punctures. The
three (Nahm) punctures defining the A-type theory are [22, 12], [22, 12], [23], while the three
(Nahm) punctures defining the D-type theory are [18], [24], [33, 12]. We find that both the
four-dimensional theories have an identical spectrum given by {d3 = 1, d4 = 1, d6 = 1},
and identical central charges given by a = 163/24 and c = 47/6. We take this match as a
further evidence for the agreement of the magnetic quivers in (2.118) and (2.116).

Note that the quiver in (2.116) has a bad USp(6) gauge node. We use our upcoming
prescription [91] to compute the Coulomb branch and Higgs branch Hilbert series. The
perturbative results up to first few orders are given in table 3 and table 4 respectively.
These results agree with the Hilbert series of the unitary quiver (2.118).

2.3.5 SO(6) + 3S + 3C + 2V←→ SU(4)0 + 6F + 2AS
The brane web for SO(6)+3S+3C+2V at infinite gauge coupling is given by

1
2

1 5
2

3 9
2

5 5 9
2

4 7
2

3 5
2

2 3
2

1 1
2

4

O5− O5−

.

(2.119)
The magnetic quiver one reads off from here is given by

MQ3,3,2
1 =

2 4 6 8 10 8 8
· · ·

2 2

4

. (2.120)

On the other hand, the brane web for SU(4)0+6F+2AS at infinite coupling is given by

1 2 4 6 8

12468
4

4

. (2.121)

The magnetic quiver associated with this brane web is

1 2 4 6 8 6 4 2 1

4

. (2.122)
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The magnetic quiver in (2.122) (resp. (2.120)) can also be seen as the 3d mirror of a class-S
theory of A7 (resp. D5) type on the sphere, with three regular untwisted punctures. The
three (Nahm) punctures defining the A-type theory are [23, 12], [23, 12], [42], while the
three (Nahm) punctures defining the D-type theory are [110], [24, 12], [52]. We find for
both theories an identical Coulomb branch spectrum given by {d4 = 1, d5 = 1, d8 = 1},
and identical central charges given by a = 223/24 and c = 65/6. We take this match as a
further evidence for the agreement of the magnetic quivers in (2.122) and (2.120).

Note that the quiver in (2.120) has a bad USp(4) and a bad USp(8) gauge node. We use
our upcoming prescription [91] to compute the Coulomb branch and Higgs branch Hilbert
series. The perturbative results up to first few orders are given in table 3 and table 4
respectively. These results agree with the Hilbert series of the unitary quiver (2.122).

3 SO(8) triality

In this section we consider SO(8) gauge theories with matter in the vector V, spinor S
and conjugate spinor C representations. We then use SO(8) triality to produce several
equivalent magnetic quivers for a given theory. We will encounter theories whose Higgs
branch is given as the union of several cones, where each cone is described by a distinct
magnetic quiver. We will denote by MQs,c,v

i; SO(8), the magnetic quiver for the i-th cone of
the SCFT parent of SO(8) +sS+cC+vV, i.e.

H5d
∞ (SO(8) + sS + cC + vV) =

⋃
i

C3d
(
MQs,c,v

i; SO(8)

)
. (3.1)

3.1 SO(8) + 1V←→ SO(8) + 1S

The web diagram for SO(8)+1V at infinite coupling is given by

(2,−1) (1, 1)

O5+ O5+11

1 1
. (3.2)

The magnetic quiver that we obtain from here is given by

MQ0,0,1
1; SO(8) =

1211

3 1

B2G−−−→B2G−−−→

1111

3 1

1
2

1
2 =

111

3 1

.

(3.3)
On the other hand, the brane web for the infinite coupling limit of SO(8)+1S is given by

(2,−1)

(2, 1)

O5+ O5−

1 2

1

, (3.4)
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whose magnetic quiver is given by

MQ1,0,0
1; SO(8) =

111

3 1

. (3.5)

This coincides with the magnetic quiver obtained in [61] from the brane web with an O7+-
plane. The unrefined Coulomb and Higgs branch Hilbert series of the two quivers agree
and are given in table 3 and table 4 respectively. We further propose the following highest
weight generating function of the Coulomb branch:

HWGC(3.3) = HWGC(3.5) = PE
[(

1 + µ2
)
t2 +

(
q + q−1

)
µt6 − µ2t12

]
, (3.6)

where µ is the SU(2) fugacity and q is the U(1) charge.

3.2 SO(8) + 2V←→ SO(8) + 2S

The web diagram for SO(8)+2V at infinite coupling is given by

(1,−1) (1, 1)

O5+ O5+1 1 1 1

, (3.7)

and the corresponding magnetic quiver is given by

MQ0,0,2
1; SO(8) =

1 2 3 2 1

1

3

. (3.8)

By SO(8) triality, the 5d theory SO(8)+2V should be identical to SO(8)+2S, the latter
has a web at infinite coupling given by

(2,1)(2,-1)

O5− O5−

22

11

. (3.9)

Here, we encounter a 5-brane web diagram that includes more than one coincident subwebs
that intersect with O5-plane. In this case, we need to consider the two types of contribu-
tion: one is the contribution coming from one of the subweb and its mirror image, which
corresponds to the factor |2mi| in the monopole formula. The other is the contribution
coming from the mirror pair of different subwebs among coincident ones, which corresponds
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to the factor |mi +mj | (i < j) in the monopole formula. As discussed in [60], the number
of each contribution is given by

# of |2mi| :
1
2(Self SI)− (SI with O5) ,

# of |mi +mj | : (Self SI) (i < j) . (3.10)

Here, “SI” denotes the stable intersection number, which is used to compute the number
of hypermultiplets, and “Self SI” means the SI with the mirror images of the considered
subwebs.

Both types of contributions need to be part of the weight of representations of the
unitary group. Such weights are included in two representations: one is in rank 2 symmetric
tensor representation, which we denote as “Sym2”, and the other is in rank 2 antisymmetric
tensor, which we denote as “∧2”. The weight |2mi| is included only in Sym2 while the weight
|mi+mj | is included in both of the representations. In order to reproduce the contribution
mentioned above, we claim that the number of these hypermultiplets are given by

# of Sym2 : 1
2(Self SI)− (SI with O5) ,

# of ∧2 : 1
2(Self SI) + (SI with O5) . (3.11)

Note that “Sym2” is interpreted as the charge 2 hypermultiplets when the gauge group is
U(1). Indeed, the proposal for Sym2 above is the generalization of the rule proposed in [60]
regarding the number of the charge 2 hypermultiplets. Also, it was proposed in [60] that
the number of ∧2 is simply given by Self SI, which now turned out to be valid only when
the number of Sym2 is 0. For generic case, we need to modify the rule as mentioned above.

If we apply this proposal to coincident (p, q) 5-branes intersecting with O5−-plane,
we have

# of Sym2 : pq − q ,
# of ∧2 : pq + q . (3.12)

By using this, we claim that the magnetic quiver for the SCFT limit of SO(8)+2S is
given by

MQ2,0,0
1; SO(8) =

1

2

1

1

Sym2

3 ∧2

. (3.13)

The unrefined Coulomb and Higgs branch Hilbert series of (3.8) and (3.13) match and are
given in table 3 and table 4 respectively. We further propose the following highest weight
generating function of the Coulomb branch:

HWGC(3.8) = HWGC(3.13) = PE
[(

1 + µ2
1

)
t2 + µ2

2t
4 +

(
q + q−1

)
µ2t

6 − µ2
2t

12
]
, (3.14)

where µi are highest weight fugacities for USp(4), and q is the fugacity for U(1).

– 34 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

3.3 SO(8) + 2S + 1C←→ SO(8) + 2S + 1V←→ SO(8) + 1S + 2V

The brane web for SO(8)+2S+1C at infinite coupling is given by

(2,-1)

(1,1)

O5− O5−2 3
2

1 1
2

1

2 2 , (3.15)

from which we read off the magnetic quiver

MQ2,1,0
1; SO(8) =

2 2

2

1

1

Sym2

2∧2

. (3.16)

The brane web for SO(8)+2S+1V at infinite coupling is given by

(2,-1)

(1,1)

O5− O5−2 3
2

1

2 2

2

. (3.17)

From here we obtain the following magnetic quiver

MQ2,0,1
1; SO(8) =

1

2
1

2
1

Sym2

2∧2

B2G−−−→B2G−−−→

1

2
1

1
1

1
2

Sym2

2∧2

, (3.18)

where the contribution of the dashed line to the monopole formula is given by (see foot-
note 1)

∆hyp

(
1 2

1
2

)
= 1

2 (|m1 −m2,1|+ |m1 +m2,2|) , (3.19)

where m1 is the magnetic flux of the U(1) node, while m2,i are magnetic fluxes for the U(2)
gauge node. The brane web for SO(8)+1S+2V is given by

(1, 1)

(1,−1)

O5+ 1 22 3
2 O5−

1

21 . (3.20)
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From here we read off the following magnetic quiver:

MQ1,0,2
1; SO(8) =

1 2 3

2

1 1

2 1

1

. (3.21)

The unrefined Coulomb and Higgs branch Hilbert series of (3.16), (3.18) and (3.21) match
and are given in table 3 and table 4 respectively. We further propose the following highest
weight generating function of the Coulomb branch of these quivers:

HWGC = PE
[(

1 + µ2
1 + ν2

)
t2 + µ2

2t
4 +

(
q + q−1

)
µ2νt

6 − µ2
2ν

2t12
]
, (3.22)

where µi are USp(4) highest weight fugacities, ν is an SU(2) highest weight fugacity, and
q is the U(1) charge.

3.4 SO(8) + 2S + 2C←→ SO(8) + 2S + 2V

The brane web for SO(8)+2S+2C at infinite coupling is given by

2(1, 1)2(1,−1)

O5− 1
2

3
2

1 22 3
2

1 1
2 O5−

. (3.23)

From this, we obtain the following magnetic quiver:

MQ2,2,0
1; SO(8) =

2 2 4 2 2

2

2 ∧2

; MQ2,2,0
2; SO(8) = 2 2 2 2 .

(3.24)
On the other hand, SO(8) triality implies the equivalence of SO(8)+2S+2C with
SO(8)+2S+2V. The latter theory has a brane web at infinite coupling given by

(1, 1)(1,−1)

O5− 3
2

22 3
2 O5−

1

2

1

2 , (3.25)
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from which we obtain the corresponding magnetic quiver to be

MQ2,0,2
1; SO(8) =

2 4 2

2

1 1
2 ∧2

B2G−−−→B2G−−−→

1 4 1

2

1 1

1
2

1
2

2 ∧2

MQ2,0,2
2; SO(8) = 1 2 2 1 . (3.26)

The unrefined Coulomb and Higgs branch Hilbert series of MQ2,2,0
i; SO(8) and MQ2,0,2

i; SO(8) match
and are given in table 3 and table 4 respectively. The HWG’s of the Coulomb branches for
the second cones take a very simple form and are given as
HWGC(MQ2,2,0

2; SO(8)) = HWGC(MQ2,0,2
2; SO(8)) = PE

[
µ2

1t
2 +

(
µ2 +µ2

2

)
t4 +µ2

1t
6 +µ2

1µ2t
8−µ4

1µ
2
2t

16
]
,

(3.27)
where µi are USp(4) highest weight fugacities.

3.5 SO(8) + 1S + 1C + 2V←→ SO(8) + 2S + 1C + 1V

The brane web for the SCFT limit of SO(8)+1S+1C+2V is given by
(1, 1)

1
2

13
2

21 1 2 2O5+ O5−

1 2 . (3.28)

The magnetic quivers associated to this brane system are

MQ1,1,2
1; SO(8) =

1 2 3 4 3 2 2

1

2

1

MQ1,1,2
2; SO(8) =

1 2 3 2

2

1

5

. (3.29)

The brane web for the SCFT limit of SO(8)+2S+1C+1V is given by
(1,−1)

(1, 1)

O5− 3
2

2 1
2

13
2

2

1

2 2

O5−

. (3.30)
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The magnetic quiver that we read off here is

MQ2,1,1
1; SO(8) =

2 4 2 2

2

1

2 ∧2 B2G−−−→B2G−−−→

1 4 2 2

2

1

2 ∧2

1
2

MQ2,1,1
2; SO(8) =

2 2 2

1

. (3.31)

The unrefined Coulomb and Higgs branch Hilbert series of MQ1,1,2
i; SO(8) and MQ2,1,1

i; SO(8) match
and are given in table 3 and table 4 respectively. The HWG’s for the Coulomb branches
for the second cones takes a very simple form

HWGC(MQ1,1,2
2; SO(8)) = HWGC(MQ2,1,1

2; SO(8)) = PE
[
µ2

1t
2 +

(
1 + µ2 + µ2

2

)
t4 + µ2t

6 − µ2
2t

12
]
,

(3.32)
where the µi are USp(4) highest weight fugacities.

3.6 SO(8) + 2S + 2C + 1V←→ SO(8) + 2S + 1C + 2V

The brane web for the SCFT limit of SO(8)+2S+2C+1V takes the form

(1,−1)

1
2

1 3
2

2 4 7
2

2 3
2

1 1
2 O5−O5−

22 . (3.33)

The magnetic quivers associated to this brane system are

MQ2,2,1
1; SO(8) =

2 2 4 6 4 2 2

2

1 ∧2

MQ2,2,1
2; SO(8) =

2 2 4 4 4

2 2

2 2

. (3.34)
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If, instead, we take the SCFT limit of the brane web for SO(8)+2S+1C+2V, given by

(1,−1)

3
2

2 4 7
2

2 3
2

1 1
2 O5−O5−

1

2 2
, (3.35)

we obtain the following alternative magnetic quivers

MQ2,1,2
1; SO(8) =

2 4 6 4 2 2

2

1

1 ∧2

MQ2,1,2
2; SO(8) =

2 4 4 4

2 2

2 2

1

. (3.36)

The unrefined Coulomb and Higgs branch Hilbert series of MQ2,2,1
i; SO(8) and MQ2,1,2

i; SO(8) match
and are given in table 3 and table 4 respectively.

4 Conclusion

In this paper, we studied the Higgs branches of 5d SCFTs, that admit deformations to
SO(6) or SO(8) gauge theories with matter in either the vector, spinor, or conjugate spinor
representation of the gauge group. We used the brane configurations, engineering these
theories, to find the corresponding magnetic quivers. The magnetic quivers for SO(6)
theories were verified by comparison with those of SU(4) theories, while we used SO(8)
triality, to provide consistency checks of the magnetic quivers proposed for the SO(8)
theories. The agreement of the different magnetic quivers for a given SCFT, were shown to
hold at the level of the unrefined Hilbert series, for all cases, on both the Coulomb and the
Higgs branch of the moduli space. The unrefined Hilbert series for both the Coulomb and
the Higgs branch Hilbert series of all magnetic quivers studied in this work are collected
in appendix A. Some magnetic quivers encountered in this work, involved bad symplectic
gauge nodes. We were able to assign a Hilbert series for both Coulomb and Higgs branches
of these theories, developing a new technique which is referred to as B2G in the main text,
which uses a local mirror description of the effective theory around the most singular locus
of the moduli space. Details of these computational techniques will be the content of a
future publication [91]. Since the Coulomb branch of a bad 3d N = 4 USp(2N) theory
is comprised of multiple singular loci, one may wonder whether a 5d Higgs branch whose
magnetic quiver contains bad USp(2N) nodes, has a similar structure on its Higgs branch.
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However the output of our study seems to suggest otherwise. In particular, we found that
for the theories under our construction, the local geometry near one of the two singular
points on the Coulomb branch of the magnetic quiver, can capture the full Higgs branch of
the 5d theory. This conclusion follows because for every magnetic quiver with a bad node,
we have a dual magnetic quiver without any bad nodes. It would be interesting to find
further checks of this claim.

We encountered brane webs whose magnetic quivers involve second rank symmetric
and second rank antisymmetric tensors. We provided a formula for computing the number
of hypermultiplets in the (anti)symmetric representations, which generalises previous rules
for extracting magnetic quivers from brane webs with O5-planes in [60, 68]. Despite these
improvements, there is still no completely systematic algorithm to extract magnetic quivers
for 5d SCFTs engineered using O5-planes. Perhaps the most urgent question to address,
is the magnetic quivers for SO(2r + 1) theories, which are engineered using Õ5-planes.
One might be able to use the results of [62] as a guide for such a study. Another subtle
issue, that will eventually need to be addressed, is developing a more systematic method
for distinguishing different theories whose 5-brane web at the SCFT limit is identical.
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A Unrefined Hilbert series results for OSp quivers

In this appendix, we collect the unrefined Hilbert series of all the orthosymplectic magnetic
quivers appearing in the main sections. The Coulomb branch Hilbert series are given in
table 3, while the Higgs branch results are mentioned in table 4. Table 5 contains the
palindromic polynomials appearing in table 3 and table 4 respectively.

HSC(t) = HSC(t; ~m ∈ Z) + HSC
(
t; ~m ∈ Z + 1

2

)
Quiver

HSC(t; ~m ∈ Z) HSC
(
t; ~m ∈ Z + 1

2

)

MQ1,1,0
1

1+3t4+2t6+3t8+t12

(1−t2)2 (1−t4) (1−t8)
||

1 + 2t2 + 7t4 + 14t6 + 29t8 + 46t10 + . . .

2t2+2t4+2t6+2t8+2t10

(1−t2)2 (1−t4) (1−t8)
||

2t2 + 6t4 + 14t6 + 26t8 + 46t10 + . . .
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HSC(t) = HSC(t; ~m ∈ Z) + HSC
(
t; ~m ∈ Z + 1

2

)
Quiver

HSC(t; ~m ∈ Z) HSC
(
t; ~m ∈ Z + 1

2

)

MQ2,0,0
1

1+t4

(1−t2) (1−t4)
||

1 + t2 + 3t4 + 3t6 + 5t8 + 5t10 + . . .

not required

MQ2,0,0
2

1+t4

(1−t2) (1−t4)
||

1 + t2 + 3t4 + 3t6 + 5t8 + 5t10 + . . .

2t2

(1−t2) (1−t4)
||

2t2 + 2t4 + 4t6 + 4t8 + 6t10 + . . .

MQ2,1,0
1

P1(t)
(1−t2)3 (1−t4)2 (1−t8)

||
1+5t2+24t4+72t6+189t8+413t10 + . . .

4t2+6t4+14t6+14t8+14t10+6t12+4t14

(1−t2)3 (1−t4)2 (1−t8)
||

4t2 + 18t4 + 64t6 + 168t8 + 388t10 + . . .

MQ2,2,0
1

P2(t)
(1−t2)5 (1−t4)4 (1−t8)

||
1+8t2+72t4+371t6+1598t8+5510t10+ . . .

P3(t)
(1−t2)5 (1−t4)4 (1−t8)

||
8t2+60t4+364t6+1536t8+5464t10 + . . .

MQ2,2,0
2

1+t4

(1−t2) (1−t4)
||

1 + t2 + 3t4 + 3t6 + 5t8 + 5t10 + . . .

not required

M̂Q
2,2,0
1

P4(t)
(1−t2)5 (1−t4)5

||
1 + 16t2 + 132t4 + 735t6 + 3134t8

+10974t10 + . . .

not required

M̂Q
2,2,0
2

1+t4

(1−t2) (1−t4)
||

1 + t2 + 3t4 + 3t6 + 5t8 + 5t10 + . . .

not required

MQ3,2,0
1

1 + 17t2 + 184t4 + 1446t6 + 8758t8 +
43000t10 + 178362t12 + 644654t14 +

2079047t16 +6092795t18 +16458838t20 + . . .

8t2 + 136t4 + 1248t6 + 8072t8 + 40952t10 +
172888t12 + 631376t14 + 2049176t16 +

6030000t18 + 16333832t20 + . . .

MQ3,2,0
2

P5(t)
(1−t2)5 (1−t4) (1−t8)4

||
1 + 17t2 + 139t4 + 751t6 + 3148t8

+10894t10 + . . .

P6(t)
(1−t2)5 (1−t4) (1−t8)4

||
8t2+96t4+624t6+2832t8+10232t10 + . . .

MQ3,3,0
1

1 + 20t2 + 350t4 + 4199t6 + 38358t8 +
278738t10 + 1683601t12 + 8713628t14 +

39600362t16 + 161030946t18 +
594866176t20 + . . .

16t2+320t4+4096t6+37920t8+277504t10+
1679744t12 + 8704320t14 + 39576496t16 +

160979760t18 + 594751936t20 + . . .

MQ3,3,0
2

1 + 20t2 + 340t4 + 3926t6 + 33526t8 +
224534t10 + 1240034t12 + 5850463t14 +

24223718t16 + 89832720t18 +
303191840t20 + . . .

16t2+320t4+3872t6+33344t8+224128t10+
1238960t12 + 5848352t14 + 24218944t16 +

89824160t18 + 303174592t20 + . . .

– 41 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

HSC(t) = HSC(t; ~m ∈ Z) + HSC
(
t; ~m ∈ Z + 1

2

)
Quiver

HSC(t; ~m ∈ Z) HSC
(
t; ~m ∈ Z + 1

2

)

MQ4,4,0
1

1 + 37t2 + 1350t4 + 34389t6 + 668310t8 +
10281564t10 + 129992857t12 +

1388266357t14 + 12803207039t16 +
103789879656t18 + 750444248396t20 + . . .

32t2 + 1280t4 + 34080t6 + 666016t8 +
10272864t10 + 129948064t12 +

1388117408t14 + 12802606720t16 +
103788095648t18 + 750438227104t20 + . . .

MQ2,0,1
1

P7(t)
(1−t2)2 (1−t4) (1−t6)3

||
1+5t2+18t4+58t6+149t8+325t10 + . . .

2t3P8(t)
(1−t2) (1−t4)2 (1−t6)3

||
6t3 + 26t5 + 78t7 + 198t9 + . . .

MQ2,0,1
2

1+t4

(1−t2)4

||
1 + 4t2 + 11t4 + 24t6 + 45t8 + 76t10 + . . .

2t2

(1−t2)4

||
2t2 + 8t4 + 20t6 + 40t8 + 70t10 + . . .

MQ2,0,1
3

1−2t+3t2−4t3+6t4−4t5+3t6−2t7+t8

(1−t)2 (1−t4) (1−t6)
||

1 + 2t2 + 5t4 + 4t5 + 10t6 + 8t7 + 17t8

+16t9 + 28t10 + . . .

2t2−2t3+2t4−2t5+2t6

(1−t)2 (1−t4) (1−t6)
||

2t2 + 2t3 + 4t4 + 4t5 + 8t6 + 10t7 + 16t8

+18t9 + 26t10 + . . .

MQ1,1,1
1

P9(t)
(1−t2)3 (1−t4) (1−t8)2

||
1+5t2+20t4+60t6+157t8+345t10 + . . .

(1−t4)P10(t)
(1−t2)5 (1−t8)2

||
2t2 + 14t4 + 50t6 + 136t8 + 314t10 + . . .

MQ1,1,1
2

1+2t2+2t4+6t6+2t8+2t10+t12

(1−t2)2 (1−t6)2

||
1 + 4t2 + 9t4 + 22t6 + 41t8 + 66t10 + . . .

4t3+4t5+4t7+4t9

(1−t2)2 (1−t6)2

||
4t3 + 12t5 + 24t7 + 48t9 + . . .

MQ2,1,1
1

1 + 9t2 + 4t3 + 57t4 + 52t5 + 291t6 +
312t7 + 1172t8 + 1360t9 + 3932t10 + . . .

4t2 + 10t3 + 36t4 + 82t5 + 208t6 + 426t7 +
920t8 + 1708t9 + 3276t10 + . . .

MQ2,1,1
2

1+t2+7t4+6t6+7t8+t10+t12

(1−t2)3 (1−t4)3

||
1+4t2+19t4+55t6+146t8+317t10 + . . .

4t2+4t4+8t6+4t8+4t10

(1−t2)3 (1−t4)3

||
4t2 + 16t4 + 56t6 + 140t8 + 320t10 + . . .

MQ2,2,1
1

1 + 20t2 + 28t3 + 220t4 + 456t5 + 1905t6 +
4132t7 + 13026t8 + 27600t9 + 72438t10 + . . .

not required

MQ2,2,1
2

1 + 19t2 + 24t3 + 188t4 + 368t5 + 1396t6 +
2968t7 + 8302t8 + 17168t9 + 40474t10 +

79648t11 + 167230t12 + 312656t13 +
603338t14 + 1074896t15 + 1943919t16 +
3316912t17 + 5693149t18 + 9351600t19 +

15372660t20 + . . .

not required

M̂Q
2,2,1
1

1 + 12t2 + 8t3 + 124t4 + 200t5 + 1033t6 +
1912t7 + 6834t8 + 13192t9 + 37406t10 + . . .

8t2 + 20t3 + 96t4 + 256t5 + 872t6 +
2220t7 + 6192t8 + 14408t9 + 35032t10 + . . .

M̂Q
2,2,1
2

1 + 11t2 + 8t3 + 100t4 + 176t5 + 724t6 +
1448t7 + 4206t8 + 8496t9 + 20394t10 + . . .

8t2 + 16t3 + 88t4 + 192t5 + 672t6 +
1520t7 + 4096t8 + 8672t9 + 20080t10 + . . .
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HSC(t) = HSC(t; ~m ∈ Z) + HSC
(
t; ~m ∈ Z + 1

2

)
Quiver

HSC(t; ~m ∈ Z) HSC
(
t; ~m ∈ Z + 1

2

)

MQ3,2,1
1

1 + 21t2 + 28t3 + 292t4 + 710t5 + 3576t6 +
10234t7 + 37720t8 + 107242t9 +

331772t10 + . . .

8t2+24t3+192t4+688t5+2992t6+10144t7+
34904t8 + 106960t9 + 320096t10 + . . .

MQ3,3,1
1

1 + 24t2 + 36t3 + 497t4 + 1544t5 + 9096t6 +
32876t7 + 141780t8 + 501144t9 +

1831783t10 + . . .

16t2 + 48t3 + 432t4 + 1648t5 + 8656t6 +
33680t7 + 139248t8 + 505904t9 +

1818896t10 + . . .

MQ4,4,1
1

1 + 46t2 + 96t3 + 1836t4 + 8256t5 +
66981t6 + . . .

32t2 +128t3 +1664t4 +8704t5 +64960t6 +. . .

MQ1,1,2
1

1 + 18t2 + 205t4 + 1591t6 + 9499t8 +
45959t10 + 188535t12 + 675381t14 +

2163400t16 +6305809t18 +16961842t20 + . . .

not required

MQ1,1,2
2

1 + 24t2 + 8t3 + 255t4 + 144t5 + 1716t6 +
1256t7 + 8594t8 + 7312t9 + 34872t10 +

32640t11 + 120628t12 + 120336t13 +
367968t14 + 383440t15 + 1013621t16 +

1088720t17 + 2565512t18 + 2814744t19 +
6045369t20 + . . .

not required

MQ1,1,2
3

1 + 11t2 + 8t3 + 65t4 + 80t5 + 295t6 +
432t7 + 1122t8 + 1720t9 + 3666t10 +

5640t11 + 10564t12 + 16024t13 + 27460t14 +
40752t15 + 65445t16 + 94888t17 +

144935t18 + 205440t19 + 301571t20 + . . .

not required

M̂Q
1,1,2
1

1 + 14t2 + 129t4 + 895t6 + 5071t8 +
23887t10 + 96579t12 + 343049t14 +

1093344t16 + 3176685t18 + 8527154t20 + . . .

4t2 + 76t4 + 696t6 + 4428t8 + 22072t10 +
91956t12 + 332332t14 + 1070056t16 +

3129124t18 + 8434688t20 + . . .

M̂Q
1,1,2
2

1 + 20t2 + 179t4 + 32t5 + 1092t6 + 416t7 +
5142t8 + 2816t9 + 20024t10 + 13600t11 +

67328t12 + 52544t13 + 201208t14 +
172576t15 + 545849t16 + 500352t17 +

1365524t18 + 1313248t19 + 3188473t20 + . . .

4t2 + 8t3 + 76t4 + 112t5 + 624t6 + 840t7 +
3452t8 + 4496t9 + 14848t10 + 19040t11 +

53300t12 + 67792t13 + 166760t14 +
210864t15 + 467772t16 + 588368t17 +

1199988t18 + 1501496t19 + 2856896t20 + . . .

M̂Q
1,1,2
3

1 + 11t2 + 65t4 + 295t6 + 1122t8 +
3666t10 + 10564t12 + 27460t14 + 65445t16 +

144935t18 + 301571t20 + . . .

8t3 + 80t5 + 432t7 + 1720t9 + 5640t11 +
16024t13 + 40752t15 + 94888t17 +

205440t19 + . . .

MQ2,0,2
1

1 + 14t2 + 119t4 + 806t6 + 4480t8 +
20886t10 + 83778t12 + . . .

16t3+208t5+1568t7+8736t9+39552t11+. . .

MQ2,0,2
2

1 + 20t2 + 175t4 + 32t5 + 1060t6 + 416t7 +
4994t8 + 2784t9 + 19432t10 + 13376t11 +

65340t12 + 51584t13 + 195360t14 +
169120t15 + 530141t16 + 489760t17 +

1326692t18 + 1284544t19 + 3098889t20 + . . .

2t2 + 16t3 + 40t4 + 208t5 + 348t6 + 1408t7 +
2080t8 + 6896t9 + 9640t10 + 27184t11 +

36784t12 + 91248t13 + 121040t14 +
270672t15 + 353936t16 + 726832t17 +

939242t18 + 1797536t19 + 2299448t20 + . . .
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HSC(t) = HSC(t; ~m ∈ Z) + HSC
(
t; ~m ∈ Z + 1

2

)
Quiver

HSC(t; ~m ∈ Z) HSC
(
t; ~m ∈ Z + 1

2

)

MQ2,0,2
3

1 + 11t2 + 68t4 + 313t6 + 1202t8 +
3953t10 + 11453t12 + 29842t14 + 71275t16 +

158094t18 + 329343t20 + . . .

2t2 + 32t4 + 214t6 + 972t8 + 3472t10 +
10544t12 + 28260t14 + 68662t16 +

153948t18 + 323034t20 + . . .

MQ2,1,2
1

1 + 20t2 + 8t3 + 275t4 + 296t5 + 3045t6 +
4800t7 +27790t8 +51128t9 +211871t10 + . . .

6t2 + 24t3 + 150t4 + 504t5 + 2144t6 +
6528t7 +22284t8 +61992t9 +182902t10 + . . .

MQ2,2,2
1

1 + 27t2 + 16t3 + 537t4 + 992t5 + 9266t6 +
23904t7 + 133582t8 + 383712t9 +

1626798t10 + . . .

12t2 + 48t3 + 384t4 + 1440t5 + 7700t6 +
28192t7 + 120740t8 + 417440t9 +

1536816t10 + . . .

M̂Q
2,2,2
1

1 + 39t2 + 64t3 + 921t4 + 2432t5 +
16966t6 + 52096t7 + 254322t8 + 801152t9 +

3163614t10 + . . .

not required

MQ3,2,2
1

1 + 40t2 + 64t3 + 1104t4 + 3520t5 +
26972t6 + 108032t7 + 587528t8 +

2428480t9 + 11018073t10 + . . .

16t2 + 64t3 + 736t4 + 3520t5 + 22848t6 +
108032t7 + 549792t8 + 2428480t9 +

10724912t10 + . . .

MQ3,3,2
1

1 + 57t2 + 88t3 + 2432t4 + 9024t5 +
91715t6 + . . .

32t2 +128t3 +2016t4 +9984t5 +85856t6 +. . .

MQ0,0,1
1; SO(8)

1+2t2+2t4+4t6+2t8+2t10+t12

(1−t2)2 (1−t6)2

||
1 + 4t2 + 9t4 + 20t6 + 37t8 + 60t10 + . . .

not required

MQ1,0,0
1; SO(8)

1+2t2+2t4+4t6+2t8+2t10+t12

(1−t2)2 (1−t6)2

||
1 + 4t2 + 9t4 + 20t6 + 37t8 + 60t10 + . . .

not required

MQ0,0,2
1; SO(8)

P11(t)
(1−t2)4 (1−t6)4

||
1+11t2+60t4+235t6+745t8+2016t10+ . . .

not required

MQ2,0,0
1; SO(8)

P12(t)
(1−t2)2 (1−t4)2 (1−t6)4

||
1+7t2+36t4+133t6+409t8+1082t10 + . . .

P13(t)
(1−t2)2 (1−t4)2 (1−t6)4

||
4t2 + 24t4 + 102t6 + 336t8 + 934t10 + . . .

MQ2,1,0
1; SO(8)

1 + 10t2 + 62t4 + 291t6 + 1102t8 +
3556t10 + 10104t12 + 25904t14 + 60965t16 +

133590t18 + 275450t20 + . . .

4t2 + 36t4 + 196t6 + 824t8 + 2840t10 +
8448t12 + 22392t14 + 54040t16 +

120684t18 + 252596t20 + . . .

MQ2,0,1
1; SO(8)

1 + 10t2 + 62t4 + 291t6 + 1102t8 +
3556t10 + 10104t12 + 25904t14 + 60965t16 +

133590t18 + 275450t20 + . . .

4t2 + 36t4 + 196t6 + 824t8 + 2840t10 +
8448t12 + 22392t14 + 54040t16 +

120684t18 + 252596t20 + . . .

MQ1,0,2
1; SO(8)

1 + 14t2 + 98t4 + 487t6 + 1926t8 +
6396t10 + 18552t12 + 48296t14 +

115005t16 + 254274t18 + 528046t20 + . . .

not required
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HSC(t) = HSC(t; ~m ∈ Z) + HSC
(
t; ~m ∈ Z + 1

2

)
Quiver

HSC(t; ~m ∈ Z) HSC
(
t; ~m ∈ Z + 1

2

)

MQ2,2,0
1; SO(8)

1 + 13t2 + 143t4 + 1106t6 + 6918t8 +
35792t10 + 159285t12 + 623177t14 +

2187539t16 +6992878t18 +20617582t20 + . . .

8t2 + 104t4 + 936t6 + 6200t8 + 33384t10 +
151776t12 + 602624t14 + 2134800t16 +

6868552t18 + 20339496t20 + . . .

MQ2,2,0
2; SO(8)

1 + 6t2 + 30t4 + 110t6 + 339t8 + 900t10 +
2140t12 + 4644t14 + 9365t16 + 17754t18 +

31962t20 + . . .

4t2+24t4+100t6+320t8+872t10+2096t12+
4584t14 +9280t16 +17644t18 +31816t20 +. . .

MQ2,0,2
1; SO(8)

1 + 17t2 + 161t4 + 1178t6 + 7146t8 +
36564t10 + 161447t12 + 628953t14 +

2201473t16 +7025402t18 +20688074t20 + . . .

4t2 + 86t4 + 864t6 + 5972t8 + 32612t10 +
149614t12 + 596848t14 + 2120866t16 +

6836028t18 + 20269004t20 + . . .

MQ2,0,2
2; SO(8)

1 + 6t2 + 30t4 + 110t6 + 339t8 + 900t10 +
2140t12 + 4644t14 + 9365t16 + 17754t18 +

31962t20 + . . .

4t2+24t4+100t6+320t8+872t10+2096t12+
4584t14 +9280t16 +17644t18 +31816t20 +. . .

MQ1,1,2
1; SO(8)

1 + 17t2 + 16t3 + 151t4 + 248t5 + 1065t6 +
2032t7 + 6375t8 + 12320t9 + 32229t10 +

61368t11 + 140928t12 + 261264t13 +
545817t14 + 978968t15 + 1902162t16 +

3301248t17 + 6048732t18 + 10175424t19 +
17765022t20 + . . .

not required

MQ1,1,2
2; SO(8)

P14(t)
(1−t2)4 (1−t4)4

||
1+10t2+55t4+215t6+679t8+1831t10+ . . .

not required

MQ2,1,1
1; SO(8)

1+13t2+8t3+99t4+124t5+645t6+1016t7+
3631t8 + 6160t9 + 17605t10 + 30684t11 +

74988t12 + 130632t13 + 285329t14 +
489484t15 + 982434t16 + 1650624t17 +

3098316t18 + 5087712t19 + 9046590t20 + . . .

4t2 + 8t3 + 52t4 + 124t5 + 420t6 + 1016t7 +
2744t8 + 6160t9 + 14624t10 + 30684t11 +

65940t12 + 130632t13 + 260488t14 +
489484t15 + 919728t16 + 1650624t17 +

2950416t18 + 5087712t19 + 8718432t20 + . . .

MQ2,1,1
2; SO(8)

1 + 6t2 + 31t4 + 111t6 + 351t8 + 927t10 +
2222t12 + 4811t14 + 9745t16 + 18463t18 +

33309t20 + . . .

4t2+24t4+104t6+328t8+904t10+2168t12+
4768t14 +9640t16 +18376t18 +33128t20 +. . .

MQ2,2,1
1; SO(8)

1 + 16t2 + 16t3 + 192t4 + 384t5 + 2037t6 +
5072t7 +19123t8 +49824t9 +156259t10 + . . .

8t2 + 16t3 + 136t4 + 384t5 + 1688t6 +
5072t7 +17400t8 +49824t9 +148624t10 + . . .

MQ2,2,1
2; SO(8)

1 + 15t2 + 16t3 + 175t4 + 368t5 + 1840t6 +
4768t7 +16982t8 +45408t9 +135469t10 + . . .

8t2 + 16t3 + 136t4 + 368t5 + 1640t6 +
4768t7 +16208t8 +45408t9 +132744t10+ . . .

MQ2,1,2
1; SO(8)

1 + 20t2 + 16t3 + 224t4 + 384t5 + 2189t6 +
5072t7 +19815t8 +49824t9 +159015t10 + . . .

4t2 + 16t3 + 104t4 + 384t5 + 1536t6 +
5072t7 +16708t8 +49824t9 +145868t10 + . . .

MQ2,1,2
2; SO(8)

1 + 19t2 + 16t3 + 211t4 + 368t5 + 2020t6 +
4768t7 +17758t8 +45408t9 +138385t10 + . . .

4t2 + 16t3 + 100t4 + 368t5 + 1460t6 +
4768t7 +15432t8 +45408t9 +129828t10 + . . .

Table 3. Unrefined Coulomb branch Hilbert series for the orthosymplectic quivers.
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Quiver Higgs branch HS: HSH(t)

MQ1,1,0
1

(1−t) Q1(t)
(1−t2)4 (1−t3)3 = 1 + 9t2 + 6t3 + 36t4 + 36t5 + 112t6 + 120t7 + 285t8

+320t9 + 621t10 + . . .

MQ2,0,0
1

1+9t2+9t4+t6

(1−t2)6 = 1 + 15t2 + 84t4 + 300t6 + 825t8 + 1911t10 + . . .

MQ2,0,0
2

1+t2

(1−t2)2 = 1 + 3t2 + 5t4 + 7t6 + 9t8 + 11t10 + . . .

MQ2,1,0
1

Q2(t)
(1−t2)3 (1−t4)3 = 1 + 9t2 + 42t4 + 136t6 + 357t8 + 801t10 + . . .

MQ2,2,0
1

Q3(t)
(1−t2) (1−t3)2 (1−t4) (1−t5)2 = 1 + 4t2 + 4t3 + 11t4 + 16t5 + 31t6 + 44t7

+72t8 + 104t9 + 155t10 + . . .

MQ2,2,0
2

1+9t2+9t4+t6

(1−t2)6 = 1 + 15t2 + 84t4 + 300t6 + 825t8 + 1911t10 + . . .

M̂Q
2,2,0
1

Q3(t)
(1−t2) (1−t3)2 (1−t4) (1−t5)2 = 1 + 4t2 + 4t3 + 11t4 + 16t5 + 31t6 + 44t7

+72t8 + 104t9 + 155t10 + . . .

M̂Q
2,2,0
2

1+9t2+9t4+t6

(1−t2)6 = 1 + 15t2 + 84t4 + 300t6 + 825t8 + 1911t10 + . . .

MQ3,2,0
1

Q4(t)
(1−t2) (1−t4)3 (1−t6)2 = 1 + 4t2 + 14t4 + 37t6 + 86t8 + 176t10 + . . .

MQ3,2,0
2

Q5(t)
(1−t2)3 (1−t6)3 = 1 + 9t2 + 36t4 + 106t6 + 261t8 + 561t10 + . . .

MQ3,3,0
1

(1−t)Q6(t)
(1−t2) (1−t3) (1−t4)2 (1−t5) (1−t6) (1−t7) = 1 + t2 + 2t3 + 3t4 + 4t5 + 8t6

+10t7 + 15t8 + 20t9 + 30t10 + . . .

MQ3,3,0
2

Q7(t)
(1−t2) (1−t5)2 (1−t7)2 (1−t8) = 1 + 4t2 + 10t4 + 4t5 + 20t6

+16t7 + 36t8 + 40t9 + 67t10 + . . .

MQ4,4,0
1 1 + t4 + 2t6 + 5t8 + 5t10 + 12t12 + . . .

MQ2,0,1
1

(1−t)Q8(t)
(1−t2)2 (1−t4)2 (1−t3)3 = 1 + 5t2 + 6t3 + 18t4 + 26t5 + 58t6

+78t7 + 149t8 + 198t9 + 325t10 + . . .

MQ2,0,1
2

(1+t2)2

(1−t2)4 = 1 + 6t2 + 19t4 + 44t6 + 85t8 + 146t10 + . . .

MQ2,0,1
3

1+5t2+5t4+t6

(1−t2)6 = 1 + 11t2 + 56t4 + 192t6 + 517t8 + 1183t10 + . . .

MQ1,1,1
1

Q9(t)
(1−t) (1−t2) (1−t3)3 (1−t4) = 1 + 5t2 + 8t3 + 16t4 + 32t5

+58t6 + 88t7 + 151t8 + 224t9 + 329t10 + . . .

MQ1,1,1
2

1+2t2+2t3+2t4+t6

(1−t2)2 (1−t3)2 = 1 + 4t2 + 4t3 + 9t4 + 12t5

+22t6 + 24t7 + 41t8 + 48t9 + 66t10 + . . .

MQ2,1,1
1

(1−t) Q10(t)
(1−t2)2 (1−t4)2 (1−t5)3 = 1 + 5t2 + 18t4 + 6t5 + 46t6

+26t7 + 101t8 + 78t9 + 205t10 + . . .

MQ2,1,1
2

1+2t2+2t4+t6

(1−t2)6 = 1 + 8t2 + 35t4 + 111t6 + 286t8 + 637t10 + . . .

MQ2,2,1
1

Q11(t)
(1−t4)2 (1−t5) (1−t6)2 (1−t7) = 1 + t2 + 2t3 + 4t4 + 4t5 + 9t6 + 12t7

+20t8 + 26t9 + 39t10 + . . .

MQ2,2,1
2

Q16(t)
(1−t2)2 (1−t5)2 (1−t6)2 = 1 + 4t2 + 10t4 + 4t5 + 23t6 + 16t7 + 46t8 + 40t9 + 88t10 + . . .

M̂Q
2,2,1
1 1 + t2 + 4t5 + 4t5 + 9t6 + 12t7 + 20t8 + . . .
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Quiver Higgs branch HS: HSH(t)

M̂Q
2,2,1
2

Q16(t)
(1−t2)2 (1−t5)2 (1−t6)2 = 1 + 4t2 + 10t4 + 4t5 + 23t6 + 16t7 + 46t8 + 40t9 + 88t10 + . . .

MQ3,2,1
1 1 + t2 + 2t4 + 2t5 + 4t6 + 4t7 + 8t8 + 8t9 + 13t10 + . . .

MQ3,3,1
1 1 + t4 + 2t6 + 5t8 + . . .

MQ4,4,1
1 1 +O(t7)

MQ1,1,2
1

Q12(t)
(1−t) (1−t3) (1−t4) (1−t5)2 (1−t6) = 1 + t2 + 2t3 + 4t4 + 6t5

+10t6 + 14t7 + 22t8 + 32t9 + 46t10 + . . .

MQ1,1,2
2

Q13(t)
(1−t) (1−t2)2 (1−t3) (1−t5)2 = 1 + 5t2 + 2t3 + 14t4 + 14t5

+32t6 + 44t7 + 73t8 + 102t9 + 157t10 + . . .

MQ1,1,2
3 1 + 3t2 + 14t4 + 34t6 + 89t8 + · · ·

M̂Q
1,1,2
1

Q12(t)
(1−t) (1−t3) (1−t4) (1−t5)2 (1−t6) = 1 + t2 + 2t3 + 4t4 + 6t5

+10t6 + 14t7 + 22t8 + 32t9 + 46t10 + . . .

M̂Q
1,1,2
2

1−t+3t2−2t3+4t4+2t6+4t8−2t9+3t10−t11+t12

(1−t) (1−t2)2 (1−t3) (1−t5)2 =

1 + 5t2 + 2t3 + 14t4 + 14t5 + 32t6 + 44t7 + 73t8 + 102t9 + 157t10 + . . .

M̂Q
1,1,2
3

1+5t4+5t8+t12

(1−t2)3 (1−t4)3 = 1 + 3t2 + 14t4 + 34t6 + 89t8 + 179t10 + . . .

MQ2,1,2
1 1 + t2 + 3t4 + 2t5 + 4t6 + 6t7 + 8t8 + . . .

MQ2,2,2
1 1 + t4 + 2t6 + 5t8 + . . .

M̂Q
2,2,2
1 1 + t4 + 2t6 + 5t8 + . . .

MQ3,2,2
1 1 + t6 + . . .

MQ3,3,2
1 1 + 2t2 + 8t4 + . . .

MQ0,0,1
1; SO(8)

(1−t) Q13(t)
(1−t2)4 (1−t3)4 (1−t5) =

1 + 10t2 + 18t3 + 52t4 + 116t5 + 250t6 + 454t7 + 889t8 + 1490t9 + 2538t10 + . . .

MQ1,0,0
1; SO(8)

(1−t) Q13(t)
(1−t2)4 (1−t3)4 (1−t5) =

1 + 10t2 + 18t3 + 52t4 + 116t5 + 250t6 + 454t7 + 889t8 + 1490t9 + 2538t10 + . . .

MQ0,0,2
1; SO(8)

1+6t2+27t4+48t6+84t8+86t10+84t12+48t14+27t16+6t18+t20

(1−t2)3 (1−t4)4 (1−t6) =

1 + 9t2 + 55t4 + 212t6 + 688t8 + 1852t10 + . . .

MQ2,0,0
1; SO(8)

1+6t2+27t4+48t6+84t8+86t10+84t12+48t14+27t16+6t18+t20

(1−t2)3 (1−t4)4 (1−t6) =

1 + 9t2 + 55t4 + 212t6 + 688t8 + 1852t10 + . . .

MQ2,1,0
1; SO(8)

1 + 5t2 + 4t3 + 25t4 + 22t5 + 86t6 + 86t7 + 254t8 + 270t9 + 648t10 + 716t11 + 1499t12 +
1686t13 + 3177t14 + . . .

MQ2,0,1
1; SO(8)

(1−t) Q14(t)
(1−t2)3 (1−t3)2 (1−t4)2 (1−t5) (1−t6) =

1 + 5t2 + 4t3 + 25t4 + 22t5 + 86t6 + 86t7 + 254t8 + 270t9 + 648t10 + . . .

MQ1,0,2
1; SO(8)

(1−t) Q14(t)
(1−t2)3 (1−t3)2 (1−t4)2 (1−t5) (1−t6) =

1 + 5t2 + 4t3 + 25t4 + 22t5 + 86t6 + 86t7 + 254t8 + 270t9 + 648t10 + . . .

– 47 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

Quiver Higgs branch HS: HSH(t)

MQ2,2,0
1; SO(8) 1 + 4t2 + 11t4 + 8t5 + 31t6 + 32t7 + 70t8 + 88t9 + 170t10 + . . .

MQ2,2,0
2; SO(8)

1+2t2+2t4+2t6+t8

(1−t2)8 = 1 + 10t2 + 54t4 + 210t6 + 659t8 + 1772t10 + . . .

MQ2,0,2
1; SO(8) 1 + 4t2 + 11t4 + 8t5 + 31t6 + 32t7 + 70t8 + 88t9 + 170t10 + . . .

MQ2,0,2
2; SO(8)

1+2t2+2t4+2t6+t8

(1−t2)8 = 1 + 10t2 + 54t4 + 210t6 + 659t8 + 1772t10 + . . .

MQ1,1,2
1; SO(8) 1 + 4t2 + 10t4 + 8t5 + 28t6 + 28t7 + 63t8 + · · ·

MQ1,1,2
2; SO(8)

1+6t2+17t4+27t6+32t8+27t10+17t12+6t14+t16

(1−t2)4 (1−t4)4 =

1 + 10t2 + 55t4 + 215t6 + 679t8 + 1831t10 + . . .

MQ2,1,1
1; SO(8)

(1−t) Q15(t)
(1−t3)2 (1−t4) (1−t5)3 (1−t6)2 (1−t8) =

1 + 4t2 + 10t4 + 8t5 + 28t6 + 28t7 + 63t8 + 76t9 + 148t10 + . . .

MQ2,1,1
2; SO(8)

1+6t2+17t4+27t6+32t8+27t10+17t12+6t14+t16

(1−t2)4 (1−t4)4 =

1 + 10t2 + 55t4 + 215t6 + 679t8 + 1831t10 + . . .

MQ2,2,1
1; SO(8) 1 + t2 + 2t3 + 2t4 + 2t5 + 6t6 + 8t7 + 13t8 + . . .

MQ2,2,1
2; SO(8) 1 + 3t2 + 8t4 + 2t5 + 16t6 + 10t7 + 32t8 + . . .

MQ2,1,2
1; SO(8) 1 + t2 + 2t3 + 2t4 + 2t5 + 6t6 + 8t7 + 13t8 + . . .

MQ2,1,2
2; SO(8) 1 + 3t2 + 8t4 + 2t5 + 16t6 + 10t7 + 32t8 + . . .

Table 4. Unrefined Higgs branch Hilbert series for the orthosymplectic quivers.

Label Palindromic Polynomial

P1(t) 1 + 2t2 + 10t4 + 10t6 + 16t8 + 10t10 + 10t12 + 2t14 + t16

P2(t) 1+3t2 +38t4 +69t6 +225t8 +240t10 +372t12 +240t14 +225t16 +69t18 +38t20 +3t22 +t24

P3(t) 8t2 + 20t4 + 112t6 + 156t8 + 328t10 + 276t12 + 328t14 + 156t16 + 112t18 + 20t20 + 8t22

P4(t) 1 + 11t2 + 57t4 + 170t6 + 324t8 + 398t10 + 324t12 + 170t14 + 57t16 + 11t18 + t20

P5(t) 1 + 12t2 + 63t4 + 204t6 + 550t8 + 1094t10 + 1906t12 + 2708t14 + 3432t16 + 3596t18 +
3432t20 + 2708t22 + 1906t24 + 1094t26 + 550t28 + 204t30 + 63t32 + 12t34 + t36

P6(t) 8t2 + 56t4 + 216t6 + 536t8 + 1136t10 + 1888t12 + 2752t14 + 3344t16 + 3664t18 +
3344t20 + 2752t22 + 1888t24 + 1136t26 + 536t28 + 216t30 + 56t32 + 8t34

P7(t) 1 + 3t2 + 8t4 + 21t6 + 33t8 + 34t10 + 33t12 + 21t14 + 8t16 + 3t18 + t20

P8(t) 3 + 10t2 + 20t4 + 31t6 + 38t8 + 31t10 + 20t12 + 10t14 + 3t16

P9(t) 1 + 2t2 + 7t4 + 12t6 + 22t8 + 16t10 + 22t12 + 12t14 + 7t16 + 2t18 + t20

P10(t) 2t2 + 4t4 + 2t6 + 10t8 + 2t10 + 4t12 + 2t14

P11(t) 1+7t2 +22t4 +53t6 +94t8 +129t10 +148t12 +129t14 +94t16 +53t18 +22t20 +7t22 + t24
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Label Palindromic Polynomial

P12(t) 1 + 5t2 + 21t4 + 54t6 + 114t8 + 182t10 + 248t12 + 270t14 + 248t16 + 182t18 + 114t20 +
54t22 + 21t24 + 5t26 + t28

P13(t) 4t2 + 16t4 + 50t6 + 108t8 + 188t10 + 252t12 + 284t14 + 252t16 + 188t18 + 108t20 +
50t22 + 16t24 + 4t26

P14(t) 1 + 6t2 + 17t4 + 27t6 + 32t8 + 27t10 + 17t12 + 6t14 + t16

Q1(t) 1 + t + 6t2 + 9t3 + 15t4 + 12t5 + 15t6 + 9t7 + 6t8 + t9 + t10

Q2(t) 1 + 6t2 + 15t4 + 18t6 + 15t8 + 6t10 + t12

Q3(t) 1 + 3t2 + 2t3 + 6t4 + 4t5 + 10t6 + 6t7 + 9t8 + 6t9 + 10t10 + 4t11 + 6t12 + 2t13 + 3t14 + t16

Q4(t) 1 + 3t2 + 7t4 + 12t6 + 16t8 + 16t10 + 16t12 + 12t14 + 7t16 + 3t18 + t20

Q5(t) 1 + 6t2 + 12t4 + 21t6 + 24t8 + 24t10 + 21t12 + 12t14 + 6t16 + t18

Q6(t) 1 + t + t2 + 2t3 + 2t4 + 3t5 + 5t6 + 6t7 + 7t8 + 7t9 + 7t10 + 7t11 + 8t12 + 7t13 + 7t14 +
7t15 + 7t16 + 6t17 + 5t18 + 3t19 + 2t20 + 2t21 + t22 + t23 + t24

Q7(t) 1 + 3t2 + 6t4 + 2t5 + 10t6 + 4t7 + 15t8 + 6t9 + 21t10 + 8t11 + 22t12 + 10t13 + 25t14 +
10t15 + 22t16 + 8t17 + 21t18 + 6t19 + 15t20 + 4t21 + 10t22 + 2t23 + 6t24 + 3t26 + t28

Q8(t) 1+ t+4t2 +7t3 +14t4 +19t5 +25t6 +24t7 +25t8 +19t9 +14t10 +7t11 +4t12 + t13 + t14

Q9(t) 1− t + 4t2 + t3 + 5t4 + 2t5 + 5t6 + t7 + 4t8 − t9 + t10

Q10(t) 1 + t + 4t2 + 4t3 + 11t4 + 14t5 + 23t6 + 28t7 + 38t8 + 37t9 + 44t10 + 37t11 + 38t12 +
28t13 + 23t14 + 14t15 + 11t16 + 4t17 + 4t18 + t19 + t20

Q11(t) 1 + t2 + 2t3 + 2t4 + 3t5 + 5t6 + 6t7 + 9t8 + 11t9 + 12t10 + 13t11 + 16t12 + 12t13 +
16t14 + 13t15 + 12t16 + 11t17 + 9t18 + 6t19 + 5t20 + 3t21 + 2t22 + 2t23 + t24 + t26

Q12(t) 1− t + t2 + 2t4 + 3t6 + t7 + 2t8 + t9 + 2t10 + t11 + 3t12 + 2t14 + t16 − t17 + t18

Q13(t) 1 + t + 7t2 + 21t3 + 39t4 + 58t5 + 90t6 + 110t7 + 118t8 + 110t9 + 90t10 + 58t11 +
39t12 + 21t13 + 7t14 + t15 + t16

Q14(t) 1 + t + 3t2 + 5t3 + 16t4 + 21t5 + 34t6 + 34t7 + 53t8 + 56t9 + 73t10 + 64t11 + 73t12 +
56t13 + 53t14 + 34t15 + 34t16 + 21t17 + 16t18 + 5t19 + 3t20 + t21 + t22

Q15(t)
1+t+5t2+3t3+12t4+9t5+32t6+30t7+68t8+65t9+119t10+114t11+187t12+181t13+
268t14 +248t15 +330t16 +287t17 +354t18 +287t19 +330t20 +248t21 +268t22 +181t23 +
187t24+114t25+119t26+65t27+68t28+30t29+32t30+9t31+12t32+3t33+5t34+t35+t36

Q16(t) 1 + 2t2 + 3t4 + 2t5 + 5t6 + 4t7 + 6t8 + 6t9 + 6t10 + 6t11 + 6t12 + 4t13 + 5t14 + 2t15 +
3t16 + 2t18 + t20

Table 5. Palindromic polynomials appearing in the main sections.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 49 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

References

[1] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string
dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[2] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge
theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56
[hep-th/9702198] [INSPIRE].

[3] O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces, and toroidal
compactification of the N = 1 six-dimensional E8 theory, Nucl. Phys. B 487 (1997) 93
[hep-th/9610251] [INSPIRE].

[4] A. Brandhuber and Y. Oz, The D4–D8 brane system and five-dimensional fixed points, Phys.
Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].

[5] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories
and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[6] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl.
Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

[7] O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal
index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].

[8] O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement,
and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112 [arXiv:1311.4199]
[INSPIRE].

[9] O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141
[arXiv:1410.2806] [INSPIRE].

[10] O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015)
163 [arXiv:1507.03860] [INSPIRE].

[11] S.-S. Kim, M. Taki and F. Yagi, Tao Probing the End of the World, Prog. Theor. Exp. Phys.
2015 (2015) 083B02 [arXiv:1504.03672] [INSPIRE].

[12] G. Zafrir, Brane webs and O5-planes, JHEP 03 (2016) 109 [arXiv:1512.08114] [INSPIRE].

[13] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on 5d descriptions of 6d SCFTs,
JHEP 10 (2016) 126 [arXiv:1512.08239] [INSPIRE].

[14] G. Zafrir, Brane webs, 5d gauge theories and 6d N = (1, 0) SCFT’s, JHEP 12 (2015) 157
[arXiv:1509.02016] [INSPIRE].

[15] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams,
JHEP 05 (2019) 203 [arXiv:1509.03300] [INSPIRE].

[16] G. Zafrir, Brane webs in the presence of an O5−-plane and 4d class S theories of type D,
JHEP 07 (2016) 035 [arXiv:1602.00130] [INSPIRE].

[17] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Equivalence of several descriptions for 6d SCFT,
JHEP 01 (2017) 093 [arXiv:1607.07786] [INSPIRE].

[18] H. Hayashi and G. Zoccarato, Partition functions of web diagrams with an O7−-plane, JHEP
03 (2017) 112 [arXiv:1609.07381] [INSPIRE].

[19] H. Hayashi and K. Ohmori, 5d/6d DE instantons from trivalent gluing of web diagrams,
JHEP 06 (2017) 078 [arXiv:1702.07263] [INSPIRE].

– 50 –

https://doi.org/10.1016/S0370-2693(96)01215-4
https://arxiv.org/abs/hep-th/9608111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9608111
https://doi.org/10.1016/S0550-3213(97)00279-4
https://arxiv.org/abs/hep-th/9702198
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702198
https://doi.org/10.1016/S0550-3213(96)00690-6
https://arxiv.org/abs/hep-th/9610251
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9610251
https://doi.org/10.1016/S0370-2693(99)00763-7
https://doi.org/10.1016/S0370-2693(99)00763-7
https://arxiv.org/abs/hep-th/9905148
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9905148
https://doi.org/10.1088/1126-6708/1998/01/002
https://arxiv.org/abs/hep-th/9710116
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9710116
https://doi.org/10.1016/S0550-3213(97)00472-0
https://doi.org/10.1016/S0550-3213(97)00472-0
https://arxiv.org/abs/hep-th/9704170
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9704170
https://doi.org/10.1007/JHEP01(2014)079
https://arxiv.org/abs/1310.2150
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.2150
https://doi.org/10.1007/JHEP03(2014)112
https://arxiv.org/abs/1311.4199
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.4199
https://doi.org/10.1007/JHEP04(2015)141
https://arxiv.org/abs/1410.2806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.2806
https://doi.org/10.1007/JHEP12(2015)163
https://doi.org/10.1007/JHEP12(2015)163
https://arxiv.org/abs/1507.03860
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.03860
https://doi.org/10.1093/ptep/ptv108
https://doi.org/10.1093/ptep/ptv108
https://arxiv.org/abs/1504.03672
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.03672
https://doi.org/10.1007/JHEP03(2016)109
https://arxiv.org/abs/1512.08114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.08114
https://doi.org/10.1007/JHEP10(2016)126
https://arxiv.org/abs/1512.08239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.08239
https://doi.org/10.1007/JHEP12(2015)157
https://arxiv.org/abs/1509.02016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.02016
https://doi.org/10.1007/JHEP05(2019)203
https://arxiv.org/abs/1509.03300
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.03300
https://doi.org/10.1007/JHEP07(2016)035
https://arxiv.org/abs/1602.00130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.00130
https://doi.org/10.1007/JHEP01(2017)093
https://arxiv.org/abs/1607.07786
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.07786
https://doi.org/10.1007/JHEP03(2017)112
https://doi.org/10.1007/JHEP03(2017)112
https://arxiv.org/abs/1609.07381
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.07381
https://doi.org/10.1007/JHEP06(2017)078
https://arxiv.org/abs/1702.07263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.07263


J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

[20] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Discrete theta angle from an O5-plane, JHEP 11
(2017) 041 [arXiv:1707.07181] [INSPIRE].

[21] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 5-brane webs for 5d N = 1 G2 gauge theories,
JHEP 03 (2018) 125 [arXiv:1801.03916] [INSPIRE].

[22] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs,
JHEP 12 (2018) 016 [arXiv:1806.10569] [INSPIRE].

[23] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Rank-3 antisymmetric matter on 5-brane webs,
JHEP 05 (2019) 133 [arXiv:1902.04754] [INSPIRE].

[24] H.-C. Kim, M. Kim, S.-S. Kim and K.-H. Lee, Bootstrapping BPS spectra of 5d/6d field
theories, JHEP 04 (2021) 161 [arXiv:2101.00023] [INSPIRE].

[25] H.-C. Kim, S.-S. Kim and K. Lee, Gauging ZN Discrete Symmetry of 5d SCFTs,
arXiv:2112.14550 [INSPIRE].

[26] M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, del Pezzo surfaces and type-I-prime
theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].

[27] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric
field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].

[28] P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs,
JHEP 04 (2018) 103 [arXiv:1801.04036] [INSPIRE].

[29] C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases:
an M-theory/type IIA perspective, SciPost Phys. 6 (2019) 052 [arXiv:1812.10451] [INSPIRE].

[30] L. Bhardwaj, On the classification of 5d SCFTs, JHEP 09 (2020) 007 [arXiv:1909.09635]
[INSPIRE].

[31] F. Apruzzi, S. Schäfer-Nameki and Y.-N. Wang, 5d SCFTs from Decoupling and Gluing,
JHEP 08 (2020) 153 [arXiv:1912.04264] [INSPIRE].

[32] L. Bhardwaj and G. Zafrir, Classification of 5d N = 1 gauge theories, JHEP 12 (2020) 099
[arXiv:2003.04333] [INSPIRE].

[33] J. Tian and Y.-N. Wang, 5D and 6D SCFTs from C3 orbifolds, SciPost Phys. 12 (2022) 127
[arXiv:2110.15129] [INSPIRE].

[34] B. Acharya, N. Lambert, M. Najjar, E.E. Svanes and J. Tian, Gauging discrete symmetries
of TN -theories in five dimensions, JHEP 04 (2022) 114 [arXiv:2110.14441] [INSPIRE].

[35] O. Bergman, D. Rodríguez-Gómez and C.F. Uhlemann, Testing AdS6/CFT5 in Type IIB
with stringy operators, JHEP 08 (2018) 127 [arXiv:1806.07898] [INSPIRE].

[36] M. Fluder and C.F. Uhlemann, Precision Test of AdS6/CFT5 in Type IIB String Theory,
Phys. Rev. Lett. 121 (2018) 171603 [arXiv:1806.08374] [INSPIRE].

[37] J. Kaidi and C.F. Uhlemann, M-theory curves from warped AdS6 in Type IIB, JHEP 11
(2018) 175 [arXiv:1809.10162] [INSPIRE].

[38] C.F. Uhlemann, AdS6/CFT5 with O7-planes, JHEP 04 (2020) 113 [arXiv:1912.09716]
[INSPIRE].

[39] C.F. Uhlemann, Exact results for 5d SCFTs of long quiver type, JHEP 11 (2019) 072
[arXiv:1909.01369] [INSPIRE].

– 51 –

https://doi.org/10.1007/JHEP11(2017)041
https://doi.org/10.1007/JHEP11(2017)041
https://arxiv.org/abs/1707.07181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07181
https://doi.org/10.1007/JHEP03(2018)125
https://arxiv.org/abs/1801.03916
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03916
https://doi.org/10.1007/JHEP12(2018)016
https://arxiv.org/abs/1806.10569
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.10569
https://doi.org/10.1007/JHEP05(2019)133
https://arxiv.org/abs/1902.04754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.04754
https://doi.org/10.1007/JHEP04(2021)161
https://arxiv.org/abs/2101.00023
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.00023
https://arxiv.org/abs/2112.14550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.14550
https://doi.org/10.1016/S0550-3213(97)00281-2
https://arxiv.org/abs/hep-th/9609071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609071
https://doi.org/10.1016/S0550-3213(96)00592-5
https://arxiv.org/abs/hep-th/9609070
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609070
https://doi.org/10.1007/JHEP04(2018)103
https://arxiv.org/abs/1801.04036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.04036
https://doi.org/10.21468/SciPostPhys.6.5.052
https://arxiv.org/abs/1812.10451
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10451
https://doi.org/10.1007/JHEP09(2020)007
https://arxiv.org/abs/1909.09635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.09635
https://doi.org/10.1007/JHEP08(2020)153
https://arxiv.org/abs/1912.04264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.04264
https://doi.org/10.1007/JHEP12(2020)099
https://arxiv.org/abs/2003.04333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.04333
https://doi.org/10.21468/SciPostPhys.12.4.127
https://arxiv.org/abs/2110.15129
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.15129
https://doi.org/10.1007/JHEP04(2022)114
https://arxiv.org/abs/2110.14441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.14441
https://doi.org/10.1007/JHEP08(2018)127
https://arxiv.org/abs/1806.07898
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07898
https://doi.org/10.1103/PhysRevLett.121.171603
https://arxiv.org/abs/1806.08374
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.08374
https://doi.org/10.1007/JHEP11(2018)175
https://doi.org/10.1007/JHEP11(2018)175
https://arxiv.org/abs/1809.10162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.10162
https://doi.org/10.1007/JHEP04(2020)113
https://arxiv.org/abs/1912.09716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09716
https://doi.org/10.1007/JHEP11(2019)072
https://arxiv.org/abs/1909.01369
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.01369


J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

[40] A. Legramandi and C. Núñez, Electrostatic description of five-dimensional SCFTs, Nucl.
Phys. B 974 (2022) 115630 [arXiv:2104.11240] [INSPIRE].

[41] A. Legramandi and C. Núñez, Holographic description of SCFT5 compactifications, JHEP 02
(2022) 010 [arXiv:2109.11554] [INSPIRE].

[42] J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: A Geometric Apercu,
JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].

[43] A. Hanany and N. Mekareeya, Counting Gauge Invariant Operators in SQCD with Classical
Gauge Groups, JHEP 10 (2008) 012 [arXiv:0805.3728] [INSPIRE].

[44] A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].

[45] M.R. Gaberdiel and B. Zwiebach, Exceptional groups from open strings, Nucl. Phys. B 518
(1998) 151 [hep-th/9709013] [INSPIRE].

[46] M.R. Gaberdiel, T. Hauer and B. Zwiebach, Open string-string junction transitions, Nucl.
Phys. B 525 (1998) 117 [hep-th/9801205] [INSPIRE].

[47] O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p, q]
seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785
[hep-th/9812028] [INSPIRE].

[48] O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p, q]
7-branes: Kac-Moody algebras and beyond, Adv. Theor. Math. Phys. 3 (1999) 1835
[hep-th/9812209] [INSPIRE].

[49] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and
five-dimensional En field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].

[50] H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global
Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].

[51] O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5d superconformal indices at large N and
holography, JHEP 08 (2013) 081 [arXiv:1305.6870] [INSPIRE].

[52] C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07
(2015) 063 [Addendum JHEP 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].

[53] S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146
[hep-th/9606086] [INSPIRE].

[54] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195
[hep-th/9603150] [INSPIRE].

[55] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor. Part I.
Classification of 5d SCFTs, Flavor Symmetries and BPS States, JHEP 11 (2019) 068
[arXiv:1907.05404] [INSPIRE].

[56] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor.
Part II. 5d SCFTs, Gauge Theories, and Dualities, JHEP 03 (2020) 052
[arXiv:1909.09128] [INSPIRE].

[57] L. Bhardwaj, Flavor symmetry of 5d SCFTs. Part I. General setup, JHEP 09 (2021) 186
[arXiv:2010.13230] [INSPIRE].

[58] L. Bhardwaj, Flavor symmetry of 5d SCFTs. Part II. Applications, JHEP 04 (2021) 221
[arXiv:2010.13235] [INSPIRE].

– 52 –

https://doi.org/10.1016/j.nuclphysb.2021.115630
https://doi.org/10.1016/j.nuclphysb.2021.115630
https://arxiv.org/abs/2104.11240
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.11240
https://doi.org/10.1007/JHEP02(2022)010
https://doi.org/10.1007/JHEP02(2022)010
https://arxiv.org/abs/2109.11554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.11554
https://doi.org/10.1088/1126-6708/2008/05/099
https://arxiv.org/abs/0803.4257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.4257
https://doi.org/10.1088/1126-6708/2008/10/012
https://arxiv.org/abs/0805.3728
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3728
https://doi.org/10.1016/0550-3213(96)00347-1
https://arxiv.org/abs/hep-th/9605150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605150
https://doi.org/10.1016/S0550-3213(97)00841-9
https://doi.org/10.1016/S0550-3213(97)00841-9
https://arxiv.org/abs/hep-th/9709013
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9709013
https://doi.org/10.1016/S0550-3213(98)00290-9
https://doi.org/10.1016/S0550-3213(98)00290-9
https://arxiv.org/abs/hep-th/9801205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9801205
https://doi.org/10.4310/ATMP.1999.v3.n6.a5
https://arxiv.org/abs/hep-th/9812028
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812028
https://doi.org/10.4310/ATMP.1999.v3.n6.a6
https://arxiv.org/abs/hep-th/9812209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812209
https://doi.org/10.1088/1126-6708/1999/03/006
https://arxiv.org/abs/hep-th/9902179
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902179
https://doi.org/10.1007/JHEP10(2012)142
https://arxiv.org/abs/1206.6781
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6781
https://doi.org/10.1007/JHEP08(2013)081
https://arxiv.org/abs/1305.6870
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.6870
https://doi.org/10.1007/JHEP07(2015)063
https://doi.org/10.1007/JHEP07(2015)063
https://doi.org/10.1007/JHEP04(2016)094
https://arxiv.org/abs/1406.6793
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.6793
https://doi.org/10.1016/S0550-3213(97)00280-0
https://arxiv.org/abs/hep-th/9606086
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9606086
https://doi.org/10.1016/0550-3213(96)00212-X
https://arxiv.org/abs/hep-th/9603150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603150
https://doi.org/10.1007/JHEP11(2019)068
https://arxiv.org/abs/1907.05404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05404
https://doi.org/10.1007/JHEP03(2020)052
https://arxiv.org/abs/1909.09128
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.09128
https://doi.org/10.1007/JHEP09(2021)186
https://arxiv.org/abs/2010.13230
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.13230
https://doi.org/10.1007/JHEP04(2021)221
https://arxiv.org/abs/2010.13235
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.13235


J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

[59] G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch
at infinite coupling, JHEP 07 (2018) 061 [arXiv:1712.06604] [INSPIRE].

[60] M. Akhond, F. Carta, S. Dwivedi, H. Hayashi, S.-S. Kim and F. Yagi, Five-brane webs, Higgs
branches and unitary/orthosymplectic magnetic quivers, JHEP 12 (2020) 164
[arXiv:2008.01027] [INSPIRE].

[61] M. Akhond, F. Carta, S. Dwivedi, H. Hayashi, S.-S. Kim and F. Yagi, Factorised 3d N = 4
orthosymplectic quivers, JHEP 05 (2021) 269 [arXiv:2101.12235] [INSPIRE].

[62] M. Akhond and F. Carta, Magnetic quivers from brane webs with O7+-planes, JHEP 10
(2021) 014 [arXiv:2107.09077] [INSPIRE].

[63] M. van Beest, A. Bourget, J. Eckhard and S. Schäfer-Nameki, (5d RG-flow) Trees in the
Tropical Rain Forest, JHEP 03 (2021) 241 [arXiv:2011.07033] [INSPIRE].

[64] M. van Beest, A. Bourget, J. Eckhard and S. Schäfer-Nameki, (Symplectic) Leaves and (5d
Higgs) Branches in the Poly(go)nesian Tropical Rain Forest, JHEP 11 (2020) 124
[arXiv:2008.05577] [INSPIRE].

[65] M. van Beest and S. Giacomelli, Connecting 5d Higgs branches via Fayet-Iliopoulos
deformations, JHEP 12 (2021) 202 [arXiv:2110.02872] [INSPIRE].

[66] A. Bourget, S. Cabrera, J.F. Grimminger, A. Hanany and Z. Zhong, Brane Webs and
Magnetic Quivers for SQCD, JHEP 03 (2020) 176 [arXiv:1909.00667] [INSPIRE].

[67] A. Bourget, J.F. Grimminger, A. Hanany, M. Sperling, G. Zafrir and Z. Zhong, Magnetic
quivers for rank 1 theories, JHEP 09 (2020) 189 [arXiv:2006.16994] [INSPIRE].

[68] A. Bourget, J.F. Grimminger, A. Hanany, M. Sperling and Z. Zhong, Magnetic Quivers from
Brane Webs with O5 Planes, JHEP 07 (2020) 204 [arXiv:2004.04082] [INSPIRE].

[69] A. Bourget, S. Giacomelli, J.F. Grimminger, A. Hanany, M. Sperling and Z. Zhong, S-fold
magnetic quivers, JHEP 02 (2021) 054 [arXiv:2010.05889] [INSPIRE].

[70] A. Bourget, J.F. Grimminger, A. Hanany, R. Kalveks, M. Sperling and Z. Zhong, Magnetic
Lattices for Orthosymplectic Quivers, JHEP 12 (2020) 092 [arXiv:2007.04667] [INSPIRE].

[71] A. Bourget, J.F. Grimminger, A. Hanany, R. Kalveks, M. Sperling and Z. Zhong, Folding
orthosymplectic quivers, JHEP 12 (2021) 070 [arXiv:2107.00754] [INSPIRE].

[72] C. Closset, S. Giacomelli, S. Schäfer-Nameki and Y.-N. Wang, 5d and 4d SCFTs: Canonical
Singularities, Trinions and S-Dualities, JHEP 05 (2021) 274 [arXiv:2012.12827] [INSPIRE].

[73] C. Closset, S. Schäfer-Nameki and Y.-N. Wang, Coulomb and Higgs Branches from
Canonical Singularities. Part 0, JHEP 02 (2021) 003 [arXiv:2007.15600] [INSPIRE].

[74] S. Cabrera, A. Hanany and M. Sperling, Magnetic quivers, Higgs branches, and 6d
N = (1, 0) theories, JHEP 06 (2019) 071 [Erratum JHEP 07 (2019) 137]
[arXiv:1904.12293] [INSPIRE].

[75] S. Cabrera, A. Hanany and M. Sperling, Magnetic quivers, Higgs branches, and 6d
N = (1, 0) theories — orthogonal and symplectic gauge groups, JHEP 02 (2020) 184
[arXiv:1912.02773] [INSPIRE].

[76] F. Carta, S. Giacomelli, N. Mekareeya and A. Mininno, Conformal manifolds and 3d mirrors
of Argyres-Douglas theories, JHEP 08 (2021) 015 [arXiv:2105.08064] [INSPIRE].

[77] F. Carta, S. Giacomelli, N. Mekareeya and A. Mininno, Conformal manifolds and 3d mirrors
of (Dn, Dm) theories, JHEP 02 (2022) 014 [arXiv:2110.06940] [INSPIRE].

– 53 –

https://doi.org/10.1007/JHEP07(2018)061
https://arxiv.org/abs/1712.06604
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.06604
https://doi.org/10.1007/JHEP12(2020)164
https://arxiv.org/abs/2008.01027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.01027
https://doi.org/10.1007/JHEP05(2021)269
https://arxiv.org/abs/2101.12235
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.12235
https://doi.org/10.1007/JHEP10(2021)014
https://doi.org/10.1007/JHEP10(2021)014
https://arxiv.org/abs/2107.09077
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.09077
https://doi.org/10.1007/JHEP03(2021)241
https://arxiv.org/abs/2011.07033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.07033
https://doi.org/10.1007/JHEP11(2020)124
https://arxiv.org/abs/2008.05577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.05577
https://doi.org/10.1007/JHEP12(2021)202
https://arxiv.org/abs/2110.02872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.02872
https://doi.org/10.1007/JHEP03(2020)176
https://arxiv.org/abs/1909.00667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.00667
https://doi.org/10.1007/JHEP09(2020)189
https://arxiv.org/abs/2006.16994
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.16994
https://doi.org/10.1007/JHEP07(2020)204
https://arxiv.org/abs/2004.04082
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.04082
https://doi.org/10.1007/JHEP02(2021)054
https://arxiv.org/abs/2010.05889
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.05889
https://doi.org/10.1007/JHEP12(2020)092
https://arxiv.org/abs/2007.04667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.04667
https://doi.org/10.1007/JHEP12(2021)070
https://arxiv.org/abs/2107.00754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.00754
https://doi.org/10.1007/JHEP05(2021)274
https://arxiv.org/abs/2012.12827
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.12827
https://doi.org/10.1007/JHEP02(2021)003
https://arxiv.org/abs/2007.15600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.15600
https://doi.org/10.1007/JHEP06(2019)071
https://doi.org/10.1007/JHEP07(2019)137
https://arxiv.org/abs/1904.12293
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.12293
https://doi.org/10.1007/JHEP02(2020)184
https://arxiv.org/abs/1912.02773
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02773
https://doi.org/10.1007/JHEP08(2021)015
https://arxiv.org/abs/2105.08064
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.08064
https://doi.org/10.1007/JHEP02(2022)014
https://arxiv.org/abs/2110.06940
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.06940


J
H
E
P
0
5
(
2
0
2
2
)
0
5
4

[78] M. Sperling and Z. Zhong, Balanced B and D-type orthosymplectic quivers — magnetic
quivers for product theories, JHEP 04 (2022) 145 [arXiv:2111.00026] [INSPIRE].

[79] S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb
branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

[80] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and
Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].

[81] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and
Three Dimensional Sicilian Theories, JHEP 09 (2014) 185 [arXiv:1403.2384] [INSPIRE].

[82] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli
Space of Instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].

[83] A. Hanany and R. Kalveks, Highest Weight Generating Functions for Hilbert Series, JHEP
10 (2014) 152 [arXiv:1408.4690] [INSPIRE].

[84] V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in
three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].

[85] D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills
Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[86] B. Assel and S. Cremonesi, The Infrared Physics of Bad Theories, SciPost Phys. 3 (2017)
024 [arXiv:1707.03403] [INSPIRE].

[87] B. Assel and S. Cremonesi, The Infrared Fixed Points of 3d N = 4 USp(2N) SQCD
Theories, SciPost Phys. 5 (2018) 015 [arXiv:1802.04285] [INSPIRE].

[88] I. Yaakov, Redeeming Bad Theories, JHEP 11 (2013) 189 [arXiv:1303.2769] [INSPIRE].

[89] G. Ferlito and A. Hanany, A tale of two cones: the Higgs Branch of Sp(n) theories with 2n
flavours, arXiv:1609.06724 [INSPIRE].

[90] S. Cabrera, A. Hanany and F. Yagi, Tropical Geometry and Five Dimensional Higgs
Branches at Infinite Coupling, JHEP 01 (2019) 068 [arXiv:1810.01379] [INSPIRE].

[91] M. Akhond, F. Carta, S. Dwivedi, H. Hayashi, S.-S. Kim and F. Yagi, Hilbert series for bad
theories, to appear.

[92] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, in
proceedings of Conference in Memory of Claude Itzykson, Saclay, France, 5–7 June 1996,
Advanced Series in Mathematical Physics 24, J.M. Drouffe and J.B. Zuber eds., World
Scientific, Singapore (1996), pp. 333–366 [hep-th/9607163] [INSPIRE].

[93] A. Hanany and N. Mekareeya, Complete Intersection Moduli Spaces in N = 4 Gauge
Theories in Three Dimensions, JHEP 01 (2012) 079 [arXiv:1110.6203] [INSPIRE].

[94] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099
[arXiv:1008.5203] [INSPIRE].

[95] O. Chacaltana and J. Distler, Tinkertoys for the DN series, JHEP 02 (2013) 110
[arXiv:1106.5410] [INSPIRE].

– 54 –

https://doi.org/10.1007/JHEP04(2022)145
https://arxiv.org/abs/2111.00026
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.00026
https://doi.org/10.1007/JHEP01(2014)005
https://arxiv.org/abs/1309.2657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.2657
https://doi.org/10.1007/JHEP09(2014)178
https://arxiv.org/abs/1403.0585
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.0585
https://doi.org/10.1007/JHEP09(2014)185
https://arxiv.org/abs/1403.2384
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.2384
https://doi.org/10.1007/JHEP12(2014)103
https://arxiv.org/abs/1408.6835
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.6835
https://doi.org/10.1007/JHEP10(2014)152
https://doi.org/10.1007/JHEP10(2014)152
https://arxiv.org/abs/1408.4690
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.4690
https://doi.org/10.1088/1126-6708/2002/12/044
https://arxiv.org/abs/hep-th/0207074
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0207074
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.3720
https://doi.org/10.21468/SciPostPhys.3.3.024
https://doi.org/10.21468/SciPostPhys.3.3.024
https://arxiv.org/abs/1707.03403
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.03403
https://doi.org/10.21468/SciPostPhys.5.2.015
https://arxiv.org/abs/1802.04285
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.04285
https://doi.org/10.1007/JHEP11(2013)189
https://arxiv.org/abs/1303.2769
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.2769
https://arxiv.org/abs/1609.06724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.06724
https://doi.org/10.1007/JHEP01(2019)068
https://arxiv.org/abs/1810.01379
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.01379
https://doi.org/10.1142/3235
https://arxiv.org/abs/hep-th/9607163
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9607163
https://doi.org/10.1007/JHEP01(2012)079
https://arxiv.org/abs/1110.6203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.6203
https://doi.org/10.1007/JHEP11(2010)099
https://arxiv.org/abs/1008.5203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.5203
https://doi.org/10.1007/JHEP02(2013)110
https://arxiv.org/abs/1106.5410
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.5410

	Introduction
	SO(6) vs. SU(4)
	SO(6) theories without vector matter
	SO(6)+2S/(1S+1C) <-> SU(4)(1/0)+2F
	SO(6)+2S+1C <-> SU(4)(1/2)+3F
	SO(6)+2S+2C <-> SU(4)(0)+4F
	SO(6)+3S+2C <-> SU(4)(1/2)+5F
	SO(6)+3S+3C <-> SU(4)(0)+6F
	SO(6)+4S+4C <-> SU(4)(0)+8F

	SO(6) theories with a single vector hypermultiplet
	SO(6)+2S/(1S+1C)+1V <-> SU(4)(1/0)+2F+1AS
	SO(6)+2S+1C+1V <-> SU(4)(1/2)+3F+1AS
	SO(6)+2S+2C+1V <-> SU(4)(0)+4F+1AS
	SO(6)+3S+2C+1V <-> SU(4)(1/2)+5F+1AS
	SO(6)+3S+3C+1V <-> SU(4)(0)+6F+1AS
	SO(6)+4S+4C+1V <-> SU(4)(0)+8F+1AS

	SO(6) theories with two vector hypermultiplets
	SO(6)+2S/(1S+1C)+2V <-> SU(4)(1/0)+2F+2AS
	SO(6)+2S+1C+2V <-> SU(4)(1/2)+3F+2AS
	SO(6)+2S+2C+2V <-> SU(4)(0)+4F+2AS
	SO(6)+3S+2C+2V <-> SU(4)(1/2)+5F+2AS
	SO(6)+3S+3C+2V <-> SU(4)(0)+6F+2AS


	SO(8) triality
	SO(8)+1V <-> SO(8)+1S
	SO(8)+2V <-> SO(8)+2S
	SO(8)+2S+1C <-> SO(8)+2S+1V <-> SO(8)+1S+2V
	SO(8)+2S+2C <-> SO(8)+2S+2V
	SO(8)+1S+1C+2V <-> SO(8)+2S+1C+1V
	SO(8)+2S+2C+1V <-> SO(8)+2S+1C+2V

	Conclusion
	Unrefined Hilbert series results for OSp quivers

